US20210288503A9 - Photovoltaic Power Device and Wiring - Google Patents

Photovoltaic Power Device and Wiring Download PDF

Info

Publication number
US20210288503A9
US20210288503A9 US15/593,761 US201715593761A US2021288503A9 US 20210288503 A9 US20210288503 A9 US 20210288503A9 US 201715593761 A US201715593761 A US 201715593761A US 2021288503 A9 US2021288503 A9 US 2021288503A9
Authority
US
United States
Prior art keywords
power
power device
current
output
devices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US15/593,761
Other versions
US11201476B2 (en
US20170346295A1 (en
Inventor
Ilan Yoscovich
Tzachi Glovinsky
Ofir Bieber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SolarEdge Technologies Ltd
Original Assignee
SolarEdge Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SolarEdge Technologies Ltd filed Critical SolarEdge Technologies Ltd
Priority to US15/593,761 priority Critical patent/US11201476B2/en
Assigned to SOLAREDGE TECHNOLOGIES LTD. reassignment SOLAREDGE TECHNOLOGIES LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GLOVINSKY, TZACHI, BIEBER, OFIR, YOSCOVICH, ILAN
Publication of US20170346295A1 publication Critical patent/US20170346295A1/en
Priority to US17/141,709 priority patent/US20210167723A1/en
Publication of US20210288503A9 publication Critical patent/US20210288503A9/en
Application granted granted Critical
Publication of US11201476B2 publication Critical patent/US11201476B2/en
Priority to US18/356,460 priority patent/US20240030865A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02J3/385
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R25/00Coupling parts adapted for simultaneous co-operation with two or more identical counterparts, e.g. for distributing energy to two or more circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/02Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/388Islanding, i.e. disconnection of local power supply from the network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/32Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/36Electrical components characterised by special electrical interconnection means between two or more PV modules, e.g. electrical module-to-module connection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • a photovoltaic string may integrate photovoltaic power devices to allow operation at high efficiency. These power devices may be variously configured, and they may be integrated into the photovoltaic string in various ways.
  • Photovoltaic power device may include optimization functionality, configured to maximize the power output by a photovoltaic generator it is coupled to.
  • a photovoltaic power device may be coupled to one or more photovoltaic generators, and it may measure one or more circuit parameters (e.g. voltage or current) and control these parameters to obtain a more effective operating point.
  • photovoltaic power devices e.g. optimizers
  • Properly designed and well-integrated, optimization circuits may improve system performance without incurring excessive additional costs.
  • Poorly designed power devices and/or systems may not be cost-effective. For instance, some designs may result in photovoltaic string currents which require installation of long, thick and expensive cables.
  • Embodiments herein may employ photovoltaic strings including a photovoltaic (PV) power device (e.g. optimizer) with a specialized wiring configuration, which enables high string efficiency without incurring excessive wiring costs.
  • PV photovoltaic
  • a circuit may be utilized to reduce the cost of the system.
  • an illustrative PV power device may divide the current of a photovoltaic string into two or more portions, creating smaller current portions that allow for cables which may be thinner and cheaper than those which would otherwise be needed.
  • the cabling savings may be substantial.
  • a cable built into photovoltaic generators may be used to carry one portion of the current, and the other portions of the current may be carried by direct-current (DC) or alternating-current (AC) cables bypassing the photovoltaic generators.
  • the circuit may be implemented on a single integrated circuit with a photovoltaic generator, DC-DC converter, DC-AC inverter or micro-inverter.
  • the circuit can be coupled to one or more photovoltaic generators, DC-DC converters, DC-AC inverters or micro-inverters.
  • photovoltaic power devices may be coupled to one another with cables at the time of manufacturing and stored in a convenient manner (e.g. wound around a cylindrical reel) to allow fast and easy deployment in the field.
  • FIGS. 1A-1F are block diagrams according to various aspects of the present disclosure.
  • FIG. 2A illustrates a string section according to various aspects of the present disclosure.
  • FIG. 2B illustrates a PV power device according to various aspects of the present disclosure.
  • FIGS. 3A-3B illustrate PV power device circuits according to various aspects of the present disclosure.
  • FIG. 4A illustrates a PV power device configuration according to various aspects of the present disclosure.
  • FIG. 4B illustrates a portion of a string of PV power devices according to various aspects of the present disclosure.
  • FIG. 4C illustrates a PV power device configuration according to various aspects of the present disclosure.
  • FIG. 5 illustrates a PV power device and PV generator arrangement according to various aspects of the present disclosure.
  • FIG. 6 illustrates a PV system according to various aspects of the present disclosure.
  • FIGS. 7A-7B illustrate a PV system according to various aspects of the present disclosure.
  • FIG. 7C illustrates a PV system and associated method according to various aspects of the present disclosure.
  • FIG. 7D illustrates a method according to various aspects of the present disclosure.
  • FIGS. 8 , ‘ 9 A and 9 B illustrate various components of a PV system according to various aspects of the present disclosure.
  • FIGS. 10A-10G illustrate operational aspects of a PV system according to various aspects of the present disclosure.
  • FIGS. 11A-11C illustrate methods of operating and associated states of a PV system according to various aspects of the present disclosure.
  • illustrative photovoltaic installation 100 may include one or more photovoltaic (PV) generators 101 .
  • Each PV generator may be coupled to a one or more photovoltaic (PV) power device(s) 102 .
  • PV generator 101 may comprise one or more solar cells, solar cell strings, solar panels or solar shingles.
  • PV power device 102 may comprise a power conversion circuit such as a direct current-direct current (DC/DC) converter such as a buck, boost, buck-boost, buck+boost, flyback and/or forward converter, or a charge-pump.
  • DC/DC direct current-direct current
  • PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter or a micro-inverter.
  • PV power device 102 may comprise a maximum power point tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) to which the power device is coupled.
  • PV power device 102 may further comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA).
  • DSP Digital Signal Processor
  • FPGA Field Programmable Gate Array
  • the control device may implement MPPT control discussed above (e.g. “perturb and observe” methods, impedance matching) for determining an optimal or preferred operating point for a connected power source.
  • PV power device 102 may comprise circuitry and/or sensors configured to measure parameters on or near the photovoltaic generator(s), such as the voltage and/or current output by the photovoltaic generator(s), the power output by the photovoltaic generator (s), the irradiance received by the module and/or the temperature on or near the photovoltaic generator (s).
  • a plurality of PV power devices 102 are coupled to a plurality of PV generators 101 , to form a photovoltaic string 105 .
  • One terminal of the resultant photovoltaic string 105 may be coupled to a power (e.g., direct current) bus, and the other terminal of the string 105 may be coupled to a ground bus.
  • the power and ground buses may be input to system power device 106 .
  • system power device 106 may include a DC/AC inverter and may output alternating current (AC) power to a power grid, home or other destinations.
  • system power device 106 may comprise a combiner box, transformer and/or safety disconnect circuit.
  • system power device 106 may comprise a DC combiner box for receiving DC power from a plurality of PV strings 105 and outputting the combined DC power.
  • system power device 106 may include a fuse coupled to each string 105 for overcurrent protection, and/or one or more disconnect switches for disconnecting one or more PV strings 105 .
  • system power device 106 may include or be coupled to a control device and/or a communication device for controlling or communicating with PV power devices 102 .
  • system power device 106 may comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA) configured to control the operation of system power device 106 .
  • System power device 106 may further comprise a communication device (e.g. a Power Line Communication circuit and/or a wireless transceiver) configured to communicate with linked communication devices included in PV power devices 102 .
  • system power device 106 may comprise both a control device and a communication device, the control device configured to determine desirable modes of operation for PV power devices (e.g. power devices 102 ), and the communication device configured to transmit operational commands and receive reports from communication devices included in the PV power devices.
  • the power and ground buses may be further coupled to energy storage devices such as batteries, flywheels or other storage devices.
  • PV power devices 102 may be coupled to photovoltaic generators 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of one power device coupled to the ground or power bus.
  • each PV generator 101 may be coupled to two PV power devices 102 , with the possible exception of one PV generator coupled to the ground or Power bus.
  • the PV power devices may be “standalone” products, manufactured and packaged separately.
  • the PV power devices may be coupled to one another using conductors of appropriate length at the time of manufacturing, packaged and sold as an integrated unit, and deployed as an integrated unit when installing a PV system (e.g. photovoltaic installation 100 ).
  • power devices 102 may be assembled as an integrated string of power devices or part of a string of power devices, and may be coupled to one another during manufacturing. During installation, the integrated string may be simply strung out alongside photovoltaic generators 101 and each power device 102 may be coupled to a corresponding one of the photovoltaic generators 101 quickly and easily, forming photovoltaic string 105 , or part of string 105 .
  • Each PV power device 102 may comprise several terminals for coupling (e.g. connecting) to photovoltaic generators 101 and/or other PV power devices 102 .
  • each PV power device 102 comprises four terminals: One “Vin” terminal for receiving power from the positive output of a PV generator 101 , two “Vout” terminals for outputting power from the PV power device 102 , and one “common” terminal for coupling to a “Vout” terminal of a different PV power device 102 or to a ground bus.
  • each PV power device 102 may feature a different number of terminals, and/or may feature four terminals configured differently, as will be illustrated in further embodiments.
  • a first path is formed by conductors coupling PV power devices 102 while bypassing photovoltaic generators 101
  • a second path is formed by coupling photovoltaic generators 101 to PV power devices 102 .
  • conductors 103 b and 103 c are connected between “Vout” and “common” terminals of PV power devices, without being directly connected to a PV generator.
  • Conductors 104 a , 104 b and 104 c are examples of conductors which connect PV generators 101 to terminals of a PV power device 102 .
  • Conductors deployed at either end of a PV string e.g.
  • PV string 105 may be connected in a manner different from the conductors forming the first and second paths.
  • conductor 103 a is connected on one end to the ground bus and a terminal of a PV generator, and on the other end the “common” terminals of a PV power device 102 .
  • Conductor 103 n connects the two “Vout” terminals of one PV power device 102 to each other and to the power bus, to combine the currents from the two paths and deliver the combined currents to the power bus.
  • FIG. 1B shows an illustrative embodiment of the external connection terminals of a photovoltaic power device 102 , such as those featured in illustrative photovoltaic installation 100 .
  • PV power device 102 may include four terminals configured for electrically connecting to terminals labeled “Vin”, “Vout” and “common” in FIG. 1A
  • Terminal T 1 may be configured to receive an input current from a photovoltaic generator or power device.
  • Terminal T 2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output.
  • Terminals T 3 and T 4 may be configured to output electrical power (voltage and current) to additional PV generators and/or power devices. Terminals T 3 and T 4 may output the same voltage in reference to the common terminal T 2 , though they may output different current and different power.
  • the physical location of the terminals in relation to the casing of the power device may be variously configured to allow for convenient coupling in a photovoltaic string.
  • This illustrative embodiment features terminals T 1 and T 4 on opposite sides of the power device, with terminals T 2 , T 3 along one side. Other configurations may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.
  • PV string 105 may include a plurality of photovoltaic (PV) generators 101 .
  • PV generator 101 may be coupled to a one or more photovoltaic power device(s) 102 .
  • Each PV generator 101 may comprise one or more solar cells, one or more solar cell strings, one or more solar panels, one or more solar shingles, or combinations thereof.
  • a PV generator 101 may include a solar panel, two solar panels connected in series or in parallel, or eight solar panels connected in series.
  • PV power device 102 may comprise a power conversion circuit such as a direct-current-to-direct current (DC/DC) converter such as a buck, boost, buck+boost (e.g., a buck converter followed by a bust converter or a boost converter followed by a book converter), buck-boost, flyback and/or forward converter.
  • DC/DC direct-current-to-direct current
  • PV power device 102 may comprise a time-varying DC/DC converter, configured to output a different DC voltage at different times.
  • PV power device 102 may comprise a time-varying DC/DC converter configured to output a positive voltage triangular wave, or a voltage wave resembling a rectified sine wave.
  • PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter (e.g., a micro-inverter).
  • PV power device 102 may comprise a Maximum Power Point Tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) the PV power device is coupled to.
  • MPPT Maximum Power Point Tracking
  • PV power devices 102 may be coupled to photovoltaic generator 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of a PV power device coupled to the ground bus (e.g. beginning PV power device 102 a ) or a PV power device coupled to the power bus (e.g. ending PV power device 102 m ).
  • each PV generator 101 may be coupled to two PV power device 102 , with the possible exception of one PV generator coupled to the ground or power bus, such as PV generator 101 a depicted in FIG. 1C .
  • the combined string current (i.e. the current flowing between the ground bus and the power bus) may be, in this illustrative embodiment, 15[A]. In other embodiments the string current may be higher or lower.
  • Each photovoltaic generator 101 may operate at a current of 10[A].
  • the full string current may be routed through two paths, one path flowing through the PV generators 101 and carrying 10[A], the other path bypassing the PV generators and flowing from one PV power device to another. In the illustrative embodiment shown in FIG.
  • the string bypass path may be comprised of conductors 103 a , 103 b etc.
  • Conductor 103 a may route 5[A] from the ground bus to beginning PV power device 102 a , bypassing PV generator 101 a .
  • Bypass path 103 b may be coupled to an output of PV beginning power device 102 a and carry 5[A] to PV power device 102 b , bypassing PV generator 101 b .
  • Additional bypass paths may be similarly coupled, to route 5[A] through the string while bypassing the PV generators.
  • the current flowing through the modules may vary from module to module and from time to time, and the current flowing through the bypass paths may similarly vary. FIG.
  • FIG. 1C illustrates an illustrative embodiment in which all PV generators 101 (e.g. 101 a , 101 b etc.) are operating at a maximum power point current of 10[A].
  • all PV generators 101 e.g. 101 a , 101 b etc.
  • different PV generators may have different maximum power points such that different PV generators conduct maximum-power currents of different magnitudes, as will be described in other embodiments disclosed herein.
  • PV generators may operate at different power points, even in the same PV installation.
  • two PV generators may be capable of outputting 300[W], with one PV generator operating at a maximum power point of 20[V] and 15[A], and another PV generator operating at a maximum power point of 30[V] and 10[A].
  • two PV generators may be capable of generating different maximum power levels. For example, one PV generator may output 300[W] and operate at a maximum power point of 20[V] and 15[A], while a second PV generator may be partially shaded and/or dirty, and be capable of outputting only 266[W] at a maximum power point of 19[V] and 14[A].
  • An MPPT circuit may be configured to identify the maximum power point of one or more PV generators the MPPT circuit is coupled to, and to operate the PV generator at the PV generator's maximum power point independent of temperature, solar radiance, shading or other performance deterioration factors of other PV generators in the installation.
  • a plurality of PV generators may all be operating at their respective maximum power points, with each PV generator operating at a different current independent of the other generators.
  • bypass paths e.g. conductors 103 a , 103 b etc.
  • Photovoltaic string 105 comprises a plurality of PV generators 101 (e.g. 101 a , 101 b etc.) and PV power devices 102 (e.g. 102 a , 102 b etc.). Photovoltaic string 105 may be the same as or part of PV string 105 of FIG. 1A .
  • the coupling method of the PV generators and PV power devices to one another may be similar to embodiments previously described herein.
  • the PV string 105 current may be 15[A].
  • PV generator 101 a may operate at 10[A], with 5[A] bypassing the module via conductor 103 a , which is coupled to beginning PV power device 102 a .
  • PV generator 101 b may operate at 8[A], with 8[A] flowing to the PV generator from beginning PV power device 102 a .
  • Beginning PV power device 102 a may further output 7[A] flowing over bypass path 103 b , which is coupled to PV power device 102 b .
  • PV power device 102 b may receive 8[A] from PV generator 101 b and 7[A] via conductor 103 b , and output 18[A] to the next PV generator in the string (not depicted) and output ⁇ 3[A] over conductor 103 c to the next PV power device in the string (not depicted).
  • a negative bypass current simply indicates a reverse direct current (i.e. flowing in the opposite direction compared to the current portion flowing through the photovoltaic generators).
  • the bypass current may be an alternating current (AC), while the current portion which flows through the PV generators may be a direct current (DC) as further described below.
  • both the PV generator and bypass paths may carry a direct current.
  • PV generator cables may couple a PV generator to a PV power device while carrying the PV generator's maximum power point current, with the PV power device featuring additional cables to carry the entire string current.
  • this may result in both higher losses (e.g. because of losses incurred by both the PV generator cables carrying the full generator currents and the PV power device cables carrying the full string current) and higher cabling costs (e.g. not taking advantage of the length of the PV generator cables to reduce the length of the PV power device cables).
  • the included photovoltaic generator cables may be utilized to support a portion of the current, and an additional cable (which may also be required only to support a portion of the current, and may therefore be thinner and cheaper) may be added at a lower cost than the cost of replacing the entire photovoltaic generator cable.
  • the cost of conductors is not always linear, and the price of a cable rated to carry 15[A] may sometimes be higher than the combined costs of a 10[A]-rated cable and a 5[A]-rated cable.
  • illustrative photovoltaic power devices utilized in illustrative embodiments herein may feature different numbers of terminals.
  • power device 112 may include three terminals: terminal T 17 may be utilized to receive an input voltage (Vin), terminal T 37 may be utilized to output an output voltage (Vout), and terminal T 27 may output a voltage level common to the input and output.
  • the internal circuitry of power device 112 may be similar to that of other power devices discussed in detail herein, with only one output voltage terminal made available. If desirable, the output voltage terminal may be split during system deployment using a splitting device, such as a splice connector (e.g. a T-connector).
  • a splitting device such as a splice connector (e.g. a T-connector).
  • PV string 115 may be used as string 105 of FIG. 1A .
  • each of a plurality of PV generators in a PV string (e.g. PV string 115 ) may be coupled to two PV power devices, with the exception of one PV generator (e.g. PV generator 101 a ) which may be coupled to the ground bus.
  • Each of a plurality of PV power devices in a PV string (e.g. PV string 115 ) may be coupled to two PV generators, with the exception of one PV power device (e.g. PV power device 112 n ) which may be coupled to the power bus.
  • the string current may be divided into two portions and routed along two paths, with a first path passing through PV generators 101 (e.g., 101 a , 101 b , etc.) and a second path comprising bypass paths 113 (e.g. path 113 a , path 113 b , etc.) which bypass the modules and carry current from one PV power device to the next PV power device in the string.
  • the string current may be 15[A], with 10[A] being routed through the PV generators, and 5[A] being routed through the power devices.
  • Each power device 112 may output 15[A] from its single Vout terminal.
  • the power devices 112 depicted may be arranged and implemented similarly to the power device depicted in FIG. 1E , where the power device's Vin terminal is at the bottom of the power device, the common terminal is at the side and the device's Vout terminal is at the top.
  • the power devices 112 may be implemented using a device similar to the device shown in FIG. 1B , with a reduced number of terminals (e.g. combining T 3 and T 4 to a single terminal).
  • FIG. 2A shows an illustrative embodiment of a series string section of photovoltaic string 205 , which may be part of or the same as photovoltaic string 105 that may be found in systems such as photovoltaic installation 100 .
  • PV generator 201 a may comprise a photovoltaic panel including junction box 207 a.
  • PV power device 202 a may be coupled to PV generators 201 a and 201 b
  • PV power device 202 b may be coupled to PV generators 201 b and 201 c
  • PV power devices 202 a and 202 b may be similar to or the same as PV power devices 102 of FIG. 1A , and may feature four electrical terminals (“Vin”, “common” and two “vout” terminals) arranged as depicted in FIG. 2A .
  • the two “Vout” terminals may be arranged differently (e.g. arranged such as power device 102 of FIG. 1B ) or combined into one, similarly to PV power device 112 of FIG. 1E .
  • Bypass cable 203 b may be connected between a “Vout” terminal of PV power device 202 a and the “common” terminal of PV power device 202 b .
  • Panel cable 204 b may couple a terminal (e.g. the higher-voltage terminal) of PV generator 201 a to the “Vin” terminal of PV power device 202 a
  • panel cable 204 c may couple a “Vout” terminal of PV power device 202 a to PV generator 201 b (e.g. to the lower voltage terminal of PV generator 201 b ).
  • PV generator 201 a may be the “first” module in a section of photovoltaic series string 205 .
  • a splice connector e.g. a “T-connector” may combine panel cable 204 a and bypass cable 203 a and be connected to a ground bus.
  • PV generator 201 c may be the “last” module in photovoltaic series string section 200 .
  • a splice connector e.g. a “T-connector” may combine panel cable 204 f and bypass cable 203 c and be connected to a power bus.
  • PV generator 201 (e.g. any of PV generators 201 a - 201 c ), the connected junction box 207 and the connected panel cables 204 may be a pre-integrated assembly before connection to PV power devices 202 .
  • Bypass cables 203 may be pre-integrated with one of the connected PV power devices (e.g., bypass cable 203 b may be an integrated part of PV power device 202 a or 202 b ).
  • Bypass cables 203 may be two cables spliced together during assembly of the string section, with each portion an integrated part of a PV power device (e.g., bypass cable 203 b may be comprise two cables, with one cable integral to 202 a and the other cable integral to 202 b ).
  • PV power device 202 may include four terminals.
  • Terminal T 1 may be configured to receive an input from a photovoltaic generator or power device.
  • Terminal T 2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output.
  • Terminals T 3 and T 4 may be configured to output voltage, current and/or power to additional PV generators and/or power devices.
  • Terminals T 3 and T 4 may output the same voltage in reference to the common terminal T 2 , though they may output different current and different power.
  • the physical location of the terminals in relation to the casing of the power device may be arranged to allow for convenient coupling in a photovoltaic string.
  • This illustrative embodiment features terminals T 1 , T 2 on the same side of the power device, with terminals T 3 , T 4 located on the opposite side. Other arrangements may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.
  • FIG. 3A shows some of the internal circuitry of a photovoltaic power device 302 a according to various illustrative embodiments (e.g., PV power device 302 a may be similar to or the same as PV power device 102 of FIGS. 1A-1D , or PV power device 202 of FIGS. 2A-2B ).
  • photovoltaic power device 302 a may be implemented using a variation of a Buck DC/DC converter.
  • the power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The input and output voltages are in relation to the common terminal.
  • the circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals.
  • the circuit may include a central point used for reference.
  • the circuit may include a pair of switches (e.g. MOSFET transistors) Q 1 and Q 2 , with Q 1 coupled between Vin and the central point, and Q 2 coupled between the common terminal and central point.
  • the circuit may further include inductor L coupled between the Vout terminals and the central point. By staggering the switching of switches Q 1 and Q 2 , the circuit may convert the input voltage Vin to output voltage Vout.
  • the currents input to the circuit are combined at inductor L to form an inductor current which is about equal to the sum of the current input at the Vin and common terminals.
  • the inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but the voltage ripples over the capacitors are generally small, and similarly the inductor current ripple may be generally small.
  • the inductor current may be output by the pair of output terminals Vout. In some embodiments, more than two Vout terminals may be utilized to split the output current into more than two portions.
  • a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired.
  • the switching of switches Q 1 and Q 2 may be controlled by an external control device (not explicitly depicted). If the electrical terminals Vin, common and Vout are arranged as depicted in FIG. 3A , power device 302 a may be used as the power device in configurations such as those shown in FIG. 1A-1D (e.g. device 102 ).
  • photovoltaic power device 302 b may be implemented using a variation of a Buck+Boost DC/DC converter.
  • the power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The output voltage is in relation to the common terminal.
  • the circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals.
  • the circuit may include two central points used for reference.
  • the circuit may include a plurality of switches (e.g.
  • MOSFET transistors Q 1 , Q 2 , Q 3 and Q 4 with Q 1 connected between Vin and the first central point, and Q 2 connected between the common terminal and the first central point.
  • Q 3 may be connected between the Vout terminal and the second central point, and Q 4 may be connected between the common terminal and the second central point.
  • the circuit may further include inductor L coupled between the two central points.
  • the operation of the Buck+Boost DC/DC converter in PV power device 302 b may be variously configured. If an output voltage lower than he input voltage is desired, Q 3 may be statically ON, Q 4 may be statically OFF, and with Q 1 and Q 2 being PWM-switched in a complementary manner to one another, the circuit is temporarily equivalent to the Buck converter depicted in FIG. 3A and the input voltage is bucked. If an output voltage higher than he input voltage is desired, Q 1 may be statically ON, Q 2 may be statically OFF, and with Q 3 and Q 4 being PWM-switched in a complementary manner to one another, the input voltage is boosted.
  • the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout are about constant voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L to form an inductor current which is equal to the sum of the current input at the Vin and common terminals.
  • the inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but if the voltage drop across capacitors Cin and Cout are about constant, the voltage ripples over the capacitors are small, and similarly the inductor current ripple may be small.
  • the inductor current may be output by the pair of output terminals Vout.
  • more than two Vout terminals may be utilized to split the output current into more than two portions.
  • a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired.
  • Photovoltaic power device 402 may include a casing 431 .
  • the casing 431 may house circuitry 430 (illustrated functionally).
  • circuitry 430 may include power converter 440 .
  • Power converter 440 may include a direct current-direct current (DC/DC) converter such as a buck, boost, buck+boost, flyback, Cuk and/or forward converter.
  • DC/DC direct current-direct current
  • power converter 440 may include a direct current—alternating current (DC/AC) converter (e.g., an inverter, or a micro-inverter designed to convert a small portion of power from DC to AC, such as a 300 W micro-inverter) instead of, or in addition to, a DC/DC converter.
  • DC/AC direct current—alternating current
  • circuitry 430 may include Maximum Power Point Tracking (MPPT) circuit 495 , configured to extract increased power from the PV generator the power device is coupled to.
  • MPPT circuit 495 may be configured extract increased power from a PV generator connected to its input terminal, and in some embodiments, MPPT circuit 495 may be configured extract increased power from a PV generator connected to its output terminal(s).
  • power converter 440 may include MPPT functionality, rendering MPPT circuit 495 unnecessary.
  • Circuitry 430 may further comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA. Control device 470 may control and/or communicate with other elements of circuitry 430 over common bus 490 .
  • DSP Digital Signal Processor
  • circuitry 430 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters directly or receive measured parameters from connected sensors on or near the photovoltaic generator, such as the voltage and/or current output by the module, the power output by the module, the irradiance received by the module and/or the temperature on or near the module.
  • circuitry 430 may include communication device 450 , configured to transmit and/or receive data and/or commands to/from other devices.
  • Communication device 450 may communicate using Power Line Communication (PLC) technology, acoustic communications technologies, or wireless technologies such as BlueToothTM, ZigBeeTM, Wi-FiTM, cellular communication or other wireless methods.
  • PLC Power Line Communication
  • circuitry 430 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors).
  • safety devices 460 e.g. fuses, circuit breakers and Residual Current Detectors
  • fuses may be connected in series with some or all of conductors 403 a 403 b , and terminals 404 a and 404 b , with the fuses designed to melt and disconnect circuitry at certain currents.
  • PV power device 402 may include a circuit breaker, with control device 470 configured to activate the circuit breaker and disconnect PV power device 402 from a PV string or a PV generator in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450 ) from a system control device.
  • PV power device 402 may include a bypass circuit featuring a switch, with control device 470 configured to activate the bypass circuit and short-circuit the input and/or output terminals of PV power device 402 in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450 ) from a system control device.
  • control device 470 configured to activate the bypass circuit and short-circuit the input and/or output terminals of PV power device 402 in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450 ) from a system control device.
  • Input voltage (Vin) terminal 404 a may be configured to be coupled to the positive output of a photovoltaic generator (e.g. as in FIGS. 1A-1D ).
  • Output voltage (Vout) terminal 404 b may be configured to be coupled to the negative output of a different photovoltaic generator, as described with regard to some of the embodiments herein (e.g. as in FIGS. 1A-1D ).
  • Common conductor 403 a and output voltage (Vout) conductor 403 b may be coupled to other photovoltaic power devices.
  • conductors 403 a and 403 b may be integrated to photovoltaic power devices at each end, at the time of manufacturing, creating a string of connected photovoltaic power devices as depicted in FIG. 4B , allowing a plurality of coupled power devices to be manufactured and sold as a single unit for fast and easy field deployment.
  • the length of the conductors (e.g. 403 a , 403 b ) between adjacent power devices may be selected according to a length (or width) of a photovoltaic generator, to enable connecting adjacent power devices to adjacent photovoltaic generators. Manufacturing a string of power devices as a single unit, with the power devices interconnected using integrated (e.g.
  • conductors 403 may provide additional advantages such as reduced cost (e.g. by saving the cost of two connectors.
  • PV power device 402 is depicted in FIG. 4A having two connectors and two conductors, and if the conductors 403 a , 403 b do not connect PV power device 402 to an adjacent power device, an additional two connectors may be required) and a lower risk of electrical arcing or overheating due to a faulty connection between connectors.
  • PV power device 402 may feature an integrated conductor 403 a , with conductor 403 b replaced by a terminal for connecting to an integrated conductor from a different PV power device.
  • conductors 403 a and 403 b may be replaced by terminals (e.g. MC4TM connectors made by Multi-Contact or other equivalent connectors) similar to 404 a and 404 b , to allow an installer to insert a cable of his or her choosing to be deployed.
  • Terminals 404 a and 404 b and conductors 403 a and 403 b may be coupled to the terminals of DC/DC or DC/AC power converter 440 .
  • power converter 440 may include a Buck converter similar to the converter depicted in FIG. 3 a . In that case, Vin terminal 404 a of FIG. 4A may be coupled to the corresponding Vin terminal of FIG.
  • Vout terminal 404 b and Vout conductor 403 b of FIG. 4A may be coupled to the Vout terminals of FIG. 3 a
  • the common conductor 403 a of FIG. 4A may be coupled to the common terminal of FIG. 3 a .
  • these connections are not depicted explicitly, and in some embodiments the connections may differ.
  • String 405 may be part of a string of PV power devices 402 (e.g. devices similar to or the same as PV power device 402 of FIG. 4A ) connected to each other via conductors 403 which may be the same as or similar to common conductor 403 a of FIG. 4A .
  • the length of each conductor 403 may be about the same as the length a dimension of a PV generator, to enable each PV power devices to be coupled to more than one PV generator (as depicted in FIG. 2A ) and/or to enable coupling adjacent PV power devices to adjacent PV generators in a series string.
  • string 405 may be manufactured and/or packaged, stored and sold as a single unit, enabling fast and easy deployment in a PV installation.
  • First photovoltaic power device 420 may include a casing 431 and circuitry 430 (illustrated functionally). Circuitry 430 may comprise circuits and devices similar to or the same as circuitry 430 as described with regard to FIG. 4A .
  • PV power device 420 may comprise input voltage (Vin) terminal 411 , common terminal 412 , output voltage (Vout) terminal 413 and output voltage (Vout) terminal 414 .
  • Input voltage terminal 411 may be provided for coupling (e.g. connecting) to a first output terminal (e.g. a positive output terminal) of a first photovoltaic generator.
  • Output voltage terminal 413 may be provided for coupling (e.g. connecting) to a second output terminal (e.g. a negative output terminal) of a second photovoltaic generator.
  • Common terminal 412 may be provided for coupling to an output voltage terminal (e.g. similar to or the same as output terminal 414 ), provided by a second PV power device similar to or the same as PV power device 420 .
  • Output voltage terminal 414 may be provided for coupling to a common terminal (e.g. similar to or the same as common terminal 412 ) provided by a third PV power device similar to or the same as PV power device 420 .
  • a first conductor couples (e.g. connects) common terminal 412 to an output voltage terminal of the second PV power device, and a second conductor couples (e.g. connects) output voltage terminal 414 to the common terminal of the third PV power device.
  • the first and second conductors connect the first, second and third power devices at the time of manufacturing, with the first, second and third power devices along with the first and second conductors provided as a single connected apparatus or part of a single connected apparatus.
  • the first and second conductors are not provided along with PV power device 420 , and are connected during installation of PV power device 420 .
  • Integrated apparatus 515 may include a photovoltaic generator 501 (e.g., 101 , 201 etc.) coupled to a PV power device 502 (e.g., 102 , 202 , 402 a , 402 b etc.). Some embodiments may employ the cabling method described herein to couple PV generator 501 to PV power device 502 .
  • PV power device 502 may further comprise circuitry similar to or the same as circuitry 430 of FIG. 4A .
  • PV power device 502 may comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA.
  • DSP Digital Signal Processor
  • PV power device 502 may include Maximum Power Point Tracking (MPPT) circuit 495 , configured to extract maximum power from the PV generator the power device is coupled to.
  • control device 470 may include MPPT functionality, rendering MPPT circuit 495 unnecessary.
  • Control device 470 may control and/or communicate with other elements of PV power device 502 over common bus 490 .
  • PV power device 502 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters on or near the photovoltaic generator 501 or PV power device 502 , voltage, current, power, irradiance and/or temperature.
  • PV power device 502 may include communication device 450 , configured to transmit and/or receive data and/or commands from other devices.
  • Communication device 450 may communicate using Power Line Communication (PLC) technology, or wireless technologies such as ZigBee, Wi-Fi, cellular communication or other wireless methods.
  • PLC Power Line Communication
  • integrated apparatus 515 and/or PV power device 502 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors).
  • the various components of PV power device 502 may communicate and/or share data over common bus 490 .
  • Integrated apparatus 515 may feature four terminals which are accessible from outside the apparatus, at least two of which output the same voltage.
  • the components of integrated apparatus 515 may be similar to or the same as those of circuitry 430 of FIG. 4A . In FIG. 5 the two terminals outputting the same voltage are denoted 512 and 513 .
  • the integrated apparatus may be formed by embedding the components into a photovoltaic generator, the casing of the photovoltaic generator or mounting the components onto the photovoltaic generator.
  • the integrated apparatus may include a portion of or all the circuitry required to comprise a “building block” that may be used for simple “plug 'n play” construction of optimized photovoltaic string.
  • the advantages of the current splitting detailed herein may be realized in the internal integrated circuit layout, with one current path in the integrated circuit including a photovoltaic generator 501 (e.g. solar cell, panel or shingle) and another current path bypassing the module. Additional advantages of an implementation as an integrated circuit such as ease of connection, possible cost reduction, etc. may also be realized.
  • FIG. 6 shows a photovoltaic system according to another illustrative embodiment.
  • a number of photovoltaic strings 618 may be coupled in parallel between ground and power buses to provide power to the power bus.
  • the power and ground buses may be coupled to the inputs of system power device 606 .
  • system power device 606 may include a DC/AC inverter and may output AC power to the grid, home or other destinations.
  • system power device 606 may comprise a combiner box, transformer and/or safety disconnect circuit.
  • One or more photovoltaic strings 618 may comprise a plurality of series-coupled integrated apparatuses 515 .
  • one apparatus 515 may have its terminals 510 , 511 coupled to the ground bus.
  • the other apparatuses 515 in the string may have their terminals 510 , 511 coupled to the terminals 512 , 513 of the preceding apparatuses 515 in the string.
  • One apparatus 515 may have its terminals 512 , 513 coupled to the power bus.
  • the other apparatuses 515 in the string may their terminals 512 , 513 coupled to terminals 510 , 511 of the next apparatus 515 in the string.
  • a photovoltaic system constructed in this manner may enjoy the benefits of optimized photovoltaic strings, multiple current paths which enable cheaper cabling, fully integrated components including safety, monitoring and control functions, and simple installation.
  • PV power devices may be configured to output a voltage waveform similar to a rectified sine wave, a triangle wave or a square wave.
  • configuring each PV power device to output a signal other than DC may reduce the size and cost of the filters and switching circuits required of a system power device configured to supply AC power to a grid or home (e.g. a DC/AC inverter).
  • System 700 may comprise one or more photovoltaic strings 705 coupled to one another in parallel (only one string is illustrated). Each string may comprise a plurality of PV generators 701 (e.g. 701 a , 701 b etc.) and PV power devices 702 (e.g. 702 a , 702 b , etc.). In the embodiment depicted in FIG.
  • each PV generator 701 is coupled across the inputs of a power device 702 , and the outputs of the PV power devices are serially coupled to one another to form a photovoltaic serial string.
  • the inputs of each PV power device may receive power from a PV generator, and the outputs of the PV power device deliver power to string 705 .
  • Each power device 702 may include circuitry similar to or the same as circuitry 430 of FIG. 4A .
  • each power device 702 may include a DC/DC converter configured to output a time-varying DC signal which emulates a rectified sine wave, triangular wave, square wave or other wave form which may be later processed and converted to a sine wave.
  • the different power devices may output signals which are identical to one another, or different in shape, magnitude and/or phase.
  • the outputs of the power devices may be summed to form a string voltage signal which is input to system power device 706 .
  • System power device 706 may be configured to receive the string voltage input and output an alternating current (AC) signal such as a sine wave, which may be fed to the grid or home.
  • AC alternating current
  • each power device 702 outputs a low-voltage rectified sine wave which is synchronized to be in-phase with the rectified sine waves output by the other power devices in the same string. Synchronization may be achieved by a master control device (e.g. a controller 720 and communication device 750 of system power device 706 , as depicted in FIG. 7B ) commanding the PV power devices to produce a voltage of a certain waveform, and at a certain phase.
  • a master control device e.g. a controller 720 and communication device 750 of system power device 706 , as depicted in FIG. 7B
  • the synchronized, rectified sine waves may be of a low frequency such as 100 Hz or 120 Hz, and may be summed to form a higher-voltage, rectified sine wave of amplitude about that of the utility grid voltage, such as 311[V] in European systems or 156[V] in the USA.
  • the voltage output by each power device 702 may be substantially lower than a utility grid voltage.
  • the summed peak output voltages of each group of serially connected power devices 702 may be about the same as a utility grid peak voltage.
  • a string of ten serially connected power devices 702 may have a total peak voltage of about 311V, and the output voltage of each of the ten power devices 702 may output, on average, about 31V.
  • System power device 706 may configure the output voltage to be appropriate for feeding the grid, home or storage devices.
  • the string voltage signal is a rectified sine wave of grid-voltage amplitude
  • system power device 706 may comprise a full-bridge to converter the rectified sine wave to an alternating sine wave.
  • the string voltage amplitude may be different from grid voltage amplitude, and may be adjusted by circuits and/or devices such as a transformer.
  • the string voltage may be similar to a triangular or square wave, and filtering may be applied before or after converting the signal from time-varying-DC to AC.
  • a plurality of strings 705 may be connected in parallel at the input of system power device 706 .
  • Each string 705 may be connected to system power device 706 via a switch (not explicitly shown), the switch being operable to disconnect a string 705 (e.g., an individual string 705 without disconnecting other strings 705 ) in response to a failure occurring at or in the disconnected string 705 and/or a failure to provide adequate or synchronized power to system power device 706 .
  • system power device 706 may regulate the voltage across string 705 .
  • system power device 706 may set the peak string voltage to a substantially constant value (e.g. a rectified sine voltage signal with a peak value of 350V), with the string current varying according to power available from PV generators 701 .
  • the substantially constant peak voltage value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.
  • system power device 706 may regulate the current flowing through string 705 .
  • system power device 706 may set the string current to a substantially constant value with the string voltage amplitude varying according to power available from PV generators 701 .
  • the substantially constant current value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.
  • System power device 706 may include full bridge 711 , controller 720 , filter 730 and sensor 740 .
  • System power device 706 may further include additional components such as communication device(s), sensor(s)/sensor interfaces, safety and/or disconnect devices(s), monitoring device(s) and/or auxiliary power circuit(s) (not explicitly depicted) similar to or the same as the components of circuitry 430 of FIG. 4A .
  • Full bridge 711 may comprise four switches (e.g. MOSFETs) Q 1 , Q 2 , Q 3 and Q 4 , two inputs and two outputs.
  • Q 1 may be connected between input 1 and X.
  • Q 2 may be connected between input 1 and Y.
  • Q 3 may be connected between input 2 and X.
  • Q 4 may be connected between input 2 and Y.
  • the output terminals may output a signal which is an inversion of the input signal.
  • the output terminals may output a signal which is identical to the input signal. If the input signal is a rectified sine wave such as the string voltage of system 700 of FIG. 7A , by inverting every second lobe of the rectified sine wave, an alternating sine wave may be obtained.
  • the switching of the switches Q 1 -Q 4 may be controlled by controller 720 .
  • Controller 720 may include a microprocessor, Digital Signal Processor (DSP), ASIC, and/or an FPGA.
  • System power device 706 may include filter 730 which may be placed on either the input or output side of the device, to filter higher-order harmonics which may be present in the processed signal.
  • An appropriate filter e.g. a low-pass LC filter may reduce higher-order harmonics, creating an output signal which more closely resembles a pure sine wave.
  • Sensor 740 may comprise a voltage-sensor for measuring the voltage output by system power device 706 .
  • the output of system power device 706 is coupled to a utility grid, and sensor 740 may further measure the grid voltage.
  • Sensor 740 may provide output voltage measurements to controller 720 , with controller switching switches Q 1 -Q 4 responsively to the measurements provided by sensor 740 .
  • sensor 740 may provide the negative voltage measurements to controller 720 , and controller 720 may responsively switch Q 1 and Q 4 to the ON state and switches Q 2 and Q 3 to the OFF state.
  • Communication device 750 may be configured to communicate with communication devices deployed in PV power devices, for example, communication devices similar to or the same as communication device 450 of FIG.
  • communication device 750 may similarly be a PLC transceiver. If communication device 450 includes a wireless transceiver, communication device 750 may similarly be a wireless transceiver. Communication device 750 may transmit voltage magnitude measurements to PV power devices 702 of FIG. 7A , with each PV power device 702 configured to output a voltage corresponding to the magnitude measurements.
  • communication device 750 may transmit the measurement of 100[V] to PV power devices 702 , with each PV power device 702 adjusting its duty cycle to output 100/N [V], where N is the number of serially-connected PV power devices 702 .
  • the total voltage of 100[V] may be split unevenly amongst PV power devices 702 , with each PV power device 702 outputting a voltage proportional to the power processed by the respective PV power device, and the total voltage output by all of PV power devices 702 equaling 100[V].
  • two or more system power devices 706 may be deployed in parallel in system 700 , reducing the risk of system failure in case of a failure in a single device. While component redundancy often significantly increases system cost, the architecture of system 700 may enable system power device 706 to be implemented using inexpensive circuitry (e.g. low frequency switches Q 1 -Q 4 and/or a controller 720 that does not need expensive processing capabilities), thereby decreasing the cost of adding redundant components to reduce the risk of system failure. By adding a backup system power device 706 , system 700 may reduce the number of single points of failure or have no single point of failure, such that a failure of a single device does not cause the entire system to cease producing power.
  • inexpensive circuitry e.g. low frequency switches Q 1 -Q 4 and/or a controller 720 that does not need expensive processing capabilities
  • system 700 may comprise system power device 706 comprising a single controller 720 , a single filter 730 and a single communication device 750 , but multiple sensors 740 and full-bridges 711 .
  • FIG. 7C shows an illustrative embodiment of generating a pseudo-AC signal which varies over time, for example, a DC output that is varied in amplitude in a step-wise manner to emulate a biased or rectified alternating-current signal.
  • DC/DC converter 703 may receive an input from a DC voltage source such as PV generator 701 .
  • PV generator 701 may be replaced in FIGS. 7A and 7C by an alternating current (AC) power source (e.g. a wind turbine), PV power device 702 comprising an alternating current to direct current (AC/DC) rectifying circuit (not explicitly depicted) converting the AC input power to DC power to be input to DC/DC converter 703 .
  • AC alternating current
  • AC/DC alternating current to direct current
  • Converter 703 may further receive a reference signal from reference signal generator 704 , and may attempt to output a voltage signal which is proportional to the reference signal.
  • signal generator 704 may output a rectified sine wave reference with an amplitude of 100 mV, and converter 703 may output a rectified sine which tracks the reference, but with a different amplitude. If converter 703 operates at a frequency significantly higher than the frequency of the reference signal, the tracking can be highly accurate for any reference waveform.
  • the reference signal may be of a low frequency such as 100 Hz or 120 Hz, and the DC/DC converter may operate at a frequency of tens or hundreds of kHz. The converter's high frequency may allow it to stabilize an output voltage rapidly, within a time-frame that is a small fraction of the period of the reference signal.
  • Reference signal generator 704 may be implemented in various manners.
  • digital samples may be stored on a memory device (e.g. Read Only Memory (ROM) Random Access Memory (RAM), Flash memory or similar memory devices) coupled to DC/DC converter 703 , with a digital sample provided to DC/DC converter 703 at regular intervals.
  • reference signal generator 704 may comprise an analog oscillator and an analog-to-digital (A/D) converter configured to sample the oscillator and provide a digital sample to DC/DC converter 703 .
  • reference signal generator 704 may be a communication device for receiving reference samples from a different communication device (e.g. communication device 750 of FIG. 7B , transmitting samples measured by sensor 740 ) and providing them the DC/DC converter 703 .
  • DC-DC converter 703 may carry out method 710 .
  • the DC/DC converter may digitally sample the reference signals.
  • the DC/DC converter may adjust the duty cycle of its high-frequency switching components to output a voltage which is proportional (according to a predefined ratio) to the reference signal.
  • the converter may wait a short time before the next sample is processed. In some embodiments, the short time is predetermined (e.g. the converter may draw a new reference sample from memory or sample an oscillating reference signal after a period of time such as about 10 microseconds or about 100 microseconds).
  • the method will wait until a new sample is received from an external device, in which case the short time is not predetermined by the converter.
  • the reference signal is a rectified sine
  • the converter output is a rectified sine of a different amplitude. The higher the frequency, the “smoother” the output signal may be (e.g., because the output voltage would be adjusted in smaller time-interval steps).
  • photovoltaic power devices 702 may be configured to output voltage and current signals shaped similarly to one another, to maintain a system power factor close to one.
  • the current output may be a triangular wave proportional to the triangular voltage wave (i.e. of the same frequency, and with no phase shift between the two signals).
  • the output voltage or current is imposed on the power device outputs, requiring the converter device to configure either the voltage or the current to match the imposed signal.
  • Illustrative embodiments may include, but are not limited to, systems comprising PV power devices configured output in-phase voltage and current waveforms, to obtain a power factor close or equal to unity.
  • Synchronization of PV power devices to output in-phase voltage and current waveforms may be achieved is several ways.
  • synchronization may be achieved by providing each DC/DC converter with the same reference sample at the same time.
  • communication device 750 of FIG. 7B may transmit a reference sample to an entire string of serially-connected DC/DC converters at the same time, with each DC/DC converter receiving the sample at about the same time and outputting a voltage derived from the same reference sample.
  • each DC/DC converter may store (e.g. in a memory device) a group of digital samples to be processed in order according to predetermined time intervals, with a trigger received from an external device signaling each converter to restart processing from the first sample.
  • DC/DC converter 703 may include a bypass circuit (not explicitly shown) disposed between the DC/DC converter 703 output terminals (denoted output+ and output ⁇ in FIG. 7C ), and include a controller configured to activate the bypass circuit (e.g. to directly connect the output+ terminal to the output ⁇ terminal) in response to a failure by the DC/DC converter to synchronize the converter output to other converter outputs, or in response to a different failure in the converter or in PV generator 701 .
  • a DC/DC converter 703 in a PV power device 702 e.g. PV power device 702 a of FIG. 7A
  • other serially-connected PV power devices 702 e.g. PV power devices 702 b - 702 n
  • Method 760 may be carried out by one PV power device or a plurality of series or parallel connected PV power devices such as PV power devices 702 .
  • Each power device may include a memory device storing a sequence of output voltage reference samples.
  • the power device may initialize the counter n to the first reference sample.
  • the n-th (at the initialization stage, the first) sample is drawn from memory, and at step 763 the power device adjusts the duty cycle of a high-frequency converter to output a voltage proportional to the n-th sample.
  • the method may wait up to a predetermined short period of time (e.g. 10 microseconds or 100 microseconds). If the time elapses, the method may increment n at step 765 and loop back to step 762 , where a new sample is drawn from memory. If a trigger is received before the predetermined time elapses, the method may loop back to step 761 and reset n to equal 1.
  • a predetermined short period of time e.g. 10 microseconds or 100 microseconds.
  • the trigger may be received from a system control device.
  • a group of serially connected PV power devices 702 may each hold in memory a sequence of 1000 samples corresponding to a single lobe of a rectified sine wave.
  • System power device 706 may be configured to send a trigger via communication device 750 every 10 milliseconds (corresponding to a frequency of 100 Hz), with each PV power device 702 receiving the trigger at about the same time.
  • each PV power device may output 0[V], corresponding to the first sample of a rectified sine wave.
  • Each predetermined short period of time at step 764 may be
  • the triggers may be used as a timing synchronization backup method, to ensure that the PV power devices are resynchronized at least once per cycle.
  • Photovoltaic string 805 may be part of or the same as other photovoltaic strings disclosed herein, such as photovoltaic string 105 of FIG. 1A .
  • Photovoltaic string 805 may comprise a plurality of photovoltaic generators (e.g. 801 a , 801 b etc.) and a plurality of photovoltaic power devices 802 (e.g. 802 a , 802 b etc.).
  • the string current may be a DC current that is varied (e.g., step-wise adjusted), for example, a current of magnitude 15[A](RMS) shaped as a rectified sine wave with a peak amplitude of 21.2[A].
  • the string current may be divided into two portions, with a first DC portion being routed through photovoltaic generators 502 , and a second AC portion being routed along a second route comprising bypass paths 803 (e.g. 803 a , 803 b etc.), bypassing the PV generators.
  • the two portions may be joined at the bottom of the string by the ground bus, and at the top of the string by the power bus (not shown).
  • the current flowing through the bypass paths may comprise biased rectified sine waves.
  • the root-mean-square (RMS) of a biased rectified sine current is given by
  • A is the amplitude of the rectified sine wave (routed through bypass paths 803 ) and B is the DC current bias (routed through the PV generators). Similar formulae exist for other current waveforms such as triangular waves.
  • the root-mean-square of an unbiased rectified sine current is given by
  • A is the amplitude of the rectified sine wave. It can be shown that careful selection of the bias B may reduce the RMS of the current flowing through the bypass paths significantly, possibly requiring thinner, cheaper cables compared to those that would be required to carry the entire, unbiased string current.
  • Selection of the bias B may include a calculation to minimize an RMS value of a current. For example, given a mathematical expression of an RMS current, the derivative of the expression may be calculated parametrically, and a B selected to set the derivative to zero, corresponding to a minimum value. For example, given the RMS value of a rectified sine wave current signal
  • simulation may show various RMS values obtained when varying B, and an appropriate B (e.g. to minimize the current RMS) may be selected.
  • B may be selected as to increase the power output by a photovoltaic generator, and A may be accordingly selected to minimize an RMS current value (e.g. by analytic methods or by simulation).
  • PV generator 801 a carries a DC current of 10[A], with the remainder of the string current, a rectified sine-wave bypassing PV generator 801 a via bypass path 803 a to PV power device 504 a may be biased by 10[A].
  • PV generator 801 b carries a DC current of 8[A], with the remainder of the string current, a 8[A]-biased rectified sine-wave bypassing module 502 b via bypass path 803 b .
  • PV power devices 802 may comprise similar components and may utilize similar methods to the components and methods discussed herein with regard to power devices 702 .
  • the terminals and internal circuitry of power devices 702 may be configured to provide input, common and output voltages similarly to the configurations discussed herein with regard to power devices 102 , 202 , 302 a , 302 b , 112 , 402 , 420 , and 502 .
  • Power device 902 may comprise two DC/DC converters. Different types of DC/DC converters may be used, such as Buck, Boost, Buck+Boost, Flyback and/or Forward converters.
  • the power device may comprise two different types of converters.
  • one converter may be a Buck converter, and the other converter may be a Buck+Boost converter.
  • the two converters may include, for example, 3 terminals: an input terminal, an output terminal and a common voltage terminal. Each converter's input terminal may be configured to be coupled to a separate set of one or more PV generators.
  • terminal Tin 1 may be coupled to the input of one DC/DC converter, and may be configured to be coupled to a first set of one or more PV generators.
  • Terminal Tin 2 may be coupled to the input of the other DC/DC converter, and may be configured to be coupled to a second set of one or more PV generators.
  • the converters' common terminals may be coupled to one another and made available via external terminal Tcom.
  • the converters' output terminals may be coupled to one another, with the converters being configured to process the input voltages to allow matching and coupling of output voltages.
  • the coupled output terminals may then be split into three externally available output terminals Tout 1 , Tout 2 and Tout 3 , with each terminal capable of carrying a portion of a total photovoltaic string current.
  • power device 902 may comprise more than two converters, may be coupled to more than two sets of photovoltaic generators, and may feature a different number of externally available terminals.
  • a plurality of photovoltaic power devices may be coupled to one another using conductors of predetermined length at the time of manufacturing, packaged and sold as a single unit, and deployed as a single unit when installing a photovoltaic system.
  • FIG. 9B shows a portion of a photovoltaic string according to illustrative embodiments.
  • Photovoltaic generators 901 a and 901 b may have their negative output terminals coupled to the string ground bus, and have their positive output terminals coupled to the Vin 1 and Vin 2 terminals of PV power device 902 a .
  • PV power device 902 a 's common terminal may also be coupled to the ground bus.
  • Output terminals Vout 1 and Vout 3 of power device 902 a may be coupled to the negative output terminals of additional PV generators 901 c and 901 d , respectively.
  • Power device 902 a may be coupled to the next power device in the string, 902 b , by coupling output terminal Vout 2 of device 902 a to the common terminal of device 902 b .
  • Additional PV generators and power devices may be connected similar to the manner described herein to form a photovoltaic string.
  • the three output terminals of the final power device in the string may be coupled to a power bus (not shown).
  • Using the cabling scheme described herein allows the string current to be split along three paths, potentially reducing system losses and allowing cheaper conductors to be used for some of the conduction paths.
  • the portion of the photovoltaic string illustrated in FIG. 9B may be included in photovoltaic installation 100 in place of string 105 .
  • FIG. 10A shows PV power device 1002 a comprising circuitry 140 a .
  • PV power device may be the same as or similar to previously described photovoltaic power devices according to various illustrative embodiments (e.g., PV power device 102 of FIGS. 1A-1D , PV power device 402 of FIG. 4A-4B , PV power device 502 of FIG. 5 , etc.).
  • Circuitry 140 a may be similar to or the same as circuitry of FIG. 3A .
  • FIG. 10A depicts the current flowing in the branches of circuitry 140 a when switch Q 2 is OFF and Q 1 is ON. Current Icomm 1 flows into the circuitry from the common terminal and current Ip flows into the circuitry from the Vin terminal.
  • FIG. 10B shows circuitry 140 a when switch Q 1 is OFF and switch Q 2 is ON.
  • Cin is charging
  • Cout is discharging.
  • the voltage drop across inductor L is Vout, which is a positive quantity, leading to an increase in the current flowing through inductor L.
  • the increase in inductor current when Q 2 is ON compensates for the decrease in inductor current when Q 2 is OFF, and the DC current flowing through inductor L is about constant under constant operating conditions (e.g. no change in the solar irradiance, the performance of the PV generators or in the load connected to the photovoltaic system).
  • FIG. 10C shows a DC-equivalent circuit of circuitry 140 a according to the illustrative embodiments of FIGS. 10A and 10B .
  • the inductor L has been replaced with a short-circuit, and the capacitors Cin and Cout have been replaced by open circuits, in accordance with common practice when obtaining equivalent DC-models of electrical circuits.
  • FIG. 10D shows a DC-equivalent circuit of serially-connected circuitry 140 a and 140 b .
  • Ammeters A 1 , A 2 , A 3 and A 4 may measure the DC components of currents Io_a, Io_a 2 , Io_b and Io_b 2 , respectively.
  • Ammeters A 1 and A 2 may be part of a power device (e.g. power device 402 of FIG. 4A ) and may be coupled to a control device and to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A , where circuitry 140 a may be part of power converter 440 ).
  • ammeters A 3 and A 4 may be part of a different power device (e.g. a second power device 402 of FIG. 4A ) coupled to a control device and may be to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A , where circuitry 140 b may be part of power converter 440 ).
  • Io_a 1 may be directly measured, along with Io_a and/or Io_a 2 . If Io_a 1 and one of either Io_a or Io_a 2 are directly measured, then the unmeasured current may be calculated using the two measured currents.
  • varying the duty cycles of switches Q 3 and Q 4 may affect the DC current measurements of ammeters A 1 and A 2 .
  • I comm2 I p2 , but that condition can be easily avoided by selecting a duty cycle for switch Q 1 which creates an inequality), I′ comm2 ⁇ I comm2 and I′ p2 ⁇ I p2 will hold, and varying the duty cycles of switches Q 3 and Q 4 of circuitry 140 b may cause the DC current readings of ammeters A 1 and A 2 of circuitry 140 a to change.
  • Conductor 142 may be a conductor carrying current I_ 142 , which may be similar to or the same as currents IL, Io, Io 1 or Io 2 of FIG. 10B .
  • Current I_ 142 may include a direct-current (DC) component which may correspond to a DC current such as Io_a, Io_a 1 or Io_a 2 of FIG. 10D .
  • Current I_ 142 may further include an alternating-current (AC) component I_rip caused by variations in the current flowing through a power-converter inductor (e.g.
  • AC alternating-current
  • Ammeter A 5 may be coupled to conductor 142 and may be configured to measure the AC-current component I_rip of current I_ 142 .
  • ammeter A 5 comprises windings wound around conductor 142 and coupled (e.g. connected) to resistor R. According to Faraday's Law of Induction, the voltage measured across resistor R will be proportional to the change in magnetic flux through the windings, which in turn will be proportional to the current flowing through the windings.
  • a different type of AC-ammeter may be used, such as a hall effect sensor.
  • the current I_rip measured by ammeter A 5 may depend on the amplitude, frequency, and duty cycle of the AC-component of the current flowing through conductor 142 . For example, if the AC component of current I_ 142 has a high frequency (e.g. tens or hundreds of kHz, or MHz), ammeter A 5 may detect a corresponding high frequency in current I_rip. Similarly, the positive and negative slopes of a triangular current waveform may be calculated by ammeter A 5 . In some embodiments, ammeter A 5 provides current measurements to controller 143 , with controller 143 calculating the frequency, slope values and amplitude of the corresponding triangular waveform. Controller 143 may be similar to or the same as control device 270 of FIG. 4A .
  • FIG. 10F illustrates various alternating current signals which may be generated by controlling the switching of switches Q 1 -Q 4 of FIG. 10D .
  • Sig 1 is a 20 kHz triangular wave with an amplitude of 1Vp-p, a rising slope of
  • Sig 2 is a 100 kHz triangular wave with an amplitude of 0.2Vp-p, a rising slope of
  • Sig 1 and Sig 2 have essentially the same shape and slope values, indicating that they are generated by switches switching at similar duty cycles.
  • Sig 2 is of a frequency larger by a factor of five than the frequency of Sig 1 , and the ripple amplitude is correspondingly smaller by a factor of five.
  • Sig 1 may represent a current measured by AC ammeter A 2 when operating the circuit of FIG. 10B , switching switch Q 3 at a frequency of 20 kHz and a duty cycle of 0.7.
  • the frequency of Q 3 is increased to 100 kHz
  • the current measured by ammeter A 2 corresponds to Sig 2 .
  • ammeter A 2 measures a current corresponding to Sig 3 , which has a positive slope of
  • either a DC-current ammeter or an AC-current ammeter (e.g. ammeter A 2 ) deployed in a first power device circuitry (e.g. circuitry 140 b ) may detect changes in current by changing the switching duty cycle of a switch (e.g. Q 3 ) deployed in a second power device circuitry (e.g. circuitry 140 a ).
  • FIG. 10G illustrates PV power device circuitry according to illustrative embodiments.
  • Power line communication (PLC) circuit 144 a may be deployed in circuitry 140 a , between the common terminal and the negative node of output capacitor Cout.
  • PLC circuit 145 a may be deployed in circuitry 140 a , between the Vout terminals and the positive node of output capacitor Cout.
  • PLC circuits 144 b and 145 b may be similarly deployed in PV power device circuitry 140 b .
  • PLC circuits 144 a - b and 145 a - b may be variously implemented.
  • each PLC circuit comprises a parallel circuit comprising a resistor, an inductor, a capacitor, a current source and a voltmeter.
  • the inductor and capacitor sizes are selected to resonate at a resonance frequency, with the equivalent circuit impedance achieving a maximum value at the resonance frequency.
  • the current source of each PLC circuit injects a high-frequency (e.g. tens or hundreds of KHz) current signal into the PV power device circuitry, with a portion of the current signal reaching the other PLC devices, inducing a high-frequency voltage across the resistor terminals and measured by the voltmeter.
  • PLC Power Line Communications
  • inductors e.g. inductor L of circuitry 140 a
  • This challenge is generally overcome by broadcasting current signals at a high enough amplitude to enable signal detection even after the attenuation caused by inductors.
  • point-to-point PLC over serial strings of PV power devices includes the additional challenge of differentiating between current signals generated by different PV power devices.
  • a current signal broadcast by a first PV power device may be received by the other nine power devices at about the same amplitude, making it difficult to determine the relative order of PV power devices with respect to one another.
  • the novel cabling method described herein may enable point-to-point PLC between adjacent PV power devices that is unimpeded by inductors.
  • PLC circuit 145 a of circuitry 140 a is coupled to PLC circuit 144 b of circuitry 140 b with no inductor disposed between them. Because there is no inductor between PLC circuits 145 a and 144 b , PLC circuit 145 a may receive a high-frequency current signal transmitted by PLC circuit 144 b at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string.
  • PLC circuit 144 b may receive a high-frequency current signal transmitted by PLC circuit 145 a at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string.
  • the increased PLC signal amplitude detected by an adjacent PV power device enables each PV power device to determine which device(s) are its “neighbors,” e.g., directly adjacently connected.
  • PV power device circuitry may enable one-way adjacency determination even without specialized PLC circuitry.
  • PV power device circuitry 140 a may determine that it is connected to circuitry 140 b by on knowing the duty cycle which each serially connected PV power device is being operated at and measuring the currents Io_a 1 and Io_a 2 .
  • circuitry 140 b might not be able to determine that it is connected to 140 a , rather, it may determine that it is connected to the next PV power device in the string (e.g. 140 c , not explicitly depicted).
  • the adjacency determination may be two-way.
  • FIGS. 10A-10G may enable certain PV power devices to determine which other PV power devices are directly connected to them if they are provided with information regarding the operating state of neighboring PV power devices. Aggregation of the determinations made by each PV power device in a serial string of PV power devices may enable a full map to be generated, the map including location information for each PV power device.
  • FIG. 11A depicts an illustrative method for determining the order of serially coupled PV power devices comprising a photovoltaic string.
  • Method 1100 may be applied to photovoltaic strings comprising PV power devices and circuitry according to illustrative embodiments (e.g. string 105 of FIG. 1A , which may comprise PV power devices 102 having circuitry similar to or the same as circuitry 140 a of FIGS. 10A-10D, 10G ).
  • Method 1100 may be carried out by a control device in communication with PV power devices.
  • the method may be carried out by system power device 106 of FIG. 1A , system power device 606 of FIG. 6 , system power device 1006 of FIG.
  • a PV power device e.g. PV power device 402 or 420 of FIGS. 4 a -4 c
  • the control device carrying out method may discover PV power devices in a photovoltaic string, e.g. by receiving unique ID numbers of the PV power devices comprises by string.
  • each PV power device may transmit a telemetry (e.g. by a wireless transmitter, or by power line communications) to the system power device, the telemetry including the PV power device's unique ID.
  • the system power device may store the PV power devices' ID numbers to memory.
  • the control device carrying out the method may have a list of PV power devices comprised in the PV string.
  • the control device may have PV power device identification numbers stored to memory.
  • the method may identify an order in which the PV power devices are connected, with all serially coupled PV power devices initially unordered (i.e., there is no available information regarding the sequential order in which PV power devices are arranged. For example, for every pair of a first PV power device and a second PV power device in a serial PV string, it might not be known if the first PV power device is coupled closer to a ground bus than the second PV power device, or if the second PV power device is coupled closer to the ground bus than the first PV power device).
  • a device may select one of the PV power devices as a selected power device which has not yet been ordered (i.e. its sequential order in relation to a different PV power device has not been determined).
  • the first time step 1102 is reached all PV power devices in the string may be candidates for selection as the selected power device.
  • step 1102 may select a selected power device from a shrinking pool of power devices, since at each iteration, a selected power device may be classified as “ordered” and might not be a candidate for selection at the next iteration.
  • the device performing the method may command the selected power device to change an operational parameter.
  • the selected power device may comprise switches (e.g., the selected power device may comprise circuitry such as circuitry 140 b of FIG. 10D , including switches Q 3 and Q 4 ), and at step 1103 , the selected power device may be commanded to change a duty cycle or frequency of a switching signal.
  • the command to change an operational parameter may be issued by a system power device, and the transmitted command may include an ID number of the selected power device.
  • the command is received by some or all of the PV power devices, but may be ignored by all PV power devices not having the ID number indicated by the command (i.e. all PV power devices which are not the selected power device).
  • PV power devices comprising a PV string may periodically transmit reports and/or telemetries to system power devices.
  • communication device 250 may periodically transmit measurements (e.g. current, voltage, temperature and/or irradiance measurements) taken by sensor/sensor interfaces 280 to a system power device.
  • the system power device carrying out method 1100 may wait to receive measurements from some or all of the PV power devices comprising the PV string.
  • One or more of the PV power devices may report measurements which indicate that they are adjacent to the selected power device.
  • the selected power device may comprise circuitry 140 b of FIG. 10D .
  • switch Q 3 may be switched at a duty cycle of 0.7, and the power device comprising circuitry 140 a may periodically report (e.g. to a system power device) the DC current measured by ammeters A 1 and A 2 .
  • the DC current measured by ammeter A 2 may reflect the duty cycle of switch Q 3 .
  • the selected power device may be commanded by a system power device to change the duty cycle of switch Q 3 from 0.7 to 0.3.
  • the change in duty cycle may be reflected by measurements taken by ammeter A 2 , and at step 1104 , the new measurements may be received by a system power device from the power devices.
  • the system power device may compare measurements received from PV power devices to previously received measurements, and may detect the change in measurements received from circuitry 140 b .
  • the method may determine that circuitry 140 b is adjacent to the selected power device, determine that circuitry 140 b is comprised by a second, reporting power device adjacent to the selected power device, and uniquely identify the reporting power device (e.g. identified by its associated unique ID number) as being adjacent to the selected power device (e.g., as identified by its associated unique ID number).
  • the system power device carrying out method 1100 method may consider the selected power device as “ordered” and remove it from the pool of unordered devices. The method may save to memory an indication that the selected power device is adjacent to the reporting power device. As the method iterates through steps 1102 - 1107 , the method may create a table mapping selected PV power devices to their “neighbors”, i.e. one or more adjacent PV power devices.
  • step 1107 if unordered devices remain, the method may loop back to step 1102 . If no unordered devices remain, the method may proceed to step 1108 , and aggregate the results stored when iterating over steps 1102 - 1107 . The results stored by the time step 1108 is reached may enable the method to identify the sequence in which the PV power devices are wired in the string.
  • PV string 1115 comprises four PV power devices: 1002 a , 1002 b , 1002 c and 1002 d , each comprising circuitry similar to or the same as circuitry 140 a of FIGS. 10A-10D or of FIG. 10G .
  • the order of the power devices is unknown (i.e. the method does not know which (i.e. first) PV power device is coupled to the ground bus, which (i.e. second) PV power device is coupled to the first PV power device, and so on.
  • table 1110 is empty, and table 111 indicates that the pool of unordered power devices comprises all of the PV power devices in string 1115 .
  • the method selects (e.g. at random, the lowest ID number, etc.) power device 1002 b as the selected power device.
  • PV power device 1002 b may be commanded to change an operating parameter (e.g. the duty cycle of switching elements in PV power device 1002 b ).
  • PV power devices 1002 a - d report measurements taken by sensors/sensor interfaces such as ammeters.
  • the method may determine that only the measurements taken by PV power device 1002 a have changed substantially, and may determine that PV power device 1002 a is adjacent to PV power device 1002 b .
  • Line #1 of table 1110 may be saved to memory, indicating that PV power devices 1002 a , 1002 b are adjacent to one another, and PV power device 1002 b may be removed from the pool of unordered devices (as indicated by table 1111 , in the line corresponding to the end of the first iteration).
  • the method may determine that the pool of unordered devices is not empty, loop back to step 1102 , and select PV power device 1002 a as the selected power device. In some embodiments, the selection may be random. In some embodiments, the reporting power device of the previous iteration may become the selected power device (provided it is still in the pool of unordered devices).
  • the method may determine that no PV power devices have reported changed measurements, and may determine that PV power device 1002 a is coupled to the ground bus. In this iteration, no reporting power device may be labeled, and Line #2 of table 1110 may be generated indicating the PV power device 1002 a has no neighbor at this iteration. PV power device 1002 a may be removed from the pool of unordered devices at step 1106 .
  • step 1108 may be reached, with table 1110 having four line indicating the results of the four iterations through steps 1102 - 1107 .
  • the method may determine that PV power device 1002 a is coupled to the ground bus, as indicated by Line #2 of table 1110 .
  • the method may determine that PV power device 1002 b is coupled to PV power device 1002 a (as indicated by Line #1 of table 1110 ), PV power device 1002 c is coupled to PV power device 1002 b (as indicated by Line #3 of table 1110 ), and that PV power device 1002 d is coupled to PV power device 1002 c (as indicated by Line #4 of table 1110 ).
  • the method may therefore output the determination that the order of the power devices is 1002 a - 1002 b - 1002 c - 1002 d , as shown in the figure.
  • Point-to-point PLC between adjacent power devices may be used for a variety of communication and control applications in addition to mapping photovoltaic installations.
  • photovoltaic power devices may measure operational parameters such as input or output voltage, input or output current, input or output power, and the temperature and/or solar irradiance in the vicinity of the power device. These operational parameters may be periodically transmitted via PLC (e.g., by a sequence of point-to-point PLC transmissions along the string of power devices) to a data collection point, such as a memory or control device (e.g. a dedicated data collection or control device, or a device included in a system device such as a power combiner box or DC-to-AC inverter).
  • a data collection point such as a memory or control device (e.g. a dedicated data collection or control device, or a device included in a system device such as a power combiner box or DC-to-AC inverter).
  • a transmitted data packet may be transmitted at a high power amplitude, to enable the transmitted signal to be received at the data collection point at a power amplitude sufficient to be detected by PLC receiving circuitry.
  • a last power device may be located 100 meters away from the data collection point, with 15 other power devices connected in between the last power device and the data collection point. Without using point-to-point PLC, the last power device would need to transmit a high-power signal to be received 100 m away after traversing 15 other power devices.
  • each respective first power device may transmit a signal to be received at the second power device immediately adjacent to the first power device, each power device repeating all messages received from other power devices, reducing the required signal power amplitude.
  • the power device connected to the data collection point may be physically closest to the data collection point, and may transmit data at an amplitude significantly lower than what would otherwise be required by each other power device, still enabling reception of the message by the device collecting data.
  • the power device connected to the data collection point may transmit data at an amplitude sufficient to traverse several PV power devices.
  • One possible advantage of transmitting data at an increased amplitude may be enablement of continuous communication in case an intermediate device fails. Referring again to FIG.
  • PV power device 1002 a may communicate with PV power device 1002 b using Point-to-Point Power Line Communications (PTPPLC) over bypass path 116 b .
  • PTPPLC Point-to-Point Power Line Communications
  • communication may be uni-directional (e.g. power device 1002 b is able to send data to power device 1002 a , while power device 1002 a might not be able to send data to power device 1002 b ), and in some embodiments (e.g. each PV power device 1002 has circuitry similar to or the same as circuitry 140 a of FIG.
  • communication may be bidirectional (for example, power devices 1003 a and 1003 b may be able to send data to each other).
  • System power device 1006 e.g. DC-to-AC inverter or combiner box
  • System power device 1006 may be similar to system power device 110 of FIG. 1A , and may be coupled between the ground bus and power bus, and may comprise a data-collection device (e.g. a memory device, a controller, etc.—not explicitly depicted).
  • System power device 1006 may further comprise PLC device 1007 coupled to carry out power line communications over the power bus and/or the ground bus.
  • PV power device 1002 d may transmit data to PV power device 1002 c
  • PV power device 1002 c may transmit data to PV power device 1002 b
  • PV power device 1002 b may transmit data to PV power device 1002 a
  • PV power device 1002 a may transmit data to system power device 1006 .
  • PV power device 1002 d may transmit data to system power device 1006 and PV power device 1002 c
  • PV power device 1002 c may transmit data to PV power devices 1003 d and 1003 b , and so on.
  • System power device 1006 may be configured to transmit commands and/or sent data to PV power devices 1002 a - d .
  • step 1103 of method 1100 may comprise system power device 1006 transmitting a PLC signal over the power bus indicating an ID number of a selected PV power device.
  • a message sent by a PV power device to an adjacent PV power device may be transmitted at a power amplitude significantly lower than a message which may be sent to system power device (e.g. 1006 ).
  • system power device e.g. 1006
  • communication between PV power devices 1002 b and 1002 c may utilize much lower power than communication between PV power device 1002 b and system power device 1006 , due to the much shorter distance and lower number of electrical circuits in between the two communicating devices.
  • a PV power device e.g. 1002 b
  • two PV power devices adjacent to the failed PV power device e.g. 1002 a and 1002 c
  • PV power device 1002 b providing a bypass path for PLC signals.
  • PLC between PV power devices 1002 a and 1002 c may be carried out at a reduced amplitude compared to the amplitude that would be required for PV power device 1002 c to transmit directly to system power device 1006 .
  • Significant power savings may be realized by not attempting to transmit data to system power device 1006 by PV power devices not physically close to system power device 1006 .
  • the size and cost of associated circuitry for transmitting PLC messages may be significantly reduced by limiting the transmitted data to a lower power amplitude.
  • Method 1130 may be used when, for example, a first PV power device (e.g. PV power device 1002 a of FIG. 11B ) may send a message (e.g. comprising telemetry data or other operational data) to a system power device (e.g. system power device 1006 .)
  • a first PV power device e.g. PV power device 1002 a of FIG. 11B
  • a system power device e.g. system power device 1006 .
  • the first PV power device e.g., 1002 a
  • the first PV power device transmits the message using PTPPLC to a second, adjacent PV power device (e.g., 1002 b ).
  • the message may be encoded as a high-frequency (e.g. tens or hundreds of kHz) signal transmitted over a first bypass path between the PV power devices (e.g., 116 b of FIG. 11B ).
  • the first PV power device may transmit a message to the second PV power device through a PV generator, e.g. the PV generator 101 coupled between PV power devices 1002 a and 1002 b ).
  • the second PV power device may receive the message transmitted over the bypass path, and may re-transmit the message to a third PV power device adjacent to the re-transmitting PV power device (e.g., 1002 c ) over a second bypass path (e.g., 116 c ).
  • the third PV power device e.g. 1002 c
  • Each PV power device in a PV string may receive a message from a first adjacent PV power device, and re-transmit the message to a second adjacent PV power device, until the message is received by a final PV power device adjacent or in close physical proximity to a system power device (e.g. 1006 ).
  • the final PV power device e.g. 1002 d
  • the communication connections may be reversed, i.e. the first PV power device (e.g.
  • the first and final PV power devices may communicate directly with the system power device (e.g. 1006 ) over either the ground bus or the power bus, with messages generated by intermediate PV power devices (e.g. 1002 b and 1002 c ) passing through the first or final PV power devices (e.g. 1002 a or 1002 d ) for transmission to system power device (e.g. 1006 ).
  • Illustrative embodiments may include a system comprising a plurality of DC/DC converters, each DC/DC converter receiving power from a photovoltaic generator, the DC/DC converters coupled in series or in parallel between a ground bus and a power bus, the DC/DC converters configured to output a time-varying DC voltage.
  • a system power device comprising a group of switches is coupled between the ground bus and the power bus, and is configured to receive the time-varying DC voltage and output an AC voltage.
  • the system power device further comprises a filter, a controller and/or a communication device.
  • the controller is configured to switch the switches featured by system power device.
  • the communication device is configured to communicate with communication devices featured by the PV power devices.
  • the system power device further comprises a second group of switches, the controller configured to switch the second group of switches in response to a failure of one or more of the first group of switches.
  • the system includes a second system power device, the second system power device operable in response to a failure of the first system power device.
  • the DC/DC converters are configured to output synchronized time-varying DC voltage and current signals.
  • photovoltaic generators are used to exemplify power sources which may make use of the novel features disclosed.
  • the power sources may include batteries, supercapacitors, wind or hydroelectric turbines, fuel cells or other energy sources in addition to or instead of photovoltaic generators.
  • the power sources may be alternating current (AC) power sources or direct current (DC) power sources.
  • batteries may be both used as a power source and used as an electrical load, and charged by the system power sources.
  • the current routing methods and other techniques disclosed herein may be applied to alternative power sources such as those listed above, and the nearly exclusive mentioning of photovoltaic generators as power sources is not intended to be limiting in this respect.
  • PV generator 101 from FIG. 1A may be interchangeable with PV generator 501 from FIG. 5 and/or generator 101 of FIGS. 10A-10D and 10G
  • string 105 from FIGS. 1A, 1C and 1D may be interchangeable with string 205 of FIG. 2A and/or string 805 of FIG. 8 .

Abstract

Various implementations described herein are directed to employing photovoltaic strings including a photovoltaic power device with a specialized wiring configuration, which enables high string efficiency without incurring excessive wiring costs. Implementations may include a cable built into photovoltaic generators that carry one portion of the current, and other portions of the current may be carried by direct-current (DC) or alternating-current (AC) cables bypassing the photovoltaic generators.

Description

    RELATED APPLICATIONS
  • The present application claims priority benefit to, and incorporates by reference, in their entireties for all purposes, U.S. provisional application 62/395,461, filed Sep. 16, 2016, and U.S. provisional application 62/341,147, filed May 25, 2016.
  • BACKGROUND
  • A photovoltaic string may integrate photovoltaic power devices to allow operation at high efficiency. These power devices may be variously configured, and they may be integrated into the photovoltaic string in various ways. Photovoltaic power device may include optimization functionality, configured to maximize the power output by a photovoltaic generator it is coupled to. Typically, a photovoltaic power device may be coupled to one or more photovoltaic generators, and it may measure one or more circuit parameters (e.g. voltage or current) and control these parameters to obtain a more effective operating point.
  • One of the challenges of photovoltaic system design is proper design and integration of photovoltaic power devices (e.g. optimizers). Properly designed and well-integrated, optimization circuits may improve system performance without incurring excessive additional costs. Poorly designed power devices and/or systems may not be cost-effective. For instance, some designs may result in photovoltaic string currents which require installation of long, thick and expensive cables.
  • SUMMARY
  • The following summary is a short summary of some of the inventive concepts for illustrative purposes only, and is not intended to limit or constrain the inventions and examples in the detailed description. One skilled in the art will recognize other novel combinations and features from the detailed description.
  • Embodiments herein may employ photovoltaic strings including a photovoltaic (PV) power device (e.g. optimizer) with a specialized wiring configuration, which enables high string efficiency without incurring excessive wiring costs.
  • In illustrative systems, a circuit may be utilized to reduce the cost of the system. For example, an illustrative PV power device may divide the current of a photovoltaic string into two or more portions, creating smaller current portions that allow for cables which may be thinner and cheaper than those which would otherwise be needed. In some embodiments, the cabling savings may be substantial. In some embodiments, a cable built into photovoltaic generators may be used to carry one portion of the current, and the other portions of the current may be carried by direct-current (DC) or alternating-current (AC) cables bypassing the photovoltaic generators. In certain embodiments, the circuit may be implemented on a single integrated circuit with a photovoltaic generator, DC-DC converter, DC-AC inverter or micro-inverter. In some embodiments, the circuit can be coupled to one or more photovoltaic generators, DC-DC converters, DC-AC inverters or micro-inverters. In some embodiments, photovoltaic power devices may be coupled to one another with cables at the time of manufacturing and stored in a convenient manner (e.g. wound around a cylindrical reel) to allow fast and easy deployment in the field.
  • As noted above, this summary is merely a summary of some of the features described herein. It is not exhaustive, and it is not to be a limitation on the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other features, aspects, and advantages of the present disclosure will become better understood with regard to the following description, claims, and drawings. The present disclosure is illustrated by way of example, and not limited by, the accompanying figures.
  • FIGS. 1A-1F are block diagrams according to various aspects of the present disclosure.
  • FIG. 2A illustrates a string section according to various aspects of the present disclosure.
  • FIG. 2B illustrates a PV power device according to various aspects of the present disclosure.
  • FIGS. 3A-3B illustrate PV power device circuits according to various aspects of the present disclosure.
  • FIG. 4A illustrates a PV power device configuration according to various aspects of the present disclosure.
  • FIG. 4B illustrates a portion of a string of PV power devices according to various aspects of the present disclosure.
  • FIG. 4C illustrates a PV power device configuration according to various aspects of the present disclosure.
  • FIG. 5 illustrates a PV power device and PV generator arrangement according to various aspects of the present disclosure.
  • FIG. 6 illustrates a PV system according to various aspects of the present disclosure.
  • FIGS. 7A-7B illustrate a PV system according to various aspects of the present disclosure.
  • FIG. 7C illustrates a PV system and associated method according to various aspects of the present disclosure.
  • FIG. 7D illustrates a method according to various aspects of the present disclosure.
  • FIGS. 8, ‘9A and 9B illustrate various components of a PV system according to various aspects of the present disclosure.
  • FIGS. 10A-10G illustrate operational aspects of a PV system according to various aspects of the present disclosure.
  • FIGS. 11A-11C illustrate methods of operating and associated states of a PV system according to various aspects of the present disclosure.
  • DETAILED DESCRIPTION
  • In the following description of various illustrative embodiments, reference is made to the accompanying drawings, which form a part hereof, and in which is shown, by way of illustration, various embodiments in which aspects of the disclosure may be practiced. It is to be understood that other embodiments may be utilized and structural and functional modifications may be made, without departing from the scope of the present disclosure.
  • Referring to FIG. 1A, illustrative photovoltaic installation 100 may include one or more photovoltaic (PV) generators 101. Each PV generator may be coupled to a one or more photovoltaic (PV) power device(s) 102. Each PV generator 101 may comprise one or more solar cells, solar cell strings, solar panels or solar shingles. In some embodiments, PV power device 102 may comprise a power conversion circuit such as a direct current-direct current (DC/DC) converter such as a buck, boost, buck-boost, buck+boost, flyback and/or forward converter, or a charge-pump. In some embodiments, PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter or a micro-inverter. In some embodiments, PV power device 102 may comprise a maximum power point tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) to which the power device is coupled. PV power device 102 may further comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA). In some embodiments, the control device may implement MPPT control discussed above (e.g. “perturb and observe” methods, impedance matching) for determining an optimal or preferred operating point for a connected power source.
  • In some embodiments, PV power device 102 may comprise circuitry and/or sensors configured to measure parameters on or near the photovoltaic generator(s), such as the voltage and/or current output by the photovoltaic generator(s), the power output by the photovoltaic generator (s), the irradiance received by the module and/or the temperature on or near the photovoltaic generator (s).
  • In the illustrative embodiment depicted in FIG. 1A, a plurality of PV power devices 102 are coupled to a plurality of PV generators 101, to form a photovoltaic string 105. One terminal of the resultant photovoltaic string 105 may be coupled to a power (e.g., direct current) bus, and the other terminal of the string 105 may be coupled to a ground bus. In some embodiments, the power and ground buses may be input to system power device 106. In some embodiments, system power device 106 may include a DC/AC inverter and may output alternating current (AC) power to a power grid, home or other destinations. In some embodiments, system power device 106 may comprise a combiner box, transformer and/or safety disconnect circuit. For example, system power device 106 may comprise a DC combiner box for receiving DC power from a plurality of PV strings 105 and outputting the combined DC power. In some embodiments, system power device 106 may include a fuse coupled to each string 105 for overcurrent protection, and/or one or more disconnect switches for disconnecting one or more PV strings 105.
  • In some embodiments, system power device 106 may include or be coupled to a control device and/or a communication device for controlling or communicating with PV power devices 102. For example, system power device 106 may comprise a control device such as a microprocessor, Digital Signal Processor (DSP) and/or a Field Programmable Gate Array (FPGA) configured to control the operation of system power device 106. System power device 106 may further comprise a communication device (e.g. a Power Line Communication circuit and/or a wireless transceiver) configured to communicate with linked communication devices included in PV power devices 102. In some embodiments, system power device 106 may comprise both a control device and a communication device, the control device configured to determine desirable modes of operation for PV power devices (e.g. power devices 102), and the communication device configured to transmit operational commands and receive reports from communication devices included in the PV power devices.
  • In some embodiments, the power and ground buses may be further coupled to energy storage devices such as batteries, flywheels or other storage devices.
  • PV power devices 102 may be coupled to photovoltaic generators 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of one power device coupled to the ground or power bus. Similarly, each PV generator 101 may be coupled to two PV power devices 102, with the possible exception of one PV generator coupled to the ground or Power bus.
  • In some embodiments, the PV power devices may be “standalone” products, manufactured and packaged separately. In some embodiments, the PV power devices may be coupled to one another using conductors of appropriate length at the time of manufacturing, packaged and sold as an integrated unit, and deployed as an integrated unit when installing a PV system (e.g. photovoltaic installation 100). For example, power devices 102 may be assembled as an integrated string of power devices or part of a string of power devices, and may be coupled to one another during manufacturing. During installation, the integrated string may be simply strung out alongside photovoltaic generators 101 and each power device 102 may be coupled to a corresponding one of the photovoltaic generators 101 quickly and easily, forming photovoltaic string 105, or part of string 105.
  • Each PV power device 102 may comprise several terminals for coupling (e.g. connecting) to photovoltaic generators 101 and/or other PV power devices 102. In the illustrative embodiment of FIG. 1A, each PV power device 102 comprises four terminals: One “Vin” terminal for receiving power from the positive output of a PV generator 101, two “Vout” terminals for outputting power from the PV power device 102, and one “common” terminal for coupling to a “Vout” terminal of a different PV power device 102 or to a ground bus. In some embodiments, each PV power device 102 may feature a different number of terminals, and/or may feature four terminals configured differently, as will be illustrated in further embodiments.
  • Electrical current is routed along string 105 in two paths. A first path is formed by conductors coupling PV power devices 102 while bypassing photovoltaic generators 101, and a second path is formed by coupling photovoltaic generators 101 to PV power devices 102. For example, conductors 103 b and 103 c are connected between “Vout” and “common” terminals of PV power devices, without being directly connected to a PV generator. Conductors 104 a, 104 b and 104 c are examples of conductors which connect PV generators 101 to terminals of a PV power device 102. Conductors deployed at either end of a PV string (e.g. PV string 105) may be connected in a manner different from the conductors forming the first and second paths. For example, conductor 103 a is connected on one end to the ground bus and a terminal of a PV generator, and on the other end the “common” terminals of a PV power device 102. Conductor 103 n connects the two “Vout” terminals of one PV power device 102 to each other and to the power bus, to combine the currents from the two paths and deliver the combined currents to the power bus.
  • Reference is now made to FIG. 1B, which shows an illustrative embodiment of the external connection terminals of a photovoltaic power device 102, such as those featured in illustrative photovoltaic installation 100. PV power device 102 may include four terminals configured for electrically connecting to terminals labeled “Vin”, “Vout” and “common” in FIG. 1A Terminal T1 may be configured to receive an input current from a photovoltaic generator or power device. Terminal T2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output. Terminals T3 and T4 may be configured to output electrical power (voltage and current) to additional PV generators and/or power devices. Terminals T3 and T4 may output the same voltage in reference to the common terminal T2, though they may output different current and different power. The physical location of the terminals in relation to the casing of the power device may be variously configured to allow for convenient coupling in a photovoltaic string. This illustrative embodiment features terminals T1 and T4 on opposite sides of the power device, with terminals T2, T3 along one side. Other configurations may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.
  • Reference is now made to FIG. 1C, which shows a numerical illustrative embodiment featuring a part of a photovoltaic string 105. Photovoltaic string 105 as depicted in this figure may be used as PV string 105 in FIG. 1A. PV string 105 may include a plurality of photovoltaic (PV) generators 101. Each PV generator 101 may be coupled to a one or more photovoltaic power device(s) 102. Each PV generator 101 may comprise one or more solar cells, one or more solar cell strings, one or more solar panels, one or more solar shingles, or combinations thereof. For example, a PV generator 101 may include a solar panel, two solar panels connected in series or in parallel, or eight solar panels connected in series. In some embodiments, PV power device 102 may comprise a power conversion circuit such as a direct-current-to-direct current (DC/DC) converter such as a buck, boost, buck+boost (e.g., a buck converter followed by a bust converter or a boost converter followed by a book converter), buck-boost, flyback and/or forward converter. In some embodiments, PV power device 102 may comprise a time-varying DC/DC converter, configured to output a different DC voltage at different times. For example, PV power device 102 may comprise a time-varying DC/DC converter configured to output a positive voltage triangular wave, or a voltage wave resembling a rectified sine wave. In some embodiments, PV power device 102 may comprise a direct current—alternating current (DC/AC) converter, also known as an inverter (e.g., a micro-inverter). In some embodiments, PV power device 102 may comprise a Maximum Power Point Tracking (MPPT) circuit with a controller, configured to extract maximum power from one or more of the PV generator(s) the PV power device is coupled to. PV power devices 102 may be coupled to photovoltaic generator 101 such that each PV power device may be coupled to two PV generators and two other PV power devices, with the possible exception of a PV power device coupled to the ground bus (e.g. beginning PV power device 102 a) or a PV power device coupled to the power bus (e.g. ending PV power device 102 m). Similarly, each PV generator 101 may be coupled to two PV power device 102, with the possible exception of one PV generator coupled to the ground or power bus, such as PV generator 101 a depicted in FIG. 1C. The combined string current (i.e. the current flowing between the ground bus and the power bus) may be, in this illustrative embodiment, 15[A]. In other embodiments the string current may be higher or lower. Each photovoltaic generator 101 may operate at a current of 10[A]. The full string current may be routed through two paths, one path flowing through the PV generators 101 and carrying 10[A], the other path bypassing the PV generators and flowing from one PV power device to another. In the illustrative embodiment shown in FIG. 1C, the string bypass path may be comprised of conductors 103 a, 103 b etc. Conductor 103 a may route 5[A] from the ground bus to beginning PV power device 102 a, bypassing PV generator 101 a. Bypass path 103 b may be coupled to an output of PV beginning power device 102 a and carry 5[A] to PV power device 102 b, bypassing PV generator 101 b. Additional bypass paths may be similarly coupled, to route 5[A] through the string while bypassing the PV generators. In some embodiments, the current flowing through the modules may vary from module to module and from time to time, and the current flowing through the bypass paths may similarly vary. FIG. 1C illustrates an illustrative embodiment in which all PV generators 101 (e.g. 101 a, 101 b etc.) are operating at a maximum power point current of 10[A]. In some operating conditions, different PV generators may have different maximum power points such that different PV generators conduct maximum-power currents of different magnitudes, as will be described in other embodiments disclosed herein.
  • Different PV generators may operate at different power points, even in the same PV installation. As a numerical example, two PV generators may be capable of outputting 300[W], with one PV generator operating at a maximum power point of 20[V] and 15[A], and another PV generator operating at a maximum power point of 30[V] and 10[A]. As a different example, two PV generators may be capable of generating different maximum power levels. For example, one PV generator may output 300[W] and operate at a maximum power point of 20[V] and 15[A], while a second PV generator may be partially shaded and/or dirty, and be capable of outputting only 266[W] at a maximum power point of 19[V] and 14[A]. An MPPT circuit may be configured to identify the maximum power point of one or more PV generators the MPPT circuit is coupled to, and to operate the PV generator at the PV generator's maximum power point independent of temperature, solar radiance, shading or other performance deterioration factors of other PV generators in the installation. In some PV installations, a plurality of PV generators may all be operating at their respective maximum power points, with each PV generator operating at a different current independent of the other generators. In illustrative embodiments, bypass paths (e.g. conductors 103 a, 103 b etc.) may carry differing currents to compensate for differing PV generator maximum power point currents.
  • Reference is now made to FIG. 1D, which shows a portion of a photovoltaic string according to some illustrative embodiments. Photovoltaic string 105 comprises a plurality of PV generators 101 (e.g. 101 a, 101 b etc.) and PV power devices 102 (e.g. 102 a, 102 b etc.). Photovoltaic string 105 may be the same as or part of PV string 105 of FIG. 1A. The coupling method of the PV generators and PV power devices to one another may be similar to embodiments previously described herein. In this illustrative embodiment, the PV string 105 current may be 15[A]. PV generator 101 a may operate at 10[A], with 5[A] bypassing the module via conductor 103 a, which is coupled to beginning PV power device 102 a. PV generator 101 b may operate at 8[A], with 8[A] flowing to the PV generator from beginning PV power device 102 a. Beginning PV power device 102 a may further output 7[A] flowing over bypass path 103 b, which is coupled to PV power device 102 b. PV power device 102 b may receive 8[A] from PV generator 101 b and 7[A] via conductor 103 b, and output 18[A] to the next PV generator in the string (not depicted) and output −3[A] over conductor 103 c to the next PV power device in the string (not depicted). A negative bypass current simply indicates a reverse direct current (i.e. flowing in the opposite direction compared to the current portion flowing through the photovoltaic generators). In some embodiments, the bypass current may be an alternating current (AC), while the current portion which flows through the PV generators may be a direct current (DC) as further described below. In some embodiments, both the PV generator and bypass paths may carry a direct current.
  • By splitting the full string current into multiple portions and routing each portion along a different path, some embodiments may offer advantages. Conduction losses along a photovoltaic string may be expressed as Ploss=I2*R, where Ploss denotes the total conduction losses, I denotes the string current and R the combined resistance of the string conductors. Conductor resistance is calculated as
  • R = ρ l A ,
  • when ρ denotes the resistivity of the conducting material, l is the conductor length and A denotes the conductor cross section. As indicated by the first equation, a decrease in current results in a quadratic decrease in conduction losses. Therefore, it is beneficial to minimize current flowing through any single path in the system, as losses may decrease and higher efficiency may be obtained. Furthermore, many photovoltaic generators (e.g. solar panels) are sold already featuring cables which may be rated to support a current which is lower than the desired string current. In one type of PV installation featuring PV generators and PV power devices, PV generator cables may couple a PV generator to a PV power device while carrying the PV generator's maximum power point current, with the PV power device featuring additional cables to carry the entire string current. In certain PV installations, this may result in both higher losses (e.g. because of losses incurred by both the PV generator cables carrying the full generator currents and the PV power device cables carrying the full string current) and higher cabling costs (e.g. not taking advantage of the length of the PV generator cables to reduce the length of the PV power device cables). By splitting the string current into multiple portions, the included photovoltaic generator cables may be utilized to support a portion of the current, and an additional cable (which may also be required only to support a portion of the current, and may therefore be thinner and cheaper) may be added at a lower cost than the cost of replacing the entire photovoltaic generator cable. Additionally, the cost of conductors is not always linear, and the price of a cable rated to carry 15[A] may sometimes be higher than the combined costs of a 10[A]-rated cable and a 5[A]-rated cable.
  • Referring now to FIG. 1E, illustrative photovoltaic power devices utilized in illustrative embodiments herein may feature different numbers of terminals. For example, power device 112 may include three terminals: terminal T17 may be utilized to receive an input voltage (Vin), terminal T37 may be utilized to output an output voltage (Vout), and terminal T27 may output a voltage level common to the input and output. The internal circuitry of power device 112 may be similar to that of other power devices discussed in detail herein, with only one output voltage terminal made available. If desirable, the output voltage terminal may be split during system deployment using a splitting device, such as a splice connector (e.g. a T-connector).
  • Reference is now made to FIG. 1F, which shows an illustrative embodiment of photovoltaic string 115 according to certain embodiments. PV string 115 may be used as string 105 of FIG. 1A. In this illustrative embodiment, each of a plurality of PV generators in a PV string (e.g. PV string 115) may be coupled to two PV power devices, with the exception of one PV generator (e.g. PV generator 101 a) which may be coupled to the ground bus. Each of a plurality of PV power devices in a PV string (e.g. PV string 115) may be coupled to two PV generators, with the exception of one PV power device (e.g. PV power device 112 n) which may be coupled to the power bus. Similar to other embodiments disclosed herein, the string current may be divided into two portions and routed along two paths, with a first path passing through PV generators 101 (e.g., 101 a, 101 b, etc.) and a second path comprising bypass paths 113 (e.g. path 113 a, path 113 b, etc.) which bypass the modules and carry current from one PV power device to the next PV power device in the string. As a numerical example, the string current may be 15[A], with 10[A] being routed through the PV generators, and 5[A] being routed through the power devices. Each power device 112 may output 15[A] from its single Vout terminal. The power devices 112 depicted may be arranged and implemented similarly to the power device depicted in FIG. 1E, where the power device's Vin terminal is at the bottom of the power device, the common terminal is at the side and the device's Vout terminal is at the top. The power devices 112 may be implemented using a device similar to the device shown in FIG. 1B, with a reduced number of terminals (e.g. combining T3 and T4 to a single terminal).
  • Reference is now made to FIG. 2A, which shows an illustrative embodiment of a series string section of photovoltaic string 205, which may be part of or the same as photovoltaic string 105 that may be found in systems such as photovoltaic installation 100. PV generator 201 a may comprise a photovoltaic panel including junction box 207 a.
  • PV power device 202 a may be coupled to PV generators 201 a and 201 b, and PV power device 202 b may be coupled to PV generators 201 b and 201 c. PV power devices 202 a and 202 b may be similar to or the same as PV power devices 102 of FIG. 1A, and may feature four electrical terminals (“Vin”, “common” and two “vout” terminals) arranged as depicted in FIG. 2A. In some embodiments, the two “Vout” terminals may be arranged differently (e.g. arranged such as power device 102 of FIG. 1B) or combined into one, similarly to PV power device 112 of FIG. 1E. Bypass cable 203 b may be connected between a “Vout” terminal of PV power device 202 a and the “common” terminal of PV power device 202 b. Panel cable 204 b may couple a terminal (e.g. the higher-voltage terminal) of PV generator 201 a to the “Vin” terminal of PV power device 202 a, and panel cable 204 c may couple a “Vout” terminal of PV power device 202 a to PV generator 201 b (e.g. to the lower voltage terminal of PV generator 201 b).
  • In some embodiments, PV generator 201 a may be the “first” module in a section of photovoltaic series string 205. In some embodiments, a splice connector (e.g. a “T-connector”) may combine panel cable 204 a and bypass cable 203 a and be connected to a ground bus. Similarly, in some embodiments, PV generator 201 c may be the “last” module in photovoltaic series string section 200. In some embodiments, a splice connector (e.g. a “T-connector”) may combine panel cable 204 f and bypass cable 203 c and be connected to a power bus.
  • PV generator 201 (e.g. any of PV generators 201 a-201 c), the connected junction box 207 and the connected panel cables 204 may be a pre-integrated assembly before connection to PV power devices 202. Bypass cables 203 may be pre-integrated with one of the connected PV power devices (e.g., bypass cable 203 b may be an integrated part of PV power device 202 a or 202 b). Bypass cables 203 may be two cables spliced together during assembly of the string section, with each portion an integrated part of a PV power device (e.g., bypass cable 203 b may be comprise two cables, with one cable integral to 202 a and the other cable integral to 202 b).
  • Reference is now made to FIG. 2B, which shown an illustrative embodiment of the external connection terminals of a photovoltaic power device 202, such as those featured in the illustrative string section in FIG. 1B. PV power device 202 may include four terminals. Terminal T1 may be configured to receive an input from a photovoltaic generator or power device. Terminal T2 may be configured to be coupled to a photovoltaic generator and/or a photovoltaic power device, and may serve as a common terminal for both input and output. Terminals T3 and T4 may be configured to output voltage, current and/or power to additional PV generators and/or power devices. Terminals T3 and T4 may output the same voltage in reference to the common terminal T2, though they may output different current and different power. The physical location of the terminals in relation to the casing of the power device may be arranged to allow for convenient coupling in a photovoltaic string. This illustrative embodiment features terminals T1, T2 on the same side of the power device, with terminals T3, T4 located on the opposite side. Other arrangements may be considered and implemented in alternative embodiments and are within the scope of embodiments included herein.
  • Reference is now made to FIG. 3A, which shows some of the internal circuitry of a photovoltaic power device 302 a according to various illustrative embodiments (e.g., PV power device 302 a may be similar to or the same as PV power device 102 of FIGS. 1A-1D, or PV power device 202 of FIGS. 2A-2B). In some embodiments, photovoltaic power device 302 a may be implemented using a variation of a Buck DC/DC converter. The power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The input and output voltages are in relation to the common terminal. The circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals. The circuit may include a central point used for reference. The circuit may include a pair of switches (e.g. MOSFET transistors) Q1 and Q2, with Q1 coupled between Vin and the central point, and Q2 coupled between the common terminal and central point. The circuit may further include inductor L coupled between the Vout terminals and the central point. By staggering the switching of switches Q1 and Q2, the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout stay about constant at voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L to form an inductor current which is about equal to the sum of the current input at the Vin and common terminals. The inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but the voltage ripples over the capacitors are generally small, and similarly the inductor current ripple may be generally small. The inductor current may be output by the pair of output terminals Vout. In some embodiments, more than two Vout terminals may be utilized to split the output current into more than two portions. In some embodiments, a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired. The switching of switches Q1 and Q2 may be controlled by an external control device (not explicitly depicted). If the electrical terminals Vin, common and Vout are arranged as depicted in FIG. 3A, power device 302 a may be used as the power device in configurations such as those shown in FIG. 1A-1D (e.g. device 102).
  • Reference is now made to FIG. 3B, which shows some of the internal circuitry of a photovoltaic power device according to one illustrative embodiment. In some embodiments, photovoltaic power device 302 b may be implemented using a variation of a Buck+Boost DC/DC converter. The power device may include a circuit having two input terminals, denoted Vin and common, and two output terminals which output the same voltage Vout. The output voltage is in relation to the common terminal. The circuit may include an input capacitor Cin coupled between the common terminal and the Vin terminal, an output capacitor coupled between the common terminal and the Vout terminals. The circuit may include two central points used for reference. The circuit may include a plurality of switches (e.g. MOSFET transistors) Q1, Q2, Q3 and Q4 with Q1 connected between Vin and the first central point, and Q2 connected between the common terminal and the first central point. Q3 may be connected between the Vout terminal and the second central point, and Q4 may be connected between the common terminal and the second central point. The circuit may further include inductor L coupled between the two central points.
  • The operation of the Buck+Boost DC/DC converter in PV power device 302 b may be variously configured. If an output voltage lower than he input voltage is desired, Q3 may be statically ON, Q4 may be statically OFF, and with Q1 and Q2 being PWM-switched in a complementary manner to one another, the circuit is temporarily equivalent to the Buck converter depicted in FIG. 3A and the input voltage is bucked. If an output voltage higher than he input voltage is desired, Q1 may be statically ON, Q2 may be statically OFF, and with Q3 and Q4 being PWM-switched in a complementary manner to one another, the input voltage is boosted. Staggering the switching of switches Q1 and Q2, the circuit may convert the input voltage Vin to output voltage Vout. If current is input to the circuit by the Vin and common terminals, and the voltage drop across capacitors Cin and Cout are about constant voltages Vin and Vout respectively, the currents input to the circuit are combined at inductor L to form an inductor current which is equal to the sum of the current input at the Vin and common terminals. The inductor current may contain a ripple due to the charging and discharging of capacitors Cin and Cout, but if the voltage drop across capacitors Cin and Cout are about constant, the voltage ripples over the capacitors are small, and similarly the inductor current ripple may be small. The inductor current may be output by the pair of output terminals Vout. In some embodiments, more than two Vout terminals may be utilized to split the output current into more than two portions. In some embodiments, a single output terminal may be included, and system designers may split the output terminal externally (i.e. outside of the PV power device circuit), if desired.
  • Reference is now made to FIG. 4A, which illustrates a photovoltaic power device according to illustrative embodiments. Photovoltaic power device 402 may include a casing 431. The casing 431 may house circuitry 430 (illustrated functionally). In some embodiments, circuitry 430 may include power converter 440. Power converter 440 may include a direct current-direct current (DC/DC) converter such as a buck, boost, buck+boost, flyback, Cuk and/or forward converter. In some embodiments, power converter 440 may include a direct current—alternating current (DC/AC) converter (e.g., an inverter, or a micro-inverter designed to convert a small portion of power from DC to AC, such as a 300 W micro-inverter) instead of, or in addition to, a DC/DC converter.
  • In some embodiments, circuitry 430 may include Maximum Power Point Tracking (MPPT) circuit 495, configured to extract increased power from the PV generator the power device is coupled to. In some embodiments, MPPT circuit 495 may be configured extract increased power from a PV generator connected to its input terminal, and in some embodiments, MPPT circuit 495 may be configured extract increased power from a PV generator connected to its output terminal(s). In some embodiments, power converter 440 may include MPPT functionality, rendering MPPT circuit 495 unnecessary. Circuitry 430 may further comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA. Control device 470 may control and/or communicate with other elements of circuitry 430 over common bus 490. In some embodiments, circuitry 430 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters directly or receive measured parameters from connected sensors on or near the photovoltaic generator, such as the voltage and/or current output by the module, the power output by the module, the irradiance received by the module and/or the temperature on or near the module. In some embodiments, circuitry 430 may include communication device 450, configured to transmit and/or receive data and/or commands to/from other devices. Communication device 450 may communicate using Power Line Communication (PLC) technology, acoustic communications technologies, or wireless technologies such as BlueTooth™, ZigBee™, Wi-Fi™, cellular communication or other wireless methods.
  • In some embodiments, circuitry 430 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors). For example, fuses may be connected in series with some or all of conductors 403 a 403 b, and terminals 404 a and 404 b, with the fuses designed to melt and disconnect circuitry at certain currents. As another example, PV power device 402 may include a circuit breaker, with control device 470 configured to activate the circuit breaker and disconnect PV power device 402 from a PV string or a PV generator in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450) from a system control device. As yet another example, PV power device 402 may include a bypass circuit featuring a switch, with control device 470 configured to activate the bypass circuit and short-circuit the input and/or output terminals of PV power device 402 in response to detecting a potentially unsafe condition or upon receiving a command (e.g. via communication device 450) from a system control device.
  • The various components of circuitry 430 may communicate and/or share data over common bus 490. Input voltage (Vin) terminal 404 a may be configured to be coupled to the positive output of a photovoltaic generator (e.g. as in FIGS. 1A-1D). Output voltage (Vout) terminal 404 b may be configured to be coupled to the negative output of a different photovoltaic generator, as described with regard to some of the embodiments herein (e.g. as in FIGS. 1A-1D). In some configurations, Common conductor 403 a and output voltage (Vout) conductor 403 b may be coupled to other photovoltaic power devices.
  • In some embodiments, conductors 403 a and 403 b may be integrated to photovoltaic power devices at each end, at the time of manufacturing, creating a string of connected photovoltaic power devices as depicted in FIG. 4B, allowing a plurality of coupled power devices to be manufactured and sold as a single unit for fast and easy field deployment. The length of the conductors (e.g. 403 a, 403 b) between adjacent power devices may be selected according to a length (or width) of a photovoltaic generator, to enable connecting adjacent power devices to adjacent photovoltaic generators. Manufacturing a string of power devices as a single unit, with the power devices interconnected using integrated (e.g. pre-connected) conductors 403 may provide additional advantages such as reduced cost (e.g. by saving the cost of two connectors. For example, PV power device 402 is depicted in FIG. 4A having two connectors and two conductors, and if the conductors 403 a, 403 b do not connect PV power device 402 to an adjacent power device, an additional two connectors may be required) and a lower risk of electrical arcing or overheating due to a faulty connection between connectors. In some embodiments, PV power device 402 may feature an integrated conductor 403 a, with conductor 403 b replaced by a terminal for connecting to an integrated conductor from a different PV power device. In some embodiments, conductors 403 a and 403 b may be replaced by terminals (e.g. MC4™ connectors made by Multi-Contact or other equivalent connectors) similar to 404 a and 404 b, to allow an installer to insert a cable of his or her choosing to be deployed. Terminals 404 a and 404 b and conductors 403 a and 403 b may be coupled to the terminals of DC/DC or DC/AC power converter 440. For example, power converter 440 may include a Buck converter similar to the converter depicted in FIG. 3a . In that case, Vin terminal 404 a of FIG. 4A may be coupled to the corresponding Vin terminal of FIG. 3a , Vout terminal 404 b and Vout conductor 403 b of FIG. 4A may be coupled to the Vout terminals of FIG. 3a , and the common conductor 403 a of FIG. 4A may be coupled to the common terminal of FIG. 3a . For visual clarity, these connections are not depicted explicitly, and in some embodiments the connections may differ.
  • Reference is now made to FIG. 4B, which shows a portion of a string of PV power devices. String 405 may be part of a string of PV power devices 402 (e.g. devices similar to or the same as PV power device 402 of FIG. 4A) connected to each other via conductors 403 which may be the same as or similar to common conductor 403 a of FIG. 4A. The length of each conductor 403 may be about the same as the length a dimension of a PV generator, to enable each PV power devices to be coupled to more than one PV generator (as depicted in FIG. 2A) and/or to enable coupling adjacent PV power devices to adjacent PV generators in a series string. In some embodiments, string 405 may be manufactured and/or packaged, stored and sold as a single unit, enabling fast and easy deployment in a PV installation.
  • Reference is now made to FIG. 4C, which illustrates a photovoltaic power device according to illustrative embodiments. First photovoltaic power device 420 may include a casing 431 and circuitry 430 (illustrated functionally). Circuitry 430 may comprise circuits and devices similar to or the same as circuitry 430 as described with regard to FIG. 4A. PV power device 420 may comprise input voltage (Vin) terminal 411, common terminal 412, output voltage (Vout) terminal 413 and output voltage (Vout) terminal 414. Input voltage terminal 411 may be provided for coupling (e.g. connecting) to a first output terminal (e.g. a positive output terminal) of a first photovoltaic generator. Output voltage terminal 413 may be provided for coupling (e.g. connecting) to a second output terminal (e.g. a negative output terminal) of a second photovoltaic generator. Common terminal 412 may be provided for coupling to an output voltage terminal (e.g. similar to or the same as output terminal 414), provided by a second PV power device similar to or the same as PV power device 420. Output voltage terminal 414 may be provided for coupling to a common terminal (e.g. similar to or the same as common terminal 412) provided by a third PV power device similar to or the same as PV power device 420.
  • In some embodiments, such as embodiments similar to or the same as FIG. 4A, a first conductor couples (e.g. connects) common terminal 412 to an output voltage terminal of the second PV power device, and a second conductor couples (e.g. connects) output voltage terminal 414 to the common terminal of the third PV power device. In some embodiments, the first and second conductors connect the first, second and third power devices at the time of manufacturing, with the first, second and third power devices along with the first and second conductors provided as a single connected apparatus or part of a single connected apparatus. In some embodiments, the first and second conductors are not provided along with PV power device 420, and are connected during installation of PV power device 420.
  • Reference is now made to FIG. 5, which illustrates an integrated illustrative embodiment. Integrated apparatus 515 may include a photovoltaic generator 501 (e.g., 101, 201 etc.) coupled to a PV power device 502 (e.g., 102, 202, 402 a, 402 b etc.). Some embodiments may employ the cabling method described herein to couple PV generator 501 to PV power device 502. PV power device 502 may further comprise circuitry similar to or the same as circuitry 430 of FIG. 4A. For example, PV power device 502 may comprise control device 470 such as a microprocessor, Digital Signal Processor (DSP) and/or an FPGA. PV power device 502 may include Maximum Power Point Tracking (MPPT) circuit 495, configured to extract maximum power from the PV generator the power device is coupled to. In some embodiments, control device 470 may include MPPT functionality, rendering MPPT circuit 495 unnecessary. Control device 470 may control and/or communicate with other elements of PV power device 502 over common bus 490. In some embodiments, PV power device 502 may include circuitry and/or sensors/sensor interfaces 480 configured to measure parameters on or near the photovoltaic generator 501 or PV power device 502, voltage, current, power, irradiance and/or temperature. In some embodiments, PV power device 502 may include communication device 450, configured to transmit and/or receive data and/or commands from other devices. Communication device 450 may communicate using Power Line Communication (PLC) technology, or wireless technologies such as ZigBee, Wi-Fi, cellular communication or other wireless methods. In some embodiments, integrated apparatus 515 and/or PV power device 502 may include safety devices 460 (e.g. fuses, circuit breakers and Residual Current Detectors). The various components of PV power device 502 may communicate and/or share data over common bus 490. Integrated apparatus 515 may feature four terminals which are accessible from outside the apparatus, at least two of which output the same voltage. The components of integrated apparatus 515 may be similar to or the same as those of circuitry 430 of FIG. 4A. In FIG. 5 the two terminals outputting the same voltage are denoted 512 and 513. The integrated apparatus may be formed by embedding the components into a photovoltaic generator, the casing of the photovoltaic generator or mounting the components onto the photovoltaic generator. The integrated apparatus may include a portion of or all the circuitry required to comprise a “building block” that may be used for simple “plug 'n play” construction of optimized photovoltaic string. In this manner, the advantages of the current splitting detailed herein may be realized in the internal integrated circuit layout, with one current path in the integrated circuit including a photovoltaic generator 501 (e.g. solar cell, panel or shingle) and another current path bypassing the module. Additional advantages of an implementation as an integrated circuit such as ease of connection, possible cost reduction, etc. may also be realized.
  • Reference is now made to FIG. 6, which shows a photovoltaic system according to another illustrative embodiment. A number of photovoltaic strings 618 (e.g. 618 a, 618 b) may be coupled in parallel between ground and power buses to provide power to the power bus. The power and ground buses may be coupled to the inputs of system power device 606. In some embodiments, system power device 606 may include a DC/AC inverter and may output AC power to the grid, home or other destinations. In some embodiments, system power device 606 may comprise a combiner box, transformer and/or safety disconnect circuit. One or more photovoltaic strings 618 may comprise a plurality of series-coupled integrated apparatuses 515. In a string 618, one apparatus 515 may have its terminals 510, 511 coupled to the ground bus. The other apparatuses 515 in the string may have their terminals 510, 511 coupled to the terminals 512, 513 of the preceding apparatuses 515 in the string. One apparatus 515 may have its terminals 512, 513 coupled to the power bus. The other apparatuses 515 in the string may their terminals 512, 513 coupled to terminals 510, 511 of the next apparatus 515 in the string. A photovoltaic system constructed in this manner may enjoy the benefits of optimized photovoltaic strings, multiple current paths which enable cheaper cabling, fully integrated components including safety, monitoring and control functions, and simple installation.
  • In some photovoltaic systems, it may be beneficial to couple devices outputting a voltage which is not strictly AC or DC. For example, PV power devices (e.g. devices comprising circuitry similar to circuitry 430 of FIG. 4A) may be configured to output a voltage waveform similar to a rectified sine wave, a triangle wave or a square wave. In some systems, configuring each PV power device to output a signal other than DC may reduce the size and cost of the filters and switching circuits required of a system power device configured to supply AC power to a grid or home (e.g. a DC/AC inverter).
  • Reference is now made to FIG. 7A, which shows a photovoltaic system according to another illustrative embodiment in which benefit may be derived by rerouting current portions within a photovoltaic string. System 700 may comprise one or more photovoltaic strings 705 coupled to one another in parallel (only one string is illustrated). Each string may comprise a plurality of PV generators 701 (e.g. 701 a, 701 b etc.) and PV power devices 702 (e.g. 702 a, 702 b, etc.). In the embodiment depicted in FIG. 7A, the outputs of each PV generator 701 are coupled across the inputs of a power device 702, and the outputs of the PV power devices are serially coupled to one another to form a photovoltaic serial string. The inputs of each PV power device may receive power from a PV generator, and the outputs of the PV power device deliver power to string 705.
  • Each power device 702 may include circuitry similar to or the same as circuitry 430 of FIG. 4A. For example, each power device 702 may include a DC/DC converter configured to output a time-varying DC signal which emulates a rectified sine wave, triangular wave, square wave or other wave form which may be later processed and converted to a sine wave. The different power devices may output signals which are identical to one another, or different in shape, magnitude and/or phase. The outputs of the power devices may be summed to form a string voltage signal which is input to system power device 706.
  • System power device 706 may be configured to receive the string voltage input and output an alternating current (AC) signal such as a sine wave, which may be fed to the grid or home. In the illustrative embodiment depicted in FIG. 7A, each power device 702 outputs a low-voltage rectified sine wave which is synchronized to be in-phase with the rectified sine waves output by the other power devices in the same string. Synchronization may be achieved by a master control device (e.g. a controller 720 and communication device 750 of system power device 706, as depicted in FIG. 7B) commanding the PV power devices to produce a voltage of a certain waveform, and at a certain phase. The synchronized, rectified sine waves may be of a low frequency such as 100 Hz or 120 Hz, and may be summed to form a higher-voltage, rectified sine wave of amplitude about that of the utility grid voltage, such as 311[V] in European systems or 156[V] in the USA.
  • The voltage output by each power device 702 may be substantially lower than a utility grid voltage. The summed peak output voltages of each group of serially connected power devices 702 may be about the same as a utility grid peak voltage. For example, a string of ten serially connected power devices 702 may have a total peak voltage of about 311V, and the output voltage of each of the ten power devices 702 may output, on average, about 31V.
  • System power device 706 may configure the output voltage to be appropriate for feeding the grid, home or storage devices. For example, if the string voltage signal is a rectified sine wave of grid-voltage amplitude, system power device 706 may comprise a full-bridge to converter the rectified sine wave to an alternating sine wave. In some embodiments, the string voltage amplitude may be different from grid voltage amplitude, and may be adjusted by circuits and/or devices such as a transformer. In some embodiments, the string voltage may be similar to a triangular or square wave, and filtering may be applied before or after converting the signal from time-varying-DC to AC.
  • In some embodiments, a plurality of strings 705 may be connected in parallel at the input of system power device 706. Each string 705 may be connected to system power device 706 via a switch (not explicitly shown), the switch being operable to disconnect a string 705 (e.g., an individual string 705 without disconnecting other strings 705) in response to a failure occurring at or in the disconnected string 705 and/or a failure to provide adequate or synchronized power to system power device 706.
  • In some embodiments, system power device 706 may regulate the voltage across string 705. For example, system power device 706 may set the peak string voltage to a substantially constant value (e.g. a rectified sine voltage signal with a peak value of 350V), with the string current varying according to power available from PV generators 701. The substantially constant peak voltage value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.
  • In some embodiments, system power device 706 may regulate the current flowing through string 705. For example, system power device 706 may set the string current to a substantially constant value with the string voltage amplitude varying according to power available from PV generators 701. The substantially constant current value may be changed periodically according to operational considerations such as the efficiency of system power device 706 at different input voltages and currents, according to available power, or as part of a safety-response protocol.
  • Reference is now made to FIG. 7B, which shows a system power device 706 according to illustrative embodiments. System power device 706 may include full bridge 711, controller 720, filter 730 and sensor 740. System power device 706 may further include additional components such as communication device(s), sensor(s)/sensor interfaces, safety and/or disconnect devices(s), monitoring device(s) and/or auxiliary power circuit(s) (not explicitly depicted) similar to or the same as the components of circuitry 430 of FIG. 4A. Full bridge 711 may comprise four switches (e.g. MOSFETs) Q1, Q2, Q3 and Q4, two inputs and two outputs. Q1 may be connected between input1 and X. Q2 may be connected between input1 and Y. Q3 may be connected between input2 and X. Q4 may be connected between input2 and Y.
  • When switches Q1 and Q4 are ON and switches Q2 and Q3 are OFF, the output terminals may output a signal which is an inversion of the input signal. When switches Q1 and Q4 are OFF and switches Q2 and Q3 are ON, the output terminals may output a signal which is identical to the input signal. If the input signal is a rectified sine wave such as the string voltage of system 700 of FIG. 7A, by inverting every second lobe of the rectified sine wave, an alternating sine wave may be obtained. The switching of the switches Q1-Q4 may be controlled by controller 720. For example, the controller may apply a PWM signal to turn switches Q1 and Q4 OFF and switches Q2 and Q3 ON for the duration of one positive sine lobe, and then reverse the signals (i.e. turn Q1 and Q4 ON and switches Q2 and Q3 OFF) to invert the next sine lobe. Controller 720 may include a microprocessor, Digital Signal Processor (DSP), ASIC, and/or an FPGA. System power device 706 may include filter 730 which may be placed on either the input or output side of the device, to filter higher-order harmonics which may be present in the processed signal. 701 An appropriate filter (e.g. a low-pass LC filter) may reduce higher-order harmonics, creating an output signal which more closely resembles a pure sine wave.
  • Sensor 740 may comprise a voltage-sensor for measuring the voltage output by system power device 706. In some embodiments, the output of system power device 706 is coupled to a utility grid, and sensor 740 may further measure the grid voltage. Sensor 740 may provide output voltage measurements to controller 720, with controller switching switches Q1-Q4 responsively to the measurements provided by sensor 740. For example, when sensor 740 measures an output voltage of negative polarity, sensor 740 may provide the negative voltage measurements to controller 720, and controller 720 may responsively switch Q1 and Q4 to the ON state and switches Q2 and Q3 to the OFF state. Communication device 750 may be configured to communicate with communication devices deployed in PV power devices, for example, communication devices similar to or the same as communication device 450 of FIG. 4A. For example, if communication device 450 includes a Power Line Communication transceiver, communication device 750 may similarly be a PLC transceiver. If communication device 450 includes a wireless transceiver, communication device 750 may similarly be a wireless transceiver. Communication device 750 may transmit voltage magnitude measurements to PV power devices 702 of FIG. 7A, with each PV power device 702 configured to output a voltage corresponding to the magnitude measurements.
  • As a numerical example, when sensor 740 measures an output voltage of 100V, communication device 750 may transmit the measurement of 100[V] to PV power devices 702, with each PV power device 702 adjusting its duty cycle to output 100/N [V], where N is the number of serially-connected PV power devices 702. In some embodiments, the total voltage of 100[V] may be split unevenly amongst PV power devices 702, with each PV power device 702 outputting a voltage proportional to the power processed by the respective PV power device, and the total voltage output by all of PV power devices 702 equaling 100[V].
  • In some illustrative embodiments, two or more system power devices 706 may be deployed in parallel in system 700, reducing the risk of system failure in case of a failure in a single device. While component redundancy often significantly increases system cost, the architecture of system 700 may enable system power device 706 to be implemented using inexpensive circuitry (e.g. low frequency switches Q1-Q4 and/or a controller 720 that does not need expensive processing capabilities), thereby decreasing the cost of adding redundant components to reduce the risk of system failure. By adding a backup system power device 706, system 700 may reduce the number of single points of failure or have no single point of failure, such that a failure of a single device does not cause the entire system to cease producing power. In some embodiments, certain components within system power device 706 may be duplicated for redundancy. For example, system 700 may comprise system power device 706 comprising a single controller 720, a single filter 730 and a single communication device 750, but multiple sensors 740 and full-bridges 711.
  • Reference is now made to FIG. 7C, which shows an illustrative embodiment of generating a pseudo-AC signal which varies over time, for example, a DC output that is varied in amplitude in a step-wise manner to emulate a biased or rectified alternating-current signal. DC/DC converter 703 may receive an input from a DC voltage source such as PV generator 701. In alternative embodiments, PV generator 701 may be replaced in FIGS. 7A and 7C by an alternating current (AC) power source (e.g. a wind turbine), PV power device 702 comprising an alternating current to direct current (AC/DC) rectifying circuit (not explicitly depicted) converting the AC input power to DC power to be input to DC/DC converter 703. Converter 703 may further receive a reference signal from reference signal generator 704, and may attempt to output a voltage signal which is proportional to the reference signal. For example, signal generator 704 may output a rectified sine wave reference with an amplitude of 100 mV, and converter 703 may output a rectified sine which tracks the reference, but with a different amplitude. If converter 703 operates at a frequency significantly higher than the frequency of the reference signal, the tracking can be highly accurate for any reference waveform. For example, the reference signal may be of a low frequency such as 100 Hz or 120 Hz, and the DC/DC converter may operate at a frequency of tens or hundreds of kHz. The converter's high frequency may allow it to stabilize an output voltage rapidly, within a time-frame that is a small fraction of the period of the reference signal.
  • Reference signal generator 704 may be implemented in various manners. In some embodiments, digital samples may be stored on a memory device (e.g. Read Only Memory (ROM) Random Access Memory (RAM), Flash memory or similar memory devices) coupled to DC/DC converter 703, with a digital sample provided to DC/DC converter 703 at regular intervals. In some embodiments, reference signal generator 704 may comprise an analog oscillator and an analog-to-digital (A/D) converter configured to sample the oscillator and provide a digital sample to DC/DC converter 703. In some embodiments, reference signal generator 704 may be a communication device for receiving reference samples from a different communication device (e.g. communication device 750 of FIG. 7B, transmitting samples measured by sensor 740) and providing them the DC/DC converter 703.
  • Still referring to FIG. 7C, DC-DC converter 703 may carry out method 710. At step 707, the DC/DC converter may digitally sample the reference signals. At step 708, the DC/DC converter may adjust the duty cycle of its high-frequency switching components to output a voltage which is proportional (according to a predefined ratio) to the reference signal. At step 709, the converter may wait a short time before the next sample is processed. In some embodiments, the short time is predetermined (e.g. the converter may draw a new reference sample from memory or sample an oscillating reference signal after a period of time such as about 10 microseconds or about 100 microseconds). In some embodiments, the method will wait until a new sample is received from an external device, in which case the short time is not predetermined by the converter. In the illustrative embodiment depicted in FIG. 7C, the reference signal is a rectified sine, and the converter output is a rectified sine of a different amplitude. The higher the frequency, the “smoother” the output signal may be (e.g., because the output voltage would be adjusted in smaller time-interval steps).
  • In illustrative systems such as system 700, it may be desirable for photovoltaic power devices 702 to be configured to output voltage and current signals shaped similarly to one another, to maintain a system power factor close to one. For example, if the voltage signal output by a PV power device is shaped as a triangular wave, to maintain a power factor equal to one the current output may be a triangular wave proportional to the triangular voltage wave (i.e. of the same frequency, and with no phase shift between the two signals). In some embodiments, the output voltage or current is imposed on the power device outputs, requiring the converter device to configure either the voltage or the current to match the imposed signal. Illustrative embodiments may include, but are not limited to, systems comprising PV power devices configured output in-phase voltage and current waveforms, to obtain a power factor close or equal to unity.
  • Synchronization of PV power devices to output in-phase voltage and current waveforms may be achieved is several ways. In some embodiments, synchronization may be achieved by providing each DC/DC converter with the same reference sample at the same time. For example, communication device 750 of FIG. 7B may transmit a reference sample to an entire string of serially-connected DC/DC converters at the same time, with each DC/DC converter receiving the sample at about the same time and outputting a voltage derived from the same reference sample. In some embodiments, each DC/DC converter may store (e.g. in a memory device) a group of digital samples to be processed in order according to predetermined time intervals, with a trigger received from an external device signaling each converter to restart processing from the first sample.
  • In some embodiments, DC/DC converter 703 may include a bypass circuit (not explicitly shown) disposed between the DC/DC converter 703 output terminals (denoted output+ and output− in FIG. 7C), and include a controller configured to activate the bypass circuit (e.g. to directly connect the output+ terminal to the output− terminal) in response to a failure by the DC/DC converter to synchronize the converter output to other converter outputs, or in response to a different failure in the converter or in PV generator 701. In response to such failures (or bypassing) of a DC/DC converter 703 in a PV power device 702 (e.g. PV power device 702 a of FIG. 7A), other serially-connected PV power devices 702 (e.g. PV power devices 702 b-702 n) may adjust (e.g. raise) their output voltages to compensate for the failed device.
  • Reference is now made to FIG. 7D, which shows a method for synchronizing waveforms according to aspects of the present disclosure. Method 760 may be carried out by one PV power device or a plurality of series or parallel connected PV power devices such as PV power devices 702. Each power device may include a memory device storing a sequence of output voltage reference samples. At step 761, the power device may initialize the counter n to the first reference sample. At step 762, the n-th (at the initialization stage, the first) sample is drawn from memory, and at step 763 the power device adjusts the duty cycle of a high-frequency converter to output a voltage proportional to the n-th sample. At step 764, the method may wait up to a predetermined short period of time (e.g. 10 microseconds or 100 microseconds). If the time elapses, the method may increment n at step 765 and loop back to step 762, where a new sample is drawn from memory. If a trigger is received before the predetermined time elapses, the method may loop back to step 761 and reset n to equal 1.
  • In some embodiments, the trigger may be received from a system control device. For example, a group of serially connected PV power devices 702 may each hold in memory a sequence of 1000 samples corresponding to a single lobe of a rectified sine wave. System power device 706 may be configured to send a trigger via communication device 750 every 10 milliseconds (corresponding to a frequency of 100 Hz), with each PV power device 702 receiving the trigger at about the same time. Upon reception of the trigger, each PV power device may output 0[V], corresponding to the first sample of a rectified sine wave. Each predetermined short period of time at step 764 may be
  • 10 ms 1000 samples = 10
  • microseconds per sample. In some embodiments, each PV power device may be configured to set n=1 after the final sample is processed, even without receiving a trigger. The triggers may be used as a timing synchronization backup method, to ensure that the PV power devices are resynchronized at least once per cycle.
  • Reference is now made to FIG. 8, which shows how illustrative embodiments of conductor splitting techniques may be applied to illustrative systems such as system 700. Photovoltaic string 805 may be part of or the same as other photovoltaic strings disclosed herein, such as photovoltaic string 105 of FIG. 1A. Photovoltaic string 805 may comprise a plurality of photovoltaic generators (e.g. 801 a, 801 b etc.) and a plurality of photovoltaic power devices 802 (e.g. 802 a, 802 b etc.). The string current may be a DC current that is varied (e.g., step-wise adjusted), for example, a current of magnitude 15[A](RMS) shaped as a rectified sine wave with a peak amplitude of 21.2[A]. The string current may be divided into two portions, with a first DC portion being routed through photovoltaic generators 502, and a second AC portion being routed along a second route comprising bypass paths 803 (e.g. 803 a, 803 b etc.), bypassing the PV generators. The two portions may be joined at the bottom of the string by the ground bus, and at the top of the string by the power bus (not shown). By routing a DC portion of the string current through photovoltaic generators, the current flowing through the bypass paths may comprise biased rectified sine waves. The root-mean-square (RMS) of a biased rectified sine current is given by
  • I R MS = A 2 2 - 4 AB π + B 2
  • where A is the amplitude of the rectified sine wave (routed through bypass paths 803) and B is the DC current bias (routed through the PV generators). Similar formulae exist for other current waveforms such as triangular waves. The root-mean-square of an unbiased rectified sine current is given by
  • I R MS = A 2
  • where A is the amplitude of the rectified sine wave. It can be shown that careful selection of the bias B may reduce the RMS of the current flowing through the bypass paths significantly, possibly requiring thinner, cheaper cables compared to those that would be required to carry the entire, unbiased string current.
  • Selection of the bias B may include a calculation to minimize an RMS value of a current. For example, given a mathematical expression of an RMS current, the derivative of the expression may be calculated parametrically, and a B selected to set the derivative to zero, corresponding to a minimum value. For example, given the RMS value of a rectified sine wave current signal
  • I R MS = A 2 2 - 4 AB π + B 2 ,
  • the minimum value of Iris is calculated to be obtained for
  • B = 2 A π .
  • In some embodiments, where the RMS value of a current may be difficult to calculate analytically, simulation may show various RMS values obtained when varying B, and an appropriate B (e.g. to minimize the current RMS) may be selected.
  • In some embodiments, B may be selected as to increase the power output by a photovoltaic generator, and A may be accordingly selected to minimize an RMS current value (e.g. by analytic methods or by simulation).
  • With appropriate selection of conductor sizes for the bypass paths, losses may also be reduced, as explained previously herein. In the illustrative embodiment discussed herein, PV generator 801 a carries a DC current of 10[A], with the remainder of the string current, a rectified sine-wave bypassing PV generator 801 a via bypass path 803 a to PV power device 504 a may be biased by 10[A]. PV generator 801 b carries a DC current of 8[A], with the remainder of the string current, a 8[A]-biased rectified sine-wave bypassing module 502 b via bypass path 803 b. PV power devices 802 may comprise similar components and may utilize similar methods to the components and methods discussed herein with regard to power devices 702. The terminals and internal circuitry of power devices 702 may be configured to provide input, common and output voltages similarly to the configurations discussed herein with regard to power devices 102, 202, 302 a, 302 b, 112, 402, 420, and 502.
  • Reference is now made to FIG. 9A, which shows a photovoltaic power device according to illustrative embodiments. Power device 902 may comprise two DC/DC converters. Different types of DC/DC converters may be used, such as Buck, Boost, Buck+Boost, Flyback and/or Forward converters. In some embodiments, the power device may comprise two different types of converters. For example, one converter may be a Buck converter, and the other converter may be a Buck+Boost converter. The two converters may include, for example, 3 terminals: an input terminal, an output terminal and a common voltage terminal. Each converter's input terminal may be configured to be coupled to a separate set of one or more PV generators. For example, terminal Tin1 may be coupled to the input of one DC/DC converter, and may be configured to be coupled to a first set of one or more PV generators. Terminal Tin2 may be coupled to the input of the other DC/DC converter, and may be configured to be coupled to a second set of one or more PV generators. The converters' common terminals may be coupled to one another and made available via external terminal Tcom. The converters' output terminals may be coupled to one another, with the converters being configured to process the input voltages to allow matching and coupling of output voltages. The coupled output terminals may then be split into three externally available output terminals Tout1, Tout2 and Tout3, with each terminal capable of carrying a portion of a total photovoltaic string current. In some embodiments, power device 902 may comprise more than two converters, may be coupled to more than two sets of photovoltaic generators, and may feature a different number of externally available terminals. In some embodiments, a plurality of photovoltaic power devices may be coupled to one another using conductors of predetermined length at the time of manufacturing, packaged and sold as a single unit, and deployed as a single unit when installing a photovoltaic system.
  • Reference is now made to FIG. 9B, which shows a portion of a photovoltaic string according to illustrative embodiments. Photovoltaic generators 901 a and 901 b may have their negative output terminals coupled to the string ground bus, and have their positive output terminals coupled to the Vin1 and Vin2 terminals of PV power device 902 a. PV power device 902 a's common terminal may also be coupled to the ground bus. Output terminals Vout1 and Vout3 of power device 902 a may be coupled to the negative output terminals of additional PV generators 901 c and 901 d, respectively. Power device 902 a may be coupled to the next power device in the string, 902 b, by coupling output terminal Vout2 of device 902 a to the common terminal of device 902 b. Additional PV generators and power devices may be connected similar to the manner described herein to form a photovoltaic string. The three output terminals of the final power device in the string may be coupled to a power bus (not shown). Using the cabling scheme described herein allows the string current to be split along three paths, potentially reducing system losses and allowing cheaper conductors to be used for some of the conduction paths. The portion of the photovoltaic string illustrated in FIG. 9B may be included in photovoltaic installation 100 in place of string 105.
  • Reference is now made to FIG. 10A, which shows PV power device 1002 a comprising circuitry 140 a. PV power device may be the same as or similar to previously described photovoltaic power devices according to various illustrative embodiments (e.g., PV power device 102 of FIGS. 1A-1D, PV power device 402 of FIG. 4A-4B, PV power device 502 of FIG. 5, etc.). Circuitry 140 a may be similar to or the same as circuitry of FIG. 3A. FIG. 10A depicts the current flowing in the branches of circuitry 140 a when switch Q2 is OFF and Q1 is ON. Current Icomm1 flows into the circuitry from the common terminal and current Ip flows into the circuitry from the Vin terminal. Current IL flows through switch Q1 and inductor L, and the current Io is split into two portions, Io1 and Io2, which flow through the two Vout terminals, respectively. The currents Icin and Icout flow through the capacitors Cin and Cout, respectively. According to the denoted capacitor voltage polarities, Cin is discharging, and Cout is charging. The voltage drop across inductor L is about (i.e. assuming negligible voltage drop over switch Q1) Vout-Vin, which in this illustrative embodiment will be negative (since the circuitry comprises a buck converter), leading to a reduction in the current flowing through inductor L. According to Kirchoff's Current Law (KCL), the following relationships hold:

  • Icin=Icomm1+Icout

  • IL=Ip+Icin

  • Icout=IL−Io

  • Io=Io1+Io2.
  • Current Io1 flows through a PV generator 101 and into PV power device 1002 b comprising circuitry 140 b, which may be similar to or the same as circuitry 140 a. If no current leaks out of PV generator 101, then Ip2=Io1. Similarly, Io2=Icomm2, i.e. one of the output current portions of circuitry 140 a becomes input current at the common terminal of PV power device circuitry 140 b.
  • Reference is now made to FIG. 10B, which shows circuitry 140 a when switch Q1 is OFF and switch Q2 is ON. According to the denoted capacitor voltage polarities, Cin is charging, and Cout is discharging. The voltage drop across inductor L is Vout, which is a positive quantity, leading to an increase in the current flowing through inductor L. The increase in inductor current when Q2 is ON compensates for the decrease in inductor current when Q2 is OFF, and the DC current flowing through inductor L is about constant under constant operating conditions (e.g. no change in the solar irradiance, the performance of the PV generators or in the load connected to the photovoltaic system).
  • Reference is now made to FIG. 10C, which shows a DC-equivalent circuit of circuitry 140 a according to the illustrative embodiments of FIGS. 10A and 10B. The inductor L has been replaced with a short-circuit, and the capacitors Cin and Cout have been replaced by open circuits, in accordance with common practice when obtaining equivalent DC-models of electrical circuits. Under the operating condition where Q1 and Q2 are switched in opposing states (e.g., Q2 is off when Q1 is on, and Q2 is off when Q1 is on), D denotes the duty cycle of switch Q1, i.e. the relative portion of each switching cycle in which Q1 is ON (e.g. D=0.2 corresponds to Q1 being ON %20 of the time, and Q2 being on %80 of the time), then the DC current Io can be expressed as Io=D·lp+(1−D)·Icomm1.
  • Reference is now made to FIG. 10D, which shows a DC-equivalent circuit of serially-connected circuitry 140 a and 140 b. Output current Io_a1 of circuitry 140 a is coupled (e.g. connected) to PV generator 101, with PV generator outputting current Ip2 to the Vin terminal of circuitry 140 b. If little or no current leaks out of PV generator 101, then Io_a1≈Ip2. Similarly, Io_a2=Icomm2. Ammeters A1, A2, A3 and A4 may measure the DC components of currents Io_a, Io_a2, Io_b and Io_b2, respectively. Currents Io_a1 and Io_b1 may be readily computed by the results as Io_b1=Io_b−Io_b2, and Io_a1=Io_a−Io_a2. Ammeters A1 and A2 may be part of a power device (e.g. power device 402 of FIG. 4A) and may be coupled to a control device and to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A, where circuitry 140 a may be part of power converter 440). Similarly, ammeters A3 and A4 may be part of a different power device (e.g. a second power device 402 of FIG. 4A) coupled to a control device and may be to a communication device (e.g. control device 470 and communication device 450 of FIG. 4A, where circuitry 140 b may be part of power converter 440).
  • Still referring to DC-analysis of the circuitry of FIG. 10D, the absence of electrical storage devices (and assuming no current leakage) leads to the equations Ip1+Icomm1=Io_a=Io_a1+Io_a2=Ip2+Icomm2=Io_b=Io_b1+Io_b2. Switch Q4 is serially connected to ammeter A2. Similarly, switch Q3 is serially connected to PV generator 101, which carries current Io_a1. As mentioned above, Io_a1 is calculated as Io_a1=Io_a−Io_a2, with Io_a and Io_a2 directly measured by ammeters A1 and A2, respectively. In some embodiments, Io_a1 may be directly measured, along with Io_a and/or Io_a2. If Io_a1 and one of either Io_a or Io_a2 are directly measured, then the unmeasured current may be calculated using the two measured currents.
  • Still referring to FIG. 10D, varying the duty cycles of switches Q3 and Q4 may affect the DC current measurements of ammeters A1 and A2. As a numerical example, if Io_b=Io_a=15[A], and a duty cycle of D=0.5 is selected for the operation of switch Q4, then the equation 15 A=Io _ b=0.5·Icomm2+0.5·Ip2 will hold. If the duty cycle is changed from 0.5 to 0.2, then the new equation will be 15 A=Io _ b=0.2·I′comm2+0.8·I′p2. Therefore (unless, coincidentally, Icomm2=Ip2, but that condition can be easily avoided by selecting a duty cycle for switch Q1 which creates an inequality), I′comm2≠Icomm2 and I′p2≠Ip2 will hold, and varying the duty cycles of switches Q3 and Q4 of circuitry 140 b may cause the DC current readings of ammeters A1 and A2 of circuitry 140 a to change.
  • Reference is now made to FIG. 10E, which illustrates an apparatus for detecting alternating-current components in the current flowing through system conductors according to illustrative embodiments. Conductor 142 may be a conductor carrying current I_142, which may be similar to or the same as currents IL, Io, Io1 or Io2 of FIG. 10B. Current I_142 may include a direct-current (DC) component which may correspond to a DC current such as Io_a, Io_a1 or Io_a2 of FIG. 10D. Current I_142 may further include an alternating-current (AC) component I_rip caused by variations in the current flowing through a power-converter inductor (e.g. inductor L of circuitry 140 a in FIG. 10B). Ammeter A5 may be coupled to conductor 142 and may be configured to measure the AC-current component I_rip of current I_142. According to one illustrative embodiment, ammeter A5 comprises windings wound around conductor 142 and coupled (e.g. connected) to resistor R. According to Faraday's Law of Induction, the voltage measured across resistor R will be proportional to the change in magnetic flux through the windings, which in turn will be proportional to the current flowing through the windings. In some embodiments, a different type of AC-ammeter may be used, such as a hall effect sensor.
  • The current I_rip measured by ammeter A5 may depend on the amplitude, frequency, and duty cycle of the AC-component of the current flowing through conductor 142. For example, if the AC component of current I_142 has a high frequency (e.g. tens or hundreds of kHz, or MHz), ammeter A5 may detect a corresponding high frequency in current I_rip. Similarly, the positive and negative slopes of a triangular current waveform may be calculated by ammeter A5. In some embodiments, ammeter A5 provides current measurements to controller 143, with controller 143 calculating the frequency, slope values and amplitude of the corresponding triangular waveform. Controller 143 may be similar to or the same as control device 270 of FIG. 4A.
  • Reference is now made to FIG. 10F, which illustrates various alternating current signals which may be generated by controlling the switching of switches Q1-Q4 of FIG. 10D. Sig1 is a 20 kHz triangular wave with an amplitude of 1Vp-p, a rising slope of
  • 1 A 3.5 ms 286 [ A sec ]
  • and a falling slope of
  • - 1 A 1.5 ms - 667 [ A sec ] .
  • Sig2 is a 100 kHz triangular wave with an amplitude of 0.2Vp-p, a rising slope of
  • - 0.2 A 0.3 ms - 667 [ A sec ] .
  • and a falling slope of
  • 0.2 A 0.7 ms 286 [ A sec ]
  • It is evident that Sig1 and Sig2 have essentially the same shape and slope values, indicating that they are generated by switches switching at similar duty cycles. However, Sig2 is of a frequency larger by a factor of five than the frequency of Sig1, and the ripple amplitude is correspondingly smaller by a factor of five. Sig1 may represent a current measured by AC ammeter A2 when operating the circuit of FIG. 10B, switching switch Q3 at a frequency of 20 kHz and a duty cycle of 0.7. When the frequency of Q3 is increased to 100 kHz, the current measured by ammeter A2 corresponds to Sig 2. If the switching frequency of Q3 is maintained at 20 kHz, but the duty cycle is changed from 0.7 to 0.3, ammeter A2 measures a current corresponding to Sig3, which has a positive slope of
  • 667 [ A sec ]
  • and a negative slope of
  • - 286 [ A sec ] .
  • In various embodiments, either a DC-current ammeter or an AC-current ammeter (e.g. ammeter A2) deployed in a first power device circuitry (e.g. circuitry 140 b) may detect changes in current by changing the switching duty cycle of a switch (e.g. Q3) deployed in a second power device circuitry (e.g. circuitry 140 a).
  • Reference is now made to FIG. 10G, which illustrates PV power device circuitry according to illustrative embodiments. Power line communication (PLC) circuit 144 a may be deployed in circuitry 140 a, between the common terminal and the negative node of output capacitor Cout. PLC circuit 145 a may be deployed in circuitry 140 a, between the Vout terminals and the positive node of output capacitor Cout. PLC circuits 144 b and 145 b may be similarly deployed in PV power device circuitry 140 b. PLC circuits 144 a-b and 145 a-b may be variously implemented. In one embodiment, each PLC circuit comprises a parallel circuit comprising a resistor, an inductor, a capacitor, a current source and a voltmeter. The inductor and capacitor sizes are selected to resonate at a resonance frequency, with the equivalent circuit impedance achieving a maximum value at the resonance frequency. The current source of each PLC circuit injects a high-frequency (e.g. tens or hundreds of KHz) current signal into the PV power device circuitry, with a portion of the current signal reaching the other PLC devices, inducing a high-frequency voltage across the resistor terminals and measured by the voltmeter.
  • Implementation of Power Line Communications (PLC) over a conventional serial string of photovoltaic power devices may be challenging due to the presence of inductors (e.g. inductor L of circuitry 140 a) which inherently suppress high-frequency current signals. This challenge is generally overcome by broadcasting current signals at a high enough amplitude to enable signal detection even after the attenuation caused by inductors. However, point-to-point PLC over serial strings of PV power devices includes the additional challenge of differentiating between current signals generated by different PV power devices. For example, in a string comprising ten serially-connected PV power devices, a current signal broadcast by a first PV power device may be received by the other nine power devices at about the same amplitude, making it difficult to determine the relative order of PV power devices with respect to one another.
  • By coupling an output of a first to PV power device to an input of an adjacent PV power device, the novel cabling method described herein may enable point-to-point PLC between adjacent PV power devices that is unimpeded by inductors. In the illustrative embodiment of FIG. 10G, PLC circuit 145 a of circuitry 140 a is coupled to PLC circuit 144 b of circuitry 140 b with no inductor disposed between them. Because there is no inductor between PLC circuits 145 a and 144 b, PLC circuit 145 a may receive a high-frequency current signal transmitted by PLC circuit 144 b at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string. Similarly, PLC circuit 144 b may receive a high-frequency current signal transmitted by PLC circuit 145 a at a higher amplitude than the signal amplitude received by other PLC circuits included in the serial string. The increased PLC signal amplitude detected by an adjacent PV power device enables each PV power device to determine which device(s) are its “neighbors,” e.g., directly adjacently connected.
  • As mentioned above, in some illustrative embodiments (e.g. the circuitry of FIG. 10D) PV power device circuitry may enable one-way adjacency determination even without specialized PLC circuitry. For example, PV power device circuitry 140 a may determine that it is connected to circuitry 140 b by on knowing the duty cycle which each serially connected PV power device is being operated at and measuring the currents Io_a1 and Io_a2. However, circuitry 140 b might not be able to determine that it is connected to 140 a, rather, it may determine that it is connected to the next PV power device in the string (e.g. 140 c, not explicitly depicted). By adding PLC circuitry (e.g. as depicted in FIG. 10G), the adjacency determination may be two-way.
  • Various aspects include mapping the location of power devices in photovoltaic installations, as well as various methods and apparatuses for carrying out localization algorithms. The circuitry disclosed in FIGS. 10A-10G may enable certain PV power devices to determine which other PV power devices are directly connected to them if they are provided with information regarding the operating state of neighboring PV power devices. Aggregation of the determinations made by each PV power device in a serial string of PV power devices may enable a full map to be generated, the map including location information for each PV power device.
  • Reference is now made to FIG. 11A, which depicts an illustrative method for determining the order of serially coupled PV power devices comprising a photovoltaic string. Method 1100 may be applied to photovoltaic strings comprising PV power devices and circuitry according to illustrative embodiments (e.g. string 105 of FIG. 1A, which may comprise PV power devices 102 having circuitry similar to or the same as circuitry 140 a of FIGS. 10A-10D, 10G). Method 1100 may be carried out by a control device in communication with PV power devices. For example, the method may be carried out by system power device 106 of FIG. 1A, system power device 606 of FIG. 6, system power device 1006 of FIG. 11B, or system power device 706 of FIGS. 7A-7B, with control and communication devices (e.g. devices comprised by system power device 110 of FIG. 1A, or controller 720 and communication device 750 of FIG. 7B) carrying out the method steps. In an alternative embodiment, a PV power device (e.g. PV power device 402 or 420 of FIGS. 4a-4c ) may operate in a “master mode” and carry out method 1100 with regard to the other PV power devices comprised by the PV string.
  • At step 1101, the method is initialized The control device carrying out method may discover PV power devices in a photovoltaic string, e.g. by receiving unique ID numbers of the PV power devices comprises by string. As an illustrative example, each PV power device may transmit a telemetry (e.g. by a wireless transmitter, or by power line communications) to the system power device, the telemetry including the PV power device's unique ID. The system power device may store the PV power devices' ID numbers to memory.
  • In some embodiments, the control device carrying out the method may have a list of PV power devices comprised in the PV string. For example, the control device may have PV power device identification numbers stored to memory. The method may identify an order in which the PV power devices are connected, with all serially coupled PV power devices initially unordered (i.e., there is no available information regarding the sequential order in which PV power devices are arranged. For example, for every pair of a first PV power device and a second PV power device in a serial PV string, it might not be known if the first PV power device is coupled closer to a ground bus than the second PV power device, or if the second PV power device is coupled closer to the ground bus than the first PV power device). At step 1102, a device (e.g., 706) may select one of the PV power devices as a selected power device which has not yet been ordered (i.e. its sequential order in relation to a different PV power device has not been determined). The first time step 1102 is reached, all PV power devices in the string may be candidates for selection as the selected power device. In subsequent iterations of a portion of the method, step 1102 may select a selected power device from a shrinking pool of power devices, since at each iteration, a selected power device may be classified as “ordered” and might not be a candidate for selection at the next iteration.
  • At step 1103, the device performing the method may command the selected power device to change an operational parameter. For example, the selected power device may comprise switches (e.g., the selected power device may comprise circuitry such as circuitry 140 b of FIG. 10D, including switches Q3 and Q4), and at step 1103, the selected power device may be commanded to change a duty cycle or frequency of a switching signal. The command to change an operational parameter may be issued by a system power device, and the transmitted command may include an ID number of the selected power device. In some embodiments, the command is received by some or all of the PV power devices, but may be ignored by all PV power devices not having the ID number indicated by the command (i.e. all PV power devices which are not the selected power device).
  • In illustrative PV systems, PV power devices comprising a PV string may periodically transmit reports and/or telemetries to system power devices. For example, with reference to FIG. 4A, communication device 250 may periodically transmit measurements (e.g. current, voltage, temperature and/or irradiance measurements) taken by sensor/sensor interfaces 280 to a system power device. At step 1104, the system power device carrying out method 1100 may wait to receive measurements from some or all of the PV power devices comprising the PV string. One or more of the PV power devices may report measurements which indicate that they are adjacent to the selected power device.
  • As an illustrative example, the selected power device may comprise circuitry 140 b of FIG. 10D. Prior to step 1103, switch Q3 may be switched at a duty cycle of 0.7, and the power device comprising circuitry 140 a may periodically report (e.g. to a system power device) the DC current measured by ammeters A1 and A2. As explained previously, the DC current measured by ammeter A2 may reflect the duty cycle of switch Q3. At step 1103, the selected power device may be commanded by a system power device to change the duty cycle of switch Q3 from 0.7 to 0.3. The change in duty cycle may be reflected by measurements taken by ammeter A2, and at step 1104, the new measurements may be received by a system power device from the power devices.
  • At step 1105, the system power device may compare measurements received from PV power devices to previously received measurements, and may detect the change in measurements received from circuitry 140 b. In response to detecting the change in measurements received from circuitry 140 b, the method may determine that circuitry 140 b is adjacent to the selected power device, determine that circuitry 140 b is comprised by a second, reporting power device adjacent to the selected power device, and uniquely identify the reporting power device (e.g. identified by its associated unique ID number) as being adjacent to the selected power device (e.g., as identified by its associated unique ID number).
  • At step 1106, the system power device carrying out method 1100 method may consider the selected power device as “ordered” and remove it from the pool of unordered devices. The method may save to memory an indication that the selected power device is adjacent to the reporting power device. As the method iterates through steps 1102-1107, the method may create a table mapping selected PV power devices to their “neighbors”, i.e. one or more adjacent PV power devices.
  • At step 1107, if unordered devices remain, the method may loop back to step 1102. If no unordered devices remain, the method may proceed to step 1108, and aggregate the results stored when iterating over steps 1102-1107. The results stored by the time step 1108 is reached may enable the method to identify the sequence in which the PV power devices are wired in the string.
  • Reference is now made to FIG. 11B, which illustrates, by way of example, a result of running method 1100 on an illustrative PV string. In this illustrative example, PV string 1115 comprises four PV power devices: 1002 a, 1002 b, 1002 c and 1002 d, each comprising circuitry similar to or the same as circuitry 140 a of FIGS. 10A-10D or of FIG. 10G. At the outset of the method, the order of the power devices is unknown (i.e. the method does not know which (i.e. first) PV power device is coupled to the ground bus, which (i.e. second) PV power device is coupled to the first PV power device, and so on. At the method initialization, table 1110 is empty, and table 111 indicates that the pool of unordered power devices comprises all of the PV power devices in string 1115. The first time the method reaches step 1102, the method selects (e.g. at random, the lowest ID number, etc.) power device 1002 b as the selected power device. At step 1102, PV power device 1002 b may be commanded to change an operating parameter (e.g. the duty cycle of switching elements in PV power device 1002 b). At step 1104 PV power devices 1002 a-d report measurements taken by sensors/sensor interfaces such as ammeters. At step 1105, the method may determine that only the measurements taken by PV power device 1002 a have changed substantially, and may determine that PV power device 1002 a is adjacent to PV power device 1002 b. At step 1106, Line #1 of table 1110 may be saved to memory, indicating that PV power devices 1002 a, 1002 b are adjacent to one another, and PV power device 1002 b may be removed from the pool of unordered devices (as indicated by table 1111, in the line corresponding to the end of the first iteration).
  • At step 1107, the method may determine that the pool of unordered devices is not empty, loop back to step 1102, and select PV power device 1002 a as the selected power device. In some embodiments, the selection may be random. In some embodiments, the reporting power device of the previous iteration may become the selected power device (provided it is still in the pool of unordered devices). At the next time step 1105 is reached, the method may determine that no PV power devices have reported changed measurements, and may determine that PV power device 1002 a is coupled to the ground bus. In this iteration, no reporting power device may be labeled, and Line #2 of table 1110 may be generated indicating the PV power device 1002 a has no neighbor at this iteration. PV power device 1002 a may be removed from the pool of unordered devices at step 1106.
  • After iterating through steps 1102-1107 an additional two times, step 1108 may be reached, with table 1110 having four line indicating the results of the four iterations through steps 1102-1107. At step 1108, the method may determine that PV power device 1002 a is coupled to the ground bus, as indicated by Line #2 of table 1110. The method may determine that PV power device 1002 b is coupled to PV power device 1002 a (as indicated by Line #1 of table 1110), PV power device 1002 c is coupled to PV power device 1002 b (as indicated by Line #3 of table 1110), and that PV power device 1002 d is coupled to PV power device 1002 c (as indicated by Line #4 of table 1110). The method may therefore output the determination that the order of the power devices is 1002 a-1002 b-1002 c-1002 d, as shown in the figure.
  • Point-to-point PLC between adjacent power devices may be used for a variety of communication and control applications in addition to mapping photovoltaic installations. For example, in some photovoltaic installations, photovoltaic power devices may measure operational parameters such as input or output voltage, input or output current, input or output power, and the temperature and/or solar irradiance in the vicinity of the power device. These operational parameters may be periodically transmitted via PLC (e.g., by a sequence of point-to-point PLC transmissions along the string of power devices) to a data collection point, such as a memory or control device (e.g. a dedicated data collection or control device, or a device included in a system device such as a power combiner box or DC-to-AC inverter). In PLC that does not use the point-to-point configuration as disclosed herein, a transmitted data packet may be transmitted at a high power amplitude, to enable the transmitted signal to be received at the data collection point at a power amplitude sufficient to be detected by PLC receiving circuitry. For example, a last power device may be located 100 meters away from the data collection point, with 15 other power devices connected in between the last power device and the data collection point. Without using point-to-point PLC, the last power device would need to transmit a high-power signal to be received 100 m away after traversing 15 other power devices. By taking advantage of circuitry deployed in the illustrative embodiment of FIG. 10G, each respective first power device may transmit a signal to be received at the second power device immediately adjacent to the first power device, each power device repeating all messages received from other power devices, reducing the required signal power amplitude. The power device connected to the data collection point may be physically closest to the data collection point, and may transmit data at an amplitude significantly lower than what would otherwise be required by each other power device, still enabling reception of the message by the device collecting data. In some embodiments, the power device connected to the data collection point may transmit data at an amplitude sufficient to traverse several PV power devices. One possible advantage of transmitting data at an increased amplitude may be enablement of continuous communication in case an intermediate device fails. Referring again to FIG. 11B, PV power device 1002 a may communicate with PV power device 1002 b using Point-to-Point Power Line Communications (PTPPLC) over bypass path 116 b. In some embodiments (e.g. each PV power device 1002 has circuitry similar to or the same as circuitry 140 a of FIG. 10A), communication may be uni-directional (e.g. power device 1002 b is able to send data to power device 1002 a, while power device 1002 a might not be able to send data to power device 1002 b), and in some embodiments (e.g. each PV power device 1002 has circuitry similar to or the same as circuitry 140 a of FIG. 10G), communication may be bidirectional (for example, power devices 1003 a and 1003 b may be able to send data to each other). System power device 1006 (e.g. DC-to-AC inverter or combiner box) may be similar to system power device 110 of FIG. 1A, and may be coupled between the ground bus and power bus, and may comprise a data-collection device (e.g. a memory device, a controller, etc.—not explicitly depicted). System power device 1006 may further comprise PLC device 1007 coupled to carry out power line communications over the power bus and/or the ground bus. Similarly to other illustrative embodiments disclosed herein, additional PV strings similar to PV string 1115 (not explicitly depicted) may be coupled in parallel with PV string 1115, and coupled to system power device 1006. In some embodiments enabling one-way PLC, PV power device 1002 d may transmit data to PV power device 1002 c, PV power device 1002 c may transmit data to PV power device 1002 b, PV power device 1002 b may transmit data to PV power device 1002 a, and PV power device 1002 a may transmit data to system power device 1006. In some embodiments enabling two-way PLC, PV power device 1002 d may transmit data to system power device 1006 and PV power device 1002 c, PV power device 1002 c may transmit data to PV power devices 1003 d and 1003 b, and so on.
  • System power device 1006 may be configured to transmit commands and/or sent data to PV power devices 1002 a-d. For example, step 1103 of method 1100 may comprise system power device 1006 transmitting a PLC signal over the power bus indicating an ID number of a selected PV power device.
  • In some embodiments, a message sent by a PV power device to an adjacent PV power device may be transmitted at a power amplitude significantly lower than a message which may be sent to system power device (e.g. 1006). For example, communication between PV power devices 1002 b and 1002 c may utilize much lower power than communication between PV power device 1002 b and system power device 1006, due to the much shorter distance and lower number of electrical circuits in between the two communicating devices. In case a PV power device (e.g. 1002 b) fails, two PV power devices adjacent to the failed PV power device (e.g. 1002 a and 1002 c) may communicate via PLC, with PV power device 1002 b providing a bypass path for PLC signals. PLC between PV power devices 1002 a and 1002 c may be carried out at a reduced amplitude compared to the amplitude that would be required for PV power device 1002 c to transmit directly to system power device 1006. Significant power savings may be realized by not attempting to transmit data to system power device 1006 by PV power devices not physically close to system power device 1006. Furthermore, the size and cost of associated circuitry for transmitting PLC messages may be significantly reduced by limiting the transmitted data to a lower power amplitude.
  • Reference is now made to FIG. 11C, which illustrates a method for point-to-point power line communications (PTPPLC) according to illustrative embodiments. Method 1130 may be used when, for example, a first PV power device (e.g. PV power device 1002 a of FIG. 11B) may send a message (e.g. comprising telemetry data or other operational data) to a system power device (e.g. system power device 1006.) At step 1131, the first PV power device (e.g., 1002 a) generates the message to be sent. At step 1132, the first PV power device transmits the message using PTPPLC to a second, adjacent PV power device (e.g., 1002 b). For example, the message may be encoded as a high-frequency (e.g. tens or hundreds of kHz) signal transmitted over a first bypass path between the PV power devices (e.g., 116 b of FIG. 11B). In some embodiments, the first PV power device may transmit a message to the second PV power device through a PV generator, e.g. the PV generator 101 coupled between PV power devices 1002 a and 1002 b). At step 1133, the second PV power device (e.g., 1002 b) may receive the message transmitted over the bypass path, and may re-transmit the message to a third PV power device adjacent to the re-transmitting PV power device (e.g., 1002 c) over a second bypass path (e.g., 116 c). At step 1134, the third PV power device (e.g. 1002 c) may receive the message re-transmitted over the second bypass path (e.g., 116 c), and may re-transmit for a second time the message to a third PV power device (e.g. 1002 d) over a third bypass path (e.g. 116 d). Each PV power device in a PV string may receive a message from a first adjacent PV power device, and re-transmit the message to a second adjacent PV power device, until the message is received by a final PV power device adjacent or in close physical proximity to a system power device (e.g. 1006). At step 1134, the final PV power device (e.g. 1002 d) may receive the message transmitted over a final bypass path, and may forward the message to a system power device (e.g. 1006) over the power bus. In some embodiments, the communication connections may be reversed, i.e. the first PV power device (e.g. 1002 a) may communicate directly with system power device 1006 over the ground bus, with messages generated by the final PV power device (e.g. 1002 d) passing through intermittent PV power devices (e.g. 1002 c, 1002 b and 1002 a). In some embodiments, the first and final PV power devices (e.g. 1002 a and 1002 d) may communicate directly with the system power device (e.g. 1006) over either the ground bus or the power bus, with messages generated by intermediate PV power devices (e.g. 1002 b and 1002 c) passing through the first or final PV power devices (e.g. 1002 a or 1002 d) for transmission to system power device (e.g. 1006).
  • Illustrative embodiments may include a system comprising a plurality of DC/DC converters, each DC/DC converter receiving power from a photovoltaic generator, the DC/DC converters coupled in series or in parallel between a ground bus and a power bus, the DC/DC converters configured to output a time-varying DC voltage. A system power device comprising a group of switches is coupled between the ground bus and the power bus, and is configured to receive the time-varying DC voltage and output an AC voltage. In some embodiments, the system power device further comprises a filter, a controller and/or a communication device. In some embodiments, the controller is configured to switch the switches featured by system power device. In some embodiments, the communication device is configured to communicate with communication devices featured by the PV power devices. In some embodiments, the system power device further comprises a second group of switches, the controller configured to switch the second group of switches in response to a failure of one or more of the first group of switches. In some embodiments, the system includes a second system power device, the second system power device operable in response to a failure of the first system power device. In some embodiments, the DC/DC converters are configured to output synchronized time-varying DC voltage and current signals.
  • In the illustrative embodiments disclosed herein, photovoltaic generators are used to exemplify power sources which may make use of the novel features disclosed. In some embodiments, the power sources may include batteries, supercapacitors, wind or hydroelectric turbines, fuel cells or other energy sources in addition to or instead of photovoltaic generators. The power sources may be alternating current (AC) power sources or direct current (DC) power sources. In some embodiments, batteries may be both used as a power source and used as an electrical load, and charged by the system power sources. The current routing methods and other techniques disclosed herein may be applied to alternative power sources such as those listed above, and the nearly exclusive mentioning of photovoltaic generators as power sources is not intended to be limiting in this respect.
  • It is noted that various connections are set forth between elements herein. These connections are described in general and, unless specified otherwise, may be direct or indirect; this specification is not intended to be limiting in this respect. Further, elements of one embodiment may be combined with elements from other embodiments in appropriate combinations or subcombinations. For example, the power device and current routing elements of one embodiment may be interchanged with the power device and current routing elements of other embodiments. For example, PV generator 101 from FIG. 1A may be interchangeable with PV generator 501 from FIG. 5 and/or generator 101 of FIGS. 10A-10D and 10G, and string 105 from FIGS. 1A, 1C and 1D may be interchangeable with string 205 of FIG. 2A and/or string 805 of FIG. 8.

Claims (20)

What is claimed is:
1. A system comprising:
a plurality of power devices arranged in a sequence, wherein each power device comprises an output, an input, and a common; and
a plurality of first current paths, wherein, between each adjacent pair of the power devices in the sequence, one of the plurality of first current paths connects the output of a first power device of the adjacent pair to the common of a second power device of the adjacent pair, and wherein the output of the first power device of the adjacent pair is configured to be connected by one of a plurality of second current paths through one of a plurality of power sources to the input of the second power device of the adjacent pair.
2. The system of claim 1, further comprising the plurality of power sources and the plurality of second current paths, wherein the output of the first power device of the adjacent pair is connected by one of the plurality of second current paths through one of the plurality of power sources to the input of the second power device of the adjacent pair.
3. The system of claim 1, wherein each of the plurality of power devices comprises a second input, wherein the output of the first power device of the adjacent pair is configured to be connected by one of a plurality of third current paths through a further one of a plurality of power sources to the second input of the second power device of the adjacent pair.
4. The system of claim 3, further comprising the plurality of power sources, the plurality of second current paths, and the plurality of third current paths, wherein the output of the first power device of the adjacent pair is connected by one of the plurality of second current paths through one of the plurality of power sources to the input of the second power device of the adjacent pair, and wherein the output of the first power device of the adjacent pair is connected by one of a plurality of third current paths through the further one of a plurality of power sources to the second input of the second power device of the adjacent pair.
5. The system of claim 1, wherein the first current path is configured to carry direct current (DC).
6. The system of claim 1, wherein the first current path is configured to carry alternating current (AC).
7. The system of claim 1, wherein an ending power device of the power devices is arranged at an end of the sequence, is the second power device in only one of the adjacent pairs, and has an output connected to a ground bus or a power bus.
8. The system of claim 1, wherein a beginning power device of the power devices is arranged at a beginning of the sequence, is the first power device in only one of the adjacent pairs, and is connected to a power bus or a ground bus through separate third and fourth paths, the third path connecting a common of the beginning power device to the power bus or ground bus and the fourth path connecting an input of the beginning power device through a further one of the power sources to the power bus or the ground bus.
9. The system of claim 1, wherein the power sources comprise photovoltaic generators.
10. The system of claim 1, wherein each of the power devices is integrated with one of the power sources to form one of a plurality of integrated apparatuses.
11. A method comprising:
arranging a plurality of power devices in a sequence; and
dividing, for each adjacent pair of power devices in the sequence, a current flowing from an output of a first power device of the adjacent pair into at least two portions flowing along at least two paths to a second power device of the adjacent pair, wherein one or more of the at least two portions flows through a respective one or more power sources of a plurality of power sources, and one of the at least two portions bypasses the one or more power sources of the plurality of power sources.
12. The method of claim 11, comprising combining, in the second power device of each adjacent pair, the current flowing in the at least two portions from the output of the first power device.
13. The method of claim 11, comprising operating the first and the second power devices to perform one or more of: direct current to direct current (DC/DC) power conversion, direct current to alternating current (DC/AC) power conversion, or alternating current to alternating current (AC/AC) power conversion.
14. The method of claim 11, comprising embedding the first and the second power devices in first and second power sources of the plurality of power sources.
15. A power device comprising:
an input terminal, a common terminal, and a plurality of output terminals;
a control circuit configured to adjust input power received at the input terminal; and
a conversion circuit configured to convert the input power to output power on the plurality of output terminals each configured to carry a different portion of current of the output power at a common voltage referenced to the common terminal.
16. The power device of claim 15, wherein the power device comprises an electronic circuit embedded in a power source.
17. The power device of claim 15, wherein the power device comprises one or more of: a direct current to direct current (DC/DC) converter, a direct current to alternating current (DC/AC) converter, and an alternating current to alternating current (AC/AC) converter.
18. The power device of claim 17, wherein the power device comprises a communication device configured to communicate with at least one other power device comprising a communication device.
19. The power device of claim 18, wherein the communication device is configured to transmit a signal over an electrical conductor.
20. The power device of claim 17, wherein the power device comprises a current sensor, and is configured to compare at least two current measurements taken at two or more different times, and is configured to determine, an identifying characteristic of an adjacent power device.
US15/593,761 2016-04-05 2017-05-12 Photovoltaic power device and wiring Active 2039-09-14 US11201476B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/593,761 US11201476B2 (en) 2016-04-05 2017-05-12 Photovoltaic power device and wiring
US17/141,709 US20210167723A1 (en) 2016-04-05 2021-01-05 Chain of Power Devices
US18/356,460 US20240030865A1 (en) 2016-04-05 2023-07-21 Chain of Power Devices

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662318303P 2016-04-05 2016-04-05
US201662341147P 2016-05-25 2016-05-25
US201662395461P 2016-09-16 2016-09-16
US15/478,526 US11177663B2 (en) 2016-04-05 2017-04-04 Chain of power devices
US15/593,761 US11201476B2 (en) 2016-04-05 2017-05-12 Photovoltaic power device and wiring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US15/478,526 Continuation-In-Part US11177663B2 (en) 2016-04-05 2017-04-04 Chain of power devices

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/478,526 Continuation-In-Part US11177663B2 (en) 2016-04-05 2017-04-04 Chain of power devices
US17/141,709 Continuation-In-Part US20210167723A1 (en) 2016-04-05 2021-01-05 Chain of Power Devices

Publications (3)

Publication Number Publication Date
US20170346295A1 US20170346295A1 (en) 2017-11-30
US20210288503A9 true US20210288503A9 (en) 2021-09-16
US11201476B2 US11201476B2 (en) 2021-12-14

Family

ID=58672301

Family Applications (4)

Application Number Title Priority Date Filing Date
US15/478,526 Active 2040-01-08 US11177663B2 (en) 2016-04-05 2017-04-04 Chain of power devices
US15/593,761 Active 2039-09-14 US11201476B2 (en) 2016-04-05 2017-05-12 Photovoltaic power device and wiring
US17/500,102 Active 2037-05-23 US11870250B2 (en) 2016-04-05 2021-10-13 Chain of power devices
US18/511,655 Pending US20240097440A1 (en) 2016-04-05 2023-11-16 Chain of Power Devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US15/478,526 Active 2040-01-08 US11177663B2 (en) 2016-04-05 2017-04-04 Chain of power devices

Family Applications After (2)

Application Number Title Priority Date Filing Date
US17/500,102 Active 2037-05-23 US11870250B2 (en) 2016-04-05 2021-10-13 Chain of power devices
US18/511,655 Pending US20240097440A1 (en) 2016-04-05 2023-11-16 Chain of Power Devices

Country Status (3)

Country Link
US (4) US11177663B2 (en)
EP (2) EP3687020A1 (en)
CN (2) CN107276526A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
CN106992550B (en) * 2017-05-26 2021-04-13 阳光电源股份有限公司 Control device and collection flow box
CN107248843B (en) * 2017-05-31 2019-04-05 华为技术有限公司 A kind of control method of photovoltaic power generation, control equipment and photovoltaic generating system
US11233782B2 (en) 2017-10-04 2022-01-25 Resilience Magnum IP, LLC Single node network connectivity for structure automation functionality
EP3467993A1 (en) * 2017-10-07 2019-04-10 Illinois Tool Works Inc. Battery driven ground power unit with improved construction, durability, durability and maintenance
US11121419B2 (en) 2017-10-11 2021-09-14 Resilience Magnum IP, LLC Battery heat management
US10707804B2 (en) * 2017-11-30 2020-07-07 Resilience Magnum IP, LLC Smart shingles
US10530270B2 (en) 2017-12-01 2020-01-07 Qatar University Modular isolated half-bridge based capacitor-tapped multi-module converter with inherent DC fault segregation capability
US11664633B2 (en) * 2017-12-06 2023-05-30 Zeon Corporation Power wiring device
CN207559675U (en) * 2017-12-21 2018-06-29 米亚索能光伏科技有限公司 A kind of detachable solar charging device
KR101911334B1 (en) * 2018-02-08 2018-12-28 (주)성익에너지산업 Monitoring system for solar modules
SE542735C2 (en) * 2018-09-20 2020-06-30 Cc90 Composite Ab Solar panel mounting system
WO2020183700A1 (en) * 2019-03-14 2020-09-17 オムロン株式会社 Control device and solar power generation system
CN110854919A (en) * 2019-12-13 2020-02-28 浙江佳明天和缘光伏科技有限公司 Direct current type PLC photovoltaic fast turn-off device
CN113410825A (en) * 2020-07-08 2021-09-17 力玛科技股份有限公司 Solar direct-current feeder disaster prevention system
GB2602615A (en) * 2020-08-16 2022-07-13 Roslaniec Damian Smart covering system
WO2022163884A1 (en) * 2021-02-01 2022-08-04 롯데에너지 주식회사 Microinverter for photovoltaic power generation, and photovoltaic power generation system and microinverter-integrated solar cell panel array for photovoltaic power generation using same

Family Cites Families (1605)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE486145C (en) 1927-11-26 1929-11-27 Rheinische Metallw & Maschf Combination of a calculator for all four types of invoices with a card punching machine
US2367925A (en) 1942-05-15 1945-01-23 Westinghouse Electric & Mfg Co Power line synchronizing and control system
GB612859A (en) 1943-05-25 1948-11-18 Standard Telephones Cables Ltd Improvements in or relating to moulding articles of glass or other mouldable material
US2586804A (en) 1945-10-16 1952-02-26 John M Fluke System for measuring electrical quantities
US2852721A (en) 1954-06-16 1958-09-16 Dortmund Harder Huttenunion Ag Glow discharge circuits
US2758219A (en) 1955-05-25 1956-08-07 Frank N Miller Single-control variable phase-shift network
US2958171A (en) 1956-07-20 1960-11-01 Deckers Joseph Apparatus for the simultaneous manufacture and filling of packages
DE1161639B (en) 1963-01-18 1964-01-23 Licentia Gmbh Protection arrangement for inverter
US3369210A (en) 1965-07-28 1968-02-13 Electro Nite Electrical connector
US3392326A (en) 1966-09-28 1968-07-09 Gen Electric Coil winding buffer conductors having impedance means
US3496029A (en) 1966-10-12 1970-02-17 Ion Physics Corp Process of doping semiconductor with analyzing magnet
US3528046A (en) 1966-11-22 1970-09-08 Gen Electric Interlaced disk winding with improved impulse voltage gradient
US3517300A (en) 1968-04-16 1970-06-23 Gen Electric Power converter circuits having a high frequency link
US3643564A (en) 1968-10-28 1972-02-22 Canon Kk Indicator for flashlight photography
US3569784A (en) 1968-11-21 1971-03-09 Atomic Energy Commission Solid state crowbar circuit
US3566143A (en) 1969-03-11 1971-02-23 Nasa Maximum power point tracker
GB1231961A (en) 1969-09-09 1971-05-12
US3696286A (en) 1970-08-06 1972-10-03 North American Rockwell System for detecting and utilizing the maximum available power from solar cells
US3740652A (en) 1971-11-17 1973-06-19 Monsanto Co Signal selector circuit
CH584948A5 (en) 1973-11-16 1977-02-15 Tvi Television Ind Sa
US3958136A (en) 1974-08-09 1976-05-18 Bell Telephone Laboratories, Incorporated Level shifter circuit
US4324225A (en) 1975-07-11 1982-04-13 Trihey John M Solar tracking device
GB1554411A (en) 1975-08-09 1979-10-17 Communications Patents Ltd Control systems
FR2393448A1 (en) 1976-08-18 1978-12-29 Wago Kontakttechnik Gmbh ELECTRICAL CONNECTION OR CONNECTION DEVICE
US4060757A (en) 1976-09-17 1977-11-29 General Electric Co. Inverters having a transformer-coupled commutating circuit
US4101816A (en) 1976-11-03 1978-07-18 Vibra-Metrics, Inc. Switch control system
US4104687A (en) 1976-11-24 1978-08-01 S&C Electric Company Device for detecting unbalanced conditions in a polyphase equipment bank
DE2658456C2 (en) 1976-12-23 1984-02-16 Licentia Patent-Verwaltungs-Gmbh, 6000 Frankfurt Two-part magnet
US4127797A (en) 1977-04-04 1978-11-28 Iota Engineering, Inc. Inverter oscillator with current feedback
US4129788A (en) 1977-04-26 1978-12-12 Dracon Industries High efficiency DC to DC converter
JPS6011545B2 (en) 1977-07-05 1985-03-26 ソニー株式会社 Oscillation transformer for self-excited DC-DC converter
US4161771A (en) 1977-07-25 1979-07-17 Gulton Industries, Inc. Inverter ripple regulator
US4129823A (en) 1977-11-03 1978-12-12 Sensor Technology, Inc. System for determining the current-voltage characteristics of a photovoltaic array
US4146785A (en) 1978-02-13 1979-03-27 Sunpower Systems Corporation Sun-tracking control system for solar collector
DE2810534C2 (en) 1978-03-10 1983-10-20 Siemens AG, 1000 Berlin und 8000 München Ripple control system
GB1571681A (en) 1978-04-25 1980-07-16 Itt Creed Ltd Dc Ac Inverter
US4296461A (en) 1979-01-29 1981-10-20 Duracell International Inc. Battery package with DC to DC converter
US4257087A (en) 1979-04-02 1981-03-17 California Institute Of Technology DC-to-DC switching converter with zero input and output current ripple and integrated magnetics circuits
JPS563421A (en) 1979-06-21 1981-01-14 Canon Inc Signal converting device
JPS5642365A (en) 1979-09-13 1981-04-20 Seiko Epson Corp Semiconductor device
FR2467508A1 (en) 1979-10-10 1981-04-17 Commissariat Energie Atomique DEVICE FOR CONTROLLING, AT MAXIMUM POWER, A PHOTOVOLTAIC CONVERTER
US4375662A (en) 1979-11-26 1983-03-01 Exxon Research And Engineering Co. Method of and apparatus for enabling output power of solar panel to be maximized
US4384321A (en) 1980-04-29 1983-05-17 California Institute Of Technology Unity power factor switching regulator
USRE33057E (en) 1980-06-23 1989-09-12 Brigham Young University High frequency supply system for gas discharge lamps and electronic ballast therefor
US4327318A (en) 1980-10-31 1982-04-27 Exxon Research & Engineering Co. Source shedding regulator
SE426761B (en) 1980-12-09 1983-02-07 Ellemtel Utvecklings Ab Pulse-width modulated voltage converter for converting a DC voltage to a low frequency and preferably sinusoidal AC voltage
US4412142A (en) 1980-12-24 1983-10-25 General Electric Company Integrated circuit incorporating low voltage and high voltage semiconductor devices
US4346341A (en) 1981-03-02 1982-08-24 General Electric Company Method and apparatus for automatic voltage reduction control
US4488136A (en) 1981-05-18 1984-12-11 Westinghouse Electric Corp. Combination transformer with common core portions
US4404472A (en) 1981-12-28 1983-09-13 General Electric Company Maximum power control for a solar array connected to a load
US4453207A (en) 1982-03-31 1984-06-05 Best Energy Systems For Tomorrow, Inc. DC To AC power inverter
US4460232A (en) 1982-05-24 1984-07-17 Amp, Incorporated Junction box for solar modules
DE3236071A1 (en) 1982-07-09 1984-01-12 Siemens AG, 1000 Berlin und 8000 München Device for parallel supply into an AC or three-phase network
US4479175A (en) 1982-08-13 1984-10-23 Honeywell Inc. Phase modulated switchmode power amplifier and waveform generator
US4481654A (en) 1982-09-09 1984-11-06 General Electric Company X-Ray tube bias supply
US4639844A (en) 1982-09-13 1987-01-27 Venus Scientific Inc. Resonant current driven power source for low input voltages
GB2128017B (en) 1982-09-18 1986-05-08 Fuji Electric Co Ltd Solar cell unit
US4470213A (en) 1983-01-14 1984-09-11 Thompson Marion E Load bearing solar powered displays
DE3301648A1 (en) 1983-01-19 1984-07-19 Siemens AG, 1000 Berlin und 8000 München MISFET WITH INPUT AMPLIFIER
US4549254A (en) 1983-02-03 1985-10-22 Chrysler Corporation Buck-boost regulated D.C. to D.C. power supply
CH660543A5 (en) 1983-02-21 1987-04-30 Jaeger Walter METHOD FOR GENERATING AN AC DIRECT CURRENT.
US4452867A (en) 1983-02-28 1984-06-05 Pittway Corporation Storage battery containing voltage reducing means
US4545997A (en) 1983-03-21 1985-10-08 Hershey Foods Corporation Process of manufacturing candy bars containing wafers and wafer bars manufactured thereby
US4526553A (en) 1983-04-11 1985-07-02 Mattel, Inc. Floppy limbed water immersible figure toy
US4554502A (en) 1983-05-06 1985-11-19 Frederick Rohatyn Power factor correction system
JPS6027964A (en) 1983-07-27 1985-02-13 Nec Corp Memory access control circuit
US4580090A (en) 1983-09-16 1986-04-01 Motorola, Inc. Maximum power tracker
JPS6079417A (en) 1983-10-06 1985-05-07 Nishimu Denshi Kogyo Kk Power converter for solar battery
US4604567A (en) 1983-10-11 1986-08-05 Sundstrand Corporation Maximum power transfer system for a solar cell array
US4623753A (en) 1983-10-31 1986-11-18 Amp Incorporated Watertight junction box
US4533986A (en) 1983-10-31 1985-08-06 General Electric Company Compact electrical power supply for signal processing applications
JPS60148172A (en) 1984-01-12 1985-08-05 Seikosha Co Ltd Colored solar cell
JPH0710149B2 (en) 1984-02-20 1995-02-01 日本電装株式会社 Vehicle charge control device
US4644458A (en) 1984-03-19 1987-02-17 Nec Corporation Electric power supply circuit capable of reducing a loss of electric power
US4602322A (en) 1984-04-02 1986-07-22 Hewlett-Packard Company Transistor rectifier
JPS60249832A (en) 1984-05-25 1985-12-10 株式会社東芝 Method of protecting inverter
GB8416153D0 (en) 1984-06-25 1984-08-01 Transtar Ltd Power supply
US4554515A (en) 1984-07-06 1985-11-19 At&T Laboratories CMOS Operational amplifier
JPH0823781B2 (en) 1984-09-06 1996-03-06 株式会社東芝 Solar power system
EP0178757A3 (en) 1984-10-15 1987-10-14 Trw Inc. Solar array regulator
US4649334A (en) 1984-10-18 1987-03-10 Kabushiki Kaisha Toshiba Method of and system for controlling a photovoltaic power system
US4591965A (en) 1984-10-19 1986-05-27 Dickerson Arthur F Inverter for use with solar arrays
US4598330A (en) 1984-10-31 1986-07-01 International Business Machines Corporation High power direct current switching circuit
JPS61173636A (en) 1984-12-18 1986-08-05 三菱電機株式会社 Power source unit
US4637677A (en) 1984-12-18 1987-01-20 Amp Incorporated Electrical connector
US4611090A (en) 1984-12-28 1986-09-09 Standard Oil Company Semirigid photovoltaic module assembly and structural support therefor
CA1256942A (en) 1985-06-20 1989-07-04 Gunther Mieth Circuit arrangement for feeding an electrical load from a solar generator
EP0231211A4 (en) 1985-07-11 1987-09-02 Allan Russell Jones Electronic control circuit.
DE3525630A1 (en) 1985-07-18 1987-01-29 Licentia Gmbh Method for optimum matching of the voltage from a solar generator to a parallel-connected battery
JPH0638696B2 (en) 1985-09-20 1994-05-18 株式会社東芝 Power converter
US4888063A (en) 1985-11-21 1989-12-19 Powell Roger A Variable aperture, variable flux density, aerospace solar collector
US4685040A (en) 1985-12-06 1987-08-04 General Electric Company Integrated circuit for controlling power converter by frequency modulation and pulse width modulation
JP2553327B2 (en) 1985-12-27 1996-11-13 京セラ株式会社 Solar power generator
JPS62154122A (en) 1985-12-27 1987-07-09 Kyocera Corp Charging control system in solar generating device
US4799059A (en) 1986-03-14 1989-01-17 Enscan, Inc. Automatic/remote RF instrument monitoring system
US4783728A (en) 1986-04-29 1988-11-08 Modular Power Corp. Modular power supply with PLL control
US4686617A (en) 1986-06-06 1987-08-11 Rca Corporation Current limited constant frequency dc converter
US4720668A (en) 1986-06-20 1988-01-19 Lee Fred C Zero-voltage switching quasi-resonant converters
US4720667A (en) 1986-06-20 1988-01-19 Lee Fred C Zero-current switching quasi-resonant converters operating in a full-wave mode
US4746879A (en) 1986-08-28 1988-05-24 Ma John Y Digitally temperature compensated voltage-controlled oscillator
US4683529A (en) 1986-11-12 1987-07-28 Zytec Corporation Switching power supply with automatic power factor correction
WO1988004801A1 (en) 1986-12-19 1988-06-30 Stuart Maxwell Watkinson Electrical power transfer apparatus
US4736151A (en) 1986-12-23 1988-04-05 Sundstrand Corporation Bi-directional buck/boost DC/DC converter
US4706181A (en) 1987-02-02 1987-11-10 Unisys Corporation Switching converter with enhanced voltage clamping and energy recovery
FR2612347B1 (en) 1987-03-09 1989-05-26 Merlin Gerin STATIC TRIGGER COMPRISING A HOMOPOLAR CURRENT DETECTION CIRCUIT
US4719553A (en) 1987-05-07 1988-01-12 Unisys Corporation Inrush-current limiter for switching regulator power supply
JPH0746898B2 (en) 1987-05-28 1995-05-17 株式会社東芝 Power converter
US4910518A (en) 1987-07-16 1990-03-20 Samsun Semiconductor and Telecommunications Co., Ltd. Comparator unit for a flash analog-to-digital converter
US4888702A (en) 1987-08-20 1989-12-19 Integrated Power Corporation Photovoltaic system controller
JPS6450554A (en) 1987-08-21 1989-02-27 Nec Corp Manufacture of complementary semiconductor device
DE3729000A1 (en) 1987-08-31 1989-03-09 Rudolf Kiesslinger Universal regulator for maximising the power of photovoltaic electrical power supplies and for high-efficiency DC/DC voltage converters
US4772994A (en) 1987-09-10 1988-09-20 Nishimu Electronics Industries, Co., Ltd. Power source using high-frequency phase control
US5138422A (en) 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip
JPH01144606A (en) 1987-11-30 1989-06-06 Nec Corp Autotransformer
CA1295670C (en) 1987-12-11 1992-02-11 Tooru Kido Dc supply having low and high constant voltages for powering an inverter controller
US4797803A (en) 1987-12-23 1989-01-10 Dci Technology Switching power supply VCO
FR2634293B2 (en) 1988-01-29 1990-10-19 Centre Nat Etd Spatiales SYSTEM FOR REGULATING THE OPERATING POINT OF A DIRECT CURRENT SUPPLY IN A VOLTAGE OR CURRENT GENERATOR CHARACTERISTIC AREA
JP2676789B2 (en) 1988-06-09 1997-11-17 松下電器産業株式会社 AC power supply
US4947312A (en) 1988-04-28 1990-08-07 Matsushita Electric Industrial Co., Ltd. Non-resonance type AC power source apparatus
US4868379A (en) 1988-06-20 1989-09-19 Utility Power Group Photovoltaic array with two-axis power maximization tracking
US4903851A (en) 1988-07-07 1990-02-27 Slough Donovan L Molded plastic stud box support and box
US4873480A (en) 1988-08-03 1989-10-10 Lafferty Donald L Coupling network for improving conversion efficiency of photovoltaic power source
US4994981A (en) 1988-09-30 1991-02-19 Electric Power Research Institute, Inc. Method and apparatus for controlling a power converter
US4987360A (en) 1988-12-27 1991-01-22 Bill's Ice Cream, Inc. Self-contained rechargeable battery power source with voltage reducer
US5143556A (en) 1989-03-13 1992-09-01 Matlin Ronald W Support for photovoltaic arrays
US4978870A (en) 1989-07-19 1990-12-18 Industrial Technology Research Institute CMOS digital level shifter circuit
JP2780365B2 (en) 1989-08-14 1998-07-30 日本電気株式会社 Substrate potential generation circuit
US5027059A (en) 1989-08-24 1991-06-25 Schlumberger Industries, Inc. Differential current shunt
JPH0389493A (en) 1989-08-31 1991-04-15 Toshiba Lighting & Technol Corp Lighting device for discharge lamp
JPH079442B2 (en) 1989-09-20 1995-02-01 株式会社東芝 Current detection circuit
CN2071396U (en) 1989-12-27 1991-02-13 郅孝生 Resistance changing anti-sheft alarm for electric wire
JPH0834709B2 (en) 1990-01-31 1996-03-29 株式会社日立製作所 Semiconductor integrated circuit and electric motor control device using the same
US5081558A (en) 1990-02-02 1992-01-14 Northrop Corporation High voltage DC relays
US5027051A (en) 1990-02-20 1991-06-25 Donald Lafferty Photovoltaic source switching regulator with maximum power transfer efficiency without voltage change
US5237194A (en) 1990-04-27 1993-08-17 Nec Corporation Power semiconductor device
US5235266A (en) 1990-06-02 1993-08-10 Schottel-Werft Josef Becker Gmbh & Co. Kg Energy-generating plant, particularly propeller-type ship's propulsion plant, including a solar generator
DE4017860A1 (en) 1990-06-02 1991-12-05 Schottel Werft ENERGY RECOVERY SYSTEM, IN PARTICULAR PROPELLER SHIP DRIVE, WITH POWER FROM A SOLAR GENERATOR
DE4019710A1 (en) 1990-06-21 1992-01-02 Telefunken Systemtechnik Energy source and load adaptor control method - involving iterative comparison of actual and pre-established source power levels until max. power point is attained
GB9014003D0 (en) 1990-06-22 1990-08-15 British Aerospace Data transmission apparatus
US5045988A (en) 1990-07-31 1991-09-03 Eaton Corporation Isolated adjustable frequency AC inverter control
US5196781A (en) 1990-09-14 1993-03-23 Weiss Instruments, Inc. Method and apparatus for power control of solar powered display devices
DE4032569A1 (en) 1990-10-13 1992-04-16 Flachglas Solartechnik Gmbh Photovoltaic system coupled to mains network - has individual modules incorporating respective DC-AC converter for direct supply of mains network
IT1244799B (en) 1990-10-19 1994-09-05 Italtel Spa DC-AC CONVERTER
DE4038225A1 (en) 1990-11-30 1992-06-04 Bosch Gmbh Robert METHOD AND DEVICE FOR VOLTAGE REGULATION DEPENDING ON THE BATTERY CHARGE STATE
JPH04219982A (en) 1990-12-20 1992-08-11 Sanyo Electric Co Ltd Solar battery panel and its connection
DE4041672A1 (en) 1990-12-22 1992-06-25 Zsw Monitoring unit for DC circuit for photovoltaic prodn. plants - which with line interference occuring within monitored stretch, current flow through monitored line section is interrupted using two monitoring lines
US5144222A (en) 1991-01-07 1992-09-01 Edward Herbert Apparatus for controlling the input impedance of a power converter
US6933627B2 (en) 1991-01-08 2005-08-23 Nextek Power Systems Inc. High efficiency lighting system
DE4100444A1 (en) 1991-01-09 1992-07-16 Fraunhofer Ges Forschung INTEGRATED CIRCUIT BREAKER STRUCTURE
US5289361A (en) 1991-01-16 1994-02-22 Vlt Corporation Adaptive boost switching preregulator and method
JPH04299027A (en) 1991-03-27 1992-10-22 Toshiba Corp Inverter device
EP0513443B1 (en) 1991-05-06 1999-11-17 Koninklijke Philips Electronics N.V. Building management system
US5097196A (en) 1991-05-24 1992-03-17 Rockwell International Corporation Zero-voltage-switched multiresonant DC to DC converter
JP2892183B2 (en) 1991-06-12 1999-05-17 三菱電機株式会社 Power converter for photovoltaic power generation
JP3015512B2 (en) 1991-06-25 2000-03-06 東芝エフエーシステムエンジニアリング株式会社 DC / AC power supply
JPH0513562A (en) 1991-07-05 1993-01-22 Hitachi Ltd Driving control device
JP2766407B2 (en) 1991-08-20 1998-06-18 株式会社東芝 Inverter control device for photovoltaic power generation
US5155670A (en) 1991-09-24 1992-10-13 Brian Matley J Bootstrap modified topologies for wide-input range switchmode DC to DC converters
GB2261533A (en) 1991-10-14 1993-05-19 Astec Int Ltd Indirect inductor current measurements in SMPS
US5289998A (en) 1991-10-15 1994-03-01 General Electric Co. Solar array output regulator using variable light transmission
US5327071A (en) 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
FR2684250B1 (en) 1991-11-27 1994-04-01 Merlin Gerin HIGH QUALITY ELECTRICAL ENERGY DISTRIBUTION SYSTEM.
US5280133A (en) 1991-12-13 1994-01-18 United Solar Systems Corporation Junction box for a solar panel
US5345375A (en) 1991-12-16 1994-09-06 Regents Of The University Of Minnesota System and method for reducing harmonic currents by current injection
US5245527A (en) 1991-12-24 1993-09-14 Siemens Electric Limited Modular ac drive controller
IT1250558B (en) 1991-12-30 1995-04-20 Hospal Dasco Spa DIALYSIS MACHINE WITH SAFETY CONTROL AND RELATED SAFETY CONTROL METHOD.
GB2264403B (en) 1992-02-18 1996-09-04 Hitachi Ltd An apparatus for controlling parallel running of inverters
GB9206022D0 (en) 1992-03-19 1992-04-29 Astec Int Ltd Push-pull inverter
DE4208894A1 (en) 1992-03-19 1993-09-23 Abb Patent Gmbh CIRCUIT FOR CONTROLLING A VOLTAGE-CONTROLLED SEMICONDUCTOR SWITCH
US5391235A (en) 1992-03-31 1995-02-21 Canon Kabushiki Kaisha Solar cell module and method of manufacturing the same
US5504449A (en) 1992-04-09 1996-04-02 Harris Corporation Power driver circuit
US5513075A (en) 1992-05-08 1996-04-30 The Whitaker Corporation Module for electrically connecting conductor wires to circuits of flat surfaces such as solar panels
US5287261A (en) 1992-06-23 1994-02-15 The Texas A&M University System Power conversion using zero current soft switching
AU655889B2 (en) 1992-06-24 1995-01-12 Kabushiki Kaisha Toshiba Inverter protection device
CA2096358A1 (en) 1992-07-02 1994-01-03 Apurba Roy Partial gap magnetic core apparatus
JP3318974B2 (en) 1992-07-16 2002-08-26 日本電池株式会社 Maximum power point tracking control method for solar cells
US5539238A (en) 1992-09-02 1996-07-23 Texas Instruments Incorporated Area efficient high voltage Mosfets with vertical resurf drift regions
DE4232356C2 (en) 1992-09-26 1997-01-09 Inst Solare Energieversorgungstechnik Iset Power supply device with at least two power sources
JP2809026B2 (en) 1992-09-30 1998-10-08 三菱電機株式会社 INVERTER DEVICE AND METHOD OF USING INVERTER DEVICE
JP2882952B2 (en) 1992-10-19 1999-04-19 キヤノン株式会社 Power generator
JP2749487B2 (en) 1992-10-26 1998-05-13 オリンパス光学工業株式会社 Head-mounted display system
KR100312023B1 (en) 1992-11-25 2002-04-24 존 베아비스 라시치 the production of hydrogen from solar radiation at high efficiency
US5329222A (en) 1992-11-30 1994-07-12 Westinghouse Electric Corporation Apparatus and method for dynamic voltage restoration of utility distribution networks
EP0604777A1 (en) 1992-12-28 1994-07-06 Motorola, Inc. Data transmission device system and method
US5379209A (en) 1993-02-09 1995-01-03 Performance Controls, Inc. Electronic switching circuit
JP2626868B2 (en) 1993-03-08 1997-07-02 モレックス インコーポレーテッド Terminal of electrical connector and method of manufacturing the same
US5493154A (en) 1993-04-21 1996-02-20 Astec International, Ltd. Temperature share scheme
US5530335A (en) 1993-05-11 1996-06-25 Trw Inc. Battery regulated bus spacecraft power control system
US5402060A (en) 1993-05-13 1995-03-28 Toko America, Inc. Controller for two-switch buck-boost converter
US6862349B1 (en) 1993-05-28 2005-03-01 Mediaone Group, Inc. Method and apparatus for delivering secured telephony service in a hybrid coaxial cable network
IL105990A (en) 1993-06-11 1997-04-15 Uri Segev And Benjamin Machnes Infra-red communication system
JP2771096B2 (en) 1993-06-11 1998-07-02 キヤノン株式会社 Power control device, power control method, and power generation device
US5428268A (en) 1993-07-12 1995-06-27 Led Corporation N.V. Low frequency square wave electronic ballast for gas discharge
JPH0726849A (en) 1993-07-14 1995-01-27 Sekisui House Ltd Ventilator of double sash window
DE4325436C2 (en) 1993-07-29 2000-06-29 Inst Luft & Kaeltetechnik Ggmbh Circuit arrangement for MPP control of photovoltaic solar systems and circuit arrangement for carrying out the method
JPH0758843A (en) 1993-08-10 1995-03-03 Matsushita Electric Ind Co Ltd Private automatic exchange system
DE4328511C2 (en) 1993-08-25 1995-06-22 Zsw Switch-on control method and control circuit for an inverter coupling a solar generator to the power grid
DE9312710U1 (en) 1993-08-25 1993-10-28 Inst Solare Energieversorgungstechnik Iset Modular diagnostic system for the detection and localization of faults in photovoltaic systems
DE4330381A1 (en) 1993-09-08 1995-03-09 Abb Management Ag Protection circuit for a circuit with a capacitor circuit
US5530638A (en) 1993-09-24 1996-06-25 At&T Corp. Multi-resonant electronic power converter with a wide dynamic range
KR0168094B1 (en) 1993-10-19 1999-01-15 김광호 Operating control device and its control method of airconditioner
JP2810630B2 (en) 1993-11-16 1998-10-15 キヤノン株式会社 Solar cell power control device, power control system, power control method, and voltage / current output characteristic measurement method
US5504418A (en) 1993-11-26 1996-04-02 Hughes Aircraft Company Full shunt boost switching voltage limiter for solar panel array
US5504415A (en) 1993-12-03 1996-04-02 Electronic Power Technology, Inc. Method and apparatus for automatic equalization of series-connected batteries
US5563780A (en) 1993-12-08 1996-10-08 International Power Systems, Inc. Power conversion array applying small sequentially switched converters in parallel
SE514827C2 (en) 1993-12-09 2001-04-30 Abb Ab DC switch for high power
JPH07222436A (en) 1994-01-26 1995-08-18 Meidensha Corp Life detection apparatus of smoothing electrolytic capacitor
WO1995025374A1 (en) 1994-03-16 1995-09-21 Alpha Real Ag Method of protecting electrical equipment, in particular direct current equipment, e.g. photo-voltaic equipment, and a detection unit for said equipment
US5726615A (en) 1994-03-24 1998-03-10 Bloom; Gordon E. Integrated-magnetic apparatus
JP3029185B2 (en) 1994-04-12 2000-04-04 キヤノン株式会社 Islanding prevention device, distributed power generation device and power generation system using the same
JP2874156B2 (en) 1994-04-13 1999-03-24 キヤノン株式会社 Power generation system
US5475296A (en) 1994-04-15 1995-12-12 Adept Power Systems, Inc. Digitally controlled switchmode power supply
US5793184A (en) 1994-04-20 1998-08-11 Opcon, Ltd. Solar power supply unit for battery operated devices
DE19515786C2 (en) 1994-04-28 1997-08-21 Kyocera Corp Solar energy system
DE69505966T2 (en) 1994-05-11 1999-04-08 B & W Loudspeakers CONTROLLED COMMUTING CIRCUIT
JP3298738B2 (en) 1994-05-19 2002-07-08 富士通株式会社 Communication device
US5625539A (en) 1994-05-30 1997-04-29 Sharp Kabushiki Kaisha Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
KR100373195B1 (en) 1994-06-03 2003-06-09 코닌클리케 필립스 일렉트로닉스 엔.브이. Power supply and transmitter with power supply
JP3430185B2 (en) 1994-06-16 2003-07-28 株式会社日立産機システム Inverter device
JPH089557A (en) 1994-06-20 1996-01-12 Toshiba Corp Inverter for photovoltaic power generation
DE69413812T2 (en) 1994-07-01 1999-06-10 Cons Ric Microelettronica Fuzzy logic based control method for power supplies and device for carrying it out
JP3202536B2 (en) 1994-07-19 2001-08-27 シャープ株式会社 Solar cell with bypass function
JPH0833347A (en) 1994-07-21 1996-02-02 Hitachi Ltd Maintenance system for inverter
DE4427077C1 (en) 1994-07-30 1996-03-21 Fraunhofer Ges Forschung Device for the exchange of charges between a plurality of energy stores or converters connected in pure
US5576941A (en) 1994-08-10 1996-11-19 York Technologies, Inc. Modular power supply system
WO1996008153A1 (en) 1994-09-16 1996-03-21 Kraft Foods, Inc. Foaming coffee creamer and instant hot cappuccino
JPH0897460A (en) 1994-09-22 1996-04-12 Nissin Electric Co Ltd Solar cell power generator
US5659465A (en) 1994-09-23 1997-08-19 Aeroviroment, Inc. Peak electrical power conversion system
US5604430A (en) 1994-10-11 1997-02-18 Trw Inc. Solar array maximum power tracker with arcjet load
JPH08116628A (en) 1994-10-14 1996-05-07 Nitto Kogyo Kk Solar disconnecting switch
WO1996013093A1 (en) 1994-10-24 1996-05-02 Hitachi, Ltd. Inverter device
JP2715941B2 (en) 1994-10-31 1998-02-18 日本電気株式会社 Method for manufacturing semiconductor device
JPH08140209A (en) 1994-11-11 1996-05-31 Fuji Heavy Ind Ltd Battery managing system for electric motor vehicle
JP3666037B2 (en) 1994-11-14 2005-06-29 ソニー株式会社 battery pack
DE4441280C2 (en) 1994-11-19 1998-08-27 Asea Brown Boveri PTC thermistor and device for current limitation with at least one PTC thermistor
JP3499941B2 (en) 1994-12-21 2004-02-23 三洋電機株式会社 Solar power generator
DE4446303C2 (en) 1994-12-23 1997-01-23 Deutsche Forsch Luft Raumfahrt Device for concentrating solar radiation
JP3719729B2 (en) 1994-12-27 2005-11-24 シャープ株式会社 Aging prediction method for interconnection inverter
JP3165606B2 (en) 1994-12-27 2001-05-14 シャープ株式会社 Interconnected solar power generation system with solar cell module abnormality check function
US5585749A (en) 1994-12-27 1996-12-17 Motorola, Inc. High current driver providing battery overload protection
US5726505A (en) 1995-01-13 1998-03-10 Omron Corporation Device to prevent reverse current flow, rectifier device and solar generator system
DE19502762C2 (en) 1995-01-30 2000-05-31 Inst Luft Kaeltetech Gem Gmbh Process and circuit arrangement for MPP control of photovoltaic solar systems
JPH08204220A (en) 1995-01-31 1996-08-09 Mitsubishi Electric Corp Solar cell, solar cell module and solar cell module group
JP3516101B2 (en) 1995-02-20 2004-04-05 オムロン株式会社 Solar power generator
CN2284479Y (en) 1995-02-23 1998-06-17 北方工业大学 Solar power source device for energy saving lamp
FR2732170B1 (en) 1995-03-24 1997-05-09 Guyonneau Claude HIGH VOLTAGE PHOTOVOLTAIC ENERGY STATION WITH PERSONALIZED STORAGE
US5903138A (en) 1995-03-30 1999-05-11 Micro Linear Corporation Two-stage switching regulator having low power modes responsive to load power consumption
US5777515A (en) 1995-05-11 1998-07-07 Matsushita Electric Industrial Co., Ltd. Operational amplifier apparatus
US5677833A (en) 1995-05-16 1997-10-14 Raytheon Company Power conditioning system for a four quadrant photovoltaic array with an inverter for each array quadrant
JP3316336B2 (en) 1995-05-17 2002-08-19 三洋電機株式会社 Solar cell device
JP3541982B2 (en) 1995-05-17 2004-07-14 株式会社安川電機 System overvoltage protection method and device for photovoltaic power converter
JPH094692A (en) 1995-06-20 1997-01-07 Akira Konishi Transmission for transport
JPH097644A (en) 1995-06-22 1997-01-10 Fuji Elelctrochem Co Ltd Charging type battery pack
JP3651972B2 (en) 1995-07-26 2005-05-25 キヤノン株式会社 Control device for grid-connected inverter and photovoltaic power generation system using the same
JP3270303B2 (en) 1995-07-26 2002-04-02 キヤノン株式会社 Battery power supply device characteristic measuring device and measuring method
GB9516913D0 (en) 1995-08-18 1995-10-18 Advanced Power Conversion Ltd A transformer assembly
US5751120A (en) 1995-08-18 1998-05-12 Siemens Stromberg-Carlson DC operated electronic ballast for fluorescent light
US5631534A (en) 1995-08-21 1997-05-20 Delco Electronics Corp. Bidirectional current pump for battery charge balancing
US5731603A (en) 1995-08-24 1998-03-24 Kabushiki Kaisha Toshiba Lateral IGBT
US6064086A (en) 1995-08-24 2000-05-16 Kabushiki Kaisha Toshiba Semiconductor device having lateral IGBT
JPH0962387A (en) 1995-08-29 1997-03-07 Canon Inc Method and device for power control of battery power source and battery power source system
JP3098695B2 (en) 1995-09-28 2000-10-16 キヤノン株式会社 Solar cell module
JP3382434B2 (en) 1995-09-22 2003-03-04 キヤノン株式会社 Battery power supply voltage control device and voltage control method
US5734259A (en) 1995-09-29 1998-03-31 Cherry Semiconductor Corporation Balanced delta current method for current control in a hysteretic power supply
WO1997013279A1 (en) 1995-10-02 1997-04-10 Siliconix Incorporated Trench-gated mosfet including integral temperature detection diode
US5798631A (en) 1995-10-02 1998-08-25 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Performance optimization controller and control method for doubly-fed machines
US5646501A (en) 1995-11-02 1997-07-08 Lucent Technologies Inc. Flexible power architecture which supports multiple battery technologies for use with a portable device
US5708970A (en) 1995-11-13 1998-01-13 Gerry Baby Products Wireless sound monitoring apparatus with subaudible squelch control
US5636107A (en) 1995-11-15 1997-06-03 International Power Devices, Inc. DC-DC converters
JPH09148611A (en) 1995-11-24 1997-06-06 Sanyo Electric Co Ltd Solar battery device
JP3349317B2 (en) 1995-11-24 2002-11-25 三洋電機株式会社 Solar cell module
JPH09167708A (en) 1995-12-15 1997-06-24 Toko Inc Inverter transformer
EP0780750B1 (en) 1995-12-20 2002-03-27 Sharp Kabushiki Kaisha Inverter control method and inverter apparatus using the method
KR970048612A (en) 1995-12-29 1997-07-29 김주용 Solar Tracking System and Method Using Solar Array
US5747967A (en) 1996-02-22 1998-05-05 Midwest Research Institute Apparatus and method for maximizing power delivered by a photovoltaic array
US5822186A (en) 1996-02-23 1998-10-13 Apple Computer, Inc. Auxiliary electrical component utilized on the exterior of an electrical device that can be removed when the electrical device is powered
DE19609189A1 (en) 1996-03-09 1997-09-11 Webasto Karosseriesysteme Solar power generator for mounting on vehicle roof and including adaptive voltage converter e.g. for driving fan motor
JP3575908B2 (en) 1996-03-28 2004-10-13 株式会社東芝 Semiconductor device
JPH09275644A (en) 1996-04-01 1997-10-21 Omron Corp Solar battery module and solar power generation system using it
JP3591978B2 (en) 1996-04-12 2004-11-24 キヤノン株式会社 Fluid supply device powered by unstable power supply
DE19614627A1 (en) 1996-04-13 1997-10-16 Abb Patent Gmbh High voltage converter system
DE19614861A1 (en) 1996-04-16 1997-07-17 Reiner Trimborn Maximum power tracker for solar cell applications
DE19618882A1 (en) 1996-05-10 1997-11-13 Webasto Karosseriesysteme Circuit for supplying electric load such as fan or storage battery of vehicle from solar generator
KR100205229B1 (en) 1996-05-15 1999-07-01 윤종용 The source for solar cells
EP0809293B1 (en) 1996-05-21 2001-08-29 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Power semiconductor structure with lateral transistor driven by vertical transistor
US5734258A (en) 1996-06-03 1998-03-31 General Electric Company Bidirectional buck boost converter
US5886882A (en) 1996-06-11 1999-03-23 Advanced Power Conversion Ltd. Push-pull DC-DC converter with transformer having multiple primary and secondary windings with diodes connected between them with MOSFET switching
GB2314474B (en) 1996-06-21 2001-03-07 Univ Bristol Low power audio device
US5801519A (en) 1996-06-21 1998-09-01 The Board Of Trustees Of The University Of Illinois Self-excited power minimizer/maximizer for switching power converters and switching motor drive applications
EP0817350B1 (en) 1996-06-24 2008-03-26 SANYO ELECTRIC Co., Ltd. Power-supply system involving system interconnection
JPH1017445A (en) 1996-06-27 1998-01-20 Lion Corp Composition for oral cavity and its production
US5708576A (en) 1996-07-10 1998-01-13 Sundstrand Corporation Fault tolerant power converter
JPH1054118A (en) 1996-08-08 1998-02-24 Canon Inc Solar cell module
US5804894A (en) 1996-08-16 1998-09-08 Telxon Corporation Low voltage battery pack monitoring circuit with adjustable set points
US5734565A (en) 1996-08-16 1998-03-31 American Superconductor Corporation Reducing switching losses in series connected bridge inverters and amplifiers
JP3571860B2 (en) 1996-08-23 2004-09-29 キヤノン株式会社 Motor driving device using an unstable power supply
US5654740A (en) 1996-08-23 1997-08-05 Pavlo Bobrek Portable computer integrated power supply and pointing device
JP3663455B2 (en) 1996-08-29 2005-06-22 株式会社安川電機 Solar power converter
US5773963A (en) 1996-08-29 1998-06-30 Apple Computer Inc. Method and apparatus for programmably adjusting output voltage of a battery charger
JP3352334B2 (en) 1996-08-30 2002-12-03 キヤノン株式会社 Solar cell power controller
JP3554116B2 (en) 1996-09-06 2004-08-18 キヤノン株式会社 Power control device and solar power generation system using the same
WO1998013918A1 (en) 1996-09-24 1998-04-02 Siemens Aktiengesellschaft Circuit arrangement to provide electronic tripping devices with an electricity supply
DE19639279C2 (en) 1996-09-25 2002-01-17 Daimlerchrysler Rail Systems Converter circuit
JPH10136574A (en) 1996-10-31 1998-05-22 Hitachi Ltd Battery control device
US5847549A (en) 1996-11-19 1998-12-08 Pairgain Technologies, Inc. Power converter stabilization loop
SE515366C2 (en) 1996-11-20 2001-07-23 Ericsson Telefon Ab L M Battery pack for a portable electrical appliance and way of charging the same
US5905645A (en) 1996-12-02 1999-05-18 Astec International Limited Thermally aided power sharing of power supplies with or without an external current share line
JPH10201105A (en) 1997-01-14 1998-07-31 Nissin Electric Co Ltd Photovoltaic power generation system
JPH10201086A (en) 1997-01-14 1998-07-31 Nissin Electric Co Ltd Solar beam power generation system
JP3630967B2 (en) 1997-01-21 2005-03-23 キヤノン株式会社 Solar cell array and solar power generation device
DE19701897A1 (en) 1997-01-21 1998-07-23 Peter Schwarz Solar power supply for small electronic device
US6104209A (en) 1998-08-27 2000-08-15 Micron Technology, Inc. Low skew differential receiver with disable feature
JP3644615B2 (en) 1997-02-17 2005-05-11 Tdk株式会社 Switching power supply
DE19808514A1 (en) 1997-02-28 1998-09-10 Int Rectifier Corp Semiconductor component and method for its production
CN2305016Y (en) 1997-03-06 1999-01-20 深圳众大实业股份有限公司 D/A convertor for pump driven by photocell
DE19709766C1 (en) 1997-03-10 1998-09-03 Siemens Ag Controlling several coupled end stages esp. with gradient amplifier of nuclear resonance tomography e.g. Project 039
US5923100A (en) 1997-03-31 1999-07-13 Lockheed Martin Corporation Apparatus for controlling a solar array power system
DE19718046A1 (en) 1997-04-29 1998-11-12 Sun Power Solartechnik Gmbh Contactless current transfer from photovoltaic solar module to busbar
JPH10308523A (en) 1997-05-07 1998-11-17 Toyota Motor Corp Solar cell device
US6781507B1 (en) 1997-05-16 2004-08-24 Directed Electronics, Inc. Remote start, passive anti theft security system
US5898585A (en) 1997-05-29 1999-04-27 Premier Global Corporation, Ltd. Apparatus and method for providing supplemental alternating current from a solar cell array
JP3565470B2 (en) 1997-06-13 2004-09-15 キヤノン株式会社 Ground fault protection device and operation method thereof, photovoltaic power generation system having the same, and inverter for photovoltaic power generation system having the same
US5929614A (en) 1997-06-13 1999-07-27 Northrop Grumman Corporation High efficiency DC step-up voltage converter
US6353929B1 (en) 1997-06-23 2002-03-05 One River Worldtrek, Inc. Cooperative system for measuring electronic media
IL121189A0 (en) 1997-06-29 1997-11-20 Techtium Ltd Battery pack assembly
GB2327208B (en) 1997-07-15 1999-09-29 Chin Wen Lin Waterproof keyboard assembly
JPH1141832A (en) 1997-07-17 1999-02-12 Nippon Telegr & Teleph Corp <Ntt> System and method for solar cell generation
JPH1146457A (en) 1997-07-25 1999-02-16 Tdk Corp Charging device utilizing solar cell
DE19732218C1 (en) 1997-07-26 1999-03-18 Dirk Schekulin Transformerless ac. inverter circuit, for coupling photovoltaic systems or wind generator systems, esp. in the low power range, to current networks
FR2766589B1 (en) 1997-07-28 1999-09-24 Centre Nat Etd Spatiales DEVICE FOR CONTROLLING THE OPERATION POINT OF AN ELECTRIC POWER GENERATOR, PARTICULARLY A SOLAR GENERATOR
US5961739A (en) 1997-08-19 1999-10-05 Osborne; Michael J. Hemispheric moving focus power plant apparatus and method
NL1006838C2 (en) 1997-08-25 1999-03-04 Univ Eindhoven Tech Panel-shaped hybrid photovoltaic / thermal device.
DE19737286C2 (en) 1997-08-27 2000-05-31 Webasto Karosseriesysteme Solar panel
US5982253A (en) 1997-08-27 1999-11-09 Nartron Corporation In-line module for attenuating electrical noise with male and female blade terminals
US5821734A (en) 1997-08-29 1998-10-13 Compaq Computer Corporation Converting battery module with resistor programmation of default output voltage
US5945806A (en) 1997-08-29 1999-08-31 Compaq Computer Corporation Variable-voltage programmable battery module
US6021052A (en) 1997-09-22 2000-02-01 Statpower Technologies Partnership DC/AC power converter
US6105317A (en) 1997-09-24 2000-08-22 Matsushita Electric Works, Ltd. Mounting system for installing an array of solar battery modules of a panel-like configuration on a roof
JPH11103538A (en) 1997-09-27 1999-04-13 My Way Giken Kk Optical power generating system
US5990659A (en) 1997-10-01 1999-11-23 Telefonaktiebolaget Lm Ericsson Battery pack that communicates intrinsic information over battery voltage terminals
CN100380541C (en) 1997-10-06 2008-04-09 Tdk株式会社 Electronic device and method of producing same
IL136235A0 (en) 1997-11-17 2001-05-20 Lifestyle Technologies Universal power supply
EP1057234A4 (en) 1997-11-24 2007-10-31 Robert H Wills Anti-islanding method and apparatus for distributed power generation
JPH11159090A (en) 1997-11-27 1999-06-15 Canon Inc Solar battery roof and its execution method
GB9725128D0 (en) 1997-11-27 1998-01-28 Weinberg Alan H Solar array system
WO1999030400A1 (en) 1997-12-10 1999-06-17 Watkins Kenneth S Jr Fault sensing wire and alarm apparatus
US6088205A (en) 1997-12-19 2000-07-11 Leviton Manufacturing Co., Inc. Arc fault detector with circuit interrupter
US6002290A (en) 1997-12-23 1999-12-14 Sarnoff Corporation Crisscross voltage level shifter
US6346451B1 (en) 1997-12-24 2002-02-12 Philips Electronics North America Corporation Laterial thin-film silicon-on-insulator (SOI) device having a gate electrode and a field plate electrode
US5959438A (en) 1998-01-09 1999-09-28 Delta Electronics, Inc. Soft-switched boost converter with isolated active snubber
JPH11206038A (en) 1998-01-20 1999-07-30 Sharp Corp Network system connected to solar power generation system
US5963078A (en) 1998-01-26 1999-10-05 Peco Ii, Inc. Transformer coupled FET drive circuit
US6876181B1 (en) 1998-02-27 2005-04-05 Power Integrations, Inc. Off-line converter with digital control
JPH11251615A (en) 1998-03-03 1999-09-17 Canon Inc Photovoltaic power generation system with snow melting function
JPH11330521A (en) 1998-03-13 1999-11-30 Canon Inc Solar battery module, solar battery array, photovolatic power plant, and method of specifying fault of solar battery module
JPH11266545A (en) 1998-03-17 1999-09-28 Nippon Telegr & Teleph Corp <Ntt> Portable noncontact power-feeding device
US6008971A (en) 1998-03-23 1999-12-28 Electric Boat Corporation Fault protection arrangement for electric power distribution systems
JP3744679B2 (en) 1998-03-30 2006-02-15 三洋電機株式会社 Solar power plant
CN1161678C (en) 1998-03-30 2004-08-11 三洋电机株式会社 Solar generating device
JPH11282557A (en) 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Method for calibrating detecting part and solar power generator
US6835491B2 (en) 1998-04-02 2004-12-28 The Board Of Trustees Of The University Of Illinois Battery having a built-in controller
US5930128A (en) 1998-04-02 1999-07-27 Ericsson Inc. Power waveform synthesis using bilateral devices
US5933327A (en) 1998-04-03 1999-08-03 Ericsson, Inc. Wire bond attachment of a integrated circuit package to a heat sink
JP3662108B2 (en) 1998-04-13 2005-06-22 株式会社荏原製作所 Solar cell driven automatic irrigation system
FR2777715B1 (en) 1998-04-15 2000-06-09 Agence Spatiale Europeenne POWER SUPPLY CONVERTER MODULE AND INCLUDING SYSTEM
KR100281528B1 (en) 1998-04-29 2001-02-15 윤종용 Power supply circuit
JP3568023B2 (en) 1998-05-07 2004-09-22 シャープ株式会社 Power converter for photovoltaic power generation
JP3775053B2 (en) 1998-05-12 2006-05-17 富士電機機器制御株式会社 Inverter device
US5986909A (en) 1998-05-21 1999-11-16 Robicon Corporation Multiphase power supply with plural series connected cells and failed cell bypass
JP3545203B2 (en) 1998-05-22 2004-07-21 三洋電機株式会社 Inverter operation method and power supply system
US6278054B1 (en) 1998-05-28 2001-08-21 Tecstar Power Systems, Inc. Solar cell having an integral monolithically grown bypass diode
US5930131A (en) 1998-05-28 1999-07-27 Long Well Electronics Corp. Controlling device for conversion of DC power to sine wave AC power
JP2000286437A (en) 1998-06-12 2000-10-13 Canon Inc Solar cell module and manufacturing method
JP2000068537A (en) 1998-06-12 2000-03-03 Canon Inc Solar cell module, string, system, and management method
FR2780222B1 (en) 1998-06-18 2000-08-11 Sgs Thomson Microelectronics METHOD AND SYSTEM FOR DETECTION BY INDUCTIVE COUPLING OF A LOAD MODULATION SIGNAL
US6111767A (en) 1998-06-22 2000-08-29 Heliotronics, Inc. Inverter integrated instrumentation having a current-voltage curve tracer
US6891838B1 (en) 1998-06-22 2005-05-10 Statsignal Ipc, Llc System and method for monitoring and controlling residential devices
DE19828669C2 (en) 1998-06-26 2003-08-21 Infineon Technologies Ag Lateral IGBT in SOI construction and manufacturing process
DE19828560C2 (en) 1998-06-26 2000-05-25 Fraunhofer Ges Forschung Device for checking autonomous solar systems
JP2000020150A (en) 1998-06-30 2000-01-21 Toshiba Fa Syst Eng Corp Solar power generation inverter device
DE19831010C2 (en) 1998-07-10 2000-07-06 Gkn Loebro Gmbh Drive arrangement with at least one constant velocity fixed joint and with a rolling element guide
JP2000051074A (en) 1998-08-04 2000-02-22 Matsushita Electric Ind Co Ltd Rice cooker
US6087738A (en) 1998-08-20 2000-07-11 Robicon Corporation Variable output three-phase transformer
DE19838230A1 (en) 1998-08-22 2000-02-24 Gfe Ges Fuer Energieelektronik Operating point optimization for photo-voltaic or thermo-voltaic energy converter with variable internal resistance, changing load current periodically around operating point at high frequency
US6072302A (en) 1998-08-26 2000-06-06 Northrop Grumman Corporation Integrated control system and method for controlling mode, synchronization, power factor, and utility outage ride-through for micropower generation systems
JP4010060B2 (en) 1998-08-27 2007-11-21 ソニー株式会社 Boost converter device
US6111391A (en) 1998-09-11 2000-08-29 Cullen; Richard A. Controller for solar electric generator for recreational vehicles
US6057665A (en) 1998-09-18 2000-05-02 Fire Wind & Rain Technologies Llc Battery charger with maximum power tracking
DE19844977A1 (en) 1998-09-30 2000-04-13 Siemens Solar Gmbh Protection system for a solar module
JP2000112545A (en) 1998-09-30 2000-04-21 Daihen Corp Photovoltaic power generation system
JP2000116010A (en) 1998-09-30 2000-04-21 Nissin Electric Co Ltd Distributed power supply system
GB9821434D0 (en) 1998-10-03 1998-11-25 Grant Duncan A battery management system
DE19846818A1 (en) 1998-10-10 2000-04-13 Karl Swiontek Maximum regulator e.g. for regulating electrical power of solar cells, uses control value produced by conventional regulator, or another value derived from it, to influence demand value generation in demand value generator
US6218043B1 (en) 1998-10-20 2001-04-17 The United States Of America As Represented By The Secretary Of The Army Dual voltage multiple configuration battery and adapter
US6037720A (en) 1998-10-23 2000-03-14 Philips Electronics North America Corporation Level shifter
JP3624720B2 (en) 1998-10-29 2005-03-02 住友電装株式会社 Terminal box device for solar cell module
US7039941B1 (en) 1998-10-30 2006-05-02 General Instrument Corporation Low distortion passthrough circuit arrangement for cable television set top converter terminals
US6429546B1 (en) 1998-11-20 2002-08-06 Georgia Tech Research Corporation Systems and methods for preventing islanding of grid-connected electrical power systems
US6081104A (en) 1998-11-20 2000-06-27 Applied Power Corporation Method and apparatus for providing energy to a lighting system
DE19853626A1 (en) 1998-11-20 2000-05-31 Texas Instruments Deutschland Switching regulator has upward and downward modes enabled with periodic control by switch control circuit; pulse duration modulator varies duty cycle correct output voltage errors
JP2000166097A (en) 1998-11-25 2000-06-16 Daiwa House Ind Co Ltd Parallel operation system of solar-generating inverter
JP2000160789A (en) 1998-11-30 2000-06-13 Toshiba Corp Generator device using roof building material mounted with solar battery
JP2000228529A (en) 1998-11-30 2000-08-15 Canon Inc Solar cell module having overvoltage preventing element and solar light power generating system using the same
US6078511A (en) 1998-12-01 2000-06-20 Lucent Technologies, Inc. Temperature protection circuit for power converter and method of operation thereof
JP2000174307A (en) 1998-12-01 2000-06-23 Toshiba Corp Solar battery power generation module and device for diagnosing number of connected modules
US6038148A (en) 1998-12-11 2000-03-14 Ericsson, Inc. Self-driven synchronous rectification scheme
US6198178B1 (en) 1999-12-21 2001-03-06 International Power Systems, Inc. Step wave power converter
DE19859732A1 (en) 1998-12-23 2000-06-29 Abac Elektronische Kommunikati Data transmission between photovoltaic system and central station involves passing data via network line in alternation with energy produced by solar module under computer control
US6166455A (en) 1999-01-14 2000-12-26 Micro Linear Corporation Load current sharing and cascaded power supply modules
JP2000269531A (en) 1999-01-14 2000-09-29 Canon Inc Solar battery module, building material therewith envelope thereof and photovoltaic power generation device
EP1161787A1 (en) 1999-01-18 2001-12-12 Farnow Technologies Pty. Ltd. Energy gauge
IT1308586B1 (en) 1999-01-20 2002-01-08 St Microelectronics Srl DUAL POWER SUPPLY WITH SINGLE CONTINUOUS-CONTINUOUS CONVERTER AND CAPACITIVE TRANSLATOR
JP2000284006A (en) 1999-01-27 2000-10-13 Canon Inc Information-displaying device used for generation system, solar light generation system, information relay device, information display method, information relay method, computer product, and information transmission method
JP3809316B2 (en) 1999-01-28 2006-08-16 キヤノン株式会社 Solar power plant
DE19904561C1 (en) 1999-02-04 2000-08-24 Rossendorf Forschzent Maximum power point control method for solar generator uses current characteristic for sensor of similar type and charge for calculation of power characteristic used for providing setting parameter for solar generator
JP2000232793A (en) 1999-02-12 2000-08-22 Toyota Autom Loom Works Ltd Inverter
JP3398912B2 (en) 1999-02-12 2003-04-21 日本電信電話株式会社 Multi-phase charge recycling step power supply circuit
US6002603A (en) 1999-02-25 1999-12-14 Elliott Energy Systems, Inc. Balanced boost/buck DC to DC converter
US7089780B2 (en) 1999-03-03 2006-08-15 Smiths Detection Inc. Apparatus, systems and methods for detecting and transmitting sensory data over a computer network
NL1011483C2 (en) 1999-03-08 2000-09-12 Hendrik Oldenkamp Device for converting a direct current into an alternating current.
EP1039620A3 (en) 1999-03-19 2002-01-30 Winz Corporation Energy conversion apparatus
JP3796095B2 (en) 1999-03-24 2006-07-12 三洋電機株式会社 Solar power plant
US6291764B1 (en) 1999-03-24 2001-09-18 Sanyo Electronics Co., Ltd. Photovoltaic power generation device
JP3469807B2 (en) 1999-03-24 2003-11-25 鐘淵化学工業株式会社 Solar cell power generation device, wiring device for the device, and wiring structure
DE19916742C1 (en) 1999-04-13 2000-08-24 Angew Solarenergie Ase Gmbh Solar cell current generation circuit has bypass diodes across each solar cell chain connected in series and bridged in groups by further diodes
US6285572B1 (en) 1999-04-20 2001-09-04 Sanyo Electric Co., Ltd. Method of operating a power supply system having parallel-connected inverters, and power converting system
JP2000316282A (en) 1999-04-28 2000-11-14 Toshiba Fa Syst Eng Corp Power conditioner device for solar power generation
IL129797A0 (en) 1999-05-05 2000-02-29 Techtium Ltd Rechargeable battery packs
DE19921545A1 (en) 1999-05-11 2000-11-23 Angew Solarenergie Ase Gmbh Solar cell and method for producing such
JP2000324852A (en) 1999-05-14 2000-11-24 Sanyo Electric Co Ltd Current type inverter for photovoltaic power generation
FI991135A (en) 1999-05-18 2000-11-19 Nokia Networks Oy Integrated DC converter
DE19924318A1 (en) 1999-05-27 2000-11-30 Bosch Gmbh Robert Circuit arrangement of a control device for monitoring a voltage
JP2000341974A (en) 1999-05-28 2000-12-08 Mitsubishi Electric Corp Power converter for mounting on vehicle
FR2794890B1 (en) 1999-06-08 2001-08-10 Crouzet Automatismes ELECTROMECHANICAL RELAY ASSISTED SWITCHING BY SEMICONDUCTOR
JP3930999B2 (en) 1999-06-08 2007-06-13 三菱電機株式会社 Solar cell control device and solar power generation device
US7090509B1 (en) 1999-06-11 2006-08-15 Stratos International, Inc. Multi-port pluggable transceiver (MPPT) with multiple LC duplex optical receptacles
JP2000358330A (en) 1999-06-14 2000-12-26 Nissin Electric Co Ltd Photovoltaic power generating apparatus
WO2000077522A1 (en) 1999-06-15 2000-12-21 Biosensor Systems Design, Inc. Analytic sensor apparatus and method
DE19928809B4 (en) 1999-06-17 2008-05-08 Solarc Innovative Solarprodukte Gmbh Universal power supply unit for various small electrical appliances
US6509712B1 (en) 1999-06-24 2003-01-21 David M. Landis Voltage bus regulation circuit
US6545450B1 (en) 1999-07-02 2003-04-08 Advanced Energy Industries, Inc. Multiple power converter system using combining transformers
FR2796216B1 (en) 1999-07-06 2008-01-04 Jean Marc Boutet ELECTRIC ENERGY STORAGE SYSTEM
TW460083U (en) 1999-07-19 2001-10-11 Mobiletech Inc Power conversion device
US6469919B1 (en) 1999-07-22 2002-10-22 Eni Technology, Inc. Power supplies having protection circuits
US6274804B1 (en) 1999-07-28 2001-08-14 Angewandte Solarenergie - Ase Gmbh Thin-film solar module
JP2003507997A (en) 1999-08-03 2003-02-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ DC / DC up / down converter
DE19937410A1 (en) 1999-08-07 2001-02-15 Elektro & Automatisierungstech Three-phase solar converter for mains and island power operations adapts voltage levels from DC voltage generated by solar cells to the public mains power supply by raising and converting power.
US6160722A (en) 1999-08-13 2000-12-12 Powerware Corporation Uninterruptible power supplies with dual-sourcing capability and methods of operation thereof
JP3567808B2 (en) 1999-08-20 2004-09-22 松下電工株式会社 Maximum power control method for solar cells
JP3422954B2 (en) 1999-08-31 2003-07-07 日本電信電話株式会社 Maximum power follow-up control method of solar cell and recording medium storing the control program
US6310785B1 (en) 1999-09-01 2001-10-30 Regents Of The University Of Minnesota Zero voltage switching DC-DC converter
US6272025B1 (en) 1999-10-01 2001-08-07 Online Power Supply, Inc. Individual for distributed non-saturated magnetic element(s) (referenced herein as NSME) power converters
GB9924299D0 (en) 1999-10-15 1999-12-15 Siemens Ag Apparatus and method for measuring current
JP2001161032A (en) 1999-12-01 2001-06-12 Canon Inc System interconnection power conditioner and power generating system using the same
JP2001178145A (en) 1999-12-20 2001-06-29 Akihiko Yonetani Maximum power operating inverter system
JP3351410B2 (en) 1999-12-20 2002-11-25 株式会社村田製作所 Inverter capacitor module, inverter and capacitor module
DE19961705B4 (en) 1999-12-21 2005-12-01 Sma Technologie Ag Device for the decentralized supply of regenerative energy
JP2001189476A (en) 1999-12-27 2001-07-10 Kyocera Corp Solar battery
JP3547355B2 (en) 1999-12-28 2004-07-28 株式会社日立製作所 Power conversion system
JP2001224138A (en) 2000-02-07 2001-08-17 Hitachi Ltd Electricity storage device and detecting method for voltage of capacitor
JP3687464B2 (en) 2000-02-08 2005-08-24 日新電機株式会社 Solar power plant
US6301128B1 (en) 2000-02-09 2001-10-09 Delta Electronics, Inc. Contactless electrical energy transmission system
JP2001238466A (en) 2000-02-28 2001-08-31 Matsushita Electric Ind Co Ltd System interconnection inverter device
US6593520B2 (en) 2000-02-29 2003-07-15 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
JP3754898B2 (en) 2000-02-29 2006-03-15 キヤノン株式会社 Collector box for photovoltaic power generation, photovoltaic power generation apparatus and control method
JP2001250964A (en) 2000-03-03 2001-09-14 Fuji Electric Co Ltd Method for coducting light irradiation test of solar battery
US6297621B1 (en) 2000-03-13 2001-10-02 City University Of Hong Kong Voltage sensorless control of power converters
MXPA02009146A (en) 2000-03-22 2003-03-12 Trustees Of The Univeristy Of Oscillatorless dc dc power converter.
US6400579B2 (en) 2000-03-24 2002-06-04 Slobodan Cuk Lossless switching DC to DC converter with DC transformer
US6166527A (en) 2000-03-27 2000-12-26 Linear Technology Corporation Control circuit and method for maintaining high efficiency in a buck-boost switching regulator
JP2001275259A (en) 2000-03-29 2001-10-05 Canon Inc Linked system inverter and distributed power generation system
US6396170B1 (en) 2000-03-29 2002-05-28 Powerware Corporation Method and apparatus for coordinating uninterruptible power supply modules to provide scalable, redundant power
US6465931B2 (en) 2000-03-29 2002-10-15 Qortek, Inc. Device and method for driving symmetric load systems
US6292379B1 (en) 2000-03-29 2001-09-18 Powerware Corporation Distributed internal fault bypass in a modular uninterruptible power supply
AU2001253674A1 (en) 2000-04-19 2001-11-07 Current Technologies, Llc Method and apparatus for interfacing rf signals to medium voltage power lines
US20050257827A1 (en) 2000-04-27 2005-11-24 Russell Gaudiana Rotational photovoltaic cells, systems and methods
DE10120595B4 (en) 2000-04-28 2004-08-05 Sharp K.K. Solar Energy System
DE20115473U1 (en) 2001-09-19 2003-02-20 Biester Klaus Universal energy supply system
US6255360B1 (en) 2000-05-15 2001-07-03 Novartis Ag Process for the manufacture of moldings
US7327095B2 (en) 2000-05-24 2008-02-05 Mitsubishi Denki Kabushiki Kaisha Discharge lamp lighting apparatus
US6531848B1 (en) 2000-05-26 2003-03-11 Arris International, Inc. Battery voltage regulation circuit
US6350944B1 (en) 2000-05-30 2002-02-26 Hughes Electronics Corporation Solar module array with reconfigurable tile
US6894911B2 (en) 2000-06-02 2005-05-17 Iwatt, Inc. Method of driving a power converter by using a power pulse and a sense pulse
JP3605032B2 (en) 2000-06-07 2004-12-22 三洋電機株式会社 Solar cell module, solar cell module connection method, solar cell module installation method, and solar cell module ground connection method
US6483203B1 (en) 2000-06-08 2002-11-19 3Com Corporation Single unit integrated transformer assembly
US6709291B1 (en) 2000-06-22 2004-03-23 Trw Inc. Apparatus and method for shielding a circuit from electromagnetic interference
US6384579B2 (en) 2000-06-27 2002-05-07 Origin Electric Company, Limited Capacitor charging method and charging apparatus
AUPQ865900A0 (en) 2000-07-07 2000-08-03 Cleansun Pty Ltd Power line communications method
US6653549B2 (en) 2000-07-10 2003-11-25 Canon Kabushiki Kaisha Photovoltaic power generation systems and methods of controlling photovoltaic power generation systems
EP1172863A3 (en) 2000-07-10 2007-02-14 Sanyo Electric Co., Ltd. Method of installing solar cell modules, and solar cell module
US6985967B1 (en) 2000-07-20 2006-01-10 Rlx Technologies, Inc. Web server network system and method
AU2001278046A1 (en) 2000-07-28 2002-02-13 International Power Systems, Inc. Dc to dc converter and power management system
JP3656531B2 (en) 2000-08-31 2005-06-08 松下電工株式会社 Solar power system
US6239997B1 (en) 2000-09-01 2001-05-29 Ford Motor Company System for connecting and synchronizing a supplemental power source to a power grid
US6369461B1 (en) 2000-09-01 2002-04-09 Abb Inc. High efficiency power conditioner employing low voltage DC bus and buck and boost converters
DE10044096A1 (en) 2000-09-07 2002-04-04 Aloys Wobben Off-grid and method for operating an off-grid
JP3634731B2 (en) 2000-09-21 2005-03-30 シャープ株式会社 Photovoltaic power generation management system, solar power generation management server and solar power generation apparatus used in the system
JP3743704B2 (en) 2000-09-25 2006-02-08 Necトーキン栃木株式会社 Battery pack
US6281485B1 (en) 2000-09-27 2001-08-28 The Aerospace Corporation Maximum power tracking solar power system
JP2002112553A (en) 2000-09-29 2002-04-12 Canon Inc Power converter, its control method, and generator
JP2002112459A (en) 2000-09-29 2002-04-12 Canon Inc Solar battery module and power generation device
US7733069B2 (en) 2000-09-29 2010-06-08 Canon Kabushiki Kaisha Power converting apparatus and power generating apparatus
EP1360511B1 (en) 2000-10-13 2005-04-27 Primarion, Inc. System and method for current sensing
TW497326B (en) 2000-10-23 2002-08-01 Delta Electronics Inc Zero-voltage and zero-current boosting-type converter
US6307749B1 (en) 2000-10-23 2001-10-23 Delphi Technologies, Inc. Overmolded electronic module with underfilled surface-mount components
JP2002142462A (en) 2000-10-30 2002-05-17 Canon Inc Power converter and method of preventing its burglary
JP2002141541A (en) 2000-10-31 2002-05-17 Canon Inc Solarlight power generator and construction
JP2002141540A (en) 2000-10-31 2002-05-17 Canon Inc Solar cell module integrated with power converter
US6603672B1 (en) 2000-11-10 2003-08-05 Ballard Power Systems Corporation Power converter system
JP2002165357A (en) 2000-11-27 2002-06-07 Canon Inc Power converter and its control method, and power generating system
DE10060108B4 (en) 2000-11-27 2006-05-11 Technische Universität Dresden Method for setting the point of maximum power of a solar generator of a photovoltaic solar system
US6501362B1 (en) 2000-11-28 2002-12-31 Umec Usa, Inc. Ferrite core
JP4119081B2 (en) 2000-11-29 2008-07-16 本田技研工業株式会社 Power supply system with solar cell
US20030066555A1 (en) 2000-12-04 2003-04-10 Hui Ron Shu Yuen Maximum power tracking technique for solar panels
JP3391384B2 (en) 2000-12-04 2003-03-31 サンケン電気株式会社 DC-DC converter
CN1269296C (en) 2000-12-04 2006-08-09 Nec东金株式会社 Symmetrical DC/DC converter
US6348781B1 (en) 2000-12-11 2002-02-19 Motorola, Inc. Buck or boost power converter
US6538568B2 (en) 2000-12-21 2003-03-25 Iota Engineering Co. Emergency lighting remote monitoring and control system
JP2002199614A (en) 2000-12-28 2002-07-12 Nec Corp Photovoltaic power charger
FR2819653B1 (en) 2001-01-16 2003-04-11 Centre Nat Rech Scient CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH FOR THE MAXIMUM POINT OF POWER
DE10103431C2 (en) 2001-01-26 2003-03-06 Fraunhofer Ges Forschung Power supply device
US6930473B2 (en) 2001-08-23 2005-08-16 Fairchild Semiconductor Corporation Method and circuit for reducing losses in DC-DC converters
JP2002231578A (en) 2001-01-30 2002-08-16 Meidensha Corp Device and tool for fitting electrolytic capacitor
JP2002233045A (en) 2001-02-02 2002-08-16 Canon Inc Ground detecting device for photovoltaic power generation system and method
DE10106359C1 (en) 2001-02-12 2002-09-05 Hanning Elektro Werke Lateral semiconductor device using thin-film SOI technology
US6560131B1 (en) 2001-02-13 2003-05-06 Vonbrethorst William F. Stored energy power system
US6465910B2 (en) 2001-02-13 2002-10-15 Utc Fuel Cells, Llc System for providing assured power to a critical load
JP3655831B2 (en) 2001-02-14 2005-06-02 シャープ株式会社 Booster unit, power conditioner, and solar power generation system using them
US6275016B1 (en) 2001-02-15 2001-08-14 Texas Instruments Incorporated Buck-boost switching regulator
DE10107600C1 (en) 2001-02-17 2002-08-22 Saint Gobain Method for operating a photovoltaic solar module and photovoltaic solar module
US7072408B2 (en) 2001-02-20 2006-07-04 Lucent Technologies Inc. Method and system for using power lines for signaling, telephony and data communications
JP2002252986A (en) 2001-02-26 2002-09-06 Canon Inc Inverter, power supply system and method for reducing leakage current in power supply system
KR20010044490A (en) 2001-02-27 2001-06-05 이종관 Apparatus for Generating of Electric Power by Solar Energy
US6653552B2 (en) 2001-02-28 2003-11-25 Kyocera Corporation Photoelectric conversion device and method of manufacturing the same
JP2002262461A (en) 2001-03-02 2002-09-13 Mitsubishi Heavy Ind Ltd Solar power generating device
US6304065B1 (en) 2001-03-02 2001-10-16 Technical Witts, Inc. Power electronic circuits with all terminal currents non-pulsating
US6907283B2 (en) 2001-03-02 2005-06-14 Ge Medical Systems Information Technologies, Inc. Patient telemetry device with auto-compensation for impedance changes in leadset antenna
US7277853B1 (en) 2001-03-02 2007-10-02 Mindspeed Technologies, Inc. System and method for a endpoint detection of speech for improved speech recognition in noisy environments
JP4651832B2 (en) 2001-03-05 2011-03-16 富士通セミコンダクター株式会社 Overvoltage protection device for power system
US7092686B2 (en) 2001-03-08 2006-08-15 Siemens Communications, Inc. Automatic transmit power control loop
JP3394996B2 (en) 2001-03-09 2003-04-07 独立行政法人産業技術総合研究所 Maximum power operating point tracking method and device
AT411946B (en) 2001-03-09 2004-07-26 Fronius Schweissmasch Prod METHOD FOR REGULATING A INVERTER SYSTEM
US6765315B2 (en) 2001-03-14 2004-07-20 International Power Systems, Inc. Bi-directional regulator/converter with buck/boost by fuzzy logic control
JP2002270876A (en) 2001-03-14 2002-09-20 Nissin Electric Co Ltd Solarlight power generator
US6967283B2 (en) 2001-03-20 2005-11-22 American Power Conversion Corporation Adjustable scalable rack power system and method
JP2002289900A (en) 2001-03-23 2002-10-04 Canon Inc Concentrating solar cell module and concentrating photovoltaic power generation system
JP2003102134A (en) 2001-03-26 2003-04-04 Hino Jushi:Kk Electric power data transaction system
US6633824B2 (en) 2001-03-29 2003-10-14 Siemens Energy & Automation, Inc. Direct current electrical system arc detection apparatus and method
US6445599B1 (en) 2001-03-29 2002-09-03 Maxim Integrated Products, Inc. Ripple canceling, soft switching isolated DC/DC converters with reduced voltage stress synchronous rectification
US7150938B2 (en) 2001-03-30 2006-12-19 Lithium Power Technologies, Inc. Structurally embedded intelligent power unit
JP2002300735A (en) 2001-03-30 2002-10-11 Fuji Electric Co Ltd Power cable data collecting device
TW550878B (en) 2001-04-06 2003-09-01 Delta Electronics Inc Zero-voltage zero-current switching power factor correction converter
US6396239B1 (en) 2001-04-06 2002-05-28 William M. Benn Portable solar generator
JP3772096B2 (en) 2001-04-13 2006-05-10 シャープ株式会社 Power conditioner for photovoltaic system
US6433522B1 (en) 2001-05-02 2002-08-13 The Aerospace Corporation Fault tolerant maximum power tracking solar power system
US6369462B1 (en) 2001-05-02 2002-04-09 The Aerospace Corporation Maximum power tracking solar power system
NL1018067C2 (en) 2001-05-14 2002-11-15 Stichting Energie Device for generating photovoltaic energy.
JP3884627B2 (en) 2001-05-18 2007-02-21 ミサワホーム株式会社 Snow melting apparatus for roof with solar cell and snow melting control method
DE10219956B4 (en) 2001-05-18 2004-07-08 Webasto Vehicle Systems International Gmbh solar system
US6650554B2 (en) 2001-05-22 2003-11-18 Powersine Ltd. Power factor corrector with efficient ripple attenuator
US7027770B2 (en) 2001-05-22 2006-04-11 Andrew Corporation Repeater for customer premises
US6888263B2 (en) 2001-05-23 2005-05-03 Ebara Corporation Gas turbine generator
US6650552B2 (en) 2001-05-25 2003-11-18 Tdk Corporation Switching power supply unit with series connected converter circuits
JP2002354677A (en) 2001-05-28 2002-12-06 Japan Storage Battery Co Ltd Power conditioner for solar energy generation
JP2002354678A (en) 2001-05-29 2002-12-06 Canon Inc Power generating device, and its control method
JP2003052185A (en) 2001-05-30 2003-02-21 Canon Inc Power converter, and photovoltaic element module using the same and power generator
US6700358B2 (en) 2001-06-05 2004-03-02 Mcdaniel William D. Automatic power factor correction system
US7002321B2 (en) 2001-06-05 2006-02-21 Mcdaniel William D Automatic power factor correction using power measurement chip
US20030116154A1 (en) 2001-06-22 2003-06-26 Butler Barry Lynn Method and system for controlling a solar collector
GB2376801B (en) 2001-06-22 2005-10-19 * Motorola Israel Limited R F Radiators and Transmitters
US6688303B2 (en) 2001-06-22 2004-02-10 Science Applications International Corporation Method and system for controlling operation of an energy conversion device
US6738692B2 (en) 2001-06-25 2004-05-18 Sustainable Energy Technologies Modular, integrated power conversion and energy management system
US6809942B2 (en) 2001-06-29 2004-10-26 Sanyo Electric Co., Ltd. System interconnection electric power generator and control method therefor
US6577219B2 (en) 2001-06-29 2003-06-10 Koninklijke Philips Electronics N.V. Multiple-interleaved integrated circuit transformer
ITVA20010022A1 (en) 2001-07-11 2003-01-11 Chemieco Srl STATIC VOLTAGE INVERTER FOR BATTERY SYSTEM
DE10136147B4 (en) 2001-07-25 2004-11-04 Kolm, Hendrik, Dipl.-Ing. Photovoltaic alternator
NL1020893C2 (en) 2001-07-29 2003-01-30 Stichting Energie Maximum power follower circuit.
JP2003046453A (en) 2001-07-31 2003-02-14 Denso Corp Power supply ic
US6930897B2 (en) 2001-07-31 2005-08-16 Abb Research Ltd. Fuel cell inverter
FR2832870B1 (en) 2001-08-14 2006-08-04 Somfy IMPROVEMENT FOR PHOTOVOLTAIC TYPE CHARGER
US6664762B2 (en) 2001-08-21 2003-12-16 Power Designers, Llc High voltage battery charger
US20050242795A1 (en) 2001-08-22 2005-11-03 Shihab Al-Kuran MMIC DC-to-DC converter
JP4932099B2 (en) 2001-08-27 2012-05-16 京セラ株式会社 Battery replacement time determination method and battery replacement time determination device
TWI264172B (en) 2001-08-29 2006-10-11 Oqo Inc Bi-directional DC power conversion system
JP2003158282A (en) 2001-08-30 2003-05-30 Canon Inc Solar photovoltaic power-generation system
US7208674B2 (en) 2001-09-11 2007-04-24 Eric Aylaian Solar cell having photovoltaic cells inclined at acute angle to each other
US6515217B1 (en) 2001-09-11 2003-02-04 Eric Aylaian Solar cell having a three-dimensional array of photovoltaic cells enclosed within an enclosure having reflective surfaces
US6452814B1 (en) 2001-09-19 2002-09-17 Technical Witts, Inc. Zero voltage switching cells for power converters
DE20115475U1 (en) 2001-09-19 2003-02-20 Biester Klaus DC converter device
DE10146581C1 (en) 2001-09-21 2003-04-24 Infineon Technologies Ag Circuit arrangement with a semiconductor switch and a protective circuit
DE10146527A1 (en) 2001-09-21 2003-04-24 Siemens Ag Converter with a line and load side self-commutated pulse converter
JP2003098215A (en) 2001-09-26 2003-04-03 Canon Inc Earth detection method and device in power conversion system
US6781357B2 (en) 2001-09-27 2004-08-24 Power Integrations, Inc. Method and apparatus for maintaining a constant load current with line voltage in a switch mode power supply
US20030066076A1 (en) 2001-09-28 2003-04-03 Minahan Michael R. Method of distribution of digital media having durational limits for digital media usage
JP2003180036A (en) 2001-10-01 2003-06-27 Canon Inc Power converter, power conversion system, and method of detecting single operation
WO2003032477A2 (en) 2001-10-12 2003-04-17 Northeastern University Integrated magnetics for a dc-dc converter with flexible output inductor
US6672018B2 (en) 2001-10-12 2004-01-06 Jefferson Shingleton Solar module mounting method and clip
JP2003134667A (en) 2001-10-17 2003-05-09 Mitsubishi Heavy Ind Ltd Photovoltaic power generation device
JP2003134661A (en) 2001-10-17 2003-05-09 Mitsubishi Heavy Ind Ltd Load interruption detecting device and photovoltaic power generator
JP2003124492A (en) 2001-10-18 2003-04-25 Tdk Corp Solar cell module
FR2831305B1 (en) 2001-10-23 2004-01-30 Inside Technologies CONTACTLESS INTEGRATED CIRCUIT COMPRISING AUTOMATIC FRAME IDENTIFICATION MEANS
JP2003132959A (en) 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd Method for deciding degradation of secondary battery used for power source system, and power source system using the same
JP2003132960A (en) 2001-10-24 2003-05-09 Matsushita Electric Ind Co Ltd Method for detecting charged state of storage battery used for power supply system, and method for deciding degradation of storage battery
EP1442473A4 (en) 2001-10-25 2006-08-30 Sandia Corp Alternating current photovoltaic building block
AU2002357670A1 (en) 2001-10-26 2003-05-12 Youtility, Inc. Anti-islanding techniques for distributed power generation
US6441597B1 (en) 2001-10-31 2002-08-27 Semtech Corporation Method and apparatus for sensing output inductor current in a DC-to-DC power converter
US6650560B2 (en) 2001-12-03 2003-11-18 Mobility Electronics, Inc. Dual input AC and DC power supply having a programmable DC output utilizing single-loop optical feedback
US6731136B2 (en) 2001-11-01 2004-05-04 Hewlett-Packard Development Company, L.P. Differential CMOS logic with dynamic bias
US20030090246A1 (en) 2001-11-05 2003-05-15 Krishna Shenai DC-DC converter with current control
CN2514538Y (en) 2001-11-12 2002-10-02 武汉加伟光电科技有限公司 Automatic power servo unit for solar battery
US20030090233A1 (en) 2001-11-13 2003-05-15 Browe David S. Renewable stored energy power generating apparatus
US6996741B1 (en) 2001-11-15 2006-02-07 Xiotech Corporation System and method for redundant communication between redundant controllers
US6657419B2 (en) 2001-11-19 2003-12-02 Solarmate Corporation Micro-solar insolation circuit
US6646196B2 (en) 2001-11-26 2003-11-11 Apogee Enterprises, Inc. Window structure with photovoltaic panel
US6683441B2 (en) 2001-11-26 2004-01-27 Analog Devices, Inc. Multi-phase switching regulator
JP4020630B2 (en) 2001-11-29 2007-12-12 三洋電機株式会社 Power supply device having a voltage detection circuit
US6608396B2 (en) 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
US6970365B2 (en) 2001-12-12 2005-11-29 Jpmorgan Chase Bank, N.A. Controlled frequency power factor correction circuit and method
DE10161178A1 (en) 2001-12-13 2003-07-10 Aloys Wobben inverter
KR20030050390A (en) 2001-12-18 2003-06-25 엘지전자 주식회사 Battery apparatus
US6690590B2 (en) 2001-12-26 2004-02-10 Ljubisav S. Stamenic Apparatus for regulating the delivery of power from a DC power source to an active or passive load
US20030127126A1 (en) 2002-01-09 2003-07-10 Tzung-Cheng Yang Rechargeable solar battery
ITRM20020027A1 (en) 2002-01-22 2003-07-22 Telecom Italia Mobile Spa RADIO BASE STATION FOR MOBILE MOBILE TELEPHONE WITH ELECTRICITY POWER STATION FROM PHOTOVOLTAIC-WIND ENERGY WITH CONTINUOUS OPERATION
US6686533B2 (en) 2002-01-29 2004-02-03 Israel Aircraft Industries Ltd. System and method for converting solar energy to electricity
US6724593B1 (en) 2002-01-30 2004-04-20 National Semiconductor Corporation Reverse charger protection
JP4227525B2 (en) 2002-01-31 2009-02-18 富士電機システムズ株式会社 Photovoltaic inverter control method, control device thereof, and water supply device
JP2003244966A (en) 2002-02-18 2003-08-29 Mitsubishi Electric Corp Drive circuit
US6933714B2 (en) 2002-02-19 2005-08-23 Institut Fuer Solare Energieversorgungs-Technik (Iset) Verein An Der Universitaet Gesamthochschule Kassel E.V. Method and apparatus for measuring the impedance of an electrical energy supply system
DE10207560A1 (en) 2002-02-22 2003-09-04 Kolm Hendrik Process for monitoring decentralized energy generation plants
JP4174227B2 (en) 2002-03-26 2008-10-29 京セラ株式会社 Solar cell module
US6751107B2 (en) 2002-03-27 2004-06-15 Shindengen Electric Manufacturing Co., Ltd. DC power supply device with constant power output level
JP2003289674A (en) 2002-03-27 2003-10-10 Tama Tlo Kk Inverter circuit and photovoltaic generator
AUPS143902A0 (en) 2002-03-28 2002-05-09 Curtin University Of Technology Power conversion system and method of converting power
US6768180B2 (en) 2002-04-04 2004-07-27 C. Andre T. Salama Superjunction LDMOST using an insulator substrate for power integrated circuits
US20030193821A1 (en) 2002-04-10 2003-10-16 Michael Krieger Inverter for producing a true sine wave
JP3744458B2 (en) 2002-04-10 2006-02-08 住友電装株式会社 Terminal box device for solar cell module
WO2003087493A1 (en) 2002-04-11 2003-10-23 Rwe Schott Solar Inc. Apparatus and method for mounting photovoltaic power generating systems on buildings
US20030214274A1 (en) 2002-05-14 2003-11-20 Lethellier Patrice R. Multiple-phase power converter having current sharing and high frequency filtering
DE10222621A1 (en) 2002-05-17 2003-11-27 Josef Steger Process and circuit to control and regulated a photovoltaic device assembly for solar energy has controlled bypass for each cell to ensure maximum power operation
CA2388434A1 (en) 2002-05-31 2003-11-30 Catena Networks Canada Inc. Method of controlling low frequency load currents drawn from a dc source
JP4162523B2 (en) 2002-06-03 2008-10-08 シャープ株式会社 Inverter
US6800964B2 (en) 2002-06-10 2004-10-05 Bernhard Beck Plural configurable DC sources to provide optimal power to plural configurable inverters
US6768047B2 (en) 2002-06-13 2004-07-27 Koninklijke Philips Electronics N.V. Autonomous solid state lighting system
JP2004079997A (en) 2002-06-19 2004-03-11 Canon Inc Power generation system and power generating device
WO2004001942A1 (en) 2002-06-23 2003-12-31 Powerlynx A/S Power converter
US8116889B2 (en) 2002-06-27 2012-02-14 Openpeak Inc. Method, system, and computer program product for managing controlled residential or non-residential environments
US20040211456A1 (en) 2002-07-05 2004-10-28 Brown Jacob E. Apparatus, system, and method of diagnosing individual photovoltaic cells
US6833635B2 (en) 2002-07-08 2004-12-21 Artesyn Technologies, Inc. Dual input DC-to-DC power converter
US7612283B2 (en) 2002-07-09 2009-11-03 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
WO2004006342A1 (en) 2002-07-09 2004-01-15 Canon Kabushiki Kaisha Solar power generation apparatus and its manufacturing method
JP2004096090A (en) 2002-07-09 2004-03-25 Canon Inc Solar power generation equipment, solar power generation system, and method for manufacturing solar power generation equipment
US7634667B2 (en) 2002-07-12 2009-12-15 Hewlett-Packard Development Company, L.P. User-configurable power architecture with hot-pluggable power modules
JP4032854B2 (en) 2002-07-12 2008-01-16 新神戸電機株式会社 Battery state detection system and automobile equipped with the system
WO2004008619A2 (en) 2002-07-15 2004-01-22 Koninklijke Philips Electronics N.V. Inverter
JP2004055603A (en) 2002-07-16 2004-02-19 Canon Inc Solar cell module, solar cell array, and photovoltaic power generation system
US7087332B2 (en) 2002-07-31 2006-08-08 Sustainable Energy Systems, Inc. Power slope targeting for DC generators
US7371963B2 (en) 2002-07-31 2008-05-13 Kyocera Corporation Photovoltaic power generation system
DE10235162A1 (en) 2002-08-01 2004-02-19 Robert Bosch Gmbh Controller in vehicle, especially for airbag, has converter with electrical isolation for supplying energy to components with earth connections, and data transfer coupling elements with isolation
US6850074B2 (en) 2002-08-05 2005-02-01 Encorp, Inc. System and method for island detection
JP2004129483A (en) 2002-08-08 2004-04-22 Canon Inc Power converter and generator
US6788033B2 (en) 2002-08-08 2004-09-07 Vlt, Inc. Buck-boost DC-DC switching power conversion
FR2843464B1 (en) 2002-08-09 2006-09-08 Cit Alcatel CIRCUIT FOR CONDITIONING A SOURCE AT THE MAXIMUM POWER POINT
JP2004096601A (en) 2002-09-03 2004-03-25 Yazaki Corp Power source superimposition multiplex communication equipment for vehicle
US6768658B2 (en) 2002-09-04 2004-07-27 Artesyn Technologies, Inc. DC-DC power supply with at least two paralleled converters and current share method for same
US7024568B2 (en) 2002-09-06 2006-04-04 National Semiconductor Corporation Method and system for providing self-calibration for adaptively adjusting a power supply voltage in a digital processing system
US6744643B2 (en) 2002-09-06 2004-06-01 Phoenixtec Power Co., Ltd. Push-pull booster circuit with a pair of inductors for coupling
US20040053090A1 (en) 2002-09-16 2004-03-18 Hanson George E. Fuel cell based battery backup apparatus for storage subsystems
JP2004111528A (en) 2002-09-17 2004-04-08 Matsushita Electric Ind Co Ltd Step-up transformer for magnetron drive
JP2004111754A (en) 2002-09-19 2004-04-08 Sumitomo Special Metals Co Ltd Inductor
FR2844890B1 (en) 2002-09-19 2005-01-14 Cit Alcatel CONDITIONING CIRCUIT FOR POWER SOURCE AT MAXIMUM POINT OF POWER, SOLAR GENERATOR, AND CONDITIONING METHOD
US6838856B2 (en) 2002-10-04 2005-01-04 Spx Corporation Apparatus and method for high-frequency operation in a battery charger
DE10248447A1 (en) 2002-10-17 2004-04-29 Badische Stahl-Engineering Gmbh Process and device for impedance matching especially for solar modules has differentiating unit and amplifier to maximize power at the load
JP3705259B2 (en) 2002-10-22 2005-10-12 株式会社デンソー Power controller
CN2579063Y (en) 2002-10-24 2003-10-08 新疆新能源股份有限公司 Solar power generation controller
JP2004147465A (en) 2002-10-25 2004-05-20 Canon Inc Converter
CN100338869C (en) 2002-11-15 2007-09-19 轻风株式会社 Wind power generator
US6813168B2 (en) 2002-11-18 2004-11-02 Power Integrations, Inc. Method and apparatus for providing input EMI filtering in power supplies
US7138730B2 (en) 2002-11-22 2006-11-21 Virginia Tech Intellectual Properties, Inc. Topologies for multiple energy sources
US7176654B2 (en) 2002-11-22 2007-02-13 Milwaukee Electric Tool Corporation Method and system of charging multi-cell lithium-based batteries
US6966184B2 (en) 2002-11-25 2005-11-22 Canon Kabushiki Kaisha Photovoltaic power generating apparatus, method of producing same and photovoltaic power generating system
US6795318B2 (en) 2002-11-27 2004-09-21 Hewlett-Packard Development Company, Lp. Portable modular electronic system
EP1576669A1 (en) 2002-12-10 2005-09-21 Power Electronics Design Centre Power integrated circuits
JP2004208494A (en) 2002-12-11 2004-07-22 Canon Inc Method for controlling signal generator
JP2004241753A (en) 2002-12-13 2004-08-26 Canon Inc Solar cell module
US6788146B2 (en) 2002-12-16 2004-09-07 Texas Instruments Incorporated Capacitor compensation in miller compensated circuits
US20040125618A1 (en) 2002-12-26 2004-07-01 Michael De Rooij Multiple energy-source power converter system
DE102004001011B4 (en) 2003-01-08 2010-04-15 Sumitomo Wiring Systems, Ltd., Yokkaichi Connection box device for a solar cell module and a connection method for a connection box device
US7088015B2 (en) 2003-01-17 2006-08-08 Intersil Americas Inc. Smooth voltage regulation transition circuit having fast recovery
US6853569B2 (en) 2003-01-17 2005-02-08 The Hong Kong Polytechnic University DC to DC converter
US7342171B2 (en) 2003-01-23 2008-03-11 Solar Intergrated Technologies, Inc. Integrated photovoltaic roofing component and panel
US6833713B2 (en) 2003-01-31 2004-12-21 Delphi Technologies, Inc. Smart wire harness for an electrical circuit
AU2003200316B2 (en) 2003-01-31 2009-10-01 Mono Pumps Limited Solar-powered pumping device
US6837739B2 (en) 2003-01-31 2005-01-04 Hewlett-Packard Development Company, L.P. Battery connection interrupter
IES20030065A2 (en) 2003-02-03 2004-03-10 John Blake An electrical box
US7046532B2 (en) 2003-02-06 2006-05-16 Matsushita Electric Industrial Co., Ltd. Switching power supply
KR100468127B1 (en) 2003-02-13 2005-01-27 넥스콘 테크놀러지 주식회사 Uniform Charging Device of Battery Cell
US7099169B2 (en) 2003-02-21 2006-08-29 Distributed Power, Inc. DC to AC inverter with single-switch bipolar boost circuit
US7463500B2 (en) 2003-02-21 2008-12-09 Xantrex Technology, Inc. Monopolar DC to bipolar DC to AC converter
US6936995B2 (en) 2003-02-25 2005-08-30 General Motors Corporation Battery voltage reduction
JP2004260944A (en) 2003-02-26 2004-09-16 Sharp Corp Power generation equipment, method and apparatus for controlling the same, communication apparatus, its program, and control system of power generation equipment
US7600349B2 (en) 2003-02-26 2009-10-13 Unirac, Inc. Low profile mounting system
JP2004265671A (en) 2003-02-28 2004-09-24 Hitachi Ltd Operation control method and device for fuel cell
US6894466B2 (en) 2003-02-28 2005-05-17 Astec International Limited Active current sharing circuit
JP4585774B2 (en) 2003-03-07 2010-11-24 キヤノン株式会社 Power conversion device and power supply device
JP3548765B1 (en) 2003-03-11 2004-07-28 オムロン株式会社 Maximum power tracking controller
GB2399465A (en) 2003-03-13 2004-09-15 Bombardier Transp A protection arrangement for transferring electric power to a power consumer
DE10312921A1 (en) 2003-03-22 2004-10-14 Sma Regelsysteme Gmbh Circuit arrangement, additional module and solar system
JP2004312994A (en) 2003-03-27 2004-11-04 Tokyo Rika Daigaku Kagaku Gijutsu Koryu Center Power conditioner for passive generator output system
EP1471661A1 (en) 2003-03-31 2004-10-27 Magnetek S.p.A. Packet communication between a collecting unit and a plurality of control devices over the power supply line
FR2853469B1 (en) 2003-04-02 2008-08-22 Electricite De France SAFETY PHOTOVOLTAIC PANEL AGAINST FLIGHT
US7259474B2 (en) 2003-04-09 2007-08-21 Utstarcom, Inc. Method and apparatus for aggregating power from multiple sources
US7506179B2 (en) 2003-04-11 2009-03-17 Zilker Labs, Inc. Method and apparatus for improved DC power delivery management and configuration
JP2004319812A (en) 2003-04-17 2004-11-11 Canon Inc Solar cell module with electric power converter
US6914418B2 (en) 2003-04-21 2005-07-05 Phoenixtec Power Co., Ltd. Multi-mode renewable power converter system
US7009406B2 (en) 2003-04-24 2006-03-07 Delphi Technologies, Inc. Arc fault detector and method
US20040211458A1 (en) 2003-04-28 2004-10-28 General Electric Company Tandem photovoltaic cell stacks
US7411309B2 (en) 2003-05-02 2008-08-12 Xantrex Technology Inc. Control system for doubly fed induction generator
US7158395B2 (en) 2003-05-02 2007-01-02 Ballard Power Systems Corporation Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
ATE445254T1 (en) 2003-05-06 2009-10-15 Enecsys Ltd POWER SUPPLY CIRCUITS
US7054173B2 (en) 2003-05-07 2006-05-30 Toshiba International Corporation Circuit with DC filter having a link fuse serially connected between a pair of capacitors
JP2004334704A (en) 2003-05-09 2004-11-25 Canon Inc Power converter, its control method, and photovoltaic generator
JP2004336944A (en) 2003-05-09 2004-11-25 Canon Inc Power converter and phtovolatic generation system
US6985799B2 (en) 2003-05-13 2006-01-10 Bae Systems Controls, Inc. Energy storage modules and management system
US7446750B2 (en) 2003-05-23 2008-11-04 Samsung Electronics Co., Ltd. Inverter and liquid crystal display including inverter
EP1642355A4 (en) 2003-05-28 2015-05-27 Beacon Power Llc Power converter for a solar panel
WO2004110659A2 (en) 2003-06-09 2004-12-23 Seahorse Power Company Solar powered compaction apparatus
DE60326666D1 (en) 2003-06-09 2009-04-23 Kyosemi Corp generator system
US6995658B2 (en) 2003-06-11 2006-02-07 The Boeing Company Digital communication over 28VDC power line
US9010645B2 (en) 2003-06-13 2015-04-21 Michael Arnouse Portable computing system and portable computer for use with same
US6708507B1 (en) 2003-06-17 2004-03-23 Thermo King Corporation Temperature control apparatus and method of determining malfunction
US6949843B2 (en) 2003-07-11 2005-09-27 Morningstar, Inc. Grid-connected power systems having back-up power sources and methods of providing back-up power in grid-connected power systems
TWM240729U (en) 2003-07-21 2004-08-11 Richtek Techohnology Corp Voltage transformer with enhanced efficiency
DE20311183U1 (en) 2003-07-21 2004-07-08 Tyco Electronics Amp Gmbh Junction box for a solar panel and solar panel
DE60309155T2 (en) 2003-08-01 2007-08-30 Infineon Technologies Ag The current sensing circuit
EP1652200B1 (en) 2003-08-06 2013-03-06 Biosource, Inc. Power efficient flow through capacitor system
US6842354B1 (en) 2003-08-08 2005-01-11 Rockwell Automation Technologies, Inc. Capacitor charge balancing technique for a three-level PWM power converter
WO2005015718A2 (en) 2003-08-08 2005-02-17 Astec International Limited A circuit for maintaining hold-up time while reducing bulk capacitor size and improving efficiency in a power supply
KR100512128B1 (en) 2003-08-14 2005-09-05 한국에너지기술연구원 Automatic arraying machine of solar cells
US7872454B2 (en) 2003-08-21 2011-01-18 Marvell World Trade Ltd. Digital low dropout regulator
US7479769B2 (en) 2003-08-29 2009-01-20 Nxp B.V. Power delivery system having cascaded buck stages
US7068017B2 (en) 2003-09-05 2006-06-27 Daimlerchrysler Corporation Optimization arrangement for direct electrical energy converters
JP2005086021A (en) 2003-09-09 2005-03-31 Mitsubishi Electric Corp Shielding case
CN100379113C (en) 2003-09-11 2008-04-02 上海交通大学 Integrated method for realizing parallel operation power generation and power network reactive power compensation simultaneously
US20050057215A1 (en) 2003-09-15 2005-03-17 Stefan Matan Systems and methods for charging a battery
US20050057214A1 (en) 2003-09-15 2005-03-17 Stefan Matan Systems and methods for generating renewable energy
SE0302453D0 (en) 2003-09-16 2003-09-16 Solarit Ab A module, a converter, a node, and a system
US7091707B2 (en) 2003-09-29 2006-08-15 Xantrex Technology, Inc. Method and apparatus for controlling power drawn from an energy converter
CN100492857C (en) 2003-09-30 2009-05-27 三菱电机株式会社 Power converter
DE10345302A1 (en) 2003-09-30 2005-04-21 Hella Kgaa Hueck & Co Electronic device manufacturing method has electronic component enclosed by plastics housing with applied metallized layer for providing electromagnetic screening
US7358442B2 (en) 2003-09-30 2008-04-15 Rockwell Automation Technologies, Inc. Bus structure for power switching circuits
JP4791689B2 (en) 2003-10-06 2011-10-12 パナソニック株式会社 Power supply
US8570778B2 (en) 2003-10-14 2013-10-29 Nxp B.V. Power converter with a single diode rectifier and a filter
US20050077879A1 (en) 2003-10-14 2005-04-14 Near Timothy Paul Energy transfer device for series connected energy source and storage devices
FR2861179B1 (en) 2003-10-21 2006-01-20 Thales Sa DEVICE FOR NON-DISSIPATING CURRENT MEASUREMENT IN INDUCTANCE
DE20316088U1 (en) 2003-10-21 2003-12-18 Aeg Svs Power Supply Systems Gmbh Device for setting alternating current
JP3826929B2 (en) 2003-10-27 2006-09-27 ソニー株式会社 Battery pack
US6984967B2 (en) 2003-10-29 2006-01-10 Allegro Microsystems, Inc. Multi-mode switching regulator
US7420815B2 (en) 2003-11-06 2008-09-02 Gateway Inc. System for assembling computers to provide a favorable import classification
JP2005143217A (en) 2003-11-06 2005-06-02 Sharp Corp Separate power supply system
US20050109386A1 (en) 2003-11-10 2005-05-26 Practical Technology, Inc. System and method for enhanced thermophotovoltaic generation
JP2005151662A (en) 2003-11-13 2005-06-09 Sharp Corp Inverter device and distributed power supply system
US7074659B2 (en) 2003-11-13 2006-07-11 Volterra Semiconductor Corporation Method of fabricating a lateral double-diffused MOSFET (LDMOS) transistor
US6940735B2 (en) 2003-11-14 2005-09-06 Ballard Power Systems Corporation Power converter system
JP4231769B2 (en) 2003-11-14 2009-03-04 株式会社日立産機システム Filter device and power conversion device to which the filter device is connected
JP2005150318A (en) 2003-11-14 2005-06-09 Canon Inc Solar cell module and its manufacturing method
US7061214B2 (en) 2003-11-25 2006-06-13 Texas Instruments Incorporated Single inductor dual output buck converter with frequency and time varying offset control
TWI232361B (en) 2003-11-25 2005-05-11 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system
BRPI0318597A8 (en) 2003-11-28 2017-10-10 Consistel Pte Ltd WIRELESS COMMUNICATION SYSTEM AND ELEVATOR SYSTEM THAT HAS THE SAME
DE10356514A1 (en) 2003-12-03 2005-07-14 Siemens Ag Power supply means
EP1698003A4 (en) 2003-12-17 2009-09-02 Exide Technologies Battery energy storage modules
CN100487970C (en) 2003-12-18 2009-05-13 武汉理工大学 Multilayer distributed battery managing system based on CAN bus
US7183667B2 (en) 2003-12-19 2007-02-27 Square D Company Method and apparatus for power inverter synchronization
JP2005192314A (en) 2003-12-25 2005-07-14 Kyocera Corp Power converter
US20050139258A1 (en) 2003-12-29 2005-06-30 Yung-Hsiang Liu Solar cell array control device
CN2672938Y (en) 2003-12-29 2005-01-19 中国科学院电工研究所 Independently operating solar energy photovoltaic power station controller
TWI260807B (en) 2003-12-31 2006-08-21 Ind Tech Res Inst Equalizer for series of connected battery strings
EP1706936A1 (en) 2004-01-09 2006-10-04 Philips Intellectual Property & Standards GmbH Decentralized power generation system
JP4846597B2 (en) 2004-01-09 2011-12-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ DC / DC converter and distributed power generation system including the same
WO2005069096A1 (en) 2004-01-12 2005-07-28 Koninklijke Philips Electronics, N.V. Solar power source with maximum power-point tracking
US7352154B2 (en) 2004-01-14 2008-04-01 Vanner, Inc. Electrical system control for a vehicle
CN2672668Y (en) 2004-01-17 2005-01-19 沈阳新松机器人自动化股份有限公司 Lithium power cell detecting and control device
US7227278B2 (en) 2004-01-21 2007-06-05 Nextek Power Systems Inc. Multiple bi-directional input/output power control system
EP1709504B1 (en) 2004-01-26 2008-03-05 European Space Agency Arc quenching device for a solar array
DE202004001246U1 (en) 2004-01-27 2004-04-08 Institut für Solare Energieversorgungstechnik Verein an der Universität Kassel e.V. Solar radiation monitor for power installation planning and evaluation has solar cell sensor with self powered supply and radio data transmission
DE102004004292A1 (en) 2004-01-28 2005-09-08 Siemens Ag Arrangement and method for bidirectionally transmitting signals in a motor vehicle
US7148669B2 (en) 2004-02-02 2006-12-12 The Regents Of The University Of Colorado, A Body Corporate Predictive digital current controllers for switching power converters
US7510640B2 (en) 2004-02-18 2009-03-31 General Motors Corporation Method and apparatus for hydrogen generation
JP3916163B2 (en) 2004-02-19 2007-05-16 ローム株式会社 Current direction detection circuit and switching regulator provided with the same
JP4457692B2 (en) 2004-02-23 2010-04-28 パナソニック電工株式会社 Maximum power tracking control method and power conversion device
TWI342659B (en) 2004-03-05 2011-05-21 Rohm Co Ltd Dc-ac converter, controller ic thereof, and electronic device using such dc-ac converter
DE602005009510D1 (en) 2004-03-05 2008-10-16 Koninkl Philips Electronics Nv LAMP DRIVER WITH SOLAR CELLS
JP2005251039A (en) 2004-03-05 2005-09-15 Japan Science & Technology Agency Maximum power control method for solar battery and its controller
US7282814B2 (en) 2004-03-08 2007-10-16 Electrovaya Inc. Battery controller and method for controlling a battery
WO2005091483A1 (en) 2004-03-18 2005-09-29 Mitsui & Co., Ltd. Dc-dc converter
JP2005276942A (en) 2004-03-23 2005-10-06 Canon Inc Solar cell power generator and system, and control method therefor
JP4217644B2 (en) 2004-03-23 2009-02-04 キヤノン株式会社 Power generation system, power generation system management apparatus and management method
JP4205071B2 (en) 2004-03-25 2009-01-07 シャープ株式会社 Power supply
TWI234339B (en) 2004-03-25 2005-06-11 Richtek Techohnology Corp High-efficiency voltage transformer
JP2004194500A (en) 2004-03-25 2004-07-08 Sharp Corp Power conversion apparatus for solar power generation
JP2005283516A (en) 2004-03-30 2005-10-13 Fujio Kurokawa Secondary battery monitoring system
JP4196867B2 (en) 2004-03-31 2008-12-17 株式会社デンソー Bidirectional buck-boost chopper circuit, inverter circuit using the same, and DC-DC converter circuit
US7078883B2 (en) 2004-04-07 2006-07-18 The Board Of Trustees Of The University Of Illinois Method and apparatus for starting power converters
CN1684348B (en) 2004-04-16 2010-10-20 深圳赛意法微电子有限公司 Driver for control interface convenient for driver and convertor circuit matching use
JP2005312138A (en) 2004-04-19 2005-11-04 Canon Inc Power controller, power generation system and power system
CA2564393C (en) 2004-04-26 2013-03-12 Armstrong's Intelligent Monitoring Ltd. Container monitoring system
US7176774B2 (en) 2004-05-04 2007-02-13 Raytheon Company Differential mode inductor with a center tap
US7248946B2 (en) 2004-05-11 2007-07-24 Advanced Energy Conversion, Llc Inverter control methodology for distributed generation sources connected to a utility grid
US20060043942A1 (en) 2004-05-13 2006-03-02 Isaac Cohen Power converter apparatus and methods using output current feedforward control
US6856102B1 (en) 2004-05-14 2005-02-15 Hitech Electronics Co., Ltd. Three-stage electronic ballast for metal halide lamps
JP4704099B2 (en) 2004-05-21 2011-06-15 ローム株式会社 Power supply device and electronic device using the same
WO2005112551A2 (en) 2004-05-21 2005-12-01 Hansung Engineering Co. Ltd Method for compensating for partial shade in photovoltaic power system
US7042352B2 (en) 2004-05-27 2006-05-09 Lawrence Kates Wireless repeater for sensor system
WO2005119609A2 (en) 2004-05-27 2005-12-15 Lawrence Kates Wireless sensor system
US7595616B2 (en) 2004-05-28 2009-09-29 Texas Instruments Deutschland Gmbh Control circuit for a polarity inverting buck-boost DC-DC converter
US20050269988A1 (en) 2004-06-04 2005-12-08 Maxwell Technologies, Inc. Voltage balancing circuit for multi-cell modules
EP1602934A1 (en) 2004-06-04 2005-12-07 Hendrik Oldenkamp Sensor device for monitoring the operation of a PV system, and PV system with such a sensor device
US20050269989A1 (en) 2004-06-05 2005-12-08 Geren Michael D Cell balancing circuit
CA2476030A1 (en) 2004-06-09 2005-12-09 Wilsun Xu A power signaling based technique for detecting islanding conditions in electric power distribution systems
US7615981B2 (en) 2004-06-09 2009-11-10 O2Micro International Limited Boost converter with enhanced control capabilities of emulating an inductor current
US7262979B2 (en) 2004-06-09 2007-08-28 Yuan Ze University Current source wave voltage inverter voltage-clamping and soft-switching techniques, and fuel cell system using the same
US7348802B2 (en) 2004-06-15 2008-03-25 Stmicroelectronics Pvt. Ltd. Differential receiver
JP4367251B2 (en) 2004-06-15 2009-11-18 ソニー株式会社 Power supply device and electronic device
US7248490B2 (en) 2004-06-17 2007-07-24 Gaia Power Technologies, Inc. Battery and inverter configuration with increased efficiency
CN1977224A (en) 2004-06-21 2007-06-06 赞翠克斯国际公司 Output power factor control of pulse-width modulated inverter
US20050287402A1 (en) 2004-06-23 2005-12-29 Maly Douglas K AC impedance monitoring of fuel cell stack
US7174973B1 (en) 2004-06-24 2007-02-13 C.E. Electronics, Inc. Power tool interface
WO2006002380A2 (en) 2004-06-24 2006-01-05 Ambient Control Systems, Inc. Systems and methods for providing maximum photovoltaic peak power tracking
JP2006013827A (en) 2004-06-25 2006-01-12 Hitachi Communication Technologies Ltd Packet transfer apparatus
US20050286274A1 (en) 2004-06-29 2005-12-29 Hans-Erik Pfitzer Self-testing power supply apparatus, methods and computer program products
US20060001406A1 (en) 2004-07-01 2006-01-05 Stefan Matan Power extractor circuit
US8013583B2 (en) 2004-07-01 2011-09-06 Xslent Energy Technologies, Llc Dynamic switch power converter
ES2249147B1 (en) 2004-07-01 2007-05-01 Fundacion Robotiker SMART PHOTOVOLTAIC MODULE.
ES2249149B1 (en) 2004-07-08 2007-04-16 Electronic Intelligent Controls, S.L. CAMAREROS NOTICE SYSTEM.
CN2706955Y (en) 2004-07-08 2005-06-29 浙江大学 Boost type active staggered parallel soft switch DC-DC converter
CN100334797C (en) 2004-07-08 2007-08-29 浙江大学 Boost type active interlaced parallel soft switch circuit
AU2005262278B2 (en) 2004-07-13 2009-03-26 Tigo Energy, Inc. A device for distributed maximum power tracking for solar arrays
US7839022B2 (en) 2004-07-13 2010-11-23 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
WO2006011071A2 (en) 2004-07-20 2006-02-02 Koninklijke Philips Electronics N.V. 3-phase solar converter circuit and method
US7218541B2 (en) 2004-07-21 2007-05-15 Dell Products L.P. High efficiency two stage inverter
US7564149B2 (en) 2004-07-21 2009-07-21 Kasemsan Siri Sequentially-controlled solar array power system with maximum power tracking
WO2006011359A1 (en) 2004-07-30 2006-02-02 Honda Motor Co., Ltd. Power source device
JP2006041440A (en) 2004-07-30 2006-02-09 Canon Inc Ac module, its manufacturing method, and solar energy power generating system
DE102004037446B4 (en) 2004-08-02 2006-11-02 Conergy Ag Transformerless inverter for solar grid feed-in
ITRM20040396A1 (en) 2004-08-04 2004-11-04 Univ Roma SYSTEM DISTRIBUTED FOR THE POWER SUPPLY OF THE POWER BUS AND METHOD OF CONTROL OF THE POWER USING SUCH SYSTEM.
US7280377B2 (en) 2004-08-16 2007-10-09 Caterpillar Inc. Power converter in a utility interactive system
US7538684B2 (en) 2004-08-18 2009-05-26 Hamilton Sundstrand Corporation Circuit health monitoring system and method
US7456518B2 (en) 2004-08-31 2008-11-25 American Power Conversion Corporation Method and apparatus for providing uninterruptible power
JP4606935B2 (en) 2004-09-13 2011-01-05 株式会社ダイヘン Control method of photovoltaic power generation system
US7265524B2 (en) 2004-09-14 2007-09-04 Linear Technology Corporation Adaptive control for inducer based buck-boost voltage regulators
WO2006033143A1 (en) 2004-09-22 2006-03-30 Mitsubishi Denki Kabushiki Kaisha Solar photovoltaic power generation system and booster unit thereof
JP4502767B2 (en) 2004-09-29 2010-07-14 株式会社リコー Level shift circuit
US20060068239A1 (en) 2004-09-30 2006-03-30 Yasuaki Norimatsu Electric power source apparatus using fuel cell and method of controlling the same
JP4423157B2 (en) 2004-10-06 2010-03-03 キヤノン株式会社 Power line communication apparatus and control method thereof
EP1805880A2 (en) 2004-10-20 2007-07-11 Ballard Power Systems Corporation Power system method and apparatus
WO2006045016A2 (en) 2004-10-20 2006-04-27 Enerdel, Inc. Integrated drop-in lithium battery substitute for lead-acid batteries
US8141306B2 (en) 2004-10-22 2012-03-27 Kyocera Corporation Solar battery module device and method of installing the same
US7701083B2 (en) 2004-10-27 2010-04-20 Nextek Power Systems, Inc. Portable hybrid applications for AC/DC load sharing
US7129784B2 (en) 2004-10-28 2006-10-31 Broadcom Corporation Multilevel power amplifier architecture using multi-tap transformer
JP2006136086A (en) 2004-11-04 2006-05-25 Hitachi Ltd Current detection method, current detector, power converter using current detector and vehicle using power converter
GB2419968B (en) 2004-11-08 2010-02-03 Enecsys Ltd Power supply circuits
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
GB2421847B (en) 2004-11-08 2006-12-27 Enecsys Ltd Integrated circuits
WO2006048689A2 (en) 2004-11-08 2006-05-11 Encesys Limited Integrated circuits and power supplies
DE102004053942A1 (en) 2004-11-09 2006-05-11 Solarwatt Solar-Systeme Gmbh Connection unit for photovoltaic solar modules
US20060132102A1 (en) 2004-11-10 2006-06-22 Harvey Troy A Maximum power point tracking charge controller for double layer capacitors
DE102004054933B3 (en) 2004-11-13 2006-05-04 Sma Technologie Ag Protection device for a load current leading device
JP4841829B2 (en) 2004-11-17 2011-12-21 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
US7304461B2 (en) 2004-11-18 2007-12-04 Honda Motor Co., Ltd. DC/DC converter
DE102004056436B4 (en) 2004-11-19 2019-04-04 Jenoptik Advanced Systems Gmbh Method and device for detecting residual current arcs in electrical circuits
GB2420659B (en) 2004-11-25 2006-10-11 Simon Richard Daniel Collapsible rechargeable battery assembly with integral connector
JP2006155045A (en) 2004-11-26 2006-06-15 Sony Corp Electronic value information transmission system, and electronic value information transmission method
JP2006158067A (en) 2004-11-29 2006-06-15 Renesas Technology Corp Power supply driver circuit
KR20060060825A (en) 2004-12-01 2006-06-07 이성룡 High efficiency dc/dc converter using parallel power transfer
JP4945077B2 (en) 2004-12-03 2012-06-06 シャープ株式会社 Power storage equipment management system
US20060118162A1 (en) 2004-12-06 2006-06-08 Florida Atlantic University Powering a vehicle and providing excess energy to an external device using photovoltaic cells
US7142997B1 (en) 2004-12-08 2006-11-28 Tripac Systems, Inc. Automatic power factor corrector
US7560902B2 (en) 2004-12-10 2009-07-14 Xantrex International Duty cycle controller for high power factor battery charger
WO2006071436A2 (en) 2004-12-29 2006-07-06 Atira Technologies, Llc A converter circuit and technique for increasing the output efficiency of a variable power source
US20060185727A1 (en) 2004-12-29 2006-08-24 Isg Technologies Llc Converter circuit and technique for increasing the output efficiency of a variable power source
WO2006137948A2 (en) 2004-12-29 2006-12-28 Isg Technologies Llc Efficiency booster circuit and technique for maximizing power point tracking
KR100618775B1 (en) 2004-12-31 2006-08-31 동부일렉트로닉스 주식회사 semiconductor device
PT1836735E (en) 2005-01-14 2011-01-21 Multi Holding Ag Connection box for a solar panel
US8204709B2 (en) 2005-01-18 2012-06-19 Solar Sentry Corporation System and method for monitoring photovoltaic power generation systems
JP4556677B2 (en) 2005-01-18 2010-10-06 オムロン株式会社 Power conditioner with built-in curve tracer
CN100364203C (en) 2005-01-21 2008-01-23 宇泉能源科技股份有限公司 Portable composite battery managing system
US7714550B2 (en) 2005-01-24 2010-05-11 Linear Technology Corporation System and method for tracking a variable characteristic through a range of operation
DE102005012213B4 (en) 2005-01-26 2009-01-15 G. Spelsberg Gmbh & Co. Kg Connected circuit
US7864497B2 (en) 2005-01-26 2011-01-04 Guenther Spelsberg Gmbh & Co. Kg Protective circuit
CN101107712A (en) 2005-01-26 2008-01-16 冈瑟斯佩尔斯堡有限责任两合公司 Protective circuit with current bypass for solar cell module
US7193872B2 (en) 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
US7281141B2 (en) 2005-01-31 2007-10-09 Powersdsine, Ltd.-Microsemi Corporation Bypass discharge path for a power sourcing equipment
JP4945727B2 (en) 2005-01-31 2012-06-06 豊次 阿閉 Leakage current interruption device and method
JP5236858B2 (en) 2005-02-01 2013-07-17 日清紡ホールディングス株式会社 Measuring method of output characteristics of solar cell.
JP5379948B2 (en) 2005-02-02 2013-12-25 シャープ株式会社 Server for distributed power generation management system and power generation management system using the same
US7126314B2 (en) 2005-02-04 2006-10-24 Micrel, Incorporated Non-synchronous boost converter including switched schottky diode for true disconnect
US20060176031A1 (en) 2005-02-04 2006-08-10 Ess Technology, Inc. Dual output switching regulator and method of operation
US7466112B2 (en) 2005-02-08 2008-12-16 Linear Technology Corporation Variable frequency current-mode control for switched step up-step down regulators
EP1852964B1 (en) 2005-02-25 2012-01-18 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
EP2464000A3 (en) 2005-02-25 2017-08-30 Mitsubishi Denki Kabushiki Kaisha Power conversion apparatus
US7602626B2 (en) 2005-02-25 2009-10-13 Mitsubishi Electric Corporation Power conversion apparatus
DE102005008809A1 (en) 2005-02-26 2006-10-12 Kostal Industrie Elektrik Gmbh inverter
TWI274454B (en) 2005-03-04 2007-02-21 Ind Tech Res Inst A power management method and system of a hybrid power supply
AU2006221628A1 (en) 2005-03-11 2006-09-14 Techtium Ltd. Bidirectional battery charge controller
JP4546296B2 (en) 2005-03-17 2010-09-15 三菱電機株式会社 DC / DC converter device
JP2006262665A (en) 2005-03-18 2006-09-28 Toyota Motor Corp Inverter unit for vehicle
US7919952B1 (en) 2005-03-21 2011-04-05 Microsemi Corporation Automatic gain control technique for current monitoring in current-mode switching regulators
JP4669723B2 (en) 2005-03-23 2011-04-13 東芝三菱電機産業システム株式会社 Electric motor control device
JP2006278755A (en) 2005-03-29 2006-10-12 Kyocera Corp Solar battery module and solar power generation system using same
JP4794189B2 (en) 2005-03-30 2011-10-19 三洋電機株式会社 Solar power plant
US7359223B2 (en) 2005-03-30 2008-04-15 General Electric Company Power converter system and method
WO2006124130A1 (en) 2005-03-31 2006-11-23 Energycs Method and system for retrofitting a full hybrid to be a plug-in hybrid
US8003268B2 (en) 2005-03-31 2011-08-23 Smith William F Modular regenerative fuel cell system
JP2006286408A (en) 2005-03-31 2006-10-19 Hitachi Ltd Maximum power point voltage specifying method for fuel cell, fuel cell control system, and power control device used for fuel cell control system
DE102005015992B4 (en) 2005-04-07 2011-09-15 Texas Instruments Deutschland Gmbh DC-DC converter
US20060225781A1 (en) 2005-04-07 2006-10-12 Steve Locher Portable solar panel with attachment points
WO2006110613A2 (en) 2005-04-11 2006-10-19 The University Of Toledo Integrated photovoltaic-electrolysis cell
US7221107B2 (en) 2005-04-13 2007-05-22 Ballastronic, Inc. Low frequency electronic ballast for gas discharge lamps
CN100362724C (en) 2005-04-15 2008-01-16 金宝电子工业股份有限公司 Apparatus and method for multi function products effectively utilizing battery electricity quantity
DE102005017835B3 (en) 2005-04-18 2006-11-23 Beck Energy Gmbh Photovoltaic generator with thermal switch element
US20060235717A1 (en) 2005-04-18 2006-10-19 Solaria Corporation Method and system for manufacturing solar panels using an integrated solar cell using a plurality of photovoltaic regions
DE102005018173B4 (en) 2005-04-19 2009-05-14 Swiontek, Karl, Dipl.-Ing. Switching device for safe interruption of operation of photovoltaic systems
JP2006302733A (en) 2005-04-22 2006-11-02 Matsushita Electric Ind Co Ltd Battery pack and its connection system
US20060237058A1 (en) 2005-04-25 2006-10-26 Mcclintock Ronald B Direct current combiner box with power monitoring, ground fault detection and communications interface
JP4628172B2 (en) 2005-04-28 2011-02-09 セイコーインスツル株式会社 Boost DC-DC and semiconductor device having boost DC-DC
DE102005020129A1 (en) 2005-04-29 2006-11-09 Tyco Electronics Amp Gmbh Solar module for generating electrical energy
FR2885237B1 (en) 2005-05-02 2007-06-29 Agence Spatiale Europeenne DEVICE FOR CONTROLLING CONTINUOUS VOLTAGE SWITCH CONVERTER AND USE THEREOF FOR MAXIMIZING THE POWER SUPPLIED BY A PHOTOVOLTAIC GENERATOR
US7602408B2 (en) 2005-05-04 2009-10-13 Honeywood Technologies, Llc Luminance suppression power conservation
GB2425884A (en) 2005-05-04 2006-11-08 Lontra Environmental Technolog Photovoltaic module
JP4584024B2 (en) 2005-05-17 2010-11-17 日本電気株式会社 Discharge prevention circuit and electronic device provided with the discharge prevention circuit
DE102005023291A1 (en) 2005-05-20 2006-11-23 Sma Technologie Ag inverter
DE102005036153B4 (en) 2005-05-24 2007-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Protection switching device for a solar module
US8063300B2 (en) 2005-05-26 2011-11-22 Solfocus, Inc. Concentrator solar photovoltaic array with compact tailored imaging power units
US7233112B2 (en) 2005-05-26 2007-06-19 Electronic Theatre Controls, Inc. PWM switching power supply control methods
JP5151012B2 (en) 2005-05-30 2013-02-27 富士電機株式会社 Manufacturing method of semiconductor device
US7385833B2 (en) 2005-06-03 2008-06-10 Astec International Limited Snubber circuit for a power converter
US7157888B2 (en) 2005-06-06 2007-01-02 Aimtron Technology Corp. Light loading control circuit for a buck-boost voltage converter
JP5148073B2 (en) 2005-06-17 2013-02-20 日清紡ホールディングス株式会社 Measurement method using solar simulator
US7176667B2 (en) 2005-06-20 2007-02-13 Aimtron Technology Corp. Buck-boost voltage converter
US7148650B1 (en) 2005-06-22 2006-12-12 World Water & Power Corp. Maximum power point motor control
DE102005030907B4 (en) 2005-06-30 2012-01-12 Pairan Gmbh Solar generator system, multi-rank inverter for solar generator systems and method for checking the insulation resistance of the solar generator strings
DE202005020161U1 (en) 2005-07-12 2006-11-23 REV Renewable Energy Ventures, Inc., Aloha module monitoring
ITSA20050014A1 (en) 2005-07-13 2007-01-14 Univ Degli Studi Salerno SINGLE STAGE INVERTER DEVICE, AND ITS CONTROL METHOD, FOR POWER CONVERTERS FROM ENERGY SOURCES, IN PARTICULAR PHOTOVOLTAIC SOURCES.
DE102005032864B4 (en) 2005-07-14 2011-04-14 Sma Solar Technology Ag Method for finding a maximum power of a photovoltaic generator
US7388348B2 (en) 2005-07-15 2008-06-17 Mattichak Alan D Portable solar energy system
US20070013349A1 (en) 2005-07-18 2007-01-18 Bassett John A Zero voltage switching buck converter
US8264193B2 (en) 2005-07-20 2012-09-11 Kular Andrew C Photovoltaic power output-utilizing device
JP2007058845A (en) 2005-07-27 2007-03-08 Gunma Prefecture Photovoltaic power generator
CN1933315B (en) 2005-07-27 2011-05-11 武藤健一 Sun's rays generating device
US7309850B2 (en) 2005-08-05 2007-12-18 Sinton Consulting, Inc. Measurement of current-voltage characteristic curves of solar cells and solar modules
JP4188954B2 (en) 2005-08-08 2008-12-03 三菱電機株式会社 Non-feedback load current device
US7319313B2 (en) 2005-08-10 2008-01-15 Xantrex Technology, Inc. Photovoltaic DC-to-AC power converter and control method
GB0516738D0 (en) 2005-08-16 2005-09-21 Trw Ltd Motor drive circuit
US7786716B2 (en) 2005-08-29 2010-08-31 The Aerospace Corporation Nanosatellite solar cell regulator
KR200402282Y1 (en) 2005-09-13 2005-11-28 주식회사 에스에너지 Monitering apparatus of solar photo condensing array
US7277304B2 (en) 2005-09-23 2007-10-02 Gm Global Technology Operations, Inc. Multiple inverter system with single controller and related operating method
WO2007084196A2 (en) 2005-09-26 2007-07-26 Atira Technologies, Llc Dynamic switch power converter
KR20070036528A (en) 2005-09-29 2007-04-03 매그나칩 반도체 유한회사 Image sensor and method for manufacturing the same
JP2007095617A (en) 2005-09-30 2007-04-12 Hitachi Ltd Fuel cell apparatus and method of controlling same
US7276886B2 (en) 2005-10-03 2007-10-02 Texas Instruments Incorporated Dual buck-boost converter with single inductor
WO2007041693A2 (en) 2005-10-04 2007-04-12 Thompson Technology Industries, Inc. System and method for array and string level monitoring of a grid-connected photovoltaic power system
JP2007104872A (en) 2005-10-07 2007-04-19 Ebara Densan Ltd Power converter
CN2891438Y (en) 2005-10-10 2007-04-18 浙江容大电力设备制造有限公司 Active power filter
US7375994B2 (en) 2005-10-11 2008-05-20 Texas Instruments Incorporated Highly efficient isolated AC/DC power conversion technique
US7944191B2 (en) 2005-10-14 2011-05-17 Monolithic Power Systems, Inc. Switching regulator with automatic multi mode conversion
JP4591304B2 (en) 2005-10-17 2010-12-01 株式会社豊田自動織機 Bidirectional DC / AC inverter
EP1946418A2 (en) 2005-10-24 2008-07-23 Conergy AG Switch-fuse with control management for solar cells
EP1785800A1 (en) 2005-11-11 2007-05-16 Monodraught Limited Ventilation control
JP5039980B2 (en) 2005-11-14 2012-10-03 日立ビークルエナジー株式会社 Secondary battery module
US20070107767A1 (en) 2005-11-16 2007-05-17 Arizona Public Service Company DC power-generation system and integral control apparatus therefor
CN100553398C (en) 2005-11-18 2009-10-21 清华大学 Solar energy high voltage sodium lamp controller based on single-stage inverter
US20070115635A1 (en) 2005-11-18 2007-05-24 Low Andrew G Passive cooling for fiber to the premise (FTTP) electronics
US20070121648A1 (en) 2005-11-28 2007-05-31 Philip Hahn Wireless communication system
US20080186004A1 (en) 2005-11-29 2008-08-07 Advanced Analogic Technologies, Inc. High-Frequency Power MESFET Boost Switching Power Supply
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
FR2894401B1 (en) 2005-12-07 2008-01-18 Transenergie Sa DEVICE FOR CONTROLLING AN ELECTRIC POWER GENERATION PLANT AND ELECTRIC POWER GENERATING PLANT USING SUCH A DEVICE
US7656811B2 (en) 2005-12-12 2010-02-02 At&T Intellectual Property I, L.P. Digital subscriber line access multiplexer wiring validation
DE112006003417T5 (en) 2005-12-15 2008-10-09 GM Global Technology Operations, Inc., Detroit Optimization of the efficiency of a photovoltaic electrolysis device
DE102005061532B4 (en) 2005-12-22 2008-05-29 Siemens Ag Österreich Load disconnecting circuit for the currentless connection and disconnection of electrical contacts
WO2007072517A1 (en) 2005-12-22 2007-06-28 Power-One Italy S.P.A. A system for producing electric power from renewable sources and a control method thereof
CN1328591C (en) 2005-12-26 2007-07-25 通领科技集团有限公司 Earth-fault circuit breaker life termination detecting-protecting method and its circuit
KR101212210B1 (en) 2005-12-26 2012-12-13 엘지디스플레이 주식회사 Backlight and liquid crystal display having the same
CN100347925C (en) 2006-01-06 2007-11-07 清华大学 Electric network power oscillation inhibitor based on photovoltaic battery
US7375503B2 (en) 2006-01-11 2008-05-20 Atmel Corporation System for current sensing in switched DC-to-DC converters
JP4585454B2 (en) 2006-01-11 2010-11-24 ルネサスエレクトロニクス株式会社 Switching power supply
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2454389B (en) 2006-01-13 2009-08-26 Enecsys Ltd Power conditioning unit
JP2009524400A (en) 2006-01-19 2009-06-25 エアエクスチェンジ・インコーポレーテッド Improvements in systems and methods for rotating wheels of rotary air energy recovery and dry dehumidification systems
US20080012724A1 (en) 2006-01-30 2008-01-17 Corcoran Kevin F Power line communications module and method
US7649434B2 (en) 2006-01-31 2010-01-19 Virginia Tech Intellectual Properties, Inc. Multiphase voltage regulator having coupled inductors with reduced winding resistance
DE102006005853A1 (en) 2006-02-09 2007-08-23 Robert Bosch Gmbh Switching power supply with adaptive and lossless switching operations
US7336085B2 (en) 2006-02-17 2008-02-26 Infineon Technologies Ag Current sensing circuit
KR100727017B1 (en) 2006-02-20 2007-06-13 이원기 Cooking device by steam
US7485987B2 (en) 2006-02-23 2009-02-03 Mitsubishi Denki Kabushiki Kaisha Power converting device
CN1838191A (en) 2006-02-24 2006-09-27 南京联宏自动化系统工程有限公司 Anti-theft alarm for electric power cable
US7315052B2 (en) 2006-03-02 2008-01-01 Micrel, Inc. Power FET with embedded body pickup
US7518346B2 (en) 2006-03-03 2009-04-14 Texas Instruments Deutschland Gmbh Buck-boost DC/DC converter with overlap control using ramp shift signal
EP2008343B1 (en) 2006-03-09 2017-08-09 SunPower Corporation, Systems Photovoltaic module mounting clip with integral grounding
AU2007225164A1 (en) 2006-03-13 2007-09-20 Green Volts, Inc. Tracking solar power system
US7760516B2 (en) 2006-03-17 2010-07-20 Eaton Corporation Modular UPS systems and methods using modular interconnect assemblies
US20070223165A1 (en) 2006-03-22 2007-09-27 Itri Benedict A Line powering in a multi-line environment
US7723865B2 (en) 2006-03-22 2010-05-25 Mitsubishi Electric Corporation Bidirectional buck boost DC-DC converter, railway coach drive control system, and railway feeder system
WO2007111868A1 (en) 2006-03-23 2007-10-04 Enphase Energy, Inc. Method and apparatus for converting direct current to alternating current
JP4890247B2 (en) 2006-03-27 2012-03-07 三菱電機株式会社 Grid-connected inverter device
JP4759422B2 (en) 2006-03-27 2011-08-31 日立アプライアンス株式会社 Power converter system and washing machine using the same
MX2008012512A (en) 2006-03-31 2008-12-16 Antoine Capel Circuit and method for monitoring the point of maximum power for solar energy sources and solar generator incorporating said circuit.
US7495419B1 (en) 2006-04-03 2009-02-24 National Semiconductor Corporation Apparatus and method for PFM buck-or-boost converter with smooth transition between modes
US7391190B1 (en) 2006-04-03 2008-06-24 National Semiconductor Corporation Apparatus and method for three-phase buck-boost regulation
CN101050770B (en) 2006-04-05 2010-05-12 上海万德风力发电股份有限公司 Multiple fan parallel type wind-light complementary water pumping system
US8563845B2 (en) 2006-04-06 2013-10-22 Carmanah Technologies Corp. Adaptive solar powered system
US7479774B2 (en) 2006-04-07 2009-01-20 Yuan Ze University High-performance solar photovoltaic (PV) energy conversion system
KR100772658B1 (en) 2006-04-19 2007-11-01 학교법인 포항공과대학교 Active-clamp current-source push-pull dc-dc converter
JP4355711B2 (en) 2006-04-20 2009-11-04 フェリカネットワークス株式会社 Information processing terminal, IC card, portable communication device, wireless communication method, and program
US20090217965A1 (en) 2006-04-21 2009-09-03 Dougal Roger A Apparatus and method for enhanced solar power generation and maximum power point tracking
JP4335887B2 (en) 2006-04-21 2009-09-30 東光株式会社 Current detector
AT503542B1 (en) 2006-04-27 2009-07-15 Fronius Int Gmbh METHOD AND INVERTER FOR CONVERTING AN EQUIVALENT VOLTAGE INTO AN ALTERNATING VOLTAGE
KR100757320B1 (en) 2006-05-09 2007-09-11 창원대학교 산학협력단 The control apparatus and method of senseless mppt control for photovoltaic power generation system
US8103389B2 (en) 2006-05-18 2012-01-24 Gridpoint, Inc. Modular energy control system
DE102006023563B4 (en) 2006-05-19 2020-09-10 Kostal Industrie Elektrik Gmbh Photovoltaic system
US20070273342A1 (en) 2006-05-25 2007-11-29 Ebara Corporation Electric power supply apparatus and method of synchronously operating power converter
US7471524B1 (en) 2006-05-26 2008-12-30 University Of Central Florida Research Foundation, Inc. Isolated DC-DC converters with high current capability
DE102006026073A1 (en) 2006-06-03 2007-12-13 Adensis Gmbh Solar panel plant with electromagnetic energy conversion
WO2007140798A1 (en) 2006-06-03 2007-12-13 Daimler Ag Intermediate circuit, fuel cell system with an intermediate circuit, and method for operating the intermediate circuit
JP2007334507A (en) 2006-06-13 2007-12-27 Felica Networks Inc Integrated circuit, non-contact type ic card, reader/writer, radio communication method and computer program
TWI328730B (en) 2006-06-16 2010-08-11 Ablerex Electronics Co Ltd Maximum power point tracking method and tracker thereof for a solar power system
US7375984B2 (en) 2006-06-16 2008-05-20 Astec Custom Power (Hk) Ltd. Zero voltage zero current switching converter
US8692515B2 (en) 2006-06-22 2014-04-08 Fdk Corporation Series-connected rechargeable cells, series-connected rechargeable cell device, voltage-balance correcting circuit for series-connected cells
EP2033292B1 (en) 2006-06-28 2017-03-29 ABB Schweiz AG Modular hvdc converter
US7626834B2 (en) 2006-06-29 2009-12-01 Enecsys Limited Double ended converter with output synchronous rectifier and auxiliary input regulator
US7282924B1 (en) 2006-06-29 2007-10-16 Target Hi-Tech Electronics Ltd. Computerized electricity system having an arc fault detecting sub-system
JP4466620B2 (en) 2006-07-10 2010-05-26 トヨタ自動車株式会社 Power supply system and vehicle equipped with the same
US20080012640A1 (en) 2006-07-14 2008-01-17 Cascade Microtech, Inc. Unilateralized amplifier
KR20090074724A (en) 2006-07-28 2009-07-07 메가와트 솔라 엘엘씨 Reflector assemblies, systems, and methods for collecting solar radiation for photovoltaic electricity generation
US7808125B1 (en) 2006-07-31 2010-10-05 Sustainable Energy Technologies Scheme for operation of step wave power converter
US7659701B1 (en) 2006-08-02 2010-02-09 Cisco Technology, Inc. Limiting peak input power
JP2008039443A (en) 2006-08-02 2008-02-21 Shin Kobe Electric Mach Co Ltd Storage battery monitoring device and storage battery
GB0615562D0 (en) 2006-08-04 2006-09-13 Ceres Power Ltd Power supply control for power
DE102006037043B3 (en) 2006-08-08 2008-02-07 Siemens Ag Österreich Photovoltaic system for generating current, has inverters, where each inverter has bypass lines for bypassing service sections, and high impedance resistors arranged at bypass lines
CN100433525C (en) 2006-08-09 2008-11-12 哈尔滨工业大学 Soft switch back exciting converter used for solar energy photovoltaic generation incorporate in power network
WO2008026207A2 (en) 2006-08-29 2008-03-06 Ilan Yoscovich Media handling architecture for digital content
US7471014B2 (en) 2006-09-01 2008-12-30 Cisco Technology, Inc. Method and apparatus distributing power to a load in a powered device
DE102006060815B4 (en) 2006-09-21 2013-05-29 Solarworld Innovations Gmbh Solar power generation plant
CN100426175C (en) 2006-09-25 2008-10-15 清华大学深圳研究生院 Mixed maximum power point-tracing control method of photovoltaic water-raising system
US7893346B2 (en) 2006-09-28 2011-02-22 Jack Nachamkin Integrated voltaic energy system
CN101153992A (en) 2006-09-29 2008-04-02 鸿富锦精密工业(深圳)有限公司 Back light source and its light emitting diode module group
US8004113B2 (en) 2006-10-06 2011-08-23 Apple Inc. Methods and apparatuses for operating devices with solar power
ITPD20060382A1 (en) 2006-10-13 2008-04-14 Elettronica Santerno S P A SOLAR INVERTER AND SOLAR ENERGY CONVERSION PLANT IN ELECTRICITY
US7906870B2 (en) 2006-10-13 2011-03-15 Pv Powered, Inc. System and method for anti-islanding, such as anti-islanding for a grid-connected photovoltaic inverter
EP2076974B1 (en) 2006-10-16 2014-04-23 Assa Abloy Hospitality, Inc. Centralized wireless network for multi-room large properties
TW200820538A (en) 2006-10-17 2008-05-01 Syspotek Corp Power supply apparatus
US8751053B2 (en) 2006-10-19 2014-06-10 Tigo Energy, Inc. Method and system to provide a distributed local energy production system with high-voltage DC bus
JP4484858B2 (en) 2006-10-19 2010-06-16 日立ビークルエナジー株式会社 Storage battery management device and vehicle control device including the same
WO2008046370A1 (en) 2006-10-19 2008-04-24 Fpe Fischer Gmbh Method and circuit for monitoring a solar panel for theft
ES2327264T3 (en) 2006-10-21 2009-10-27 Sma Solar Technology Ag ELECTRICAL CIRCUIT DEVICE AND PROCEDURE, IN PARTICULAR FOR PHOTOVOLTAIC GENERATORS.
DE102006052295B3 (en) 2006-11-03 2008-06-12 Sma Technologie Ag Method and circuit arrangement for monitoring a photovoltaic generator
US7291036B1 (en) 2006-11-08 2007-11-06 Tyco Electronics Corporation Photovoltaic connection system
US20080111529A1 (en) 2006-11-10 2008-05-15 Dell Products L.P. Methods, apparatus and media for control scheme for parallel high-side switching mosfets
KR100725755B1 (en) 2006-11-17 2007-06-08 주식회사 텐코리아 Photovoltaic power generation apparatus
US20080115823A1 (en) 2006-11-21 2008-05-22 Kinsey Geoffrey S Curved focal plane receiver for concentrating light in a photovoltaic system
EP1926199B1 (en) 2006-11-21 2019-07-31 Dialog Semiconductor GmbH Buck converter with inductor pre-energizing
US9130390B2 (en) 2006-11-27 2015-09-08 David A. Besser Power extractor detecting power and voltage changes
US9431828B2 (en) 2006-11-27 2016-08-30 Xslent Energy Technologies Multi-source, multi-load systems with a power extractor
US7960870B2 (en) 2006-11-27 2011-06-14 Xslent Energy Technologies, Llc Power extractor for impedance matching
US8013474B2 (en) 2006-11-27 2011-09-06 Xslent Energy Technologies, Llc System and apparatuses with multiple power extractors coupled to different power sources
US20080123375A1 (en) 2006-11-29 2008-05-29 Itt Manufacturing Enterprises, Inc. Multi-Mode Power Converter
JP2008141871A (en) 2006-12-01 2008-06-19 Honda Motor Co Ltd Power converter
JP2010512139A (en) 2006-12-06 2010-04-15 ソーラーエッジ エルティーディ Monitoring system and method for distributed power harvesting system using DC power supply
US20080144294A1 (en) 2006-12-06 2008-06-19 Meir Adest Removal component cartridge for increasing reliability in power harvesting systems
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
WO2008132551A2 (en) 2006-12-06 2008-11-06 Solaredge Technologies Current bypass for distributed power harvesting systems using dc power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US7900361B2 (en) 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US7538990B2 (en) 2006-12-14 2009-05-26 Hamilton Sundstrand Corporation High voltage DC contactor hybrid without a DC arc break
US20080142071A1 (en) 2006-12-15 2008-06-19 Miasole Protovoltaic module utilizing a flex circuit for reconfiguration
EP2054944A2 (en) 2006-12-21 2009-05-06 SP Solarprojekt Gmbh Solar power generation plant
US7994657B2 (en) 2006-12-22 2011-08-09 Solarbridge Technologies, Inc. Modular system for unattended energy generation and storage
CN100561846C (en) 2006-12-22 2009-11-18 群康科技(深圳)有限公司 converter circuit
TWI331264B (en) 2006-12-26 2010-10-01 Richtek Technology Corp Analog photovoltaic power circuit
US7336056B1 (en) 2007-01-04 2008-02-26 Rf Micro Devices, Inc. Switching power converter that supports both a boost mode of operation and a buck mode of operation using a common duty-cycle timing signal
US7667440B2 (en) 2007-01-05 2010-02-23 Intersil Americas Inc. Power-supply control
DE102007037130B3 (en) 2007-08-07 2009-04-16 Phoenix Contact Gmbh & Co. Kg Junction box and connecting box for use in connecting device for photovoltaic solar module, comprises flexible flat conductor strip that protrude from surface of solar module, where junction device has electric contact clip
DE102007051134B4 (en) 2007-09-07 2009-07-09 Phoenix Contact Gmbh & Co. Kg Connection and connection box for a solar module
EP2109927B1 (en) 2007-02-06 2021-11-17 Apparent Labs, LLC Multi-source, multi-load systems with a power extractor
JP5317413B2 (en) 2007-02-06 2013-10-16 株式会社東芝 Semiconductor switch and power converter using the semiconductor switch
ES2340074T3 (en) 2007-02-08 2010-05-28 Sma Solar Technology Ag DEVICE FOR THE POWER SUPPLY OF ELECTRICAL POWER FROM AN ENERGY SOURCE.
DE202007002077U1 (en) 2007-02-13 2008-04-03 Dehm, Christian Emergency shutdown for solar power systems
FR2912848B1 (en) 2007-02-20 2010-09-17 Commissariat Energie Atomique VOLTAGE LIMITER AND PROTECTION OF A PHOTOVOLTAIC MODULE
US8824174B2 (en) 2007-02-22 2014-09-02 Virginia Tech Intellectual Properties, Inc. Control system and method for a universal power conditioning system
EP2115849A4 (en) 2007-02-26 2015-12-23 Black & Decker Inc Portable power supply
CN101257221A (en) 2007-02-28 2008-09-03 北京恒基伟业投资发展有限公司 Photovoltaic battery- DC / DC voltage boosting convert charging method
WO2008108909A1 (en) 2007-03-07 2008-09-12 Greenrey, Inc. Multi-function frame and integrated mounting system for photovoltaic power generating laminates
EP1971018A1 (en) 2007-03-13 2008-09-17 SMA Solar Technology AG Switching device for transformerless conversion of a direct voltage into an alternating voltage with two DC/DC converters and a DC/AC converter
US8115454B2 (en) 2007-03-26 2012-02-14 The Gillette Company Battery with an integrated voltage converter having a bypass circuit
US7645931B2 (en) 2007-03-27 2010-01-12 Gm Global Technology Operations, Inc. Apparatus to reduce the cost of renewable hydrogen fuel generation by electrolysis using combined solar and grid power
US7772716B2 (en) 2007-03-27 2010-08-10 Newdoll Enterprises Llc Distributed maximum power point tracking system, structure and process
WO2011019936A1 (en) 2009-08-14 2011-02-17 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US9196770B2 (en) 2007-03-27 2015-11-24 Newdoll Enterprises Llc Pole-mounted power generation systems, structures and processes
DE102007020843A1 (en) 2007-03-28 2008-10-02 Günther Spelsberg GmbH & Co. KG junction box
US8158877B2 (en) 2007-03-30 2012-04-17 Sunpower Corporation Localized power point optimizer for solar cell installations
US7772818B2 (en) 2007-04-03 2010-08-10 Apple Inc. Method and apparatus for measuring an average output current of a switching regulator using current-sensing-circuitry
KR100908156B1 (en) 2007-04-13 2009-07-16 경남대학교 산학협력단 Solar maximum power tracking device and method
KR100912945B1 (en) 2007-04-16 2009-08-20 (주)제이디에이테크놀로지 Dc/dc converter
WO2008136095A1 (en) 2007-04-24 2008-11-13 Mitsubishi Electric Corporation Solar battery module
EA200971021A1 (en) 2007-05-04 2010-06-30 Импрендиторе Пти Лимитед MONITORING SYSTEM
US7929327B2 (en) 2007-05-08 2011-04-19 American Power Conversion Corporation Alternative-source energy management
US20090000654A1 (en) 2007-05-17 2009-01-01 Larankelo, Inc. Distributed inverter and intelligent gateway
US20080283118A1 (en) 2007-05-17 2008-11-20 Larankelo, Inc. Photovoltaic ac inverter mount and interconnect
US7660135B2 (en) 2007-05-23 2010-02-09 Hamilton Sundstrand Corporation Universal AC high power inveter with galvanic isolation for linear and non-linear loads
US20080297963A1 (en) 2007-05-31 2008-12-04 Hung-Ta Lee Adjustable over current protection circuit with low power loss
US20080304680A1 (en) 2007-06-01 2008-12-11 Clinton Wilcox Sound Generating Device
US7758011B2 (en) 2007-06-06 2010-07-20 Robert M. M. Haddock Adjustable mounting assembly for standing seam panels
US7787270B2 (en) 2007-06-06 2010-08-31 General Electric Company DC-DC and DC-AC power conversion system
DE102007028077B4 (en) 2007-06-15 2009-04-16 Sma Solar Technology Ag Device for feeding electrical energy into a power supply network and DC-DC converter for such a device
DE102007031038A1 (en) 2007-07-04 2009-01-08 Tridonicatco Schweiz Ag Circuit for operating light-emitting diodes (LEDs)
KR101252532B1 (en) 2007-07-06 2013-04-09 어드밴스드 아날로직 테크놀로지스 인코퍼레이티드 Boost and up-down switching regulator with synchronous freewheeling mosfet
DE102007032605A1 (en) 2007-07-11 2009-02-05 Robert Maier Fotovoltaikanlage
US20090014058A1 (en) 2007-07-13 2009-01-15 Miasole Rooftop photovoltaic systems
US20090014057A1 (en) 2007-07-13 2009-01-15 Miasole Photovoltaic modules with integrated devices
US20090014050A1 (en) 2007-07-13 2009-01-15 Peter Haaf Solar module system and method using transistors for bypass
US7899632B2 (en) 2007-07-16 2011-03-01 Enphase Energy, Inc. Method and apparatus for anti-islanding of distributed power generation systems
US20090020151A1 (en) 2007-07-16 2009-01-22 Pvi Solutions, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US8203069B2 (en) 2007-08-03 2012-06-19 Advanced Energy Industries, Inc System, method, and apparatus for coupling photovoltaic arrays
US7768751B2 (en) 2008-01-29 2010-08-03 Advanced Energy Industries, Inc. System and method for ground fault detection and interruption
US8294296B2 (en) 2007-08-03 2012-10-23 Advanced Energy Industries, Inc. System, method, and apparatus for remotely coupling photovoltaic arrays
CN201167381Y (en) 2007-08-29 2008-12-17 李永臣 Apparatus for monitoring and alarming solar power supply
AT505731B1 (en) 2007-08-29 2013-03-15 Fronius Int Gmbh METHOD FOR THE ALARM DETECTION OF A PHOTOVOLTAIC SYSTEM AND INVERTERS FOR A PHOTOVOLTAIC SYSTEM
US8418194B2 (en) 2007-08-31 2013-04-09 Centurylink Intellectual Property Llc System and method for dynamic bandwidth allocation
US7945413B2 (en) 2007-09-04 2011-05-17 Solarbridge Technologies, Inc. Voltage-sensed system and method for anti-islanding protection of grid-connected inverters
US9048693B2 (en) 2007-09-06 2015-06-02 Enphase Energy, Inc. Method and apparatus for detecting impairment of a solar array
US20090078300A1 (en) 2007-09-11 2009-03-26 Efficient Solar Power System, Inc. Distributed maximum power point tracking converter
TW200913491A (en) 2007-09-11 2009-03-16 Richtek Technology Corp Level shift electric circuit
CN101136129A (en) 2007-09-18 2008-03-05 北京意科通信技术有限责任公司 Solar panel theft preventing installation and anti-theft method thereof
CN101919150B (en) 2007-09-18 2013-12-18 菲莱贝克能源公司 Current waveform construction to generate AC power with low harmonic distortion from localized energy sources
US7986539B2 (en) 2007-09-26 2011-07-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
US8222533B2 (en) 2007-10-02 2012-07-17 Tyco Electronics Corporation Low profile photovoltaic (LPPV) box
US7755916B2 (en) 2007-10-11 2010-07-13 Solarbridge Technologies, Inc. Methods for minimizing double-frequency ripple power in single-phase power conditioners
WO2009046533A1 (en) 2007-10-11 2009-04-16 Icp Global Technologies Inc. Autonomous hybrid renewable energy controller
DE102008004675B3 (en) 2007-10-12 2009-03-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Controllable switching device for solar module, has control provided to control controllable switching unit to switch switching unit in one of switch conditions using output of solar module or input at output terminal
ATE463829T1 (en) 2007-10-12 2010-04-15 Sma Solar Technology Ag LOAD DISCONNECTOR ARRANGEMENT
EP3324505B1 (en) 2007-10-15 2023-06-07 Ampt, Llc Systems for highly efficient solar power
DE102007050031B3 (en) 2007-10-17 2009-04-16 Hanning Elektro-Werke Gmbh & Co. Kg Control system for solar systems
WO2009051222A1 (en) 2007-10-18 2009-04-23 Shiseido Company, Ltd. Ultraviolet protection effect evaluation method, evaluation device, evaluation program, and recording medium where the program is recorded
JP4987661B2 (en) 2007-10-19 2012-07-25 東洋製罐株式会社 Extraction material
US7919953B2 (en) 2007-10-23 2011-04-05 Ampt, Llc Solar power capacitor alternative switch circuitry system for enhanced capacitor life
US20090102440A1 (en) 2007-10-23 2009-04-23 Advanced Analogic Technologies, Inc. Buck-Boost Switching Voltage Regulator
DE102007050554B4 (en) 2007-10-23 2011-07-14 Adensis GmbH, 01129 photovoltaic system
ITMI20072094A1 (en) 2007-10-30 2009-04-30 Tonali Spa ANTI-THEFT SYSTEM FOR SOLAR PANELS
FR2923020B1 (en) 2007-10-30 2009-11-13 Mge Ups Systems METHOD AND DEVICE FOR PREDICTING ELECTROLYTIC CAPACITOR FAILURES, CONVERTER AND NON-INTERRUPTION POWER EQUIPPED WITH SUCH A DEVICE
US8823218B2 (en) 2007-11-02 2014-09-02 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7602080B1 (en) 2008-11-26 2009-10-13 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US7884278B2 (en) 2007-11-02 2011-02-08 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US7969043B2 (en) 2007-11-05 2011-06-28 O2 Micro, Inc. Power management systems with multiple power sources
DE102007052653B4 (en) 2007-11-05 2016-08-18 Erhard Dumps Theft monitoring device and method for monitoring an electrical device, in particular a solar module
US9218013B2 (en) 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US8018748B2 (en) 2007-11-14 2011-09-13 General Electric Company Method and system to convert direct current (DC) to alternating current (AC) using a photovoltaic inverter
ITMO20070344A1 (en) 2007-11-16 2009-05-17 Meta System Spa PERFECT PHOTOVOLTAIC PLANT
DE102007056600B4 (en) 2007-11-21 2011-05-05 Solon Se Photovoltaic system with a matrix of frameless solar modules
KR100911726B1 (en) 2007-11-23 2009-08-10 한국전기연구원 coupling apparatus for medium voltage power line communication built-in impedance matching transformer and control circuit of phase selection
US7868599B2 (en) 2007-11-26 2011-01-11 Texas Instruments Incorporated Method of optimum current blanking time implementation in current sense circuit
DE102007057021B3 (en) 2007-11-27 2009-06-18 Lumberg Connect Gmbh Junction box for photovoltaic panels
US8294451B2 (en) 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Release mechanism in distributed electrical power apparatus, to wake up and method for closing
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US7898112B2 (en) 2007-12-06 2011-03-01 Tigo Energy, Inc. Apparatuses and methods to connect power sources to an electric power system
WO2009073995A1 (en) 2007-12-10 2009-06-18 Pasan Sa Lighting device for checking photovoltaic panels
EP2235807B1 (en) 2007-12-20 2019-05-08 SolarCity Corporation Grid synchronisation
US8138631B2 (en) 2007-12-21 2012-03-20 Eiq Energy, Inc. Advanced renewable energy harvesting
US8796884B2 (en) 2008-12-20 2014-08-05 Solarbridge Technologies, Inc. Energy conversion systems with power control
WO2009088843A2 (en) 2008-01-03 2009-07-16 Teknic, Inc. Method and apparatus to remove energy from dc loads
DE102008003272A1 (en) 2008-01-05 2009-07-09 Hans-Hermann Hunfeld Monitoring unit for photovoltaic modules
US7812701B2 (en) 2008-01-08 2010-10-12 Samsung Electro-Mechanics Compact multiple transformers
ITVA20080002A1 (en) 2008-01-10 2009-07-11 St Microelectronics Srl PHOTOVOLTAIC SYSTEM WITH MULTICELLULAR PANELS WITH MULTIPLATE DC-DC CONVERSION FOR CELL GROUPS IN SERIES OF EACH PANEL AND PHOTOVOLTAIC PANEL STRUCTURE
US20090179662A1 (en) 2008-01-10 2009-07-16 Moulton Thomas A System for Monitoring Individual Photovoltaic Modules
CN101488271B (en) 2008-01-16 2011-02-16 福建三元达通讯股份有限公司 Method for alarming by anti-theft system of electric power source equipment
US8212139B2 (en) 2008-01-18 2012-07-03 Tenksolar, Inc. Thin-film photovoltaic module
US8748727B2 (en) 2008-01-18 2014-06-10 Tenksolar, Inc. Flat-plate photovoltaic module
US20090184746A1 (en) 2008-01-22 2009-07-23 Microsemi Corporation Low Voltage Drop Unidirectional Electronic Valve
US7612466B2 (en) 2008-01-28 2009-11-03 VPT Energy Systems System and method for coordinated control and utilization of local storage and generation, with a power grid
DE102008008504A1 (en) 2008-02-11 2009-08-13 Siemens Aktiengesellschaft Method for theft detection of a PV module and failure detection of a bypass diode of a PV module as well as corresponding PV sub-generator junction box, PV inverter and corresponding PV system
US20090207543A1 (en) 2008-02-14 2009-08-20 Independent Power Systems, Inc. System and method for fault detection and hazard prevention in photovoltaic source and output circuits
FR2927733B1 (en) 2008-02-19 2011-05-06 Photowatt Internat INSTALLATION OF REMOTE CONTROLLED PHOTOVOLTAIC MODULES
US20100217551A1 (en) 2009-02-25 2010-08-26 Lonnie Calvin Goff Embedded microprocessor system for vehicular batteries
CN101521459B (en) 2008-02-29 2011-09-28 香港理工大学 Resonant switched capacitor direct current voltage converter
JP4607976B2 (en) 2008-03-07 2011-01-05 株式会社東芝 Semiconductor integrated device
US7777570B2 (en) 2008-03-12 2010-08-17 Mediatek Inc. Transformer power combiner having secondary winding conductors magnetically coupled to primary winding conductors and configured in topology including series connection and parallel connection
US20090234692A1 (en) 2008-03-13 2009-09-17 Tigo Energy, Inc. Method and System for Configuring Solar Energy Systems
US7925552B2 (en) 2008-03-13 2011-04-12 Solarcity Corporation Renewable energy system monitor
EP2104200B1 (en) 2008-03-22 2019-02-27 SMA Solar Technology AG Method for controlling a multi-string inverter for photovoltaic systems
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
US7928698B2 (en) 2008-03-25 2011-04-19 Spx Corporation Battery charging apparatus and method
EP2105856A1 (en) 2008-03-26 2009-09-30 Esmolo Ltd. Energy supply system with a protected solar module
US9246390B2 (en) 2008-04-16 2016-01-26 Enpirion, Inc. Power converter with controller operable in selected modes of operation
KR100912892B1 (en) 2008-04-21 2009-08-20 서울마린 (주) Remote self test monitoring and remote control system of solar power apparatus
US8289183B1 (en) 2008-04-25 2012-10-16 Texas Instruments Incorporated System and method for solar panel array analysis
CN101262730B (en) 2008-04-28 2011-09-21 佛山市美博照明有限公司 Self-adapted sliding frequency trigger ignition method for high-voltage gas discharging lamp electronic rectifier
CN201203438Y (en) 2008-04-30 2009-03-04 上海绿色环保能源有限公司 Solar photovoltaic set tester
DE102008022050B3 (en) 2008-05-03 2009-02-26 Lumberg Connect Gmbh Connection box for solar module, has base part with two holders, where one holder for contacting section of supply cable maintains contacting section in parallel plane at position displaced by angle, and holders form bracket cross
DE102008022049B4 (en) 2008-05-03 2010-07-15 Lumberg Connect Gmbh Connection box for connecting a solar module
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
US7962249B1 (en) 2008-05-14 2011-06-14 National Semiconductor Corporation Method and system for providing central control in an energy generating system
TWI498705B (en) 2008-05-14 2015-09-01 Nat Semiconductor Corp Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US7991511B2 (en) 2008-05-14 2011-08-02 National Semiconductor Corporation Method and system for selecting between centralized and distributed maximum power point tracking in an energy generating system
US8139382B2 (en) 2008-05-14 2012-03-20 National Semiconductor Corporation System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
TW201013361A (en) 2008-05-14 2010-04-01 Nat Semiconductor Corp System and method for integrating local maximum power point tracking into an energy generating system having centralized maximum power point tracking
TWI494734B (en) 2008-05-14 2015-08-01 Nat Semiconductor Corp Method and system for providing maximum power point tracking in an energy generating system
US8279644B2 (en) 2008-05-14 2012-10-02 National Semiconductor Corporation Method and system for providing maximum power point tracking in an energy generating system
US7969133B2 (en) 2008-05-14 2011-06-28 National Semiconductor Corporation Method and system for providing local converters to provide maximum power point tracking in an energy generating system
US20090283129A1 (en) 2008-05-14 2009-11-19 National Semiconductor Corporation System and method for an array of intelligent inverters
CN101582592B (en) 2008-05-15 2013-07-10 宣昆 Transformer-less photovoltaic merging and inverting device and control method thereof
US8176693B2 (en) 2008-05-19 2012-05-15 Robert W. Mitchell Photovoltaic mounting system with locking connectors, adjustable rail height and hinge lock
US7646116B2 (en) 2008-05-22 2010-01-12 Petra Solar Inc. Method and system for balancing power distribution in DC to DC power conversion
US7929325B2 (en) 2008-05-27 2011-04-19 General Electric Company High efficiency, multi-source photovoltaic inverter
AU2009202125B2 (en) 2008-05-29 2014-02-13 Zener International Pty Ltd Photovoltaic Array Protection System
US8630098B2 (en) 2008-06-12 2014-01-14 Solaredge Technologies Ltd. Switching circuit layout with heatsink
US7759575B2 (en) 2008-06-20 2010-07-20 Tyco Electronics Corporation Expandable power distribution unit
US8046385B2 (en) 2008-06-20 2011-10-25 Ab Initio Technology Llc Data quality tracking
US8023297B2 (en) 2008-06-27 2011-09-20 General Electric Company High efficiency photovoltaic inverter
TW201001107A (en) 2008-06-30 2010-01-01 Delta Electronics Inc Controlling device and system
IT1390778B1 (en) 2008-07-01 2011-09-23 St Microelectronics Srl ARCHITECTURE FOR CELL BY-PASS DIODE IN SERIES OF A PHOTOVOLTAIC PANEL
WO2010002960A1 (en) 2008-07-01 2010-01-07 Satcon Technology Corporation Photovoltaic dc/dc micro-converter
US8823342B2 (en) 2008-07-07 2014-09-02 Advanced Analogic Technologies Incorporated Multiple-output dual-polarity DC/DC converters and voltage regulators
CN102089883B (en) 2008-07-08 2013-02-06 三菱电机株式会社 Solar power generation device
DE102008032813A1 (en) 2008-07-11 2010-01-21 Siemens Aktiengesellschaft Grid connection of solar cells
DE102008032876B4 (en) 2008-07-14 2010-04-08 Sew-Eurodrive Gmbh & Co. Kg Method, circuit arrangement and bridge circuit
US8207720B2 (en) 2008-07-18 2012-06-26 Infineon Technologies Austria Ag Methods and apparatus for power supply load dump compensation
EP2148417B1 (en) 2008-07-22 2018-01-10 SMA Solar Technology AG Inverter apparatus for a photovoltaic generator with a plurality of inverters being serially coupled at their input side
US8098055B2 (en) 2008-08-01 2012-01-17 Tigo Energy, Inc. Step-up converter systems and methods
AU2008359997A1 (en) 2008-08-01 2010-02-04 Petra Solar Inc. System and method for utility pole distributed solar power generation
US20100038907A1 (en) 2008-08-14 2010-02-18 EncoGen LLC Power Generation
US8371076B2 (en) * 2008-08-21 2013-02-12 Socore Energy Llc Solar panel support module and method of creating array of interchangeable and substitutable solar panel support modules
DE102008039205A1 (en) 2008-08-22 2010-04-22 EPROTECH Reimann e.K. Jürgen Reimann Device and method for monitoring individual photovoltaic modules of a photovoltaic system
US8901411B2 (en) 2008-08-27 2014-12-02 General Electric Company System and method for controlling ramp rate of solar photovoltaic system
US7679420B1 (en) 2008-08-28 2010-03-16 Micrel, Incorporated Slew rate controlled level shifter with reduced quiescent current
US8188610B2 (en) 2008-09-08 2012-05-29 General Electric Company Wind turbine having a main power converter and an auxiliary power converter and a method for the control thereof
US8670255B2 (en) 2008-09-12 2014-03-11 Infineon Technologies Austria Ag Utilization of a multifunctional pin combining voltage sensing and zero current detection to control a switched-mode power converter
DE102008042199A1 (en) 2008-09-18 2010-04-01 Robert Bosch Gmbh Photovoltaic device
US8378656B2 (en) 2008-09-19 2013-02-19 General Electric Company Quasi-AC, photovoltaic module for unfolder photovoltaic inverter
US20100181957A1 (en) 2008-09-19 2010-07-22 Christoph Goeltner Solar powered, grid independent EV charging system
EP2342611A1 (en) 2008-10-01 2011-07-13 Sunsil A/S Power generation system and method of operating a power generation system
WO2010042643A2 (en) 2008-10-07 2010-04-15 Solaratek Photovoltaic module monitoring system
US20110210611A1 (en) 2008-10-10 2011-09-01 Ampt, Llc Novel Solar Power Circuits
US7944662B2 (en) 2008-10-28 2011-05-17 Steve Carkner Multi-battery system for high voltage applications with proportional power sharing
DE102009051186A1 (en) 2008-10-29 2010-05-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Matching circuit for use in solar generator, has controller controlling switching device, where controller is designed in such manner that direct current/direct current converter is taken into account during timing loss
JP2010114150A (en) 2008-11-04 2010-05-20 Sharp Corp Photovoltaic generation system
DK176983B1 (en) 2008-11-07 2010-09-20 Danfoss Solar Inverters As Photovoltaic power plant
US8676398B2 (en) 2008-11-11 2014-03-18 John M. Fife Temperature-controlled solar power inverters
US8653689B2 (en) 2008-11-12 2014-02-18 Tigo Energy, Inc. Method and system for current-mode power line communications
US8325059B2 (en) 2008-11-12 2012-12-04 Tigo Energy, Inc. Method and system for cost-effective power line communications for sensor data collection
EP2187510B1 (en) 2008-11-15 2016-08-03 SMA Solar Technology AG Inverter start up switch
DE102008057874A1 (en) 2008-11-18 2010-05-20 Adensis Gmbh Switch circuit for a photo-voltaic assembly, at a current circuit, has a mechanical switch and a second electronic switch
US10153383B2 (en) 2008-11-21 2018-12-11 National Semiconductor Corporation Solar string power point optimization
JPWO2010061654A1 (en) 2008-11-25 2012-04-26 株式会社村田製作所 PFC converter
EP2359455A2 (en) 2008-11-26 2011-08-24 Tigo Energy, Inc. Systems and methods for using a power converter for transmission of data over the power feed
US8860241B2 (en) 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods for using a power converter for transmission of data over the power feed
CA2957199C (en) 2008-11-26 2019-01-08 Wireless Environment, Llc Wireless lighting devices and applications
US20100132757A1 (en) 2008-12-01 2010-06-03 Chung Yuan Christian University Solar energy system
US8362644B2 (en) 2008-12-02 2013-01-29 Advanced Energy Industries, Inc. Device, system, and method for managing an application of power from photovoltaic arrays
US8053929B2 (en) 2008-12-03 2011-11-08 Solar Power Technologies, Inc. Solar power array with maximized panel power extraction
JP5601770B2 (en) 2008-12-09 2014-10-08 三菱重工業株式会社 Voltage equalization apparatus, method, program, and power storage system
US8050804B2 (en) 2008-12-15 2011-11-01 Array Converter, Inc. Detection and prevention of hot spots in a solar panel
JP2010146047A (en) 2008-12-16 2010-07-01 Renesas Electronics Corp Buffer circuit insertion method, buffer circuit insertion device, and buffer circuit insertion program
JP4725641B2 (en) 2008-12-17 2011-07-13 日本テキサス・インスツルメンツ株式会社 Buck-boost switching regulator
KR20110104525A (en) 2008-12-20 2011-09-22 애즈레이 테크놀로지즈, 아이엔씨. Energy conversion systems with power control
US8233301B1 (en) 2008-12-20 2012-07-31 Sensorlink Corporation Impedance dropping dc power supply having an impedance controlled converter
WO2010071877A2 (en) 2008-12-21 2010-06-24 Navsemi, Inc. System and method for selectively controlling a solar panel in segments
FR2940459B1 (en) 2008-12-22 2012-11-30 Commissariat Energie Atomique METHOD FOR DETECTING ELECTRIC ARC IN A PHOTOVOLTAIC INSTALLATION
US8212408B2 (en) 2008-12-24 2012-07-03 Alencon Acquisition Co., Llc. Collection of electric power from renewable energy sources via high voltage, direct current systems with conversion and supply to an alternating current transmission network
WO2010078303A2 (en) 2008-12-29 2010-07-08 Atonometrics, Inc. Electrical safety shutoff system and devices for photovoltaic modules
US8835748B2 (en) 2009-01-06 2014-09-16 Sunlight Photonics Inc. Multi-junction PV module
ITMC20090002U1 (en) 2009-01-19 2010-07-20 Gen Building Srl UNIVERSAL BRACKET FOR FASTENING OF PHOTOVOLTAIC PANELS.
DE102009000323A1 (en) 2009-01-20 2010-07-22 Robert Bosch Gmbh Series connection of switching regulators for energy transmission in battery systems
US20100191383A1 (en) 2009-01-28 2010-07-29 Intersil Americas, Inc. Connection systems and methods for solar cells
DE102009006999A1 (en) 2009-01-30 2010-08-12 Schott Solar Ag Alarm system for photovoltaic modules and method for protecting a photovoltaic system from theft
US8648497B2 (en) 2009-01-30 2014-02-11 Renewable Power Conversion, Inc. Photovoltaic power plant with distributed DC-to-DC power converters
CN102725859B (en) 2009-02-04 2016-01-27 应用材料公司 Metering and the detection cover group of solar energy production line
EP2394207A2 (en) 2009-02-05 2011-12-14 Enphase Energy, Inc. Method and apparatus for determining a corrected monitoring voltage
US8058752B2 (en) 2009-02-13 2011-11-15 Miasole Thin-film photovoltaic power element with integrated low-profile high-efficiency DC-DC converter
US20100206378A1 (en) 2009-02-13 2010-08-19 Miasole Thin-film photovoltaic power system with integrated low-profile high-efficiency inverter
US8222765B2 (en) 2009-02-13 2012-07-17 First Solar, Inc. Photovoltaic power plant output
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
US20100213897A1 (en) 2009-02-23 2010-08-26 Lawrence Tze-Leung Tse Battery-Cell Converter Management Systems
US8344548B2 (en) 2009-03-17 2013-01-01 Renewable Power Conversion, Inc. Photovoltaic power plant with minimized power collection losses
US8918124B2 (en) 2009-03-20 2014-12-23 Kenneth Bland Communications platform
US20100241375A1 (en) 2009-03-23 2010-09-23 Solar Simplified Llc Smart device for enabling real-time monitoring, measuring, managing and reporting of energy by solar panels and method therefore
JP5580399B2 (en) 2009-03-23 2014-08-27 コーニンクレッカ フィリップス エヌ ヴェ Supply circuit
US9401439B2 (en) 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
EP2234237A1 (en) 2009-03-26 2010-09-29 ABB Research Ltd. Method for controlling single-phase DC/AC converters and converter arrangement
JP2010245532A (en) 2009-04-06 2010-10-28 Savio Spa Antitheft and monitoring system for photovoltaic panel
US9995507B2 (en) 2009-04-15 2018-06-12 Richard Norman Systems for cost-effective concentration and utilization of solar energy
US7824189B1 (en) 2009-04-15 2010-11-02 Tyco Electronics Corporation Junction box for photovoltaic modules
WO2010121211A2 (en) 2009-04-17 2010-10-21 National Semiconductor Corporation System and method for over-voltage protection of a photovoltaic system with distributed maximum power point tracking
WO2010120315A1 (en) 2009-04-17 2010-10-21 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US8248804B2 (en) 2009-04-24 2012-08-21 Connex Electronics Co., Ltd. Smart junction box for solar cell module
US9401635B2 (en) 2009-04-27 2016-07-26 Hewlett Packard Enterprise Development Lp Switching power supply for a load in stanby mode
US8138914B2 (en) 2009-05-08 2012-03-20 Man Kit Wong Method and apparatus for implementing enhanced signature checking security measures for solar energy systems
EP2249457A1 (en) 2009-05-08 2010-11-10 Nxp B.V. PV solar cell
WO2010132369A1 (en) 2009-05-11 2010-11-18 The Regents Of The University Of Colorado, A Body Corporate Integrated photovoltaic module
US20100288327A1 (en) 2009-05-13 2010-11-18 National Semiconductor Corporation System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
US8390147B2 (en) 2009-05-13 2013-03-05 Solar Semiconductor, Inc. Methods and apparatuses for photovoltaic power management
US8303349B2 (en) 2009-05-22 2012-11-06 Solaredge Technologies Ltd. Dual compressive connector
CN104158483B (en) 2009-05-22 2017-09-12 太阳能安吉科技有限公司 The heat dissipating junction box of electric isolution
DE102009022569A1 (en) 2009-05-25 2010-12-02 Yamaichi Electronics Deutschland Gmbh Junction box, solar panel and use of the solar panel
DE102009054039B4 (en) 2009-05-25 2016-03-31 Yamaichi Electronics Deutschland Gmbh Junction box for a solar module, use and procedures
DE102009022508A1 (en) 2009-05-25 2010-12-09 Eaton Industries Gmbh Safety switchgear for solar systems
DE202009007318U1 (en) 2009-05-25 2009-08-27 Yamaichi Electronics Deutschland Gmbh Junction box and solar panel
US8690110B2 (en) 2009-05-25 2014-04-08 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US8184460B2 (en) 2009-05-28 2012-05-22 General Electric Company Solar inverter and control method
US8427010B2 (en) 2009-05-29 2013-04-23 General Electric Company DC-to-AC power conversion system and method
US8569956B2 (en) 2009-06-04 2013-10-29 Point Somee Limited Liability Company Apparatus, method and system for providing AC line power to lighting devices
KR101482300B1 (en) 2009-06-15 2015-01-14 학 혼 차우 Fault tolerant modular battery management system
US20100321148A1 (en) 2009-06-18 2010-12-23 Peter Gevorkian Wireless intelligent solar power reader (wispr) structure and process
US8039730B2 (en) 2009-06-18 2011-10-18 Tigo Energy, Inc. System and method for prevention of open loop damage during or immediately after manufacturing
US8954203B2 (en) 2009-06-24 2015-02-10 Tigo Energy, Inc. Systems and methods for distributed power factor correction and phase balancing
CN102460198B (en) 2009-06-24 2014-09-10 日本碍子株式会社 Battery control apparatus and battery control method
US8405349B2 (en) 2009-06-25 2013-03-26 Tigo Energy, Inc. Enhanced battery storage and recovery energy systems
JP5398912B2 (en) 2009-07-09 2014-01-29 マイクロセミ コーポレィション Low voltage drop closed loop unidirectional electronic valve
US9467053B2 (en) 2009-07-09 2016-10-11 Infineon Technologies Ag Controlling a multi-mode switching converter
US8299773B2 (en) 2009-07-10 2012-10-30 Delta Electronics, Inc. System and method for limiting input-current surge in a switching mode power supply
US20110109158A1 (en) 2009-07-13 2011-05-12 Ian Olsen Extraction, storage and distribution of kinetic energy
CN102549873B (en) 2009-07-16 2015-11-11 美国通控集团公司 Intelligence expandable type power converter
US8358033B2 (en) 2009-07-20 2013-01-22 General Electric Company Systems, methods, and apparatus for converting DC power to AC power
DE102009027833A1 (en) 2009-07-20 2011-01-27 SB LiMotive Company Ltd., Suwon Series connection of switching regulators for energy transmission in battery systems
KR20120039036A (en) 2009-07-23 2012-04-24 엔페이즈 에너지, 인코포레이티드 Method and apparatus for detection and control of dc arc faults
DE102009027991A1 (en) 2009-07-24 2011-01-27 Robert Bosch Gmbh Power supply assembly
EP2280469B1 (en) 2009-07-30 2016-07-06 Nxp B.V. A photovoltaic unit, a dc-dc converter therefor, and a method of operating the same
US8102074B2 (en) 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
US9312697B2 (en) 2009-07-30 2016-04-12 Tigo Energy, Inc. System and method for addressing solar energy production capacity loss due to field buildup between cells and glass and frame assembly
US8279642B2 (en) 2009-07-31 2012-10-02 Solarbridge Technologies, Inc. Apparatus for converting direct current to alternating current using an active filter to reduce double-frequency ripple power of bus waveform
US8040115B2 (en) 2009-08-04 2011-10-18 International Business Machines Corporation Multiple branch alternative element power regulation
DE102009036816A1 (en) 2009-08-10 2011-02-17 Rwe Ag Control of charging stations
AT509251A1 (en) 2009-08-14 2011-07-15 Fronius Int Gmbh 4 EXPERTS IN THE FIELD OF ARC FLASH IN PHOTOVOLTAIC PLANTS AND ONE SUCH PHOTOVOLTAIC PLANT
US9200818B2 (en) 2009-08-14 2015-12-01 Newdoll Enterprises Llc Enhanced solar panels, liquid delivery systems and associated processes for solar energy systems
US8410950B2 (en) 2009-08-17 2013-04-02 Paceco Corp. Photovoltaic panel monitoring apparatus
US8314375B2 (en) 2009-08-21 2012-11-20 Tigo Energy, Inc. System and method for local string management unit
US8436591B2 (en) 2009-08-24 2013-05-07 Micrel, Inc. Buck-boost converter with smooth transitions between modes
US8080986B2 (en) 2009-08-26 2011-12-20 National Taipei University Technology Driving control device and method for power converting system
CN102598287B (en) 2009-08-26 2014-11-19 弗劳恩霍夫应用研究促进协会 Bypass and protection circuit for a solar module and method for controlling a solar module
DE102009028973A1 (en) 2009-08-28 2011-03-03 Robert Bosch Gmbh DC / DC converter circuit and battery system
JP2011055634A (en) 2009-09-01 2011-03-17 Fujitsu Ten Ltd Power supply breaker and electronic apparatus
US9143036B2 (en) 2009-09-02 2015-09-22 Tigo Energy, Inc. Systems and methods for enhanced efficiency auxiliary power supply module
TWI390817B (en) 2009-09-10 2013-03-21 Inergy Technology Inc Series solar system with current-matching function
US8558102B2 (en) 2009-09-11 2013-10-15 Miasole Rotatable junction box for a solar module
DE102009047936A1 (en) 2009-10-01 2011-04-07 Dr. Johannes Heidenhain Gmbh Method of operating an inverter and inverter
US9324885B2 (en) 2009-10-02 2016-04-26 Tigo Energy, Inc. Systems and methods to provide enhanced diode bypass paths
JP5628820B2 (en) 2009-10-05 2014-11-19 日本碍子株式会社 Control device, control device network, and control method
US8462518B2 (en) 2009-10-12 2013-06-11 Solarbridge Technologies, Inc. Power inverter docking system for photovoltaic modules
US8232790B2 (en) 2009-10-15 2012-07-31 Stmicroelectronics Asia Pacific Pte Ltd. Architecture for controlling a dual polarity, single inductor boost regulator used as a dual polarity supply in a hard disk drive dual stage actuator (DSA) device
AU2010306419A1 (en) 2009-10-16 2012-05-31 Consuntrate Pty Ltd A solar collector
US9941421B2 (en) 2009-10-19 2018-04-10 Helios Focus Llc Solar photovaltaic module rapid shutdown and safety system
WO2011049985A1 (en) 2009-10-19 2011-04-28 Ampt, Llc Novel solar panel string converter topology
US10121913B2 (en) 2009-10-19 2018-11-06 Helios Focus Llc Solar photovoltaic module safety shutdown system
US8859884B2 (en) 2009-10-19 2014-10-14 Helios Focus Llc Solar photovoltaic module safety shutdown system
US20110090607A1 (en) 2009-10-20 2011-04-21 Luebke Charles J String and system employing direct current electrical generating modules and a number of string protectors
FR2951886B1 (en) 2009-10-23 2016-02-05 Commissariat Energie Atomique CONTROL WITH SLOWDOWN OF THE OPENING OF AN ELECTRONIC SWITCH
CN101697462A (en) 2009-10-30 2010-04-21 河北省激光研究所 Dynamic interconnected control system and control method for solar battery pack
DE102009046501A1 (en) 2009-11-06 2011-05-12 SB LiMotive Company Ltd., Suwon Battery system with DC / DC converters
CN102597902B (en) 2009-11-16 2014-07-30 欧姆龙株式会社 Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
US20110017267A1 (en) 2009-11-19 2011-01-27 Joseph Isaac Lichy Receiver for concentrating photovoltaic-thermal system
EP2325970A3 (en) 2009-11-19 2015-01-21 Samsung SDI Co., Ltd. Energy management system and grid-connected energy storage system including the energy management system
US8203200B2 (en) 2009-11-25 2012-06-19 Miasole Diode leadframe for solar module assembly
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
KR101093956B1 (en) 2009-12-04 2011-12-15 삼성에스디아이 주식회사 Energy Storage System
US8509032B2 (en) 2009-12-09 2013-08-13 Selim Shlomo Rakib Vibration mediated networks for photovoltaic arrays
US20110139213A1 (en) 2009-12-11 2011-06-16 Du Pont Apollo Limited Photovoltaic system and boost converter thereof
DE102009058118A1 (en) 2009-12-12 2011-06-16 Lumberg Connect Gmbh Junction box for solar modules
IT1397463B1 (en) 2009-12-14 2013-01-16 Sacchetti ANTI-BURNING AND ANTI-THEFT SYSTEMS FOR PHOTOVOLTAIC PANELS.
US8218274B2 (en) 2009-12-15 2012-07-10 Eaton Corporation Direct current arc fault circuit interrupter, direct current arc fault detector, noise blanking circuit for a direct current arc fault circuit interrupter, and method of detecting arc faults
KR101097260B1 (en) 2009-12-15 2011-12-22 삼성에스디아이 주식회사 Grid-connected energy storage system and method for controlling grid-connected energy storage system
KR101094002B1 (en) 2009-12-16 2011-12-15 삼성에스디아이 주식회사 Power converting device
CN201601477U (en) 2009-12-17 2010-10-06 深圳市永联科技有限公司 Lightning-protection header box of photovoltaic array
GB2476508B (en) 2009-12-23 2013-08-21 Control Tech Ltd Voltage compensation for photovoltaic generator systems
US8773236B2 (en) 2009-12-29 2014-07-08 Tigo Energy, Inc. Systems and methods for a communication protocol between a local controller and a master controller
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
CN102117815B (en) 2010-01-06 2012-12-26 京东方科技集团股份有限公司 Solar battery assembly and preparation method thereof
US8271599B2 (en) 2010-01-08 2012-09-18 Tigo Energy, Inc. Systems and methods for an identification protocol between a local controller and a master controller in a photovoltaic power generation system
CN201623478U (en) 2010-01-08 2010-11-03 常州佳讯光电产业发展有限公司 Photovoltaic direct-current lightning-protection header box
CN201623651U (en) 2010-01-22 2010-11-03 扬州晶旭电源有限公司 Single-stage three-phase solar photovoltaic grid-connected inverter
CN203026514U (en) 2010-01-23 2013-06-26 索拉瓦特有限公司 Solar power generation system
JP5737660B2 (en) 2010-01-25 2015-06-17 エンフェイズ エナジー インコーポレイテッド Method and apparatus for interconnecting distributed power sources
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8196369B2 (en) 2010-01-28 2012-06-12 Frank Pao Building integrated thermal electric hybrid roofing system
US9269255B2 (en) 2010-02-01 2016-02-23 Trimble Navigation Limited Worksite proximity warning
US20120007434A1 (en) 2010-02-04 2012-01-12 Massachusetts Institute Of Technology Three-dimensional photovoltaic apparatus and method
CN102148584B (en) 2010-02-10 2013-04-17 上海英孚特电子技术有限公司 Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter
EP2355268A1 (en) 2010-02-10 2011-08-10 SMA Solar Technology AG Connector for Power Generator Modules
US8618456B2 (en) 2010-02-16 2013-12-31 Western Gas And Electric Company Inverter for a three-phase AC photovoltaic system
US8836162B2 (en) 2010-02-26 2014-09-16 Ziehl-Abegg Ag Inverter for photovoltaic systems
CN201663167U (en) 2010-03-03 2010-12-01 无锡尚德太阳能电力有限公司 Solar battery pack
US8773077B1 (en) 2010-03-05 2014-07-08 University Of Central Florida Research Foundation, Inc. Controllers for battery chargers and battery chargers therefrom
US9425783B2 (en) 2010-03-15 2016-08-23 Tigo Energy, Inc. Systems and methods to provide enhanced diode bypass paths
US8922061B2 (en) 2010-03-22 2014-12-30 Tigo Energy, Inc. Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system
US9502904B2 (en) 2010-03-23 2016-11-22 Eaton Corporation Power conversion system and method providing maximum efficiency of power conversion for a photovoltaic system, and photovoltaic system employing a photovoltaic array and an energy storage device
CA2795061A1 (en) 2010-04-01 2011-10-06 Enphase Energy, Inc. Method and apparatus for managing installation information
US9312399B2 (en) 2010-04-02 2016-04-12 Tigo Energy, Inc. Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays
CN201854208U (en) 2010-04-06 2011-06-01 鸿富锦精密工业(深圳)有限公司 Temperature control junction box and photovoltaic power generating system using same
WO2011130733A1 (en) 2010-04-16 2011-10-20 Enphase Energy, Inc. Method and apparatus for indicating a disconnection within a distributed generator
US9007210B2 (en) 2010-04-22 2015-04-14 Tigo Energy, Inc. Enhanced system and method for theft prevention in a solar power array during nonoperative periods
JP2011249790A (en) 2010-04-28 2011-12-08 Kyocera Corp Solar battery device
IT1400921B1 (en) 2010-05-14 2013-07-02 St Microelectronics Srl BY-PASS DIODE OR SWITCH MADE WITH A LOW RESISTANCE CONDUCTING MOSFET AND ITS SELF-POWERED CONTROL CIRCUIT
US8390261B2 (en) 2010-05-21 2013-03-05 Infineon Technologies Austria Ag Maximum power point tracker bypass
US20110290317A1 (en) 2010-05-26 2011-12-01 John Naumovitz Electronic device module comprising polyolefin copolymer with low unsaturation and optional vinyl silane
CN102918571B (en) 2010-05-31 2015-04-01 太阳能安吉科技有限公司 Theft detection and prevention in a power generation system
EP2577854A4 (en) 2010-06-01 2016-01-06 Univ Colorado Regents Low profile power conversion system for rooftop photovoltaic power systems
DE102010023549B4 (en) 2010-06-03 2016-03-24 Dmos Gmbh Photovoltaic generator with circuit system and method for protecting photovoltaic modules
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
KR101116430B1 (en) 2010-06-07 2012-02-27 삼성에스디아이 주식회사 Energy Storage System
US8837097B2 (en) 2010-06-07 2014-09-16 Eaton Corporation Protection, monitoring or indication apparatus for a direct current electrical generating apparatus or a plurality of strings
US8853886B2 (en) 2010-06-09 2014-10-07 Tigo Energy, Inc. System for use of static inverters in variable energy generation environments
US8436582B2 (en) 2010-07-09 2013-05-07 Freescale Semiconductor, Inc. Battery cell equalizer system
CN101902051B (en) 2010-07-15 2013-07-03 谢永亮 Efficient energy conversion device for solar cell panel, array and application method
US8717720B2 (en) 2010-07-20 2014-05-06 Siemens Industry, Inc. Systems and methods for providing arc fault and/or ground fault protection for distributed generation sources
US8395919B2 (en) 2010-07-29 2013-03-12 General Electric Company Photovoltaic inverter system and method of starting same at high open-circuit voltage
US20120033392A1 (en) 2010-08-09 2012-02-09 Tyco Electronics Corporation Modular Junction Box for a Photovoltaic Module
CN201926948U (en) 2010-08-12 2011-08-10 苏州氢洁电源科技有限公司 Electric power system
EP2421138A1 (en) 2010-08-18 2012-02-22 ABB Oy Transformer-isolated switching converter
US9035626B2 (en) 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US20120049627A1 (en) 2010-08-24 2012-03-01 Sanyo Electric Co., Ltd. Current collecting box for photovoltaic power generation
US8461716B2 (en) 2010-08-24 2013-06-11 Sanyo Electric Co., Ltd. Photovoltaic power generating device, and controlling method
US8957644B2 (en) 2010-08-25 2015-02-17 Futurewei Technologies, Inc. High efficiency high power density power architecture based on buck-boost regulators with a pass-through band
CN101951011B (en) 2010-08-25 2013-01-23 南京航空航天大学 Solar photovoltaic and commercial power combined power supply system and control method thereof
US8742722B2 (en) 2010-08-27 2014-06-03 International Rectifier Corporation Dynamic power management system and method
US8415937B2 (en) 2010-08-31 2013-04-09 Texas Instruments Incorporated Switching method to improve the efficiency of switched-mode power converters employing a bridge topology
CN102386259A (en) 2010-09-02 2012-03-21 国琏电子(上海)有限公司 Wiring box
JP2012060714A (en) 2010-09-06 2012-03-22 On Semiconductor Trading Ltd Integrated circuit
CN101951190B (en) 2010-09-08 2012-10-24 文创太阳能(福建)科技有限公司 Photovoltaic module capable of being electrically isolated
IT1402433B1 (en) 2010-09-29 2013-09-04 St Microelectronics Srl SYNCHRONOUS AUTOMATIC SYSTEM FOR ENABLING / DISABLING PHOTOVOLTAIC PANELS OF A DISTRIBUTED DC / DC CONVERSION SYSTEM
US20120080943A1 (en) 2010-09-30 2012-04-05 Astec International Limited Photovoltaic Power Systems
US8576591B2 (en) 2010-09-30 2013-11-05 Astec International Limited Converters and inverters for photovoltaic power systems
CN101976952A (en) 2010-10-08 2011-02-16 刘闯 Series resonance DC/DC converter of photovoltaic system
US8503200B2 (en) 2010-10-11 2013-08-06 Solarbridge Technologies, Inc. Quadrature-corrected feedforward control apparatus and method for DC-AC power conversion
JPWO2012049910A1 (en) 2010-10-15 2014-02-24 三洋電機株式会社 Output circuit of power supply system
US20120091817A1 (en) 2010-10-18 2012-04-19 Advanced Energy Industries, Inc. System, method, and apparatus for ac grid connection of series-connected inverters
GB2485335B (en) 2010-10-25 2012-10-03 Enecsys Ltd Renewable energy monitoring system
US9013066B2 (en) 2010-10-28 2015-04-21 Honeywell International Inc. High voltage electric accumulators with internal distributed DC-DC converters for self regulation and protection
CN101976852A (en) 2010-11-02 2011-02-16 深圳市合兴加能科技有限公司 Photovoltaic power supply system structure and method thereof
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US8508896B2 (en) 2010-11-09 2013-08-13 Eaton Corporation DC feeder protection system
US8842451B2 (en) 2010-11-23 2014-09-23 Astec International Limited Power systems for photovoltaic and DC input sources
CN101980409B (en) 2010-11-25 2013-06-19 河北工业大学 Grid-connected photovoltaic inverter
CN101976855B (en) 2010-11-28 2013-06-19 河海大学常州校区 Intelligent solar cell component and control method of array thereof
US8441276B2 (en) 2010-11-30 2013-05-14 Tungnan University Solar photovoltaic panel test platform
WO2012074808A2 (en) 2010-12-02 2012-06-07 Dow Global Technologies Llc Photovoltaic device for measuring irradiance and temperature
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
CN102570804B (en) 2010-12-28 2015-02-25 台达电子工业股份有限公司 DC (direct current) power supply conversion module and control method thereof as well as connector and energy collection system
GB2496140B (en) 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
US8547669B2 (en) 2011-01-12 2013-10-01 Schneider Electric USA, Inc. Arc fault mitigation for photovoltaic systems
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
GB2487368B (en) 2011-01-18 2012-12-05 Enecsys Ltd Inverters
GB2485423B (en) 2011-01-18 2014-06-04 Enecsys Ltd Solar photovoltaic systems
WO2012100263A2 (en) 2011-01-21 2012-07-26 Ampt, Llc Abnormality detection architecture and methods for photovoltaic systems
WO2012103963A1 (en) 2011-02-02 2012-08-09 Sma Solar Technology Ag Protective device for a photovoltaic system
JP5626798B2 (en) 2011-02-04 2014-11-19 シャープ株式会社 Photovoltaic power generation system, switching system, and bypass device
EP2495766A1 (en) 2011-02-13 2012-09-05 Fabio Brucchi Safety system to reduce risk of electrocution at photovoltaic panels level
JP5732272B2 (en) 2011-02-14 2015-06-10 ローム株式会社 Switching power supply
US9043039B2 (en) 2011-02-24 2015-05-26 Tigo Energy, Inc. System and method for arc detection and intervention in solar energy systems
DE102011004733A1 (en) 2011-02-25 2012-08-30 Siemens Aktiengesellschaft Submodule of a modular multistage converter
US8841916B2 (en) 2011-02-28 2014-09-23 Tigo Energy, Inc. System and method for flash bypass
EP2681821B1 (en) 2011-02-28 2018-04-11 SMA Solar Technology AG Method and system for detecting an arc fault in a power circuit
AU2012225199A1 (en) 2011-03-07 2013-10-17 William John KIRKHAM Solar cell installation. cut-out switch and method
DE102011005282A1 (en) 2011-03-09 2012-09-13 Robert Bosch Gmbh Junction box and solar cell arrangement
GB2486509B (en) 2011-03-22 2013-01-09 Enecsys Ltd Solar photovoltaic power conditioning units
GB2486032B (en) 2011-03-22 2013-06-19 Enecsys Ltd Solar photovoltaic inverters
WO2012135130A2 (en) 2011-03-25 2012-10-04 Gangemi Ronald J Roof mounted photovoltaic system with accessible panel electronics
US8310102B2 (en) 2011-03-30 2012-11-13 General Electric Company System and method for power conversion
CN201956938U (en) 2011-04-12 2011-08-31 浙江埃菲生物能源科技有限公司 Photovoltaic array confluence box
CN202034903U (en) 2011-04-19 2011-11-09 苏州工业职业技术学院 Soft switching pressure rising direct current to direct current (DC-DC) convertor
DE102011018355A1 (en) 2011-04-20 2012-10-25 Diehl Ako Stiftung & Co. Kg DC converter
KR101073143B1 (en) 2011-04-20 2011-10-13 이앤에이치(주) Ac type photovoltaic power module with improved power performance of photovoltaic system
US20120268969A1 (en) 2011-04-20 2012-10-25 Cuks, Llc Dc-ac inverter with high frequency isolation transformer
US20120271576A1 (en) 2011-04-22 2012-10-25 Expanergy, Llc Systems and methods for analyzing energy usage
KR101820376B1 (en) 2011-04-26 2018-01-19 엘지전자 주식회사 Photovoltaic module
US8922063B2 (en) 2011-04-27 2014-12-30 Green Charge Networks, Llc Circuit for rendering energy storage devices parallelable
US8193788B2 (en) 2011-04-27 2012-06-05 Solarbridge Technologies, Inc. Method and device for controlling a configurable power supply to provide AC and/or DC power output
DE102011076553A1 (en) 2011-05-26 2012-11-29 Solarworld Ag CONTROL OF THE DC FLOW OF A PHOTOVOLTAIC SYSTEM
US9008978B2 (en) 2011-06-17 2015-04-14 Sunfield Semiconductor, Inc. System and method for arc detection in solar power arrays
US8710351B2 (en) 2011-06-22 2014-04-29 Steven Andrew Robbins Solar power system with communication network utilizing magnetic fields
US8963375B2 (en) 2011-06-30 2015-02-24 Sunpower Corporation Device and method for electrically decoupling a solar module from a solar system
CN202178274U (en) 2011-07-20 2012-03-28 浙江尖山光电股份有限公司 Intelligent photovoltaic array combiner box
EP2549635B1 (en) 2011-07-20 2018-12-05 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9142965B2 (en) 2011-07-28 2015-09-22 Tigo Energy, Inc. Systems and methods to combine strings of solar panels
US9368965B2 (en) 2011-07-28 2016-06-14 Tigo Energy, Inc. Enhanced system and method for string-balancing
US9431825B2 (en) 2011-07-28 2016-08-30 Tigo Energy, Inc. Systems and methods to reduce the number and cost of management units of distributed power generators
CN103782443B (en) 2011-08-01 2017-10-03 马克西姆综合产品公司 Simple and highly efficient balancing circuitry and method for hybrid battery
US8922972B2 (en) 2011-08-12 2014-12-30 General Electric Company Integral module power conditioning system
US9472691B2 (en) 2011-08-25 2016-10-18 Sunpower Corporation Device for shunting current from photovoltaic circuit near the open circuit voltage and/or disconnecting solar module of a solar system
US8766596B2 (en) 2011-09-06 2014-07-01 Energy Pass Incorporation Battery management system and battery management method
DE102011053524B4 (en) 2011-09-12 2015-05-28 Sma Solar Technology Ag Safety device for a photovoltaic system and method for operating a safety device for a photovoltaic system
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8810069B2 (en) 2011-09-21 2014-08-19 Eaton Corporation System and method for maximizing power output of photovoltaic strings
EP2574949A3 (en) 2011-09-30 2013-10-30 Kabushiki Kaisha Toshiba Photovoltaic panel diagnosis device, method and program
US8878563B2 (en) 2011-10-13 2014-11-04 Steven Andrew Robbins System and apparatus for arc detection and location in solar arrays
CN103875144B (en) 2011-10-14 2016-04-13 Sma太阳能技术股份公司 For detecting the method and apparatus of the electric arc in DC circuit
DE102011116135A1 (en) 2011-10-15 2013-04-18 Kostal Industrie Elektrik Gmbh photovoltaic system
US8284574B2 (en) 2011-10-17 2012-10-09 Solarbridge Technologies, Inc. Method and apparatus for controlling an inverter using pulse mode control
US8982591B2 (en) 2011-10-18 2015-03-17 Tigo Energy, Inc. System and method for exchangeable capacitor modules for high power inverters and converters
GB2496139B (en) 2011-11-01 2016-05-04 Solarcity Corp Photovoltaic power conditioning units
GB2496163B (en) 2011-11-03 2015-11-11 Enecsys Ltd Transformer construction
GB2497275A (en) 2011-11-25 2013-06-12 Enecsys Ltd Modular adjustable power factor renewable energy inverter system
US9263971B2 (en) * 2011-12-16 2016-02-16 Empower Micro Systems Inc. Distributed voltage source inverters
JP5806419B2 (en) 2011-12-19 2015-11-10 ハスキー インジェクション モールディング システムズ リミテッドHusky Injection Molding Systems Limited System for disconnecting power in case of control failure
IL217263B (en) 2011-12-29 2018-01-31 Elta Systems Ltd System, method and computer program product for controlling electric power supply
DE202011109688U1 (en) 2011-12-31 2012-03-01 Raik Stiebert Safety-related design and activation of photovoltaic systems and safety-related grounding of extinguishing equipment
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
US20130192657A1 (en) 2012-02-01 2013-08-01 Tigo Energy, Inc. Enhanced System and Method for Matrix Panel Ties for Large Installations
US9000615B2 (en) 2012-02-04 2015-04-07 Sunfield Semiconductor Inc. Solar power module with safety features and related method of operation
US20130214607A1 (en) 2012-02-17 2013-08-22 Enphase Energy, Inc. Electromagnetic interference cancelling during power conversion
US9000919B2 (en) 2012-02-27 2015-04-07 Tigo Energy, Inc. Anti-theft system and method using a multiple radio frequency signal for solar panel systems
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US8972765B1 (en) 2012-04-04 2015-03-03 The Boeing Company Electrical energy management method and apparatus for multiple distribution buses and batteries
US20130269181A1 (en) 2012-04-05 2013-10-17 Norwich Technologies, Inc. System and method for modular photovoltaic power
FR2990082B1 (en) 2012-04-27 2014-05-23 Accumulateurs Fixes ELECTRIC ENERGY STORAGE SYSTEM COMPRISING AN INVERTER
DE102012104314B4 (en) 2012-05-18 2014-04-10 Sma Solar Technology Ag Method and device for locating and extinguishing an arc
DE102012104384B4 (en) 2012-05-22 2014-03-13 Solarworld Innovations Gmbh Single-pole switching unit for limiting the flow of energy in a series connection of photovoltaic modules, photovoltaic module arrangement and photovoltaic module
WO2013176735A1 (en) 2012-05-25 2013-11-28 Massachusetts Institute Of Technology Multi-phase grid interface
CN202871823U (en) 2012-06-21 2013-04-10 苏州天正光伏科技有限公司 Photovoltaic battery assembly modularized junction box having heat-radiation protection function
US20140062206A1 (en) 2012-08-29 2014-03-06 Robert L. Bryson Low Voltage Solar Electric Energy Distribution
JP6008668B2 (en) 2012-09-19 2016-10-19 シャープ株式会社 Power conversion device, power storage system, and power storage method
US8937469B2 (en) 2012-10-09 2015-01-20 Delta-Q Technologies Corp. Digital controller based detection methods for adaptive mixed conduction mode power factor correction circuit
TWI473397B (en) 2012-11-01 2015-02-11 Luxmill Electronic Co Ltd Current control circuit and control method for a power converter
WO2014071314A2 (en) 2012-11-02 2014-05-08 Coritech Srvices, Inc. Modular microgrid unit and method of use
US9337731B2 (en) 2012-12-13 2016-05-10 Linear Technology Corporation Power converter for generating both positive and negative output signals
US9257837B2 (en) 2013-01-04 2016-02-09 Solarcity Corporation Power balancing in a multi-phase system
US9379639B2 (en) 2013-01-04 2016-06-28 Solarcity Corporation Inverter system enabling self-configuration
WO2014109058A1 (en) 2013-01-11 2014-07-17 三菱電機株式会社 Solar photovoltaic panel and solar photovoltaic system
JP5547311B1 (en) 2013-02-06 2014-07-09 株式会社日立アドバンストデジタル Monitoring system for photovoltaic power generation equipment
DE102013101314A1 (en) 2013-02-11 2014-08-14 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
CN105144530B (en) 2013-02-14 2017-04-26 Abb 技术有限公司 Method of controlling a solar power plant, a power conversion system, a dc/ac inverter and a solar power plant
GB2510871B (en) 2013-02-15 2016-03-09 Control Tech Ltd Electrical protection device and method
US9654176B2 (en) 2013-03-14 2017-05-16 Hiq Solar, Inc. Measurement, control and harvest optimization device for solar modules requiring fewer connections
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9524832B2 (en) 2013-03-15 2016-12-20 Solantro Semiconductor Corp Intelligent safety disconnect switching
US9397497B2 (en) 2013-03-15 2016-07-19 Ampt, Llc High efficiency interleaved solar power supply system
EP3176933B1 (en) 2013-03-15 2020-08-26 Ampt, Llc High efficiency interleaved solar power supply system
US9444364B2 (en) 2013-03-15 2016-09-13 Dialog Semiconductor Inc. Adaptive peak power control
FR3003410B1 (en) 2013-03-18 2016-07-01 Win Ms DEVICE FOR PROTECTING ELECTRICAL NETWORKS
US9178353B2 (en) 2013-03-27 2015-11-03 Sunfield Semiconductor, Inc. Active bypass diode circuit and solar power module with arc flash mitigation feature
US9882507B2 (en) 2013-04-16 2018-01-30 Solarcity Corporation Power factor adjustment in multi-phase power system
US9543455B2 (en) 2013-05-01 2017-01-10 Tigo Energy, Inc. System and method for low-cost, high-efficiency solar panel power feed
GB2513868A (en) 2013-05-07 2014-11-12 Control Tech Ltd High performance voltage compensation
DE102013105209B4 (en) 2013-05-22 2021-09-30 Sma Solar Technology Ag Method and system for the transmission of data over direct current lines
CN103280768B (en) 2013-05-22 2015-03-11 珠海兴业绿色建筑科技有限公司 Arc-control device and arc-control method applied in photovoltaic combiner box
DE202013012612U1 (en) 2013-06-14 2018-01-18 Phoenix Contact Gmbh & Co. Kg Cable module for the module inverter of a photovoltaic generator
CN203367304U (en) 2013-06-18 2013-12-25 南京集能易新能源技术有限公司 Solar cell module
US20140373894A1 (en) 2013-06-25 2014-12-25 Volterra Semiconductor Corporation Photovoltaic Panels Having Electrical Arc Detection Capability, And Associated Systems And Methods
DE102013106808A1 (en) 2013-06-28 2014-12-31 Sma Solar Technology Ag Circuit arrangement for inline power supply
CN104426157B (en) 2013-09-10 2017-04-19 台达电子企业管理(上海)有限公司 Energy storage module and energy storage device
US9799779B2 (en) 2013-11-08 2017-10-24 The Board Of Trustees Of The University Of Illinois Systems and methods for photovoltaic string protection
US9461535B2 (en) 2013-12-30 2016-10-04 King Fahd University Of Petroleum And Minerals Photovoltaic systems with maximum power point tracking controller
GB2522201B (en) 2014-01-15 2018-06-27 Nidec Control Techniques Ltd Method and system for controlling a power output of an inverter
KR102298674B1 (en) 2014-01-28 2021-09-03 엘지전자 주식회사 Solar cell module and photovoltaic power generation system including the same
EP2919374B1 (en) 2014-03-12 2018-05-02 DET International Holding Limited Duty-ratio controller
US9577454B2 (en) 2014-04-11 2017-02-21 Primus Power Corporation Series connected storage interface converter
DE102014107019A1 (en) 2014-05-19 2015-11-19 Fujitsu Technology Solutions Intellectual Property Gmbh Power supply arrangement for an electronic device
WO2015187500A1 (en) 2014-06-02 2015-12-10 Enphase Energy, Inc. Ungrounded inverter enclosure and cabling
JP2015233386A (en) 2014-06-10 2015-12-24 日東工業株式会社 Photovoltaic power generation system
US20150364918A1 (en) 2014-06-11 2015-12-17 Innorel System Private Limited System and method of optimizing load current in a string of solar panels
US9853443B2 (en) 2014-06-26 2017-12-26 Solantro Semiconductor Corp. ARC fault detection and extinguishing
CN104158482B (en) 2014-07-30 2017-11-03 深圳科士达科技股份有限公司 A kind of efficient photovoltaic generating system
US9843193B2 (en) 2014-07-30 2017-12-12 Robert Getsla Safety shutdown system for photovoltaic power generators
WO2016035166A1 (en) 2014-09-03 2016-03-10 富士通株式会社 Power amplifier circuit and semiconductor integrated circuit
US9769948B2 (en) 2014-12-10 2017-09-19 Eaton Corporation Modular uninterruptible power supply apparatus and methods of operating same
US9997997B2 (en) * 2014-12-22 2018-06-12 Raytheon Company Power system based on current source
CN104600983B (en) 2014-12-24 2017-07-18 成都芯源系统有限公司 Step-up and step-down switch power converter, control circuit and mode switching control unit
US10715034B2 (en) 2015-01-20 2020-07-14 Enphase Energy, Inc. Isolated gate driver auxiliary power supply
US9876360B2 (en) * 2015-02-02 2018-01-23 Technology Research, Llc Interface for renewable energy system
US9871379B2 (en) 2015-02-18 2018-01-16 Cyboenergy, Inc. Smart microgrids and dual-output off-grid power inverters with DC source flexibility
WO2016149175A1 (en) * 2015-03-13 2016-09-22 Enphase Energy, Inc. Bulkhead interface and cable connector
JP6575113B2 (en) 2015-04-02 2019-09-18 船井電機株式会社 Display device
US9742194B2 (en) 2015-05-08 2017-08-22 Solantro Semiconductor Corp. Photovoltaic power system inverter detection
US9991717B1 (en) 2015-06-15 2018-06-05 Roco, Llc Method and apparatus for connecting and disconnecting a photovoltaic module to a distribution system
DE102015114755A1 (en) 2015-09-03 2017-03-09 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
WO2017106842A1 (en) * 2015-12-18 2017-06-22 Southwire Company, Llc Cable integrated solar inverter
US10704827B2 (en) 2015-12-28 2020-07-07 Eaton Intelligent Power Limited Systems and methods for testing electrical connectors
CN105553422B (en) 2015-12-31 2017-08-01 西安交通大学 The photovoltaic system fault arc detection method of signal is detected a kind of joint more
CN105490298B (en) 2016-01-04 2018-12-07 中国科学院电工研究所 A kind of photovoltaic high voltage direct current series connection grid-connected system comprising voltage dynamic compensator
DE102016100758A1 (en) 2016-01-18 2017-07-20 Sma Solar Technology Ag Separating device for a photovoltaic string, solar system and operating method for a solar system with photovoltaic string
CA2955938C (en) * 2016-01-22 2020-11-03 Summit Esp, Llc Apparatus, system and method for treatment of an electric submersible pump power cable
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN205609261U (en) 2016-03-14 2016-09-28 安徽华通电缆集团有限公司 Resistant high low temperature and acid and alkali corrosion resistance's super gentle solar photovoltaic cable
US11062588B2 (en) 2016-03-23 2021-07-13 Solaredge Technologies Ltd. Conductor temperature detector
EP3687019A1 (en) 2016-05-25 2020-07-29 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10164535B2 (en) 2016-11-23 2018-12-25 Texas Instruments Incorporated Cycle-by-cycle peak current limiting in current mode buck/boost converters
IL249862B (en) 2016-12-29 2022-02-01 A B Power Ltd Regulated power supply
US10720878B2 (en) 2016-12-31 2020-07-21 Sunpower Corporation Method and system for communication between inverter and solar module
US10819073B2 (en) 2018-12-04 2020-10-27 J.S.T. Corporation High voltage connector and method for assembling thereof
US11418119B2 (en) 2019-05-21 2022-08-16 Texas Instruments Incorporated Wide switching frequency range switched mode power supply control topology
US11159047B2 (en) 2019-08-02 2021-10-26 Apple Inc. Thermally optimized RX wireless charger for small RX devices

Also Published As

Publication number Publication date
EP3229332A1 (en) 2017-10-11
US11201476B2 (en) 2021-12-14
EP3687020A1 (en) 2020-07-29
US20170288409A1 (en) 2017-10-05
US20240097440A1 (en) 2024-03-21
US20170346295A1 (en) 2017-11-30
US11177663B2 (en) 2021-11-16
EP3229332B1 (en) 2020-05-06
CN107276526A (en) 2017-10-20
CN113992147A (en) 2022-01-28
US11870250B2 (en) 2024-01-09
US20220140615A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US11201476B2 (en) Photovoltaic power device and wiring
EP3252909B1 (en) Photovoltaic power device and wiring
US20210273579A1 (en) Maximizing power in a photovoltaic distributed power system
EP3410551B1 (en) System for interconnected elements of a power system
KR101272059B1 (en) A transformer matched parallel inverter for wide area multi-string solar power generation system
US9350265B2 (en) AC tied inverter, system and method
EP3433914B1 (en) Maximizing power in a photovoltaic distributed power system
US9866144B2 (en) Three port converter with dual independent maximum power point tracking and dual operating modes
US20120228947A1 (en) Energy collection system and method
TW201014146A (en) System and method for an array of intelligent inverters
TW201338390A (en) Stacked voltage source inverter with separate DC sources
JP2004194500A (en) Power conversion apparatus for solar power generation
CN101682194A (en) Apparatus for feeding electrical energy into an energy supply system and DC voltage transformer for such an apparatus
CN110474359B (en) System and method for increasing reliability and useful life of Photovoltaic (PV) modules
KR101344024B1 (en) Maximum power tracking device using orthogonal perturbation signal and maximum power tracking control method thereof
US20210351741A1 (en) Safety Switch for Photovoltaic Systems
EP3683909B1 (en) Safety switch for photovoltaic systems

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLAREDGE TECHNOLOGIES LTD., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOSCOVICH, ILAN;GLOVINSKY, TZACHI;BIEBER, OFIR;SIGNING DATES FROM 20170604 TO 20170613;REEL/FRAME:042808/0385

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

FEPP Fee payment procedure

Free format text: PETITION RELATED TO MAINTENANCE FEES GRANTED (ORIGINAL EVENT CODE: PTGR); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STPP Information on status: patent application and granting procedure in general

Free format text: NOTICE OF ALLOWANCE MAILED -- APPLICATION RECEIVED IN OFFICE OF PUBLICATIONS

STPP Information on status: patent application and granting procedure in general

Free format text: AWAITING TC RESP, ISSUE FEE PAYMENT VERIFIED

STPP Information on status: patent application and granting procedure in general

Free format text: PUBLICATIONS -- ISSUE FEE PAYMENT VERIFIED

STCF Information on status: patent grant

Free format text: PATENTED CASE