WO1996013093A1 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
WO1996013093A1
WO1996013093A1 PCT/JP1995/000240 JP9500240W WO9613093A1 WO 1996013093 A1 WO1996013093 A1 WO 1996013093A1 JP 9500240 W JP9500240 W JP 9500240W WO 9613093 A1 WO9613093 A1 WO 9613093A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
main body
unit
inverter device
body case
Prior art date
Application number
PCT/JP1995/000240
Other languages
French (fr)
Japanese (ja)
Inventor
Norinaga Suzuki
Hidenori Sugino
Akiko Ishii
Tsunehiro Endo
Toshihiko Wada
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Publication of WO1996013093A1 publication Critical patent/WO1996013093A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections

Definitions

  • the present invention relates to an invar evening device which is formed into a unit and is useful as a wall-mounted type, and particularly to a general-purpose invar evening device suitable for driving an induction motor.
  • the inverter unit g has been widely used in recent years because it can easily and efficiently operate a general-purpose induction motor at a variable speed.
  • the general circuit configuration of the inverter unit is as follows. It is as shown in Fig. 8.
  • FIG. 8 is a diagram showing a main circuit portion necessary for the basic operation of a general voltage source inverter device.
  • A is a forward converter
  • B is an inverse converter
  • C is an inverter.
  • I is the main circuit capacitor
  • IM is the induction motor.
  • This inverter device receives AC power from, for example, a 50 Hz or 60 Hz commercial AC power source, obtains DC power from the forward converter A, and smoothes the DC power using the capacitor C.
  • the smoothed DC power is re-converted into AC power by the inverse converter B, whereby, for example, a low frequency of 0.5 Hz to a high frequency of 100 Hz AC power of any frequency up to is supplied to the induction motor IM, which is a load, and the induction motor IM is operated at a variable speed.
  • the main circuit electrolytic capacitor for smoothing is provided with a mounting member provided in advance in itself. Or use a suitable frame or the like to secure it in the inverter device with screws, etc., and connect the electrolytic capacitor terminals directly to the wiring board pattern by soldering. After attaching or soldering the conductor bars and wires, they are connected to a predetermined circuit via these conductor bars and wires.
  • the prior art described above does not take into account that the main circuit capacitor of the inverter requires a considerable capacitance: ft, and therefore does not take into account that it is a component having a large volume.
  • inverters have become widely used, in which the entire device is packaged in a case made of plastic or the like from the viewpoint of downsizing and ease of handling and installation.
  • the main circuit capacitor requires a large capacitance, so even if an electrolytic capacitor is used, it becomes large, and therefore occupies a considerable volume in the case.
  • it is difficult to reduce the size and in particular, it is difficult to reduce the dimension in the height direction from the mounting surface, resulting in an increase in the size.
  • An object of the present invention is to provide an inverter device which is capable of sufficiently reducing the dimension in the height direction even when a large capacitor for a main circuit is used, and which can easily be miniaturized. is there. Disclosure of the invention
  • An object of the present invention is to provide an inverter apparatus having at least a forward conversion unit and an inverse conversion unit and a smoothing capacitor, and Into a cubic (box-shaped) inverter body with the terminal block, and externally connect the above-mentioned capacitor.
  • the connection between this external capacitor and the inverter main circuit is This is achieved by using a terminal block.
  • the main circuit capacitor is housed in a stacked state in the height direction, so the external main circuit capacitor is removed from the inside of the main unit. It works to reduce the height dimension of the inverter body.
  • FIG. 1 is a perspective view showing one embodiment of an inverter device according to the present invention.
  • FIG. 2 is an exploded perspective view showing an embodiment of the inverter device according to the present invention.
  • FIG. 3 is an explanatory diagram of a main circuit electrolytic capacitor holder section in one embodiment of the present invention.
  • FIG. 4 is an explanatory view of a stopper member in one embodiment of the present invention.
  • FIG. 5 is a perspective view of a main circuit electrolytic capacitor holder portion and a stopper member in one embodiment of the present invention. It is.
  • FIG. 6 is a perspective view showing another embodiment of the inverter device according to the present invention.
  • FIG. 7 is a perspective view showing still another embodiment of the inverter device according to the present invention.
  • FIG. 8 is a circuit diagram showing an example of a main circuit of the inverter device.
  • FIG. 9 shows details of the inverter main body in one embodiment of the present invention.
  • FIG. 3 is an explanatory diagram including an example of dimensions.
  • FIG. 10 is an explanatory diagram showing details of an inverter main body in one embodiment of the present invention, including a cross-sectional view.
  • FIG. 11 is an explanatory diagram showing details of the inverter main body according to an embodiment of the present invention except for a power module.
  • FIG. 12 is an explanatory diagram including a cross-sectional view excluding a power module from an inverter main body in one embodiment of the present invention and including a cross-sectional view.
  • FIG. 13 is an explanatory diagram showing in detail an inverter main body and a power module according to one embodiment of the present invention.
  • FIG. 14 is an explanatory diagram showing the inverter main body and the power module in one embodiment of the present invention in detail including a sectional view and a perspective view.
  • FIG. 15 is an explanatory diagram showing details of a capacitor holder portion in one embodiment of the present invention.
  • FIG. 16 is an explanatory diagram showing details of a capacitor holder portion in one embodiment of the present invention, including a cross-sectional view and a perspective view.
  • FIG. 17 is an explanatory diagram showing details of a spacer portion in one embodiment of the present invention including an example of dimensions.
  • FIG. 18 is an explanatory view showing another embodiment of the present invention.
  • FIG. 19 is an explanatory view showing another embodiment of the present invention.
  • FIG. 20 is an explanatory view showing still another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 and 2 show an embodiment of the present invention.
  • 1 is a cooling fin
  • 2 is a power module
  • 3 is a power supply board
  • 4 is a flexible flat cable
  • 5 is a spacer.
  • 5 A for mounting Materials 6 is main circuit electrolytic capacitor
  • 6 A is capacitor electrode terminal
  • 7 is control board
  • 8 is control board holder cover
  • 9 is digital operation panel
  • 10 is front cover
  • 12 is main circuit electrolytic capacitor Holder
  • 13 is a bottom entry socket
  • 14 is a screw for mounting a power module
  • 15 is a wire for connecting a capacitor
  • 15 A is a fast terminal (elastic insertion type terminal)
  • 15 B is a crimp terminal (screw-type terminal)
  • 16 is the pin header of the power module.
  • the cooling fin 1 is made of a die cast of a light alloy, such as an aluminum alloy, and has a role as a cooling fin and also serves as a base for the entire inverter device. I have.
  • the power module 2 is equipped with the inverter forward converter A and the inverter converter B described in Fig. 8, and has a main circuit terminal block 2A on the power supply side and a main circuit terminal block 2B on the load side. It is made of synthetic resin into a flat shape of the same dimensions as the die-cast case 1 and is mounted on the die-cast case 1 using four screws 14. In FIG. 2, one of these terminal block screws is indicated by 39.
  • the heat generated from the forward conversion unit A and the reverse conversion unit B mounted on the power module 2 is directly transmitted to the die cast case 1, and the efficient cooling function is achieved. Can be obtained.
  • the power supply board 3 has mounted thereon a drive circuit for driving the inverse conversion section and a power supply circuit required for the circuits of each section. Then, between the circuit mounted on the power supply board 3 and the circuit mounted on the power module 2, the power supply board 3 is placed horizontally on the power module 2 and accommodated therein. When mounted, the bottom entry socket 13 provided on the power supply board 3 is fitted to the pin header section 16 provided on the power module 2 for electrical connection. And the required interface is automatically provided. I have.
  • the spacer member 5 has the same dimensions in the width direction as the power module 2 and the length in the longitudinal direction is shorter than that of the power module 2. It is made as a shallow box-shaped frame by resin, and it works to create a space for accommodating the power supply board 3 and the control board 7. At both outer sides in the width direction, mounting members 5A for holding the capacitor holder 12 are formed.
  • attachment of the spacer member 5 to the first module 2 can be performed simply by stacking and pressing the spacer member 5 on the power module 2.
  • the power supply board 3 is accommodated under the spacer member 5 and the control board 7 is accommodated at the upper side. At this time, the flexible flat cable 4
  • the horizontal sockets 21 are mounted on each of these boards, and the flexible flat cable 4 is attached to these sockets, so that these boards are connected to each other. The necessary interface between the substrates is provided.
  • control board 7 elements necessary for controlling an inverter such as a microcomputer are mounted, and further, a connector 32 serving as a connection section for a control signal interface is mounted. Therefore, even when the user or the like interfaces with an external device, it can be easily connected.
  • connection portion is divided and divided into two interface connector portions 32. Therefore, it is considered that one of the connector portions is frequently used.
  • Control signal path Other control signal paths can be arranged on the other side.
  • the control board 7 is attached by a positioning projection provided inside the spacer member 5 and fixed by attaching the control board holder cover 8 from above.
  • the control board holder cover 8 is configured to be attached to the spacer member 5 by fitting the claws.
  • the only screws required for assembling the inverter body are four power module mounting screws 14, and thereafter, the spacer member 5 and the control board holder cover 8 are mounted. Can be assembled only by sequentially stacking and fitting the claws, so that the number of processes is reduced and assembly is facilitated.
  • control board holder cover 8 can be mounted on the control board 7, but the digital operation panel 9 can be mounted and used on this, and the front cover 10 can be mounted on this. It can be installed and used, or can be arbitrarily selected.
  • the functions selectable by the user can be increased.
  • the screws 40 are used to attach and detach the digital operation panel 9 to and from the control board holder cover 8, and the attachment and detachment of the front cover 10 is performed by fitting using claws as shown in the figure. And so on.
  • Holders (main circuit electrolytic capacitor holders) 12 are mounted on both sides of the spacer member 5 by mounting members 5A, and serve to accommodate and hold an external capacitor 6.
  • the capacitor 6 housed here is connected to the DC terminal of the power supply side terminal block 2 A by the electric wire 15.
  • the main part is a main body 12 A made in a substantially cylindrical shape having a bottom.
  • a mounting member 12B is provided on a side surface of the main body 12A, a plurality of slot portions 12C are provided on both side surfaces of the cylindrical surface, and around a bottom portion thereof.
  • Notch 1 2 D is provided
  • a substantially disk-shaped stopper member (holding member) 12E as shown in FIG. 4 is provided in the main body 12A of the holder 12 as shown in FIG.
  • the stopper member 12 E has a notch 12 F for providing elasticity, and a projection 12 protruding from the outer periphery thereof. G is formed.
  • the holder 12 is fitted with the mounting member 12B of the spacer member 5 to the mounting member 5A of the spacer member 5. Attach on both sides of member 5 and insert capacitor 6 inside. After that, insert the stopper member 12 E into the main body 12 A ⁇ of the holder 12, and insert the projection 12 G into the slot 12 C at the fully pushed position. If they are fitted to each other, the holder 6 can securely hold the capacitor 6 outside the spacer member 5.
  • the main circuit electrolytic capacitor 6 is connected to the inverter DC main circuit by connecting the electrode terminals 6 A of the main circuit electrolytic capacitor 6 inserted in the main body 12 A of the holder 12 with two electric wires 15.
  • the connection is completed by connecting two terminals, a DC + terminal provided on the terminal block 2A of the module 2 and a DC terminal.
  • the electric wire 15 is provided with a fast terminal 15 A on one side and a crimp terminal 15 B on the other side, so that the crimp terminal 15 B is connected to the power terminal block of the power module 2.
  • a predetermined connection state can be obtained by attaching the first terminal 15 A to the electrode terminal 6 A of the main circuit electrolytic capacitor 6 after attaching to the 2 A DC terminal.
  • the wire 15 is taken out of the holder 12 by removing the notch 12D provided around the bottom of the main body 12A.
  • An opening for taking out the electric wire is taken out from here.
  • the bottom of the main body 12A may be made detachable.
  • the main circuit electrolytic capacitor 6 is taken out of the main body of the inverter and is attached to the side surface, the height of the main body, that is, in FIG. The dimension from the lower surface of the cooling fin 1 to the upper surface of the front cover 10 can be reduced.
  • the mounting work of the main circuit electrolytic capacitor 6 is easy, and it can be easily mounted even after the spacer member 5 is assembled, and even when the main circuit electrolytic capacitor 6 is replaced. It is not necessary to disassemble the main unit, simply remove the capacitor box cover 7, remove the first terminal 15A of the electric wire 15, remove the main circuit electrolytic capacitor 6, and replace it with a new one. Good, maintenance of life parts can be easily obtained.
  • the main body 12A of the holder 12 has a plurality of slot portions 12C formed at a plurality of positions, for example, three positions as shown in the drawing. Any one of 2A is selected, and the stopper member 12E is fitted and used.
  • inverter device it is necessary to use capacitors having different capacitances according to the rated output. It is necessary to select the one with the content * of 180 uF, 330 oF, or 470 oF.
  • the position of each slot section 12C is changed in accordance with the length of the capacitor having a different capacitance.
  • the capacitance is 180 / xF
  • the stopper member 12E is fitted to the innermost slot of the slot part 12C, and the same applies to the capacitor of the capacitor, that is, the capacitor.
  • the stopper member 12E is fitted to the slot portion 12A on the front side (outlet side) in order according to the length of the denser.
  • a capacitor 6 having a different capacitance can be used as it is simply by selecting the slot portion 12 A into which the stopper member 12 E is fitted, and the rated output differs. Even when capacitors having different lengths are used as the inverter device, the stopper member 12E functions as a member for holding the capacitor, so that the capacitor 6 can be fixed. It is possible to reliably prevent rattling.
  • FIG. 6 shows another embodiment of the present invention, in which 17 is a band member, 18 is a fastener (buckle), and other configurations are shown in FIGS. 1 to 5. This is the same as the embodiment described in the above.
  • the band member 17 is made of a predetermined length made of synthetic resin or metal. It is made of a shaped member, part of which is attached to both sides of the spacer member 5, and the ends are connected by fasteners 18 so that the capacitor 6 is attached to both sides of the spacer member 5. Functions as a holding member for holding.
  • the main circuit electrolytic capacitor 6 is taken out of the main body of the inverter and attached to the side surface, the height of the main body can be reduced accordingly.
  • the band member 17 is used to hold the capacitor 6, the configuration is simplified, the cost can be reduced, and the capacitor 6 is exposed. Cooling can be obtained, and the life of the capacitor 6 can be prolonged.
  • the mounting work of the main circuit electrolytic capacitor 6 is also easy, and it can be easily mounted even after the spacer member 5 is assembled, and when the main circuit electrolytic capacitor 6 is replaced.
  • the main circuit electrolytic capacitor 6 there is no need to disassemble the main unit, simply remove the capacitor box cover 7, remove the first terminal 15A of the electric wire 15 and remove the main circuit electrolytic capacitor 6, and replace it with a new one. Needless to say, maintenance of life parts can be easily obtained.
  • FIG. 7 shows still another embodiment of the present invention, in which the capacitor 6 is separated from the inverter main body, and the inverter main body is mounted by the leg member 6A for mounting the capacitor.
  • the other components are the same as those of the embodiment described with reference to FIGS. 1 to 6.
  • leg member 6A since the leg member 6A is only used for mounting the capacitor 6, the configuration is simplified and cost reduction is achieved. In addition, since the capacitor 6 is exposed, effective cooling can be obtained, and the life of the capacitor 6 can be extended.
  • multiple inverters can be connected to the capacitor 6 alone, and work and material Cost reduction and space saving can be achieved.
  • cylindrical electrolytic capacitors are commercially available with mounting leg members. According to this embodiment, the use of such a capacitor further increases the cost. It can be reduced.
  • FIG. 9 shows that the present invention, based on the embodiment described in FIG. 1, has a rated output (rated capacity) ranging from 0.75 KW for a smaller one to about 1.5 KW for a larger one.
  • rated output rated capacity
  • the view from the right (right side view) and the view from the bottom (bottom view) are shown.
  • the names and configurations of each part are the same as in FIG. 1, and the dimensions of each part are shown in units of mm.
  • the cooling capacity should be increased in accordance with the increase in heat generated by the loss in the main circuit, and the capacitance of the main circuit capacitor should be increased.
  • the inverter main body is a power unit integrally formed with the terminal blocks 2A and 2B.
  • a spacer member 5 and a control board holder cover 8 are stacked on the module 2, and a capacitor holder 12 is mounted on a side surface of the spacer member 5 to form a unit.
  • the cooling fin 1 is attached to the power module 2 after the unit is formed in this manner, so the size of the cooling fin 1 to be used is The degree can be arbitrarily changed.
  • the cooling capacity of the inverter can be increased by changing the size of the cooling fins and increasing the heat dissipation area. Therefore, in this embodiment, the dimensions of the inverter main body are not changed. However, by simply changing the size of the cooling fin 1 to be used, first, it is possible to easily cope with the difference in the rated capacity in terms of the cooling capacity.
  • the capacitor holder section 12 is configured so that the capacitor 6 to be accommodated therein can be used arbitrarily even if the capacitors have different capacitances. In terms of capacitance, it can easily cope with the difference in rated capacity.
  • the size of the cooling fin to be mounted on the inverter main body and the size of the condenser to be accommodated in the condenser holder 12 are determined based on the dimensions shown in the drawing.
  • the capacitance i value of the above it can be commonly applied to inverter devices with various rated capacities from 0.75 KW for the smaller one to about 1.5 KW for the larger one. In this way, it is possible to provide sufficient versatility at low cost.
  • FIG. 1 the heat radiating fin of the cooling fin 1 is shown in FIG.
  • One is to consider the method of increasing the height and the number of sheets, and the other is to make the plane shape of the cooling fin 1 larger than the plane shape of the power module 2 in FIG. Further, these methods may be used in combination. However, embodiments of the present invention are not limited to these methods.
  • FIG. 10 is a diagram showing the rear view of the embodiment shown in FIG. — It is a diagram showing a cross section of each part along each cutting line of B ′, C-C ′, and A—A ′ cross-sectional view shows the internal structure of the power supply board 3 and the control board 7 shown in FIG. Things are omitted.
  • FIG. 11 shows the details of the parts excluding the power module 2 and the capacitor holder part 12 in Fig. 9 with the left and right side views and plan view, centered on the front view, and the bottom view.
  • FIG. 12 is a sectional view, a rear view, and a perspective view taken along the cutting lines D-D 'and E-E' of FIG.
  • FIG. 13 shows the details of the inverter main unit in Fig. 9 excluding the capacitor holder unit 12, with a front view as the center, a left and right side view, a plan view, and a bottom view.
  • FIG. 14 shows a cross-sectional view, a rear view, and a perspective view along each cutting line FF ′ and GG ′ in FIG.
  • FIG. 15 shows the details of the capacitor holder part 12 with the front view as the center, the left and right side views and the plan view, and the bottom view. Further, FIG. FIG. 5 shows a cross-sectional view, a rear view, and a perspective view taken along cutting lines H—H ′ and J-J ′ in FIG.
  • FIG. 17 shows a back view and cross-sectional views taken along cutting lines A--A and B--B. As in FIG. 9, dimensions in mm units are shown.
  • FIGS. 10 to 17 it is possible to clearly understand the details of the configuration of each part in the embodiment of FIG. 9, and to fully understand the present invention.
  • the present invention is applied to an inverter having a relatively small volume *, the capacitance required for the capacitor of the main circuit can be small, and therefore, as in the above-described embodiment, 2 Even if one capacitor is not used, one capacitor may be sufficient in size.
  • only one capacitor holder 12 may be attached to one side of the inverter main body.
  • FIG. 18 is a plan view on the upper side centering on the front view, right and left side views on the left and right, and a bottom view on the lower side, except for the cooling fin 1 in the embodiment of FIG.
  • the names and configurations of each part are the same as in Fig. 1.
  • the mounting of the capacitor holder portion 12 to the spacer member 5 is performed by the mounting member 5A on the spacer member 5 side.
  • the mounting member 12B on the side of the capacitor holder 12 is detachable.
  • the inverter device can be obtained in the mode shown in FIG. 18 without requiring any special configuration, and as a result, a wide variety of products can be easily provided. It can fully meet the needs of various customers. As shown in Fig. 18, in the case of the embodiment where only one capacitor is used, it is better to mount the capacitor holder 12 on the left side. Wire 15 is short, which is effective in terms of noise absorption.
  • the embodiment described below corresponds to a so-called modified example in which the shape of the capacitor holder in the embodiment described with reference to FIGS. 1 and 9 is changed.
  • the shape of the capacitor holder 12 is made semi-cylindrical.
  • the embodiment shown in FIG. It is a rectangular tube.
  • the mounting member 5A is attached to the spacer member 5 side.
  • mounting members 12 B are provided on the side of the capacitor holder 12, respectively, so that the capacitor holder 12 can be detachably attached to the spacer member 5.
  • the inverter device can be sufficiently miniaturized including its height.
  • the length of the electric wire 15 connecting the terminal block 2A and the capacitor 6 can be made sufficiently short, and the wiring inductance is 20 nH Since it can be suppressed to the following, surge overvoltage due to inverter switching operation can be suppressed sufficiently.
  • the mounting position of the condenser can be selected. Industrial applicability to accommodate various installation locations
  • the size in the height direction can be sufficiently reduced even if a large capacitor for a main circuit is used, and a small-sized e-bar device e with good performance can be easily obtained. Therefore, it can be used even when the installation space in the height direction cannot be sufficiently obtained, and an inverter device having wide applicability can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

An inverter device the height of which is sufficiently reduced and, therefore, the size of which can be easily reduced even when large-sized electrolytic capacitors for a main circuit are used. This inverter device has holder sections (12) holding electrolytic capacitors (6) for a main circuit which are fitted to both sides of a spacer member (5). The capacitors (6) are connected to the DC terminals of a power supply terminal block (2A) through wires (15). Since the electrolytic capacitors (6) are not housed in the inverter's main body, the height of the main body can be reduced by the height of the capacitors (6).

Description

明 細 害 ィ ンバータ装置 技術分野  Inverter equipment Technical field
本発明は、 ュニッ 卜化され、 壁取付け型として有用なインバー夕 装 ®に係り、 特に、 誘導電動機駆動用に好適な汎用のイ ンバー夕装 置に関する。 背景技術  The present invention relates to an invar evening device which is formed into a unit and is useful as a wall-mounted type, and particularly to a general-purpose invar evening device suitable for driving an induction motor. Background art
インバータ装 gは、 汎用の誘導電動機を、 簡単に、 しかも効率的 に可変速運転できるため、 近年、 広く使用されるようになってきて いるが、 このイ ンバータ装置の一般的な回路構成は、 第 8図に示す ようになっている。  The inverter unit g has been widely used in recent years because it can easily and efficiently operate a general-purpose induction motor at a variable speed.The general circuit configuration of the inverter unit is as follows. It is as shown in Fig. 8.
すなわち、 この第 8図は、 一般的な電圧形イ ンバータ装置の基本 的な動作に必要な主回路部分を示した図で、 同図において、 Aは順 変換部、 Bは逆変換部、 Cは主回路コンデンサ、 I Mは誘導電動機 である。  That is, FIG. 8 is a diagram showing a main circuit portion necessary for the basic operation of a general voltage source inverter device. In FIG. 8, A is a forward converter, B is an inverse converter, and C is an inverter. Is the main circuit capacitor and IM is the induction motor.
このィ ンバ一夕装置は、 例えば 5 0 H z、 又は 6 0 H zの商用交 流電源から交流電力の供給を受け、 これから順変換部 Aにより直流 電力を得、 これをコンデンサ Cによって平滑化し、 この平滑化され た直流電力を逆変換部 Bにより交流電力に再変換するようになつて おり、 これにより、 例えば、 0 . 5 H zの低い周波数から 1 0 0 0 H z位の高い周波数までの任意の周波数の交流電力を、 負荷である誘 導電動機 I Mに供給し、 この誘導電動機 I Mを可変速運転するよう になっているものである。  This inverter device receives AC power from, for example, a 50 Hz or 60 Hz commercial AC power source, obtains DC power from the forward converter A, and smoothes the DC power using the capacitor C. The smoothed DC power is re-converted into AC power by the inverse converter B, whereby, for example, a low frequency of 0.5 Hz to a high frequency of 100 Hz AC power of any frequency up to is supplied to the induction motor IM, which is a load, and the induction motor IM is operated at a variable speed.
従って、 逆変換部 Bの入力には、 充分に平滑化された直流電圧が 供給されなければならず、 このため、 かなり大きな静電容量を有す るコンデンサを直流主回路に設ける必要があり、 この結果、 主回路 コンデンサ Cとしては、 通例、 電解コンデンサが用いられるように なっている。 Therefore, a sufficiently smoothed DC voltage must be supplied to the input of the inverting section B. For this reason, it is necessary to provide a capacitor having a considerably large capacitance in the DC main circuit. As a result, the main circuit As the capacitor C, an electrolytic capacitor is usually used.
ところで、 従来のインバータ装置では、 例えば J P - A - 6 0 — 2 1 9 9 6 8などで知られているように、 この平滑用の主回路電解 コンデンサは、 それ自体に予め設けてある取付部材を用いたり、 或 いは適当な枠体などを用いてイ ンバー夕装置内にねじなどにより固 定し、 且つ、 これに対する電気的接続は、 電解コンデンサの端子を 配線基板のパターンに直接、 はんだ付けしたり、 或いは導体バーや 電線をはんだ付けしてから、 これらの導体バーや電線を介して所定 の回路に接続していた。  By the way, in a conventional inverter device, as is known, for example, from JP-A-600-219996, the main circuit electrolytic capacitor for smoothing is provided with a mounting member provided in advance in itself. Or use a suitable frame or the like to secure it in the inverter device with screws, etc., and connect the electrolytic capacitor terminals directly to the wiring board pattern by soldering. After attaching or soldering the conductor bars and wires, they are connected to a predetermined circuit via these conductor bars and wires.
上記従来技術は、 インバータの主回路コンデンサがかなりの静電 容: ftを必要とし、 このため大きな容積を有する部品である点につい て配慮がされておらず、 ィンバ一夕装置の小型化の点で問題があつ すなわち、 近年、 インバータ装置では、 小型化と共に、 取扱ゃ設 置の容易性などの見地から、 装置全体をプラスチックなどのケース でまとめてュニッ ト化したものが広く用いられるようになつている が、 このとき、 主回路コンデンサが大きな静電容量を必要とするこ とから、 たとえ電解コンデンサを用いたとしても大型になってしま い、 このため、 ケース内でかなりの容積を占めることになり、 この 結果、 小型化が困難で、 特に取付面からの高さ方向の寸法を縮める のが困難になって、 大型化してしまうのである。  The prior art described above does not take into account that the main circuit capacitor of the inverter requires a considerable capacitance: ft, and therefore does not take into account that it is a component having a large volume. In other words, in recent years, inverters have become widely used, in which the entire device is packaged in a case made of plastic or the like from the viewpoint of downsizing and ease of handling and installation. However, at this time, the main circuit capacitor requires a large capacitance, so even if an electrolytic capacitor is used, it becomes large, and therefore occupies a considerable volume in the case. As a result, it is difficult to reduce the size, and in particular, it is difficult to reduce the dimension in the height direction from the mounting surface, resulting in an increase in the size.
本発明の目的は、 大型の主回路用のコンデンサを用いても、 高さ 方向の寸法を充分に縮めることが可能で、 容易に小型化が得られる ようにしたィ ンバータ装置を提供することにある。 発明の開示  SUMMARY OF THE INVENTION An object of the present invention is to provide an inverter device which is capable of sufficiently reducing the dimension in the height direction even when a large capacitor for a main circuit is used, and which can easily be miniaturized. is there. Disclosure of the invention
上記目的は、 少なく とも順変換部と逆変換部、 それに平滑用のコ ンデンザとを備えたィ ンバー夕装置において、 順変換部と逆変換部 を端子台と共にュニッ ト化して、 略立方体(箱型)のィ ンバー夕本体 部とした上で、 上記コンデンサを外付けとし、 この外付けのコンデ ンサとィ ンバータ主回路との接続を、 上記端子台を用いて行なうよ うにして達成される。 An object of the present invention is to provide an inverter apparatus having at least a forward conversion unit and an inverse conversion unit and a smoothing capacitor, and Into a cubic (box-shaped) inverter body with the terminal block, and externally connect the above-mentioned capacitor. The connection between this external capacitor and the inverter main circuit is This is achieved by using a terminal block.
ュニッ ト化されたィンバータ装置では、 主回路用コンデンサが高 さ方向に積層さまれた形で収容されているので、 外付けされた主回 路用コンデンサは、 それが本体内から除かれた分、 インバータ本体 部の高さ方向の寸法を小さ くするように働く。  In a unitized inverter device, the main circuit capacitor is housed in a stacked state in the height direction, so the external main circuit capacitor is removed from the inside of the main unit. It works to reduce the height dimension of the inverter body.
この結果、 たとえ大型の主回路用コンデンサを用いたとしても、 ィ ンバー夕本体の高さ方向の寸法は充分に抑えらることになり、 従って、 小型化を得ることができる。 図面の簡単な説明  As a result, even if a large capacitor for the main circuit is used, the dimension of the inverter body in the height direction can be sufficiently suppressed, and thus the size can be reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明によるィンバータ装置の一実施例を示す斜視図 である。  FIG. 1 is a perspective view showing one embodiment of an inverter device according to the present invention.
第 2図は、 本発明によるィンバータ装置の一実施例を示す分解斜 視図である。  FIG. 2 is an exploded perspective view showing an embodiment of the inverter device according to the present invention.
第 3図は、 本発明の一実施例における主回路電解コンデンサホル ダ部の説明図である。  FIG. 3 is an explanatory diagram of a main circuit electrolytic capacitor holder section in one embodiment of the present invention.
第 4図は、 本発明にの一実施例におけるス 卜ッパ部材の説明図で 第 5図は、 本発明の一実施例における主回路電解コンデンサホル ダ部とス ト ッパ部材の斜視図である。  FIG. 4 is an explanatory view of a stopper member in one embodiment of the present invention. FIG. 5 is a perspective view of a main circuit electrolytic capacitor holder portion and a stopper member in one embodiment of the present invention. It is.
第 6図は、 本発明によるィ ンバータ装置の他の一実施例を示す斜 視図である。  FIG. 6 is a perspective view showing another embodiment of the inverter device according to the present invention.
第 7図は、 本発明によるィンバータ装置の更に別の一実施例を示 す斜視図である。  FIG. 7 is a perspective view showing still another embodiment of the inverter device according to the present invention.
第 8図は、 インバータ装置の主回路の一例を示す回路図である。 第 9図は、 本発明の一実施例におけるィンバータ本体部の詳細を 寸法の一例も含めて記載した説明図である。 FIG. 8 is a circuit diagram showing an example of a main circuit of the inverter device. FIG. 9 shows details of the inverter main body in one embodiment of the present invention. FIG. 3 is an explanatory diagram including an example of dimensions.
第 1 0図は、 本発明の一実施例におけるインバータ本体部の詳細 を断面図も含めて記載した説明図である。  FIG. 10 is an explanatory diagram showing details of an inverter main body in one embodiment of the present invention, including a cross-sectional view.
第 1 1 図は、 本発明の一実施例におけるインバータ本体部からパ ヮーモジュールを除いて詳細に記載した説明図である。  FIG. 11 is an explanatory diagram showing details of the inverter main body according to an embodiment of the present invention except for a power module.
第 1 2図は、 本発明の一実施例におけるィンバータ本体部からパ ヮーモジユールを除いて断面図も含めて詳細に記載した説明図であ る。  FIG. 12 is an explanatory diagram including a cross-sectional view excluding a power module from an inverter main body in one embodiment of the present invention and including a cross-sectional view.
第 1 3図は、 本発明の一実施例におけるインバータ本体部とパ ヮーモジュールを詳細に記載した説明図である。  FIG. 13 is an explanatory diagram showing in detail an inverter main body and a power module according to one embodiment of the present invention.
第 1 4図は、 本発明の一実施例におけるィ ンバータ本体部とパ ヮーモジュールを断面図と斜視図も含めて詳細に記載した説明図で ある。  FIG. 14 is an explanatory diagram showing the inverter main body and the power module in one embodiment of the present invention in detail including a sectional view and a perspective view.
第 1 5図は、 本発明の一実施例におけるコンデンサホルダ部の詳 細を示す説明図である。  FIG. 15 is an explanatory diagram showing details of a capacitor holder portion in one embodiment of the present invention.
第 1 6図は、 本発明の一実施例におけるコンデンサホルダ部の詳 細を断面図と斜視図も含めて記載した説明図である。  FIG. 16 is an explanatory diagram showing details of a capacitor holder portion in one embodiment of the present invention, including a cross-sectional view and a perspective view.
第 1 7図は、 本発明の一実施例におけるスぺーサ部の詳細を寸法 の一例も含めて記載した説明図である。  FIG. 17 is an explanatory diagram showing details of a spacer portion in one embodiment of the present invention including an example of dimensions.
第 1 8図は、 本発明の他の一実施例を示す説明図である。  FIG. 18 is an explanatory view showing another embodiment of the present invention.
第 1 9図は、 本発明の別の一実施例を示す説明図である。  FIG. 19 is an explanatory view showing another embodiment of the present invention.
第 2 0図は、 本発明の更に別の一実施例を示す説明図である。 発明を実施するための最良の形態  FIG. 20 is an explanatory view showing still another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明によるインバー夕装置について、 図示の実施例に よって詳細に説明する。  Hereinafter, an invertor according to the present invention will be described in detail with reference to the illustrated embodiments.
第 1 図と第 2図は、 本発明の一実施例で、 これらの図において、 1 は冷却フィ ン、 2はパワーモジュール、 3は電源基板、 4はフレ キシブルフラッ トケーブル、 5はスぺーサ部材、 5 Aは取り付け用 部材、 6は主回路電解コンデンサ、 6 Aはコンデンサの電極端子、 7は制御基板、 8は制御基板ホルダカバー、 9はディ ジタル操作パ ネル、 1 0は表面カバー、 1 2は主回路電解コンデンサホルダ部、 1 3はボ トムエン ト リーソケッ ト、 1 4はパワーモジユ ール取り付 けネジ、 1 5はコンデンサ接続用の電線、 1 5 Aはファス ト ン端子 (弾性挿入形の端子)、 1 5 Bは圧着端子(ねじ止め形の端子)、 そし て 1 6はパワーモジュールのピンヘッダー部である。 FIGS. 1 and 2 show an embodiment of the present invention. In these figures, 1 is a cooling fin, 2 is a power module, 3 is a power supply board, 4 is a flexible flat cable, and 5 is a spacer. Parts, 5 A for mounting Materials, 6 is main circuit electrolytic capacitor, 6 A is capacitor electrode terminal, 7 is control board, 8 is control board holder cover, 9 is digital operation panel, 10 is front cover, and 12 is main circuit electrolytic capacitor Holder, 13 is a bottom entry socket, 14 is a screw for mounting a power module, 15 is a wire for connecting a capacitor, 15 A is a fast terminal (elastic insertion type terminal), 15 B is a crimp terminal (screw-type terminal), and 16 is the pin header of the power module.
冷却フイ ン 1 は、 例えばアルミニゥム合金など、 軽合金のダイ力 ス トで作られており、 冷却用のフィ ンとしての役割を持つと共に、 ィ ンバータ装置全体の台としても機能するようになっている。  The cooling fin 1 is made of a die cast of a light alloy, such as an aluminum alloy, and has a role as a cooling fin and also serves as a base for the entire inverter device. I have.
パワーモジュール 2は、 第 8図で説明したィ ンバー夕の順変換部 Aと、 逆変換部 Bを搭載した上で、 電源側の主回路端子台 2 A及び 負荷側の主回路端子台 2 Bと共に一体化して、 ダイカス トケース 1 と同じ寸法の平面形状に、 合成樹脂により作られており、 4本のネ ジ 1 4を用いてダイカス トケース 1の上に積み重ねるようにして取 付られている。 なお、 第 2図においては、 これらの端子台のねじの 1本を 3 9で示してある。  The power module 2 is equipped with the inverter forward converter A and the inverter converter B described in Fig. 8, and has a main circuit terminal block 2A on the power supply side and a main circuit terminal block 2B on the load side. It is made of synthetic resin into a flat shape of the same dimensions as the die-cast case 1 and is mounted on the die-cast case 1 using four screws 14. In FIG. 2, one of these terminal block screws is indicated by 39.
従って、 この実施例によれば、 パワーモジュール 2に搭載されて いる順変換部 Aや逆変換部 Bなどから発生した熱が直接ダイカス ト ケース 1 に伝達されるようになり、 効率的な冷却機能を得ることが できる。  Therefore, according to this embodiment, the heat generated from the forward conversion unit A and the reverse conversion unit B mounted on the power module 2 is directly transmitted to the die cast case 1, and the efficient cooling function is achieved. Can be obtained.
電源基板 3には、 逆変換部を駆動する ドライブ回路や、 各部の回 路で必要な電源回路が実装されている。 そして、 この電源基板 3に 搭載されている回路とパワーモジュール 2に搭載されている回路と の間は、 電源基板 3をパワーモジュール 2の上から、 その内部に水 平に載置して収容し、 取付けたとき、 パワーモジュール 2に設けら れているピンヘッダー部 1 6に、 電源基板 3に設けられているボ ト ムエン ト リーソケッ ト 1 3が嵌合されることによつて電気的に接続 され、 必要なイ ンターフヱースが自動的に与えられるようになって いる。 The power supply board 3 has mounted thereon a drive circuit for driving the inverse conversion section and a power supply circuit required for the circuits of each section. Then, between the circuit mounted on the power supply board 3 and the circuit mounted on the power module 2, the power supply board 3 is placed horizontally on the power module 2 and accommodated therein. When mounted, the bottom entry socket 13 provided on the power supply board 3 is fitted to the pin header section 16 provided on the power module 2 for electrical connection. And the required interface is automatically provided. I have.
スぺーサ部材 5は、 特に第 2図から明らかなように、 幅方向の寸 法はパワーモジュール 2と同じに、 そして、 縱方向の寸法は、 それ より も短く なるようにして、 所定の合成樹脂により、 浅い箱型の枠 体として作られており、 これにより電源基板 3 と制御基板 7を収容 する空間を作り出す働きをする。 そして、 その幅方向の両外側に は、 コンデンサホルダ部 1 2を保持するための取り付け用部材 5 A が形成されている。  As apparent from FIG. 2 in particular, the spacer member 5 has the same dimensions in the width direction as the power module 2 and the length in the longitudinal direction is shorter than that of the power module 2. It is made as a shallow box-shaped frame by resin, and it works to create a space for accommodating the power supply board 3 and the control board 7. At both outer sides in the width direction, mounting members 5A for holding the capacitor holder 12 are formed.
次に、 このスぺーサ部材 5の横方向の側板の下側には、 図示のよ うに 4個の爪が設けてあり、 他方、 これに対応してパワーモジユー ル 2には凹部が形成してある。  Next, four pawls are provided on the lower side of the lateral side plate of the spacer member 5 as shown in the drawing, while the power module 2 is formed with a recess correspondingly. is there.
従って、 この実施例によれば、 ノ ヮ一モジュール 2に対するス ぺーサ部材 5の取付けは、 単にスぺーサ部材 5をパワーモジュール 2に積み重ねて押し付けるだけで行なえるようになつている。  Therefore, according to this embodiment, attachment of the spacer member 5 to the first module 2 can be performed simply by stacking and pressing the spacer member 5 on the power module 2.
スぺーサ部材 5の下側には、 電源基板 3が納められ、 上側には制 御基板 7が収容されるが、 このとき、 フレキシブルフラッ トケープ ル 4は、 これら電源基板 3 と制御基板 7の間を接統する働きをする もので、 このため、 これらの基板には横形ソケッ ト 2 1がそれぞれ 搭載されており、 フレキシブルフラッ トケーブル 4をこれらのソ ケッ トに装着することにより、 これらの基板間での必要なィ ンター フェースがとられるようになつている。  The power supply board 3 is accommodated under the spacer member 5 and the control board 7 is accommodated at the upper side. At this time, the flexible flat cable 4 The horizontal sockets 21 are mounted on each of these boards, and the flexible flat cable 4 is attached to these sockets, so that these boards are connected to each other. The necessary interface between the substrates is provided.
制御基板 7には、 例えばマイクロコンピュータなどのイ ンバータ の制御に必要な素子が実装されているが、 さらに制御信号ィ ンター フェース用の接続部となるコネクタ部 3 2なども実装されている。 従って、 ユーザなどによる外部機器とィ ンターフヱースに際して も、 簡単に接続が行えるようになる。  On the control board 7, elements necessary for controlling an inverter such as a microcomputer are mounted, and further, a connector 32 serving as a connection section for a control signal interface is mounted. Therefore, even when the user or the like interfaces with an external device, it can be easily connected.
そして、 この実施例では、 この接続部が分割されていて、 2個の イ ンターフヱース用コネクタ部 3 2に分けられており、 従って、 そ れらの一方のコネクタ部に使用頻度の高いと思われる制御信号路を 配置し、 他方には、 それ以外の制御信号路を配 Sすることができ る。 In this embodiment, the connection portion is divided and divided into two interface connector portions 32. Therefore, it is considered that one of the connector portions is frequently used. Control signal path Other control signal paths can be arranged on the other side.
制御基板 7の取付は、 スぺーサ部材 5の内部に設けられている位 置決め用の突起部によつて保持され、 上から制御基板ホルダカバー 8を取付けることによって固定されるようになっているが、 この制 御基板ホルダカバー 8のスぺーサ部材 5に対する取付けも、 爪の嵌 合により得られるように構成してある。  The control board 7 is attached by a positioning projection provided inside the spacer member 5 and fixed by attaching the control board holder cover 8 from above. However, the control board holder cover 8 is configured to be attached to the spacer member 5 by fitting the claws.
従って、 この実施例によれば、 イ ンバータ本体の組立に必要なね じが、 4本のパワーモジュール取り付けネジ 1 4だけで済み、 この 後、 スぺーサ部材 5 と制御基板ホルダカバー 8の取付けは、 順次、 積み重ねて爪を嵌合させるだけで組立ることができるので、 工程数 が少なく なり、 組立が容易になる。  Therefore, according to this embodiment, the only screws required for assembling the inverter body are four power module mounting screws 14, and thereafter, the spacer member 5 and the control board holder cover 8 are mounted. Can be assembled only by sequentially stacking and fitting the claws, so that the number of processes is reduced and assembly is facilitated.
上記したように、 制御基板 7の上には制御基板ホルダカバー 8が 取付けられるようになっているが、 さらにこの上には、 ディ ジタル 操作パネル 9を取付けて使用したり、 表面カバー 1 0を取付けて使 用したり、 任意に選択できるようになつている。  As described above, the control board holder cover 8 can be mounted on the control board 7, but the digital operation panel 9 can be mounted and used on this, and the front cover 10 can be mounted on this. It can be installed and used, or can be arbitrarily selected.
従って、 この実施例によれば、 ユーザにより選択可能な機能を増 やすことができる。  Therefore, according to this embodiment, the functions selectable by the user can be increased.
なお、 このとき、 制御基板ホルダカバー 8に対するディ ジタル操 作パネル 9の着脱にはネジ 4 0が用いられ、 表面カバー 1 0の着脱 は、 図示のように、 爪を用いた嵌合により行われるようになつてい る。  At this time, the screws 40 are used to attach and detach the digital operation panel 9 to and from the control board holder cover 8, and the attachment and detachment of the front cover 10 is performed by fitting using claws as shown in the figure. And so on.
ホルダ部(主回路電解コンデンサホルダ部) 1 2は、 スぺ一サ部材 5の両側に、 取り付け用部材 5 Aにより取付けられ、 外付けのコ ン デンサ 6を収容保持する働きをする。 そして、 ここに収容されたコ ンデンサ 6は、 電線 1 5により電源側端子台 2 Aの直流端子に接続 されるようになつている。  Holders (main circuit electrolytic capacitor holders) 12 are mounted on both sides of the spacer member 5 by mounting members 5A, and serve to accommodate and hold an external capacitor 6. The capacitor 6 housed here is connected to the DC terminal of the power supply side terminal block 2 A by the electric wire 15.
ここで、 このホルダ部 1 2の詳細の構成について、 第 3図〜第 5 図で説明すると、 まず、 このホルダ部 1 2は、 第 3図に示すよう に、 底を有する略円筒状に作られた本体部 1 2 Aを主要部としてい る。 そして、 この本体部 1 2 Aの側面には取り付け用部材 1 2 Bが 設けられており、 その円筒面の両側面には複数のスロッ ト部 1 2 C が、 そして、 その底部の周辺には欠き取部 1 2 Dが設けられてい る Here, the detailed configuration of the holder 12 will be described with reference to FIGS. 3 to 5. First, as shown in FIG. The main part is a main body 12 A made in a substantially cylindrical shape having a bottom. A mounting member 12B is provided on a side surface of the main body 12A, a plurality of slot portions 12C are provided on both side surfaces of the cylindrical surface, and around a bottom portion thereof. Notch 1 2 D is provided
そして、 このホルダ部 1 2の本体部 1 2 A内には、 第 4図に示す ような、 略円板状のス ト ッパ部材(保持部材) 1 2 Eが、 第 5図に示 すように挿入されるようになっているが、 このス トッパ部材 1 2 E には、 図示のように、 弾性を与えるための切欠き部 1 2 Fと、 その 外周部から突出した突起部 1 2 Gが形成してあり、 これにより、 ホ ルダ部 1 2の本体部 1 2 A内にス ト ッパ部材 1 2 Eの突起部 1 2 G を外側から押すことにより、 このス トッパ部材 1 2 Eをホルダ部 1 2の本体部 1 2 A内に挿入させることができ、 その上で、 外側に広 がろう としている突起部 1 2 Gを、 スロッ 卜部 1 2 Cの何れか 1個 に嵌合させることができ、 その位置で保持させた状態にできるよう になっている。  A substantially disk-shaped stopper member (holding member) 12E as shown in FIG. 4 is provided in the main body 12A of the holder 12 as shown in FIG. As shown in the figure, the stopper member 12 E has a notch 12 F for providing elasticity, and a projection 12 protruding from the outer periphery thereof. G is formed. By pressing the projection 12G of the stopper member 12E from the outside into the main body 12A of the holder portion 12, the stopper member 12 E can be inserted into the main body 12 A of the holder 12, and then the projection 12 G that is about to spread outward is fitted into any one of the slot 12 C. It can be held in that position.
そこで、 第 2図に示すように、 まず、 ホルダ部 1 2を、 その取り 付け用部材 1 2 Bをスぺーサ部材 5の取り付け用部材 5 Aに嵌合さ せることにより、 このスぺーサ部材 5の両側に取付け、 内部にコン デンサ 6を挿入する。 その後、 ホルダ部 1 2の本体部 1 2 A內にス ト ッパ部材 1 2 Eを挿入し、 一杯に押し込まれた位置でその突起部 1 2 Gをスロッ ト部 1 2 Cの何れか 1個に嵌合させてやれば、 この ホルダ部 1 2により、 スぺーサ部材 5の外側にコンデンサ 6を確実 に保持することができる。  Therefore, as shown in FIG. 2, first, the holder 12 is fitted with the mounting member 12B of the spacer member 5 to the mounting member 5A of the spacer member 5. Attach on both sides of member 5 and insert capacitor 6 inside. After that, insert the stopper member 12 E into the main body 12 A 內 of the holder 12, and insert the projection 12 G into the slot 12 C at the fully pushed position. If they are fitted to each other, the holder 6 can securely hold the capacitor 6 outside the spacer member 5.
イ ンバータ直流主回路に対する主回路電解コンデンサ 6の接続 は、 ホルダ部 1 2の本体部 1 2 A内に挿入された主回路電解コンデ ンサ 6の電極端子 6 Aを、 2本の電線 1 5によって、 ノ、 °ヮーモ ジュール 2の端子台 2 Aに設けてある直流 +端子と、 直流一端子の 2個の端子に接続することにより、 完成されるようになっている。 電線 1 5には、 一方にファス ト ン端子 1 5 Aが、 そして他方には 圧着端子 1 5 Bがそれぞれ設けられており、 これにより、 圧着端子 1 5 Bをパワーモジュール 2の電源側端子台 2 Aの直流端子に取付 けた上で、 フ ァス ト ン端子 1 5 Aを主回路電解コンデンサ 6の電極 端子 6 Aに差し込んでやれば、 所定の接続状態が得られるように なっている。 The main circuit electrolytic capacitor 6 is connected to the inverter DC main circuit by connecting the electrode terminals 6 A of the main circuit electrolytic capacitor 6 inserted in the main body 12 A of the holder 12 with two electric wires 15. The connection is completed by connecting two terminals, a DC + terminal provided on the terminal block 2A of the module 2 and a DC terminal. The electric wire 15 is provided with a fast terminal 15 A on one side and a crimp terminal 15 B on the other side, so that the crimp terminal 15 B is connected to the power terminal block of the power module 2. A predetermined connection state can be obtained by attaching the first terminal 15 A to the electrode terminal 6 A of the main circuit electrolytic capacitor 6 after attaching to the 2 A DC terminal.
このとき、 ホルダ部 1 2からの電線 1 5の取り出しは、 第 1 図か ら明らかなように、 本体部 1 2 Aの底部の周辺に設けてある欠き取 部 1 2 Dを欠き取って、 電線引出用の開孔とし、 ここから取り出す ようになつている。 なお、 この作業を容易にするため、 本体部 1 2 Aの底部を着脱自在にしておいてもよい。  At this time, as shown in Fig. 1, the wire 15 is taken out of the holder 12 by removing the notch 12D provided around the bottom of the main body 12A. An opening for taking out the electric wire is taken out from here. In order to facilitate this work, the bottom of the main body 12A may be made detachable.
従って、 この実施例によれば、 主回路電解コンデンサ 6が、 イ ン バー夕の本体内から取り出され、 側面に取り付けられているので、 その分、 本体の高さ、 つまり、 第 1図において、 冷却フィ ン 1の下 面から表面カバー 1 0の上面までの寸法を少なくすることができ る。  Therefore, according to this embodiment, since the main circuit electrolytic capacitor 6 is taken out of the main body of the inverter and is attached to the side surface, the height of the main body, that is, in FIG. The dimension from the lower surface of the cooling fin 1 to the upper surface of the front cover 10 can be reduced.
また、 この実施例によれば、 主回路電解コンデンサ 6の取付作業 が簡単で、 スぺーサ部材 5を組み立てた後からでも容易に取付ける ことができる上、 主回路電解コンデンサ 6を交換するときでも本体 を分解する必要はなく、 単にコンデンサボックスカバー 7を取り外 し、 電線 1 5のフ ァス ト ン端子 1 5 Aを抜き外し、 主回路電解コ ン デンサ 6を取り出して新品と交換してやればよいので、 寿命部品の 保守を容易に得ることができる。  In addition, according to this embodiment, the mounting work of the main circuit electrolytic capacitor 6 is easy, and it can be easily mounted even after the spacer member 5 is assembled, and even when the main circuit electrolytic capacitor 6 is replaced. It is not necessary to disassemble the main unit, simply remove the capacitor box cover 7, remove the first terminal 15A of the electric wire 15, remove the main circuit electrolytic capacitor 6, and replace it with a new one. Good, maintenance of life parts can be easily obtained.
さ らに、 この実施例では、 ホルダ部 1 2の本体部 1 2 Aには、 ス ロッ ト部 1 2 Cが複数個所、 例えば図示のように 3個所に形成して あり、 これらの溝 1 2 Aの中の任意の 1個を選んでス ト ツパ部材 1 2 Eを嵌合させて使用するようになっている。  Furthermore, in this embodiment, the main body 12A of the holder 12 has a plurality of slot portions 12C formed at a plurality of positions, for example, three positions as shown in the drawing. Any one of 2A is selected, and the stopper member 12E is fitted and used.
ィ ンバータ装置では、 その定格出力に応じて静電容量の異なるコ ンデンサを使用する必要があり、 コンデンサ 6 として、 例えば静電 容 *が 1 8 0 u F、 3 3 0 F、 或いは 4 7 0 〃 Fのものを選択す る必要がある。 In an inverter device, it is necessary to use capacitors having different capacitances according to the rated output. It is necessary to select the one with the content * of 180 uF, 330 oF, or 470 oF.
ところで、 このようなコンデンサとしては、 図示のように、 円筒 形のものを使用するのが通例であるが、 このとき、 直径は変えず に、 長さを変えるだけで静電容量の違いに対応するのが、 これも通 例であり、 このときには、 静電容量が多いコンデンサほど、 その長 さが長くなる。  By the way, as shown in the figure, it is customary to use a cylindrical type capacitor as shown in the figure. At this time, the capacitance can be accommodated by changing the length without changing the diameter. This is also customary, in which case the longer the capacitance, the longer the capacitor.
そこで、 この実施例では、 静電容量が異なっているコンデンサの 長さに対応して、 それぞれのスロッ 卜部 1 2 Cの位置を変えてお き、 例えば、 静電容量が 1 8 0 /x Fのコンデンサを使用するときに はスロッ ト部 1 2 Cの一番奥のスロッ トにス ト ツパ部材 1 2 Eを嵌 合させて使用し、 以下同様に、 コンデンサの静電容量、 つまりコン デンサの長さに応じて順次、 手前(出口側)のスロッ ト部 1 2 Aにス ト ッパ部材 1 2 Eを嵌合させて使用するようになっている。  Therefore, in this embodiment, the position of each slot section 12C is changed in accordance with the length of the capacitor having a different capacitance. For example, the capacitance is 180 / xF When using a capacitor of the type described above, the stopper member 12E is fitted to the innermost slot of the slot part 12C, and the same applies to the capacitor of the capacitor, that is, the capacitor. The stopper member 12E is fitted to the slot portion 12A on the front side (outlet side) in order according to the length of the denser.
従って、 この実施例によれば、 ス トツバ部材 1 2 Eを嵌合させる スロッ ト部 1 2 Aの選択だけで、 そのままコンデンサ 6 として静電 容量の異なるものを用いることができ、 定格出力の異なるイ ンバー タ装置として、 長さの異なったコンデンサを用いた場合でも、 この ス ト ッパ部材 1 2 Eがコンデンサ保持用の部材として働き、 コンデ ンサ 6を固定することができるようになり、 常に確実にがたつきを 防止することができる。  Therefore, according to this embodiment, a capacitor 6 having a different capacitance can be used as it is simply by selecting the slot portion 12 A into which the stopper member 12 E is fitted, and the rated output differs. Even when capacitors having different lengths are used as the inverter device, the stopper member 12E functions as a member for holding the capacitor, so that the capacitor 6 can be fixed. It is possible to reliably prevent rattling.
なお、 この実施例では、 4個のスロッ ト部 1 2 Aが設けてある が、 必要に応じて、 2個以上、 任意の数を設けるようにすればよい ことは言うまでもない。  In this embodiment, four slot sections 12A are provided, but it goes without saying that any number of two or more slots may be provided as needed.
次に、 本発明の他の実施例について説明する。  Next, another embodiment of the present invention will be described.
まず、 第 6図は、 本発明の他の一実施例で、 図において、 1 7は バン ド部材、 1 8は締め具(バックル)であり、 その他の構成は、 第 1 図〜第 5図で説明した実施例と同じである。  First, FIG. 6 shows another embodiment of the present invention, in which 17 is a band member, 18 is a fastener (buckle), and other configurations are shown in FIGS. 1 to 5. This is the same as the embodiment described in the above.
バン ド部材 1 7は、 所定の長さの合成樹脂製、 或いは金属製の帯 状部材で作られ、 その一部がスぺーサ部材 5の両側面に取り付けら れており、 締め具 1 8により端部を結合させることにより、 コンデ ンサ 6をスぺーサ部材 5の両側に保持する取付部材として機能す る。 The band member 17 is made of a predetermined length made of synthetic resin or metal. It is made of a shaped member, part of which is attached to both sides of the spacer member 5, and the ends are connected by fasteners 18 so that the capacitor 6 is attached to both sides of the spacer member 5. Functions as a holding member for holding.
従って、 この実施例によっても、 主回路電解コンデンサ 6が、 ィ ンバ一夕の本体内から取り出され、 側面に取り付けられているの で、 その分、 本体の高さ寸法を少なくすることができる。  Therefore, also in this embodiment, since the main circuit electrolytic capacitor 6 is taken out of the main body of the inverter and attached to the side surface, the height of the main body can be reduced accordingly.
そして、 この実施例によれば、 コンデンサ 6の保持にバン ド部材 1 7を用いているので構成が簡単になり、 コス トダウンを図ること ができる上、 コンデンサ 6が露出されているので、 効果的な冷却が 得られるようになり、 コンデンサ 6の寿命を長くすることができ る。  According to this embodiment, since the band member 17 is used to hold the capacitor 6, the configuration is simplified, the cost can be reduced, and the capacitor 6 is exposed. Cooling can be obtained, and the life of the capacitor 6 can be prolonged.
なお、 この実施例によっても、 主回路電解コンデンサ 6の取付作 業が簡単で、 スぺーサ部材 5を組み立てた後からでも容易に取付け ることができる上、 主回路電解コンデンサ 6を交換するときでも本 体を分解する必要はなく、 単にコンデンサボックスカバー 7を取り 外し、 電線 1 5のファス ト ン端子 1 5 Aを抜き外し、 主回路電解コ ンデンサ 6を取り出して新品と交換してやればよいので、 寿命部品 の保守を容易に得ることができることは、 いうまでもない。  In addition, according to this embodiment, the mounting work of the main circuit electrolytic capacitor 6 is also easy, and it can be easily mounted even after the spacer member 5 is assembled, and when the main circuit electrolytic capacitor 6 is replaced. However, there is no need to disassemble the main unit, simply remove the capacitor box cover 7, remove the first terminal 15A of the electric wire 15 and remove the main circuit electrolytic capacitor 6, and replace it with a new one. Needless to say, maintenance of life parts can be easily obtained.
次に、 第 7図は、 本発明の更に別の一実施例で、 コンデンサ 6を ィ ンバータ本体とは別体とし、 コンデンサ取付用の脚部材 6 Aによ り、 イ ンバータ本体が取り付けられている制御パネルの近傍に取り 付けて使用するよう したものであり、 その他の構成は、 第 1 図〜第 6図で説明した実施例と同じである。  Next, FIG. 7 shows still another embodiment of the present invention, in which the capacitor 6 is separated from the inverter main body, and the inverter main body is mounted by the leg member 6A for mounting the capacitor. The other components are the same as those of the embodiment described with reference to FIGS. 1 to 6.
従って、 この実施例によっても、 主回路電解コンデンサ 6は、 ィ ンバー夕の本体内から取り出されているので、 その分、 本体の高さ 寸法を少なくすることができる。  Therefore, also in this embodiment, since the main circuit electrolytic capacitor 6 is taken out of the main body of the inverter, the height of the main body can be reduced accordingly.
そして、 この実施例によれば、 コンデンサ 6の取り付けに脚部材 6 Aを用いているだけなので構成が簡単になり、 コス トダウンを図 ることができる上、 コンデンサ 6が露出されているので、 効果的な 冷却が得られるようになり、 コンデンサ 6の寿命を長くすることが できる。 According to this embodiment, since the leg member 6A is only used for mounting the capacitor 6, the configuration is simplified and cost reduction is achieved. In addition, since the capacitor 6 is exposed, effective cooling can be obtained, and the life of the capacitor 6 can be extended.
更に、 コンデンサの静電容量を複数台のィ ンバータ本体の定格出 力の和に応じたものを選定することにより、 コンデンサ 6単体に複 数台のィ ンバータ本体が接統でき、 作業、 材料のコス 卜ダウン、 省 スペース化を図ることができる。  Furthermore, by selecting a capacitor whose capacitance corresponds to the sum of the rated outputs of the multiple inverters, multiple inverters can be connected to the capacitor 6 alone, and work and material Cost reduction and space saving can be achieved.
なお、 筒型の電解コンデンサには、 取付用の脚部材を備えた状態 で市販されている場合が多いから、 この実施例によれば、 このよう なコンデンサを使用することにより、 さらにコス トを低減させるこ とができる。  In many cases, cylindrical electrolytic capacitors are commercially available with mounting leg members. According to this embodiment, the use of such a capacitor further increases the cost. It can be reduced.
次に、 本発明の実施例について、 さらに具体的に説明する。  Next, examples of the present invention will be described more specifically.
まず、 第 9図は、 第 1図で説明した実施例に基づいて、 本発明 を、 定格出力(定格容量)が、 小さい方で 0 . 7 5 K Wから大きい方 では 1 . 5 K W程度までのインバータ装置として、 共通に適用でき るようにした場合の実施例で、 第 1図の実施例における冷却フィ ン 1 を除き、 正面図を中心にして上面から見た図(平面図)と右側面か ら見た図(右側面図)、 それに底面から見た図(底面図)を夫々示した ものである。 なお、 各部の名称と構成は、 第 1図と同じであり、 各 部の寸法は m m単位で示してある。  First, FIG. 9 shows that the present invention, based on the embodiment described in FIG. 1, has a rated output (rated capacity) ranging from 0.75 KW for a smaller one to about 1.5 KW for a larger one. This is an embodiment in which the invention can be applied commonly to inverter devices. Except for the cooling fin 1 in the embodiment of FIG. The view from the right (right side view) and the view from the bottom (bottom view) are shown. The names and configurations of each part are the same as in FIG. 1, and the dimensions of each part are shown in units of mm.
そして、 この第 9図の実施例によれば、 上記したように、 イン バータ本体部として同一寸法のままで、 種々の定格出力のイ ンバー 夕装置を得ることができ、 従って、 ローコス トで充分に汎用性を持 たせることができるのであるが、 以下、 この点について説明する。  According to the embodiment shown in FIG. 9, as described above, it is possible to obtain inverter devices of various rated outputs while maintaining the same dimensions as the inverter main body. This can be made more versatile, but this point is described below.
ィンバー夕の定格容量を增加させるためには、 特に主回路での損 失による発熱の增加に応じて冷却能力を高めてやり、 且つ、 主回路 コンデンサの静電容量を増加させてやればよい。  In order to increase the rated capacity of the inverter, the cooling capacity should be increased in accordance with the increase in heat generated by the loss in the main circuit, and the capacitance of the main circuit capacitor should be increased.
ところで、 この第 9図から明らかなように、 この実施例では、 ィ ンバータ本体部が、 端子台 2 A、 2 Bと一体に作られているパワー モジュール 2にスぺーサ部材 5 と制御基板ホルダカバー 8を積み重 ね、 更にこのスぺーサ部材 5の側面にコンデンサホルダ部 1 2が取 付けられるようにしてュニッ ト化されている。 By the way, as is apparent from FIG. 9, in this embodiment, the inverter main body is a power unit integrally formed with the terminal blocks 2A and 2B. A spacer member 5 and a control board holder cover 8 are stacked on the module 2, and a capacitor holder 12 is mounted on a side surface of the spacer member 5 to form a unit.
そして、 このようにュニッ 卜化した上で、 第 1図に示すように、 パワーモジュール 2に冷却フィ ン 1を取付けるようになっているの で、 使用する冷却フィ ン 1の大きさは、 有る程度、 任意に変えるこ とができる。  Then, as shown in Fig. 1, the cooling fin 1 is attached to the power module 2 after the unit is formed in this manner, so the size of the cooling fin 1 to be used is The degree can be arbitrarily changed.
一方、 イ ンバー夕の冷却能力は、 冷却フィ ンの大きさを変え、 放 熱面積を增加させることにより高めることができ、 従って、 この実 施例では、 イ ンバータ本体部の寸法は変えずに、 使用する冷却フィ ン 1 の大きさを変えるだけで、 まず、 冷却能力の点で、 定格容量の 違いに容易に対応することができる。  On the other hand, the cooling capacity of the inverter can be increased by changing the size of the cooling fins and increasing the heat dissipation area. Therefore, in this embodiment, the dimensions of the inverter main body are not changed. However, by simply changing the size of the cooling fin 1 to be used, first, it is possible to easily cope with the difference in the rated capacity in terms of the cooling capacity.
次に、 この実施例では、 コンデンサホルダ部 1 2が、 そこに収容 すべきコンデンサ 6 として、 静電容量が異なっているものでも任意 に用いられるように構成されており、 従って、 主回路コンデンサの 静電容量の点でも、 定格容量の違いに容易に対応することができ る。  Next, in this embodiment, the capacitor holder section 12 is configured so that the capacitor 6 to be accommodated therein can be used arbitrarily even if the capacitors have different capacitances. In terms of capacitance, it can easily cope with the difference in rated capacity.
従って、 この第 9図に示した実施例によれば、 イ ンバータ本体部 としては、 図示の寸法のもとで、 これに取付ける冷却フィ ンの大き さと、 コンデンサホルダ部 1 2に収容すべきコンデンサの静電容 i 値を選択するだけで、 小さい方では 0 . 7 5 K Wから大きき方では 1 . 5 K W程度までの各種の定格容量のィ ンバータ装置として共通 に適用でき、 この結果、 上記したように、 ローコス トで充分に汎用 性を持たせることができるのである。  Therefore, according to the embodiment shown in FIG. 9, the size of the cooling fin to be mounted on the inverter main body and the size of the condenser to be accommodated in the condenser holder 12 are determined based on the dimensions shown in the drawing. By simply selecting the capacitance i value of the above, it can be commonly applied to inverter devices with various rated capacities from 0.75 KW for the smaller one to about 1.5 KW for the larger one. In this way, it is possible to provide sufficient versatility at low cost.
ここで、 冷却フィ ン 1 の放熱面積を增加させる方法としては種々 の方法があるが、 この実施例に適した方法について例示すると、 例 えば第 1図において、 冷却フ ィ ン 1の放熱フィ ンの高さや枚数を增 してやる方法と、 同じく第 1 図において、 冷却フィ ン 1 の平面形状 をパワーモジュール 2の平面形状より大き くする方法とが考えら れ、 さらには、 これらの方法を併用してもよい。 しかして、 本発明 の実施例としては、 これらの方法に限定されるものではない。 Here, there are various methods for increasing the heat radiating area of the cooling fin 1, and a method suitable for this embodiment is exemplified. For example, in FIG. 1, the heat radiating fin of the cooling fin 1 is shown in FIG. One is to consider the method of increasing the height and the number of sheets, and the other is to make the plane shape of the cooling fin 1 larger than the plane shape of the power module 2 in FIG. Further, these methods may be used in combination. However, embodiments of the present invention are not limited to these methods.
次に、 この第 9図の実施例の各部の詳細について説明すると、 ま ず第 1 0図は、 第 9図の実施例の背面から見た図(背面図)と、 A— A '、 B— B '、 C一 C 'の各切断線による各部の断面を示した図で あり、 A— A '断面図では、 第 1図に示されている電源基板 3や制御 基板 7などの内部構造物は省略してある。  Next, the details of each part of the embodiment shown in FIG. 9 will be described. First, FIG. 10 is a diagram showing the rear view of the embodiment shown in FIG. — It is a diagram showing a cross section of each part along each cutting line of B ′, C-C ′, and A—A ′ cross-sectional view shows the internal structure of the power supply board 3 and the control board 7 shown in FIG. Things are omitted.
次に、 第 1 1図は、 第 9図でパワーモジュール 2 とコンデンサホ ルダ部 1 2を除いた部分の詳細を、 正面図を中心として、 左右各側 面図と平面図、 それに底面図により示したものであり、 更に第 1 2 図は、 第 1 1図の D— D '、 E— E 'の各切断線による断面図と背面 図、 そして斜視図を示したものである。  Next, Fig. 11 shows the details of the parts excluding the power module 2 and the capacitor holder part 12 in Fig. 9 with the left and right side views and plan view, centered on the front view, and the bottom view. FIG. 12 is a sectional view, a rear view, and a perspective view taken along the cutting lines D-D 'and E-E' of FIG.
次に、 第 1 3図は、 第 9図において、 コンデンサホルダ部 1 2を 除いたイ ンバータ本体部の詳細を、 正面図を中心として、 左右各側 面図と平面図、 それに底面図により示したものであり、 更に第 1 4 図は、 第 1 3図の F— F '、 G— G 'の各切断線による断面図と背面 図、 そして斜視図を示したものである。  Next, Fig. 13 shows the details of the inverter main unit in Fig. 9 excluding the capacitor holder unit 12, with a front view as the center, a left and right side view, a plan view, and a bottom view. Further, FIG. 14 shows a cross-sectional view, a rear view, and a perspective view along each cutting line FF ′ and GG ′ in FIG.
また、 第 1 5図は、 コンデンサホルダ部 1 2の詳細を、 正面図を 中心として、 左右各側面図と平面図、 それに底面図により示したも のであり、 更に第 1 6図は、 第 1 5図の H— H '、 J一 J 'の各切断 線による断面図と背面図、 そして斜視図を示したものである。  FIG. 15 shows the details of the capacitor holder part 12 with the front view as the center, the left and right side views and the plan view, and the bottom view. Further, FIG. FIG. 5 shows a cross-sectional view, a rear view, and a perspective view taken along cutting lines H—H ′ and J-J ′ in FIG.
更に、 第 1 7図は、 第 9図におけるスぺーサ部材 5だけを取り出 し、 その詳細を、 正面図を中心とし、 左右に各側面図、 上側には平 面図として示した上で、 更に裏面図と、 A— A、 B— Bの各切断線 による各断面図を示したものであり、 第 9図と同じく、 m m単位の 寸法が記入してある。  Further, in FIG. 17, only the spacer member 5 in FIG. 9 is taken out, and details thereof are shown as a side view on the left and right sides, and a plan view on the upper side, centering on the front view. FIG. 9 shows a back view and cross-sectional views taken along cutting lines A--A and B--B. As in FIG. 9, dimensions in mm units are shown.
従って、 これら第 1 0図〜第 1 7図によれば、 第 9図の実施例に おける各部の構成の詳細を明確に知ることができ、 充分に本発明を 理解することができる。 ところで、 上記したように、 例えば第 9図の実施例によれば、 寸 法も含めて同一のィ ンバータ本体部により、 各種定格出力を異にす るイ ンバータ装置を容易に得ることができるが、 このとき、 比較的 小容 *のィ ンバータに本発明を適用した場合には、 主回路のコンデ ンサに必要な静電容量も小さ くて済むことから、 上記した実施例の ように、 2個のコンデンサを用いなくても、 1個のコンデンサで寸 法的には充分に間に合う場合がある。 Therefore, according to FIGS. 10 to 17, it is possible to clearly understand the details of the configuration of each part in the embodiment of FIG. 9, and to fully understand the present invention. By the way, as described above, for example, according to the embodiment of FIG. 9, it is possible to easily obtain an inverter device having various rated outputs by using the same inverter main body including dimensions. At this time, when the present invention is applied to an inverter having a relatively small volume *, the capacitance required for the capacitor of the main circuit can be small, and therefore, as in the above-described embodiment, 2 Even if one capacitor is not used, one capacitor may be sufficient in size.
そこで、 このような場合には、 第 1 8図に示す実施例のように、 コンデンサホルダ部 1 2をィ ンバータ本体部の片側に 1個だけ取付 けるようにしても良い。  Therefore, in such a case, as in the embodiment shown in FIG. 18, only one capacitor holder 12 may be attached to one side of the inverter main body.
なお、 この第 1 8図は、 第 1図の実施例における冷却フィ ン 1 を 除き、 正面図を中心にして上側に平面図を、 左右に各右側面図、 そ れに下側に底面図を夫々示したもので、 各部の名称と構成は第 1 図 と同じである。  In addition, this FIG. 18 is a plan view on the upper side centering on the front view, right and left side views on the left and right, and a bottom view on the lower side, except for the cooling fin 1 in the embodiment of FIG. The names and configurations of each part are the same as in Fig. 1.
上記した第 1 図と第 9図から明らかなように、 本発明の実施例で は、 スぺーサ部材 5に対するコンデンサホルダ部 1 2の取付が、 ス ベーサ部材 5側の取り付け用部材 5 Aと、 コンデンサホルダ部 1 2 側の取り付け用部材 1 2 Bにより着脱自在になっている。  As is clear from FIGS. 1 and 9 described above, in the embodiment of the present invention, the mounting of the capacitor holder portion 12 to the spacer member 5 is performed by the mounting member 5A on the spacer member 5 side. The mounting member 12B on the side of the capacitor holder 12 is detachable.
従って、 この実施例によれば、 なんら特別な構成を要せず、 第 1 8図に示した態様でインバータ装置を得ることが出来、 この結果、 バラエティ に富んだ製品を容易に提供することができ、 多様な顧客 のニーズに充分に応えることができる。 なお、 このように、 にコン デンサを 1個にした実施例の場合には、 第 1 8図に示してあるよう に、 コンデンサホルダ部 1 2を左側に取付けるようにした方が、 コ ンデンサ接続用の電線 1 5が短くて済み、 ノイズ吸収の点で効果的 である。  Therefore, according to this embodiment, the inverter device can be obtained in the mode shown in FIG. 18 without requiring any special configuration, and as a result, a wide variety of products can be easily provided. It can fully meet the needs of various customers. As shown in Fig. 18, in the case of the embodiment where only one capacitor is used, it is better to mount the capacitor holder 12 on the left side. Wire 15 is short, which is effective in terms of noise absorption.
次に、 本発明の更に別の実施例について説明する。  Next, still another embodiment of the present invention will be described.
以下に説明する実施例は、 第 1図と第 9図で説明した実施例にお けるコンデンサホルダ部の形状を変えた、 いわば変形例に相当する もので、 まず、 第 1 9図の実施例は、 コンデンサホルダ部 1 2の形 状を半円筒形にしたものであり、 次に、 第 2 0図の実施例は、 コン デンサホルダ部 1 2を角筒形にしたものである。 The embodiment described below corresponds to a so-called modified example in which the shape of the capacitor holder in the embodiment described with reference to FIGS. 1 and 9 is changed. First, in the embodiment shown in FIG. 19, the shape of the capacitor holder 12 is made semi-cylindrical. Next, in the embodiment shown in FIG. It is a rectangular tube.
そして、 これら第 1 9図と第 2 0図には表わされていないが、 第 1図、 又は第 9図の実施例と同じく、 スぺーサ部材 5側には取り付 け用部材 5 Aが、 コンデンサホルダ部 1 2側には取り付け用部材 1 2 Bがそれぞれ設けてあり、 これらにより、 スぺーサ部材 5に対し てコンデンサホルダ部 1 2が着脱自在になっている。  Although not shown in FIGS. 19 and 20, as in the embodiment shown in FIG. 1 or FIG. 9, the mounting member 5A is attached to the spacer member 5 side. However, mounting members 12 B are provided on the side of the capacitor holder 12, respectively, so that the capacitor holder 12 can be detachably attached to the spacer member 5.
従って、 これら第 1 9図と第 2 0図の実施例によれば、 第 1 図、 又は第 9図の実施例と同じ作用効果に加えて、 インバータとしての 基本的な性能を残したままで、 洗練された外観を有するデザイン的 に優れたィ ンバー夕装置を容易に得ることができる。  Therefore, according to the embodiment of FIG. 19 and FIG. 20, in addition to the same operation and effect as the embodiment of FIG. 1 or FIG. It is possible to easily obtain an inverter having a sophisticated appearance and excellent design.
さらに、 これら第 1 9図、 第 2 0図の実施例によれば、 イ ンバー 夕の本体部側とコンデンサホルダ部の取付面が平面になつているの で、 振動に強く信頼性が向上する。  Further, according to the embodiment shown in FIGS. 19 and 20, since the main body side of the inverter and the mounting surface of the capacitor holder are flat, the structure is resistant to vibration and reliability is improved. .
ここで、 以上の実施例による効果について列挙すれば、 以下の通 りである。  Here, the effects of the above embodiments are listed as follows.
( 1 )イ ンバータ装置を、 その高さを含めて充分に小形化することが できる。  (1) The inverter device can be sufficiently miniaturized including its height.
( 2 )寿命部品である電解コンデンサの交換が極めて簡単に行なえる ので、 保守が容易になり、 装置の耐用年数を永く得ることができ る。  (2) Since the replacement of the electrolytic capacitor, which is a serviceable component, can be performed extremely easily, maintenance becomes easy and the service life of the device can be extended.
( 3 )組立工数の低減による大幅な製品のコス 卜ダウンが可能にな る。  (3) The cost of the product can be greatly reduced by reducing the number of assembly steps.
( 4 )電源側の端子と負荷側(電動機側)の端子が対向する位置にある ため、 配線が容易である。  (4) Wiring is easy because the terminals on the power supply side and the terminals on the load side (motor side) face each other.
( 5 )配電盤などに取付けられる機器として一般的な電磁開閉器と同 一の端子配置にすることができるので、 習慣的な配線作業とな り、 設置に際して本質的に誤配線を少なくすることができる。 (6)本体部の寸法を変えずに、 種々の異なつた定格出力のィ ンバー タ装置を得ることができるので、 機種の多様化にも容易に、 しか もローコス トで対応することができる。 (5) As a device that can be mounted on a switchboard, etc., the same terminal arrangement as that of a general electromagnetic switch can be used, so it is a customary wiring work, and it is possible to reduce erroneous wiring essentially during installation. it can. (6) Since it is possible to obtain various types of inverters having different rated outputs without changing the dimensions of the main body, it is possible to easily diversify models and to cope with low cost.
(7)種々の外観を異にしたイ ンバータ装置を、 本体部の構成を変え ること無く容易に得ることができるので、 洗練された外観を有す るデザイン的に優れたィンバ一夕装置を容易に提供できる。  (7) Since various types of inverters having different appearances can be easily obtained without changing the configuration of the main body, an inverter having a sophisticated appearance and excellent design can be obtained. Can be easily provided.
(8)また、 この結果、 バラエティ に富んだ製品を容易に提供するこ とができ、 多様な顧客のニーズに充分に応えることができる。  (8) As a result, a wide variety of products can be easily provided, and the needs of various customers can be sufficiently satisfied.
(9)第 9図乃至第 1 8図の実施例によれば、 端子台 2 Aとコンデン サ 6を接続する電線 1 5の長さは十分に短く でき、 配線イ ンダク タンスは 2 0 n H以下に抑えることができるので、 イ ンバータの スイ ツチング動作などによるサージ過電圧を十分低く抑えること ができる。  (9) According to the embodiment shown in FIGS. 9 to 18, the length of the electric wire 15 connecting the terminal block 2A and the capacitor 6 can be made sufficiently short, and the wiring inductance is 20 nH Since it can be suppressed to the following, surge overvoltage due to inverter switching operation can be suppressed sufficiently.
(10)コンデンサがインバータ装置の外部にあるので、 劣化などでコ ンデンザが破裂しても、 インバータ装置内部にある制御回路に二 次災害を及ぼす危険性が少なく、 従って信頼性が向上する。  (10) Since the capacitor is outside the inverter, even if the capacitor ruptures due to deterioration or the like, there is less danger of causing a secondary disaster to the control circuit inside the inverter, thus improving the reliability.
(11)コンデンサホルダ部が下側に開放され、 比較的強度が低いス ト ッパ部材でコンデンサを内部に収納保持するようにしているの で、 コンデンサが破裂した場合には下側に抜けるようになり、 安 全面で優れている。  (11) Since the capacitor holder is opened to the lower side and the capacitor is stored and held inside by a relatively low-strength stopper member, if the capacitor ruptures, it can be pulled down. It is cheap and excellent in all aspects.
(12)冷却フィ ン除いた構成のものによれば、 他の機器に容易に取付 けられる効果がある。  (12) According to the configuration excluding the cooling fin, there is an effect that it can be easily attached to other devices.
(13)コンデンサ取付け用の外部接続端子が設けられているので、 コ ンデンザが簡単に本体ケースの外に取付けられる。  (13) Since the external connection terminal for mounting the capacitor is provided, the capacitor can be easily mounted outside the case.
(14)コンデンサの取付方向が基板と平行の配置なので、 全体がコ ン ク 卜になる。  (14) Since the mounting direction of the capacitor is parallel to the board, the whole is compact.
(15)本体ケース、 コンデンサ部、 放熱部の 3要素からなる構成なの で、 これらの組合せが自在に行なえる効果がある。  (15) Since it is composed of the three elements of the main body case, capacitor part and heat radiating part, there is an effect that these combinations can be freely performed.
(16)コンデンザの取付位置が選択できるので、 コンデンサの配置に つて多様な設置場所に対応できる 産業上の利用可能性 (16) The mounting position of the condenser can be selected. Industrial applicability to accommodate various installation locations
本発明によれば、 大型の主回路用のコンデンサを用いても、 高さ 方向の寸法を充分に縮めることが可能で、 性能のよい小型のィン バー夕装 eを容易に得ることができるので、 高さ方向の設置スぺー スが充分に得られない場合でも使用することができ、 広い適用性を 持ったィ ンバータ装置を提供することができる。  According to the present invention, the size in the height direction can be sufficiently reduced even if a large capacitor for a main circuit is used, and a small-sized e-bar device e with good performance can be easily obtained. Therefore, it can be used even when the installation space in the height direction cannot be sufficiently obtained, and an inverter device having wide applicability can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケース 内に有する本体部と、 コンデンサ部と、 放熱部とを備え、 前記本体 部と前記放熱部は機械的及び熱的に接合され、 前記本体部と前記コ ンデンサ部は機械的及び電気的に接合され、 前記本体部と前記コン デンサ部と前記放熱部を独立した 3要素として構成したことを特徴 とするィンバータ装置。 1. A main body having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main body case, a capacitor unit, and a heat radiating unit. Wherein the main body, the capacitor and the radiator are mechanically and electrically connected to each other, and the main body, the capacitor, and the heat radiator are configured as three independent elements. .
2 . 前記コンデンサ部は前記本体ケースに取付けられ、 前記放熱部 は前記本体ケースに取付けられた請求の範囲第 1項記載のィ ンバー タ装置。  2. The inverter device according to claim 1, wherein the capacitor portion is attached to the main body case, and the heat radiating portion is attached to the main body case.
3 . 前記本体ケースに、 前記コンデンサ部を取付けるスぺーサ部材 を設けたことを特徴とする請求の範囲第 1項記載のィ ンバータ装 置。  3. The inverter device according to claim 1, wherein a spacer member for mounting the capacitor portion is provided on the main body case.
4 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケース 内に有する本体部を備えたィ ンバータ装置において、 前記本体部は ほぼ立方体に作られており、 前記本体部の立方体の夫々の面が、 探 作面、 放熱面、 端子配置面、 コンデンサ取付面を形成し、 前記コン デンサ取付面は、 前記操作面と前記放熱面及び前記端子配置面以外 の面に形成されていることを特徴とするィンバータ装置。  4. In an inverter device including a main body having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main body case, the main body unit is formed substantially in a cubic shape. Each surface of the cube forms a search surface, a heat dissipation surface, a terminal arrangement surface, and a capacitor attachment surface, and the capacitor attachment surface is formed on a surface other than the operation surface, the heat dissipation surface, and the terminal arrangement surface. An inverter device characterized in that:
5 . 前記コンデンサ取付面は、 前記本体ケースの左右の側面に形成 されていることを特徴とする請求の範囲第 4項記載のィ ンバータ装 置。  5. The inverter device according to claim 4, wherein the capacitor mounting surfaces are formed on left and right side surfaces of the main body case.
6 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケース 内に有する本体部を備えたィンバ一夕装置において、 前記本体部 に、 コンデンサを電気的に接続する外部接続端子を設けたことを特 徴とするィ ンバ一夕装置。  6. In an indoor device including a main body having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main body case, an external connection terminal for electrically connecting a capacitor to the main body unit. An overnight installation device characterized by the provision of
7 . 前記外部接挠端子は、 前記本体ケースの一方に偏って配置され ていることを特徴とする請求の範囲第 6項記載のィ ンバータ装置。 7. The inverter device according to claim 6, wherein the external connection terminal is disposed so as to be biased to one of the main body cases.
8 . 前記外部接繞端子に接続されるコンデンサは、 前記本体ケース から雜れた部分に取付けられることを特徴とする請求の範囲第 6項 記載のィ ンバータ装置。 8. The inverter device according to claim 6, wherein the capacitor connected to the external surrounding terminal is attached to a portion surrounded by the main body case.
9 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケース 内に有する本体部を備えたィンバータ装置において、 前記本体部の 前面より後方にコンデンサを取付けたことを特徵とするィ ンバー夕 装置。  9. An inverter device having a main body having a forward conversion part, an inverse conversion part, a power supply circuit part, and a control circuit part in a main body case, characterized in that a capacitor is mounted behind the front surface of the main body part. Inverter equipment.
1 0 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部を備えたィ ンバータ装置において、 前記本体部 は後面に冷却面を有し、 前記冷却面より前方にコンデンサを取付け たことを特徴とするィ ンバータ装置。  10. In an inverter device including a main body having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main body case, the main body unit has a cooling surface on a rear surface, and the cooling unit Inverter device characterized by mounting a condenser in front of the surface.
1 1 . 前記冷却面は、 他の機器の金厲面に取付けられたことを特徵 とする請求の範囲第 1 0項記載のインバータ装置。  11. The inverter device according to claim 10, wherein the cooling surface is attached to a metal surface of another device.
1 2 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部を備えたィンバータ装置において、 コンデンサ を前記本体ケースの厚み以内に配置したことを特徴とするイ ンバー 夕装度。  12. An inverter device including a main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main body case, wherein a capacitor is arranged within a thickness of the main body case. Invert the evening.
1 3 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたイ ンバータ装置において、 少なく とも前記制御回路部の 一部は配線基板上に組立てられ、 該基板は前記本体ケースの前面又 は後面とと平行に配置され、 前記コンデンサの長手方向軸を前記基 板と平行に配置したことを特徵とするイ ンバータ装置。  13. An inverter device including a main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main unit case, and a capacitor disposed outside the main unit case, has a small number. A part of the control circuit is assembled on a wiring board, the board is arranged in parallel with the front or rear face of the main body case, and a longitudinal axis of the capacitor is arranged in parallel with the board. An inverter device characterized by
1 4 . 前記コンデンサは前記本体ケースの左右に配置され、 これら 左右に配置されたコンデンサは夫々の長手方向軸が同一の方向に向 いていることを特徴とする請求の範囲第 1 3項記載のィ ンバータ装 14. The capacitor according to claim 13, wherein the capacitors are arranged on the left and right sides of the main body case, and the capacitors arranged on the left and right sides have their respective longitudinal axes oriented in the same direction. Inverter equipment
S o S o
1 5 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたィ ンバータ装置において、 前記コンデンサは、 少なく と も円筒の一部で形成されているコンデンサホルダに収納されている ことを特徵とするィンバータ装置。 15. A main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in the main unit case, and a capacitor disposed outside the main unit case. An inverter device provided with an inverter, wherein the capacitor is housed in a capacitor holder formed at least in part of a cylinder.
1 6 . 前記コンデンサホルダは、 その一部が半円筒形に形成されて いることを特徴とする請求の範囲第 1 5項記載のィンバータ装置。  16. The inverter device according to claim 15, wherein a part of said capacitor holder is formed in a semi-cylindrical shape.
1 7 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配 fiされたコンデン サを備えたイ ンバータ装置において、 前記コンデンサは角筒状に形 成されたコンデンサホルダに収納されることを特徴とするインバー タ装置。  17. An inverter device including a main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main unit case, and a capacitor disposed outside the main unit case. The inverter device, wherein the capacitor is housed in a capacitor holder formed in a rectangular tube shape.
1 8 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたインバー夕装置において、 前記コンデンサは静電容量の 異なるコンデンサを任意に組合せることができる手段を備えたこと を特徴とするイ ンバータ装置。  18. An inverting device comprising: a main body having a forward conversion section, an inverse conversion section, a power supply circuit section, and a control circuit section in a main body case; and a capacitor disposed outside the main body case. An inverter device comprising: means for arbitrarily combining capacitors having different capacitances.
1 9 . 前記コンデンサはコンデンサホルダに収納され、 該コンデン サホルダは同一外径で軸方向の長さが異なるコンデンサを任意に選 定して取付けることができる手段を有することを特徵とする請求の 範囲第 1 8項記載のインバータ装置。  19. The capacitor is housed in a capacitor holder, and the capacitor holder has means for arbitrarily selecting and mounting a capacitor having the same outer diameter and a different length in the axial direction. Item 18. The inverter device according to Item 18.
2 0 . 前記コンデンサホルダは、 前記本体ケースの左右にそれぞれ 着脱自在に構成されており、 前記本体ケースの左右両側に取付けた 状態と、 前記本体ケースの左右の一方にだけ取付けた状態と、 前記 本体ケースの左右何れにも取付けられていない状態の 3種の形態を とることができるように構成されていることを特徴とする請求の範 囲第 1 9項記載のイ ンバー夕装置。  20. The capacitor holder is configured to be detachable on the left and right sides of the main body case, respectively, and is mounted on both left and right sides of the main body case, and mounted on only one of the left and right sides of the main body case. The inverting device according to claim 19, wherein said inverting device is configured so as to be able to take three kinds of forms in a state where it is not attached to either of the left and right sides of the main body case.
2 1 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたイ ンバー夕装置において、 前記コンデンサは、 前記本体 ケースの外で交換できるように、 該本体ケースから独立して取付け られていることを特徴とするイ ンバータ装置。 21. In an inverter device including a main body having a forward conversion section, an inverse conversion section, a power supply circuit section, and a control circuit section in a main body case, and a capacitor disposed outside the main body case, The capacitor is mounted independently of the body case so that it can be replaced outside the body case. An inverter device, characterized in that the inverter device is used.
2 2 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたイ ンバータ装 fiにおいて、 前記本体ケースには、 前記コ ンデンサを取付けるコンデンサ取付手段が設けられていることを特 徴とするィンバ一夕装置。  22. In a main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main unit case, and an inverter unit fi including a capacitor disposed outside the main unit case, The above-mentioned main body case is provided with a capacitor mounting means for mounting the above-mentioned capacitor.
2 3 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたイ ンバータ装置において、 前記コンデンサは、 該コンデ ンサを保持するコンデンサホルダに収納されていることを特徵とす るィ ンバータ装置。  23. In an inverter device including a main body having a forward conversion section, an inverse conversion section, a power supply circuit section, and a control circuit section in a main body case, and a capacitor disposed outside the main body case, An inverter device characterized in that the capacitor is housed in a capacitor holder that holds the capacitor.
2 4 . 前記コンデンサホルダは、 前記コンデンサからの電線引出用 の開孔部を備えていることを特徴とする請求の範囲第 2 3項記載の ィ ンバータ装置。  24. The inverter device according to claim 23, wherein the capacitor holder has an opening portion for drawing out an electric wire from the capacitor.
2 5 . 前記コンデンサホルダには、 前記コンデンザの長さに応じて 取付位置を変え、 前記コンデンサを保持するための保持部材が設け られていることを特徴とする請求の範囲第 2 3項記載のィ ンバ一夕 装置。  25. The capacitor according to claim 23, wherein the capacitor holder is provided with a holding member for changing the mounting position according to the length of the condenser and holding the capacitor. Inverter device.
2 6 . 前記コンデンサホルダは、 一方の端部が下方に開放した筒部 と、 該一方の端部を塞ぎ、 前記コンデンサを該筒部内に保持する保 持部材とで構成されられていることを特徵とする請求の範囲第 2 3 項記載のィ ンバータ装 g。  26. The capacitor holder includes a cylindrical portion having one end opened downward, and a holding member for closing the one end and holding the capacitor in the cylindrical portion. The inverter device g according to claim 23, which is a feature of the claims.
2 7 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン サを備えたイ ンバータ装置において、 前記コンデンサは、 前記本体 ケースの外側に取付けられていることを特徴とするイ ンバータ装 置。  27. An inverter device comprising: a main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in a main unit case; and a capacitor disposed outside the main unit case. An inverter device, wherein the capacitor is mounted outside the main body case.
2 8 . 順変換部と逆変換部と電源回路部と制御回路部とを本体ケー ス内に有する本体部と、 前記本体ケースの外に配置されたコンデン ザと、 冷却フイ ンを備えたインバータ装置において、 前記コンデン サは、 前記冷却フィ ンの外側に取付けられていることを特徴とする ィンバータ装置。 28. A main unit having a forward conversion unit, an inverse conversion unit, a power supply circuit unit, and a control circuit unit in the main unit case, and a capacitor disposed outside the main unit case. And an inverter device provided with a cooling fin, wherein the capacitor is mounted outside the cooling fin.
PCT/JP1995/000240 1994-10-24 1995-02-20 Inverter device WO1996013093A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP6/258311 1994-10-24
JP25831194 1994-10-24

Publications (1)

Publication Number Publication Date
WO1996013093A1 true WO1996013093A1 (en) 1996-05-02

Family

ID=17318493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000240 WO1996013093A1 (en) 1994-10-24 1995-02-20 Inverter device

Country Status (1)

Country Link
WO (1) WO1996013093A1 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009007782A3 (en) * 2006-12-06 2009-03-19 Solaredge Ltd Removable component cartridge for increasing reliability in power harvesting systems
US7900361B2 (en) 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8690110B2 (en) 2009-05-25 2014-04-08 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8771024B2 (en) 2009-05-22 2014-07-08 Solaredge Technologies Ltd. Dual compressive connector
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420089U (en) * 1987-07-24 1989-01-31
JPH04322108A (en) * 1991-04-19 1992-11-12 Toshiba Corp Semiconductor device
JPH06290886A (en) * 1993-03-31 1994-10-18 Toshiba Lighting & Technol Corp Discharge lamp lighting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6420089U (en) * 1987-07-24 1989-01-31
JPH04322108A (en) * 1991-04-19 1992-11-12 Toshiba Corp Semiconductor device
JPH06290886A (en) * 1993-03-31 1994-10-18 Toshiba Lighting & Technol Corp Discharge lamp lighting device

Cited By (184)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
WO2009007782A3 (en) * 2006-12-06 2009-03-19 Solaredge Ltd Removable component cartridge for increasing reliability in power harvesting systems
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US7900361B2 (en) 2006-12-06 2011-03-08 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
EP3288165A1 (en) * 2006-12-06 2018-02-28 Solaredge Technologies Ltd. Removable component cartridge for increasing reliability in power harvesting systems
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8004117B2 (en) 2006-12-06 2011-08-23 Solaredge, Ltd. Current bypass for distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8324921B2 (en) 2007-12-05 2012-12-04 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8771024B2 (en) 2009-05-22 2014-07-08 Solaredge Technologies Ltd. Dual compressive connector
US11509263B2 (en) 2009-05-22 2022-11-22 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10879840B2 (en) 2009-05-22 2020-12-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US9391385B2 (en) 2009-05-22 2016-07-12 Solaredge Technologies Ltd. Dual compressive connector
US11695371B2 (en) 2009-05-22 2023-07-04 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10686402B2 (en) 2009-05-22 2020-06-16 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9692164B2 (en) 2009-05-22 2017-06-27 Solaredge Technologies Ltd. Dual compressive connector
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10090803B2 (en) 2009-05-25 2018-10-02 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US9438161B2 (en) 2009-05-25 2016-09-06 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US9813020B2 (en) 2009-05-25 2017-11-07 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US9099849B2 (en) 2009-05-25 2015-08-04 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US10622939B2 (en) 2009-05-25 2020-04-14 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US11088656B2 (en) 2009-05-25 2021-08-10 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US8690110B2 (en) 2009-05-25 2014-04-08 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US11817820B2 (en) 2009-05-25 2023-11-14 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US10432138B2 (en) 2009-05-25 2019-10-01 Solaredge Technologies Ltd. Bracket for connection of a junction box to photovoltaic panels
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US8766696B2 (en) 2010-01-27 2014-07-01 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
WO1996013093A1 (en) Inverter device
JP3430185B2 (en) Inverter device
KR100190154B1 (en) Inverter apparatus
US7132769B2 (en) Capacitor motor with terminal arrangement
TWI282205B (en) Filter apparatus, frequency converter to which the filter apparatus is connected, and power converter
US5124888A (en) Electric circuit apparatus
WO2017163828A1 (en) Inverter-integrated electric compressor
US7006356B2 (en) Driving system with converter control for low-voltage three-phase motors
JP6195453B2 (en) Inverter-integrated electric compressor
JP2006230064A (en) Power conversion unit
US20160013701A1 (en) Electric compressor
JPH08294266A (en) Power module and power converter
JP2005531118A (en) Dimming pack
JP3467315B2 (en) Inverter device
JP3809961B2 (en) Inverter device
JP2004275000A (en) Inverter arrangement
JP2007250700A (en) Semiconductor device
CN110611436A (en) Rectification inversion module and frequency converter
JP3479352B2 (en) Inverter device
JP2007059902A (en) Power semiconductor modules having fixation devices
CN210351021U (en) Rectification inversion module and frequency converter
JP2003264354A (en) Control board of air conditioner
JP6591382B2 (en) Power converter
CN217591289U (en) Shell structure and electronic device with same
JP6308453B2 (en) Power converter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase