JP2004111754A - Inductor - Google Patents

Inductor Download PDF

Info

Publication number
JP2004111754A
JP2004111754A JP2002274039A JP2002274039A JP2004111754A JP 2004111754 A JP2004111754 A JP 2004111754A JP 2002274039 A JP2002274039 A JP 2002274039A JP 2002274039 A JP2002274039 A JP 2002274039A JP 2004111754 A JP2004111754 A JP 2004111754A
Authority
JP
Japan
Prior art keywords
core
coils
terminals
type core
inductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002274039A
Other languages
Japanese (ja)
Inventor
Toru Umeno
梅野 徹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP2002274039A priority Critical patent/JP2004111754A/en
Publication of JP2004111754A publication Critical patent/JP2004111754A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coils Of Transformers For General Uses (AREA)
  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inductor which can reduce the number of components of a multi-phase type converter. <P>SOLUTION: The inductor comprises one upper-side ER-type core 11, one lower-side I-type core 12, and two coils 13. Central legs 11c and 11c of the ER-type core 11 are fit by insertion into the coils 13 and 13 respectively, and at the same time the coils 13 and 13 are stored in recessed portions 11b and 11b of the ER-type core 11 respectively, and then the ER-type core 11 and the I-type core are bought faced to face with each other, forming a closed magnetic path. Terminals 13a and 13a of one of the coils 13 are fit in notches 12a and 12b formed in one side 12a of the I-type core 12, while terminals 13a and 13a of the other coil 13 are fit in cutouts 12b and 12b formed in another side 12c of the I-type core 12. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、各種の電子機器に使用されるインダクタに関し、特に、上側の第1コア(例えばER型コア)と下側の第2コア(例えばI型コア)とによって閉磁路が構成されるインダクタに関する。
【0002】
【従来の技術】
パーソナルコンピュータに使用されるCPU(Central Processing Unit)に電力を供給する部材は、MOS−FET(Metal Oxide Semiconductor−Field Effect Transistor)、インダクタ、コンデンサ及び制御回路を有するDC−DCコンバータである。DC−DCコンバータに用いられるインダクタには種々のものが存在し、CPUの高速化に応じて、消費電流の増大に対応するための大電流化と、高周波領域での低損失化とがインダクタに要求されている。
【0003】
図4は、このような大電流化及び低損失化を図れる従来のインダクタの分解斜視図である(例えば、特許文献1参照)。この従来のインダクタは、上側のER型コア41と下側のI型コア42とコイル43と補助端子44とから構成されている。
【0004】
【特許文献1】
特開平10−223450号公報
【0005】
図4(a)に示すER型コア41は、対向する一対の各辺に設けた外側脚41a,41aに囲まれている凹部41bの中央に円柱状の中央脚41cを立設し、外側脚41a,41aが設けられていない側の二辺を開口部41d,41dとしている。図4(b)に示すコイル43は、絶縁被膜処理された平角導線を巻回してなるエッジワイズコイルであり、その巻き始めと巻き終わりとは絶縁被膜が剥がされ、はんだめっきされて更にL字状に変形されて端子43a,43aを構成している。図4(c)に示すI型コア42は、一辺42aにコイル43の並行的に突出する各端子43a,43aを嵌め込む切欠部42b,42bを設けており、一辺42aと対向する他辺42cの中央には、断面がコ字形状である補助端子44の取付け用の切欠部42dを設けている。
【0006】
ER型コア41の凹部41bにエッジワイズ巻きのコイル43を収容すると共に、I型コア42でER型コア41の凹部41bを閉鎖し、更に、I型コア42に補助端子44を取り付ける。ER型コア41の中央脚41cにコイル43を嵌挿させた態様で、コイル43を凹部41bに収容し、ER型コア41とI型コア42とを突き合わせて閉磁路を構成している。この際、コイル43の端子43a,43aをI型コア42の切欠部42b,42bに嵌め込んでいる。なお、インダクタをプリント回路基板に実装する際の実装強度を得るために、補助端子44が使用される。
【0007】
【発明が解決しようとする課題】
上述したような構成を有するインダクタを使用することにより、1台のDC−DCコンバータにて、大電力のCPUへ電力を供給することが可能であった。しかしながら、昨今では、CPUの処理速度の更なる向上に伴って、CPUへ供給すべき電力は更に増大しており、ハイエンドCPUの場合には、複数台のDC−DCコンバータを並列に接続して電力を供給するマルチフェーズ方式が採用されている。
【0008】
このマルチフェーズ方式の場合には、DC−DCコンバータの台数に応じて複数の構成部材が必要であり、インダクタもDC−DCコンバータの台数分だけ必要となる。この結果、実装スペースとコストとの増大が避けられないという問題がある。具体的には、図4に示すような構成のインダクタを使用する場合、1個のインダクタが4個の部品(ER型コア41,I型コア42,コイル43及び補助端子44)から構成されているので、2フェーズ方式のDC−DCコンバータでは2個のインダクタを使用して8(=4×2)個の部品点数が必要となる。
【0009】
本発明は斯かる事情に鑑みてなされたものであり、マルチフェーズ方式のコンバータにおいて、構成される部品点数を従来に比して大幅に低減できるインダクタを提供することを目的とする。
【0010】
【課題を解決するための手段】
第1発明に係るインダクタは、磁性材からなる各1個の第1コア及び第2コアと、夫々が平角導線を巻回してなる複数のコイルとを備えるインダクタであって、前記第1コアに柱状の複数の脚部が設けられており、前記複数のコイル夫々を前記複数の脚部夫々に嵌挿しており、前記第1コアと前記第2コアとを突き合わせていることを特徴とする。
【0011】
第1発明のインダクタにあっては、1個の第1コア(例えばER型コア)に設けられた柱状の複数の脚部夫々に複数のコイル夫々が嵌挿されており、この第1コアと1個の第2コア(例えばI型コア)とを突き合わせた構成をなしている。このように一対のコアによって複数のインダクタを一体化させた構成であり、マルチフェーズ方式のコンバータにおいて、複数のインダクタを単に並列構成させる従来例と比べて部品点数が低減する。また、複数のインダクタを個別に実装する場合に比べて実装密度も向上する。更に、組立ての作業性は向上して生産コストも低下する。
【0012】
第2発明に係るインダクタは、第1発明において、前記第1コアは両側に開口部を有しており、前記複数のコイル夫々の両端子は前記第1コアの同じ側の前記開口部から出ており、前記複数のコイルの中で少なくとも1組のコイルの両端子が前記第1コアの異なる側の前記開口部から出ていることを特徴とする。
【0013】
第2発明のインダクタにあっては、複数のコイル夫々の両端子が第1コアの同じ側の開口部から出ており、これらの複数のコイルの中で少なくとも1つのコイルの両端子が他のコイルの両端子と異なる側の開口部から出ている。よって、実装バランスが良好であり、十分な実装強度が得られるように端子は配置されるので、実装強度を得るための補助端子が不要であり、更なる部品点数の低減、組立て工数の削減及び生産コストの低下を図れる。
【0014】
第3発明に係るインダクタは、第1発明において、前記第1コアは両側に開口部を有しており、前記複数のコイル夫々の両端子は、前記第1コアの異なる側の前記開口部から夫々出ていることを特徴とする。
【0015】
第3発明のインダクタにあっては、複数のコイル夫々の両端子が第1コアの異なる側の開口部から夫々出ている。よって、実装バランスが良好であり、十分な実装強度が得られるように端子は配置されるので、実装強度を得るための補助端子が不要であり、更なる部品点数の低減、組立て工数の削減及び生産コストの低下を図れる。
【0016】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面を参照して具体的に説明する。
(第1実施の形態)
図1は、本発明の第1実施の形態に係るインダクタの構成を示す分解斜視図である。この第1実施の形態のインダクタは、上側の1個のER型コア1と下側の1個のI型コア2と2個のコイル3,3と1個の補助端子4とから構成されている。
【0017】
図1(a)に示す第1コアとしてのER型コア1は、対向する一対の短辺及びその中間に3個の側脚1a,1a,1aが設けられており、隣合う側脚1a,1aに囲まれている2箇所の凹部1b,1b夫々の中央に円柱状の中央脚1c,1cが立設されている。また、側脚1aが設けられていない対向する一対の長辺は4箇所の開口部1d,1d,1d,1dとなっている。
【0018】
図1(b)に示す2個のコイル3,3夫々は、絶縁被膜処理された平角導線を巻回してなるエッジワイズコイルであり、その巻き始めと巻き終わりとは絶縁被膜が剥がされ、はんだめっきされて更にL字状に変形されて端子3a,3aを構成している。図1(c)に示す第2コアとしてのI型コア2は、一辺2aにコイル3,3の並行的に突出する各端子3a,3a,3a,3aを嵌め込む切欠部2b,2b,2b,2bを設けており、一辺2aと対向する他辺2cの中央には、断面がコ字形状である補助端子4の取付け用の切欠部2dを設けている。
【0019】
ER型コア1の各凹部1b,1bにエッジワイズ巻きのコイル3,3を収容すると共に、I型コア2でER型コア1の凹部1b,1bを閉鎖し、更に、I型コア2の切欠部2dに補助端子4を取り付ける。ER型コア1の各中央脚1c,1cに各コイル3,3を嵌挿させた態様で、各コイル3,3を凹部1b,1bに収容し、ER型コア1とI型コア2とを突き合わせて閉磁路を構成している。この際、各コイル3,3の端子3a,3a,3a,3aをI型コア2の切欠部2b,2b,2b,2bに嵌め込んでいる。なお、インダクタをプリント回路基板に実装する際の実装強度を得るために、補助端子4が使用される。
【0020】
第1実施の形態のインダクタでは、1個のER型コア1と1個のI型コア2と2個のコイル3,3と1個の補助端子4とから構成されているので、その部品点数は合計で5個であり、5個の部品点数にて2フェーズ方式のDC−DCコンバータで使用するインダクタを構成することができ、8個の部品点数が必要であった従来例と比べて、部品点数を削減することができる。
【0021】
(第2実施の形態)
図2は、本発明の第2実施の形態に係るインダクタの構成を示す分解斜視図である。この第2実施の形態のインダクタは、上側の1個のER型コア11と下側の1個のI型コア12と2個のコイル13,13とから構成されている。
【0022】
図2(a)に示す第1コアとしてのER型コア11は、対向する一対の短辺及びその中間に3個の側脚11a,11a,11aが設けられており、隣合う側脚11a,11aに囲まれている2箇所の凹部11b,11b夫々の中央に円柱状の中央脚11c,11cが立設されている。また、側脚11aが設けられていない対向する一対の長辺は4箇所の開口部11d,11d,11d,11dとなっている。
【0023】
図2(b)に示す2個のコイル13,13夫々は、絶縁被膜処理された平角線を巻回してなるエッジワイズコイルであり、その巻き始めと巻き終わりとは絶縁被膜が剥がされ、はんだめっきされて更にL字状に変形されて端子13a,13aを構成している。図2(c)に示す第2コアとしてのI型コア12は、一辺12aに一方のコイル13の並行的に突出する各端子13a,13aを嵌め込む切欠部12b,12bを設けており、一辺12aと対向する他辺12cに他方のコイル13の並行的に突出する各端子13a,13aを嵌め込む切欠部12b,12bを設けている。
【0024】
ER型コア11の各凹部11b,11bにエッジワイズ巻きのコイル13,13を収容すると共に、I型コア12でER型コア11の凹部11b,11bを閉鎖する。ER型コア11の各中央脚11c,11cに各コイル13,13を嵌挿させた態様で、各コイル13,13を凹部11b,11bに収容し、ER型コア11とI型コア12とを突き合わせて閉磁路を構成している。この際、各コイル13,13の端子13a,13a,13a,13aをI型コア12の切欠部12b,12b,12b,12bに嵌め込んでいる。
【0025】
この第2実施の形態では、2個のコイル3,3の4個の端子3a全てがER型コア1の同じ側から出ている第1実施の形態と違って、一方のコイル13の両端子13a,13aと他方のコイル13の両端子13a,13aとをER型コア11の異なる側から出す構成としているため、端子13aが2個ずつI型コア12の両側に配置されて実装バランスが良好であるので、実装強度を得るために第1実施の形態に設けた補助端子4は不要である。そして、第2実施の形態のインダクタでは、1個のER型コア11と1個のI型コア12と2個のコイル13,13とから構成されているので、その部品点数は合計で4個であり、4個の部品点数にて2フェーズ方式のDC−DCコンバータで使用するインダクタを構成することができ、8個の部品点数が必要であった従来例と比べて、部品点数を半分に削減することができる。
【0026】
(第3実施の形態)
図3は、本発明の第3実施の形態に係るインダクタの構成を示す分解斜視図である。この第3実施の形態のインダクタは、上側の1個のER型コア21と下側の1個のI型コア22と2個のコイル23,23とから構成されている。
【0027】
図3(a)に示す第1コアとしてのER型コア21は、対向する一対の短辺及びその中間に3個の側脚21a,21a,21aが設けられており、隣合う側脚21a,21aに囲まれている2箇所の凹部21b,21b夫々の中央に円柱状の中央脚21c,21cが立設されている。また、側脚21aが設けられていない対向する一対の長辺は4箇所の開口部21d,21d,21d,21dとなっている。
【0028】
図3(b)に示す2個のコイル23,23夫々は、絶縁被膜処理された平角導線を巻回してなるエッジワイズコイルであり、その巻き始めと巻き終わりとは絶縁被膜が剥がされ、はんだめっきされて更にL字状に変形されて、異なる方向に引き出される端子23a,23aを構成している。図3(c)に示す第2コアとしてのI型コア22は、一辺22aに両コイル23,23の一方向に突出する各端子23a,23aを嵌め込む切欠部22b,22bを設けており、一辺22aと対向する他辺22cに両コイル23,23の他方向に突出する各端子23a,23aを嵌め込む切欠部22b,22bを設けている。
【0029】
ER型コア21の各凹部21b,21bにエッジワイズ巻きのコイル23,23を収容すると共に、I型コア22でER型コア21の凹部21b,21bを閉鎖する。ER型コア21の各中央脚21c,21cに各コイル23,23を嵌挿させた態様で、各コイル23,23を凹部21b,21bに収容し、ER型コア21とI型コア22とを突き合わせて閉磁路を構成している。この際、各コイル23,23の端子23a,23a,23a,23aをI型コア22の切欠部22b,22b,22b,22bに嵌め込んでいる。
【0030】
この第3実施の形態では、2個のコイル3,3の4個の端子3a全てがER型コア1の同じ側から出ている第1実施の形態と違って、各コイル23,23において一方の端子23aと他方の端子23aとをER型コア21の異なる側から出す構成としているため、端子23aが2個ずつI型コア22の両側に配置されて実装バランスが良好であるので、第2実施の形態と同様に、第1実施の形態での補助端子4は不要である。そして、第3実施の形態のインダクタでも、第2実施の形態と同様、1個のER型コア21と1個のI型コア22と2個のコイル23,23とから構成されているので、その部品点数は合計で4個であり、4個の部品点数にて2フェーズ方式のDC−DCコンバータで使用するインダクタを構成することができ、8個の部品点数が必要であった従来例と比べて、部品点数を半分に削減することができる。
【0031】
なお、上述した例では、2フェーズ方式のDC−DCコンバータで使用するインダクタについて説明したが、3フェーズ以上のDC−DCコンバータで用いるインダクタも同様に構成できることは勿論である。
【0032】
一般的に、n(nは2以上の整数)フェーズ方式のDC−DCコンバータで使用するインダクタを構成する場合、図4に示した従来例のインダクタを並列的に配置すると、1個のインダクタにおいて4個の部品点数が必要であるため、全体として4n個の部品点数が必要となる。これに対して本発明にあっては、第1実施の形態の場合に、1個のER型コア1と1個のI型コア2とn個のコイル3と1個の補助端子4とが必要であって、全体として(n+3)個の部品点数が必要であり、第2,第3実施の形態の場合に、1個のER型コア11,21と1個のI型コア12,22とn個のコイル13,23とが必要であって、全体として(n+2)個の部品点数が必要となる。このように、本発明では、マルチフェーズ方式のDC−DCコンバータにおけるインダクタを構成する部品点数を低減することができ、そのフェーズ数が多くなればなるほど、部品点数の低減効果は大きくなる。
【0033】
なお、上述した各実施の形態におけるコイルはエッジワイズ巻きのコイルとしたが、フラットエッジ巻きのコイルであっても同様の効果を奏することは言うまでもない。また、ER型コア、I型コアはMnZnフェライト、NiZnフェライトまたはメタルダスト系の材料が用いられ、ER型コアとI型コアとで材料が異なっていても良い。更に、コアの一部にエアギャップを設け、直流重畳特性を向上させることもできる。
【0034】
【発明の効果】
以上詳述した如く、本発明では、1個の第1コア(ER型コア)に設けられた柱状の複数の脚部(中央脚)夫々に複数のコイル夫々を嵌挿しており、この第1コアと1個の第2コア(I型コア)とを突き合わせるように構成したので、マルチフェーズ方式のコンバータにおいてインダクタの構成部品点数を大幅に低減することができる。この結果、部材コストが低減し、組立ての作業性も向上するので、生産コストを下げることができる。また、一体化した構成としたので、複数のインダクタを個別に実装する場合と比べて、実装効率及び実装密度を向上することができる。
【0035】
また、本発明では、複数のコイル夫々の両端子が第1コア(ER型コア)の同じ側の開口部から出ており、これらの複数のコイルの中で少なくとも1つのコイルの両端子が他のコイルの両端子と異なる側の開口部から出るように構成したので、実装強度を補助するための補助端子が不要であり、更なる部品点数の低減、組立て工数の削減及び生産コストの低下を図ることができる。
【0036】
更に、本発明では、複数のコイル夫々の両端子が第1コア(ER型コア)の異なる側の開口部から夫々出るように構成したので、実装強度を補助するための補助端子が不要であり、更なる部品点数の低減、組立て工数の削減及び生産コストの低下を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施の形態に係るインダクタの構成を示す分解斜視図である。
【図2】本発明の第2実施の形態に係るインダクタの構成を示す分解斜視図である。
【図3】本発明の第3実施の形態に係るインダクタの構成を示す分解斜視図である。
【図4】従来のインダクタの構成を示す分解斜視図である。
【符号の説明】
1,11,21 ER型コア(第1コア)
2,12,22 I型コア(第2コア)
3,13,23 コイル
4 補助端子
1a,11a,21a 側脚
1b,11b,21b 凹部
1c,11c,21c 中央脚
1d,11d,21d 開口部
2a,12a,22a 一辺
2b,2d,12b,22b 切欠部
2c,12c,22c 他辺
3a,13a,23a 端子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an inductor used for various electronic devices, and in particular, an inductor in which a closed magnetic circuit is configured by an upper first core (for example, an ER type core) and a lower second core (for example, an I type core). About.
[0002]
[Prior art]
A member that supplies power to a CPU (Central Processing Unit) used in a personal computer is a DC-DC converter including a metal-oxide semiconductor-field effect transistor (MOS-FET), an inductor, a capacitor, and a control circuit. There are various types of inductors used in DC-DC converters. As the speed of the CPU increases, increasing the current to cope with the increase in current consumption and reducing the loss in the high-frequency region are required for inductors. Is required.
[0003]
FIG. 4 is an exploded perspective view of a conventional inductor capable of achieving such a large current and low loss (for example, see Patent Document 1). This conventional inductor includes an upper ER core 41, a lower I core 42, a coil 43, and an auxiliary terminal 44.
[0004]
[Patent Document 1]
JP-A-10-223450
The ER-type core 41 shown in FIG. 4A has a column-shaped central leg 41c erected at the center of a concave portion 41b surrounded by outer legs 41a provided on each of a pair of opposing sides. Two sides on the side where 41a, 41a are not provided are openings 41d, 41d. The coil 43 shown in FIG. 4 (b) is an edgewise coil formed by winding a rectangular conductor which has been subjected to insulation coating treatment. The winding start and end of the coil 43 are stripped of the insulation coating, plated with solder, and further L-shaped. To form terminals 43a. The I-shaped core 42 shown in FIG. 4 (c) is provided with cutouts 42b, 42b for fitting the terminals 43a, 43a of the coil 43 projecting in parallel on one side 42a, and the other side 42c facing the side 42a. A notch 42d for attaching an auxiliary terminal 44 having a U-shaped cross section is provided at the center of the notch.
[0006]
The edgewise coil 43 is accommodated in the recess 41b of the ER core 41, the recess 41b of the ER core 41 is closed by the I-core 42, and the auxiliary terminal 44 is attached to the I-core 42. The coil 43 is housed in the concave portion 41b in such a manner that the coil 43 is fitted into the central leg 41c of the ER core 41, and the ER core 41 and the I core 42 are abutted to form a closed magnetic circuit. At this time, the terminals 43a, 43a of the coil 43 are fitted into the notches 42b, 42b of the I-shaped core 42. Note that the auxiliary terminal 44 is used in order to obtain mounting strength when mounting the inductor on the printed circuit board.
[0007]
[Problems to be solved by the invention]
By using the inductor having the above-described configuration, it was possible to supply power to a high-power CPU with one DC-DC converter. However, recently, the power to be supplied to the CPU has been further increased with the further improvement of the processing speed of the CPU. In the case of a high-end CPU, a plurality of DC-DC converters are connected in parallel. A multi-phase system for supplying power is employed.
[0008]
In the case of this multi-phase system, a plurality of components are required in accordance with the number of DC-DC converters, and inductors are also required for the number of DC-DC converters. As a result, there is a problem that an increase in mounting space and cost is inevitable. Specifically, when an inductor having a configuration as shown in FIG. 4 is used, one inductor is composed of four parts (ER-type core 41, I-type core 42, coil 43, and auxiliary terminal 44). Therefore, a two-phase DC-DC converter requires two (= 4 × 2) parts using two inductors.
[0009]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an inductor that can greatly reduce the number of components configured in a multi-phase converter as compared with the related art.
[0010]
[Means for Solving the Problems]
An inductor according to a first aspect of the present invention is an inductor that includes a first core and a second core each made of a magnetic material, and a plurality of coils each formed by winding a rectangular conductor. A plurality of pillar-shaped legs are provided, each of the plurality of coils is fitted into each of the plurality of legs, and the first core and the second core are abutted.
[0011]
In the inductor according to the first aspect of the present invention, a plurality of coils are respectively fitted into a plurality of columnar legs provided on one first core (for example, an ER type core). It has a configuration in which one second core (for example, an I-type core) is abutted. As described above, a plurality of inductors are integrated by a pair of cores. In a multi-phase converter, the number of components is reduced as compared with a conventional example in which a plurality of inductors are simply configured in parallel. Also, the mounting density is improved as compared with the case where a plurality of inductors are individually mounted. Further, assembling workability is improved and production cost is reduced.
[0012]
In the inductor according to a second aspect of the present invention, in the first aspect, the first core has an opening on both sides, and both terminals of each of the plurality of coils project from the opening on the same side of the first core. And wherein both terminals of at least one set of coils among the plurality of coils protrude from the openings on different sides of the first core.
[0013]
In the inductor according to the second aspect of the present invention, both terminals of each of the plurality of coils protrude from the opening on the same side of the first core, and both terminals of at least one of the plurality of coils are connected to other terminals. It comes out of the opening on the side different from both terminals of the coil. Therefore, the terminals are arranged so that the mounting balance is good and sufficient mounting strength is obtained, so that auxiliary terminals for obtaining the mounting strength are unnecessary, further reducing the number of parts, reducing the number of assembly steps, and Production costs can be reduced.
[0014]
In the inductor according to a third aspect, in the first aspect, the first core has an opening on both sides, and both terminals of each of the plurality of coils are connected to the opening on a different side of the first core. It is characterized in that each comes out.
[0015]
In the inductor according to the third aspect, both terminals of each of the plurality of coils protrude from openings on different sides of the first core. Therefore, the terminals are arranged so that the mounting balance is good and sufficient mounting strength is obtained, so that auxiliary terminals for obtaining the mounting strength are unnecessary, further reducing the number of parts, reducing the number of assembly steps, and Production costs can be reduced.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings showing the embodiments.
(1st Embodiment)
FIG. 1 is an exploded perspective view showing the configuration of the inductor according to the first embodiment of the present invention. The inductor according to the first embodiment includes one upper ER core 1, one lower I core 2, two coils 3, 3, and one auxiliary terminal 4. I have.
[0017]
The ER-type core 1 as a first core shown in FIG. 1A has a pair of short sides facing each other and three side legs 1a, 1a, 1a provided therebetween, and adjacent side legs 1a, 1a. At the center of each of two concave portions 1b, 1b surrounded by 1a, column-shaped central legs 1c, 1c are erected. In addition, a pair of long sides facing each other where the side legs 1a are not provided are four openings 1d, 1d, 1d, 1d.
[0018]
Each of the two coils 3 and 3 shown in FIG. 1 (b) is an edgewise coil formed by winding a rectangular conductor having been subjected to insulation coating treatment. The terminals 3a, 3a are formed by plating and further deformed into an L shape. The I-shaped core 2 as a second core shown in FIG. 1C has cutouts 2b, 2b, 2b into which the terminals 3a, 3a, 3a, 3a of the coils 3, 3 projecting in parallel on one side 2a are fitted. , 2b, and a notch 2d for mounting the auxiliary terminal 4 having a U-shaped cross section is provided at the center of the other side 2c facing the one side 2a.
[0019]
Edge-wise wound coils 3 and 3 are accommodated in the recesses 1 b and 1 b of the ER core 1, and the recesses 1 b and 1 b of the ER core 1 are closed with the I-shaped core 2. The auxiliary terminal 4 is attached to the portion 2d. The coils 3, 3 are housed in the recesses 1b, 1b, respectively, in such a manner that the coils 3, 3 are fitted into the respective center legs 1c, 1c of the ER core 1, and the ER core 1 and the I-core 2 The closed magnetic circuit is formed by abutting. At this time, the terminals 3a, 3a, 3a, 3a of the coils 3, 3 are fitted into the notches 2b, 2b, 2b, 2b of the I-shaped core 2. Note that the auxiliary terminal 4 is used in order to obtain a mounting strength when mounting the inductor on the printed circuit board.
[0020]
The inductor according to the first embodiment includes one ER-type core 1, one I-type core 2, two coils 3, 3, and one auxiliary terminal 4. Are 5 in total, and the number of components can constitute an inductor used in a two-phase DC-DC converter, compared to the conventional example that required 8 components. The number of parts can be reduced.
[0021]
(2nd Embodiment)
FIG. 2 is an exploded perspective view showing the configuration of the inductor according to the second embodiment of the present invention. The inductor according to the second embodiment includes one upper ER core 11, one lower I core 12, and two coils 13 and 13.
[0022]
The ER-type core 11 as the first core shown in FIG. 2A is provided with a pair of opposing short sides and three side legs 11a, 11a, 11a in the middle between the short sides. At the center of each of the two concave portions 11b, 11b surrounded by 11a, columnar central legs 11c, 11c are erected. Further, a pair of long sides facing each other where the side legs 11a are not provided are four openings 11d, 11d, 11d, 11d.
[0023]
Each of the two coils 13, 13 shown in FIG. 2 (b) is an edgewise coil formed by winding a rectangular wire which has been subjected to an insulating coating treatment. The terminals 13a are formed by plating and further deformed into an L-shape. The I-shaped core 12 as a second core shown in FIG. 2C has cutouts 12b, 12b into which the terminals 13a, 13a of one coil 13 projecting in parallel are fitted on one side 12a. Notches 12b, 12b are provided in the other side 12c opposite to 12a to fit the terminals 13a, 13a of the other coil 13 projecting in parallel.
[0024]
Edge-wise wound coils 13, 13 are accommodated in the recesses 11 b, 11 b of the ER core 11, and the recesses 11 b, 11 b of the ER core 11 are closed by the I-shaped core 12. The coils 13, 13 are housed in the recesses 11 b, 11 b in such a manner that the coils 13, 13 are fitted into the respective center legs 11 c, 11 c of the ER core 11, and the ER core 11 and the I-type core 12 are joined together. The closed magnetic circuit is formed by abutting. At this time, the terminals 13a, 13a, 13a, 13a of the coils 13, 13 are fitted into the notches 12b, 12b, 12b, 12b of the I-shaped core 12.
[0025]
In the second embodiment, unlike the first embodiment in which all four terminals 3a of the two coils 3 and 3 come out from the same side of the ER type core 1, both terminals of one coil 13 are different. Since the terminals 13a and 13a and both terminals 13a and 13a of the other coil 13 are taken out from different sides of the ER-type core 11, two terminals 13a are arranged on both sides of the I-type core 12 so that the mounting balance is good. Therefore, the auxiliary terminal 4 provided in the first embodiment for obtaining the mounting strength is unnecessary. The inductor according to the second embodiment includes one ER type core 11, one I type core 12, and two coils 13, 13, so that the number of parts is four in total. Thus, the inductor used in the two-phase DC-DC converter can be configured with four parts, and the number of parts is halved as compared with the conventional example that required eight parts. Can be reduced.
[0026]
(Third embodiment)
FIG. 3 is an exploded perspective view showing the configuration of the inductor according to the third embodiment of the present invention. The inductor according to the third embodiment includes an upper ER core 21, a lower I-core 22, and two coils 23.
[0027]
The ER-type core 21 as the first core shown in FIG. 3A has a pair of opposing short sides and three side legs 21a, 21a, 21a provided therebetween, and the adjacent side legs 21a, 21a. At the center of each of the two concave portions 21b, 21b surrounded by 21a, column-shaped central legs 21c, 21c are erected. A pair of long sides facing each other where the side legs 21a are not provided are four openings 21d, 21d, 21d, 21d.
[0028]
Each of the two coils 23, 23 shown in FIG. 3 (b) is an edgewise coil formed by winding a rectangular conductor having been subjected to an insulation coating treatment. The terminals 23a, 23a which are plated and further deformed into an L-shape to be drawn out in different directions are formed. The I-shaped core 22 as the second core shown in FIG. 3 (c) has cutouts 22b, 22b on one side 22a for fitting the terminals 23a, 23a protruding in one direction of the coils 23, 23, respectively. Notches 22b, 22b for fitting terminals 23a, 23a projecting in the other direction of both coils 23, 23 are provided on the other side 22c facing one side 22a.
[0029]
Edge-wise wound coils 23, 23 are accommodated in the recesses 21b, 21b of the ER core 21, and the recesses 21b, 21b of the ER core 21 are closed by the I-shaped core 22. The coils 23, 23 are accommodated in the recesses 21b, 21b, respectively, in such a manner that the coils 23, 23 are fitted into the respective center legs 21c, 21c of the ER core 21, and the ER core 21 and the I-type core 22 are joined together. The closed magnetic circuit is formed by abutting. At this time, the terminals 23a, 23a, 23a, 23a of the coils 23, 23 are fitted into the notches 22b, 22b, 22b, 22b of the I-shaped core 22.
[0030]
In the third embodiment, unlike the first embodiment in which all four terminals 3a of the two coils 3 and 3 come out from the same side of the ER type core 1, one end of each coil 23 is provided. Terminal 23a and the other terminal 23a are put out from different sides of the ER-type core 21. Therefore, two terminals 23a are arranged on both sides of the I-type core 22 and the mounting balance is good. As in the embodiment, the auxiliary terminal 4 in the first embodiment is unnecessary. Further, since the inductor according to the third embodiment also includes one ER-type core 21, one I-type core 22, and two coils 23, 23 as in the second embodiment, The number of components is four in total, and the inductors used in the two-phase DC-DC converter can be configured with four components, and the conventional example requires eight components. In comparison, the number of parts can be reduced by half.
[0031]
In the above-described example, an inductor used in a two-phase DC-DC converter has been described, but an inductor used in a three-phase or more DC-DC converter can of course be similarly configured.
[0032]
Generally, when an inductor used in a DC-DC converter of the n-type (n is an integer of 2 or more) phase method is configured, if the conventional inductor shown in FIG. Since four parts are required, 4n parts are required as a whole. On the other hand, in the present invention, in the case of the first embodiment, one ER type core 1, one I type core 2, n coils 3 and one auxiliary terminal 4 are connected. This is necessary, and (n + 3) parts are required as a whole. In the case of the second and third embodiments, one ER-type core 11 and 21 and one I-type core 12 and 22 And n coils 13 and 23 are required, and a total of (n + 2) parts are required. As described above, in the present invention, the number of components constituting the inductor in the multi-phase DC-DC converter can be reduced, and the effect of reducing the number of components increases as the number of phases increases.
[0033]
Although the coil in each of the above-described embodiments is an edgewise wound coil, it goes without saying that a similar effect can be obtained even with a flat edge wound coil. The ER-type core and the I-type core are made of MnZn ferrite, NiZn ferrite or metal dust-based material, and the material may be different between the ER-type core and the I-type core. Furthermore, an air gap may be provided in a part of the core to improve the DC superimposition characteristics.
[0034]
【The invention's effect】
As described in detail above, in the present invention, a plurality of coils are respectively inserted into a plurality of columnar legs (center legs) provided on one first core (ER type core). Since the configuration is such that the core and one second core (I-type core) abut each other, the number of components of the inductor in the multi-phase converter can be significantly reduced. As a result, member costs are reduced, and workability in assembling is improved, so that production costs can be reduced. Further, since the integrated configuration is adopted, the mounting efficiency and the mounting density can be improved as compared with the case where a plurality of inductors are individually mounted.
[0035]
Further, in the present invention, both terminals of each of the plurality of coils protrude from the opening on the same side of the first core (ER type core), and both terminals of at least one of the plurality of coils are connected to other terminals. The coil is configured so that it comes out of the opening on the side different from the two terminals of the coil.Therefore, there is no need for an auxiliary terminal for assisting the mounting strength, further reducing the number of parts, assembling man-hours, and lowering the production cost. Can be planned.
[0036]
Further, in the present invention, since both terminals of each of the plurality of coils are configured to protrude from the openings on the different side of the first core (ER type core), auxiliary terminals for assisting the mounting strength are unnecessary. Furthermore, the number of parts can be further reduced, the number of assembling steps can be reduced, and the production cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing a configuration of an inductor according to a first embodiment of the present invention.
FIG. 2 is an exploded perspective view showing a configuration of an inductor according to a second embodiment of the present invention.
FIG. 3 is an exploded perspective view showing a configuration of an inductor according to a third embodiment of the present invention.
FIG. 4 is an exploded perspective view showing a configuration of a conventional inductor.
[Explanation of symbols]
1,11,21 ER type core (first core)
2,12,22 I-type core (second core)
3, 13, 23 Coil 4 Auxiliary terminals 1a, 11a, 21a Side legs 1b, 11b, 21b Recesses 1c, 11c, 21c Central legs 1d, 11d, 21d Openings 2a, 12a, 22a Sides 2b, 2d, 12b, 22b Notch Parts 2c, 12c, 22c Other sides 3a, 13a, 23a Terminal

Claims (3)

磁性材からなる各1個の第1コア及び第2コアと、夫々が平角導線を巻回してなる複数のコイルとを備えるインダクタであって、前記第1コアに柱状の複数の脚部が設けられており、前記複数のコイル夫々を前記複数の脚部夫々に嵌挿しており、前記第1コアと前記第2コアとを突き合わせていることを特徴とするインダクタ。An inductor comprising a first core and a second core each made of a magnetic material, and a plurality of coils each formed by winding a rectangular wire, wherein a plurality of pillar-shaped legs are provided on the first core. An inductor, wherein each of the plurality of coils is fitted into each of the plurality of legs, and the first core and the second core abut each other. 前記第1コアは両側に開口部を有しており、前記複数のコイル夫々の両端子は前記第1コアの同じ側の前記開口部から出ており、前記複数のコイルの中で少なくとも1組のコイルの両端子が前記第1コアの異なる側の前記開口部から出ていることを特徴とする請求項1記載のインダクタ。The first core has openings on both sides, and both terminals of each of the plurality of coils project from the openings on the same side of the first core, and at least one set of the plurality of coils is provided. 2. The inductor according to claim 1, wherein both terminals of said coil project from said openings on different sides of said first core. 前記第1コアは両側に開口部を有しており、前記複数のコイル夫々の両端子は、前記第1コアの異なる側の前記開口部から夫々出ていることを特徴とする請求項1記載のインダクタ。2. The first core has openings on both sides, and both terminals of each of the plurality of coils respectively protrude from the openings on different sides of the first core. Inductor.
JP2002274039A 2002-09-19 2002-09-19 Inductor Pending JP2004111754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002274039A JP2004111754A (en) 2002-09-19 2002-09-19 Inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002274039A JP2004111754A (en) 2002-09-19 2002-09-19 Inductor

Publications (1)

Publication Number Publication Date
JP2004111754A true JP2004111754A (en) 2004-04-08

Family

ID=32270636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002274039A Pending JP2004111754A (en) 2002-09-19 2002-09-19 Inductor

Country Status (1)

Country Link
JP (1) JP2004111754A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1883082A1 (en) * 2006-07-26 2008-01-30 Sumida Corporation Magnetic element
JP2009218530A (en) * 2008-03-13 2009-09-24 Panasonic Corp Multiple inductor and method of manufacturing the same
US8410889B2 (en) 2011-11-03 2013-04-02 Enecsys Limited Transformer construction
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
KR101623499B1 (en) * 2014-12-05 2016-05-23 주식회사 신영 Magnetic component for power converting circuit
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
JP2017195684A (en) * 2016-04-19 2017-10-26 京都電機器株式会社 Multi-phase converter reactor
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
JP2018029124A (en) * 2016-08-17 2018-02-22 住友電気工業株式会社 Magnetic core, coil component, circuit board, and power supply
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2099040A2 (en) 2006-07-26 2009-09-09 Sumida Corporation Magnetic element
EP1883082A1 (en) * 2006-07-26 2008-01-30 Sumida Corporation Magnetic element
DE202007018908U1 (en) 2006-07-26 2009-10-22 Sumida Corp. Magnetic element
US7612640B2 (en) 2006-07-26 2009-11-03 Sumida Corporation Magnetic element
EP2099040A3 (en) * 2006-07-26 2009-11-11 Sumida Corporation Magnetic element
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
JP2009218530A (en) * 2008-03-13 2009-09-24 Panasonic Corp Multiple inductor and method of manufacturing the same
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
GB2496163A (en) * 2011-11-03 2013-05-08 Enecsys Ltd Bobbin, winding and core constructions in a transformer assembly
US9728324B2 (en) 2011-11-03 2017-08-08 Solarcity Corporation Transformer construction
GB2496163B (en) * 2011-11-03 2015-11-11 Enecsys Ltd Transformer construction
US8917156B2 (en) 2011-11-03 2014-12-23 Enecsys Limited Transformer construction
US8410889B2 (en) 2011-11-03 2013-04-02 Enecsys Limited Transformer construction
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
KR101623499B1 (en) * 2014-12-05 2016-05-23 주식회사 신영 Magnetic component for power converting circuit
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
JP2017195684A (en) * 2016-04-19 2017-10-26 京都電機器株式会社 Multi-phase converter reactor
JP2018029124A (en) * 2016-08-17 2018-02-22 住友電気工業株式会社 Magnetic core, coil component, circuit board, and power supply

Similar Documents

Publication Publication Date Title
JP2004111754A (en) Inductor
JP5062439B2 (en) PFC choke coil for interleaving
KR101259778B1 (en) Three-phase high frequency transformer
JPH11265831A (en) Sheet transformer
JP4845199B2 (en) Trance
US20180102210A1 (en) Low profile electromangetic component
KR100754055B1 (en) Split inductor with fractional turn of each winding and pcb including same
JP2004186550A (en) Inductor
JP3818465B2 (en) Inductance element
US6861938B2 (en) High-frequency power inductance element
TW202117766A (en) Ultra-narrow high current power inductor for circuit board applications
JP7040928B2 (en) Inductor
JP2003017334A (en) Converter transformer
JP2004221474A (en) Inductor
JP2009283804A (en) Magnetic core and inductor component, method of manufacturing inductor component, and electronic equipment using the same
JPH11340061A (en) High frequency transformer
CN114068153A (en) Low-profile high-current coupling winding electromagnetic component
US20230396180A1 (en) Integrated transformers for high current converters
WO2023166914A1 (en) Joining inductor and circuit
JP2003092222A (en) Transformer
US20230360844A1 (en) Magnetic integrated device
KR20190014727A (en) Dual Core Planar Transformer
JPH11307366A (en) Thin transformer coil
JP2006202904A (en) Inductance element
WO2020066562A1 (en) Coil device and electrical junction box

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050620

A711 Notification of change in applicant

Effective date: 20070607

Free format text: JAPANESE INTERMEDIATE CODE: A712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Effective date: 20080722

Free format text: JAPANESE INTERMEDIATE CODE: A02