JP2002270876A - Solarlight power generator - Google Patents

Solarlight power generator

Info

Publication number
JP2002270876A
JP2002270876A JP2001071411A JP2001071411A JP2002270876A JP 2002270876 A JP2002270876 A JP 2002270876A JP 2001071411 A JP2001071411 A JP 2001071411A JP 2001071411 A JP2001071411 A JP 2001071411A JP 2002270876 A JP2002270876 A JP 2002270876A
Authority
JP
Japan
Prior art keywords
inverter
frequency
voltage
converter
input voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001071411A
Other languages
Japanese (ja)
Inventor
Mitsuru Matsukawa
満 松川
Norio Sakae
紀雄 栄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP2001071411A priority Critical patent/JP2002270876A/en
Publication of JP2002270876A publication Critical patent/JP2002270876A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve a solarlight power generator of a type using a linkage inverter of a high-frequency link type by particularly improving an efficiency of the linkage inverter of a low output side. SOLUTION: The solarlight power generator comprises a means for monitoring a DC input voltage and input current of the high-frequency inverter 21 of a DC/DC converter 19 and operating the inverter 21 under the control (Pmax control) of tracking a maximum power point of the solar battery 17, a means for raising a modulation of the converter 19 under the control of the operation of the inverter 21 so as to raise the DC input voltage in the operating state of the Pmax control when the DC input voltage of the DC/AC inverter 20 is lower than the upper limit voltage, and a means for regulating the modulation of the converter 19 under the control of the operation of the inverter 21 so that, when the DC input voltage of the inverter 21 is raised to the upper limit voltage, the DC input voltage is held at the upper limit voltage in the operating state of the Pmax control.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池の直流出
力を、高周波リンク方式の連系インバータにより系統周
波数の連系出力の交流に変換し、この連系出力の交流を
系統側に出力する太陽光発電装置に関し、詳しくは、そ
の駆動制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converts a DC output of a solar cell into an AC of a system output of a system frequency by a high-frequency link system interconnection inverter and outputs the AC of the system output to the system side. The present invention relates to a photovoltaic power generator, and more particularly, to a drive control thereof.

【0002】[0002]

【従来の技術】従来、この種の太陽光発電装置は図3に
示すように、太陽電池1に高周波リンク方式の連系イン
バータ2を接続して形成され、連系インバータ2は入力
側のDC/DCコンバータ部3と出力側のDC/ACイ
ンバータ部4とからなる。
2. Description of the Related Art Conventionally, as shown in FIG. 3, this type of photovoltaic power generator is formed by connecting a high-frequency link type interconnection inverter 2 to a solar cell 1, and the interconnection inverter 2 is connected to an input side DC power supply. A DC / AC converter section 3 and an output DC / AC inverter section 4.

【0003】そして、太陽電池1の直流出力はDC/D
Cコンバータ部3の高周波インバータ5により例えば数
KHz〜数十KHzの高周波交流に変換され、この高周波交
流が入出力絶縁用の高周波トランス6を介して整流平滑
部7に供給され、この整流平滑部7のダイオード整流回
路8,平滑用L−Cフィルタ9により整流,平滑されて
DC/ACインバータ部4の直流電源に変換される。
[0003] The DC output of the solar cell 1 is DC / D
The high frequency inverter 5 of the C converter unit 3 converts the high frequency alternating current into a high frequency AC of several KHz to several tens KHz, for example, and supplies the high frequency AC to a rectifying / smoothing unit 7 via a high frequency transformer 6 for input / output insulation. 7 is rectified and smoothed by a diode rectifier circuit 8 and a smoothing LC filter 9 and is converted into a DC power supply of a DC / AC inverter unit 4.

【0004】さらに、この直流電源がDC/ACインバ
ータ部4により、系統電源10に同期した系統周波数の
単相又は3相の交流に変換され、この交流が系統側に供
給される。
Further, the DC power is converted by the DC / AC inverter unit 4 into a single-phase or three-phase AC having a system frequency synchronized with the system power 10, and the AC is supplied to the system.

【0005】ところで、高周波インバータ5及びDC/
ACインバータ部4の低周波インバータ11は、それぞ
れの駆動制御部12,13のPWM波形の駆動パルスに
よりスイッチング動作する。
Incidentally, the high-frequency inverter 5 and the DC /
The low-frequency inverter 11 of the AC inverter unit 4 performs a switching operation by the PWM drive pulses of the respective drive control units 12 and 13.

【0006】そして、高周波インバータ5の入力側の電
圧検出器14及び電流検出器15により太陽電池1の直
流出力の電圧,電流が計測され、これらの計測結果の監
視に基づき、駆動部12は太陽電池1の最大電力点追尾
制御(以下Pmax制御という)で高周波インバータ5
を運転する。
Then, the voltage and current of the DC output of the solar cell 1 are measured by the voltage detector 14 and the current detector 15 on the input side of the high-frequency inverter 5, and based on the monitoring of these measurement results, the driving unit 12 High-frequency inverter 5 in maximum power point tracking control (hereinafter referred to as Pmax control) of battery 1
To drive.

【0007】また、駆動制御部13は系統周波数のPL
L制御により、低周波インバータ11を、その直流入力
電圧が指令値(設定値)の一定電圧であるとして、連系
運転する。
[0007] The drive control unit 13 has a system frequency PL.
Under the L control, the low-frequency inverter 11 is operated in a linked manner, assuming that its DC input voltage is a constant voltage of a command value (set value).

【0008】この連系運転により、低周波インバータ1
1の出力は、DC/DCコンバータ部3から供給された
直流電源の電圧と前記の指令値の電圧との差によって出
力電力が増減変化する。
[0008] By this interconnection operation, the low-frequency inverter 1
The output of the output 1 increases or decreases according to the difference between the voltage of the DC power supply supplied from the DC / DC converter 3 and the voltage of the command value.

【0009】このとき、低周波インバータ11の素子耐
圧等から定まるその直流入力電圧の上限値(上限電圧)
が420Vで、許容される直流入力電圧範囲が420V
〜320Vであるとすれば、従来は、前記の指令値の電
圧が、ほぼその中間値の380Vに設定される。
At this time, the upper limit value (upper limit voltage) of the DC input voltage determined from the element withstand voltage of the low frequency inverter 11 and the like.
Is 420V and the allowable DC input voltage range is 420V
Assuming that it is ~ 320V, conventionally, the voltage of the command value is set to approximately 380V, which is the intermediate value.

【0010】そして、DC/DCコンバータ部3の直流
電源の電圧が前記の指令値の定電圧になるように、太陽
電池1の直流出力の増減変化に応じて高周波インバータ
5のスイッチング動作のデューティ比が可変され、高周
波インバータ5をPmax制御の運転状態に保ちなが
ら、DC/DCコンバータ部3のモジュレーション(変
調量)が調整される。なお、図3の16は系統の配線イ
ンダクタンスである。
Then, the duty ratio of the switching operation of the high-frequency inverter 5 according to the increase or decrease of the DC output of the solar cell 1 so that the voltage of the DC power supply of the DC / DC converter unit 3 becomes the constant voltage of the command value. Is varied, and the modulation (modulation amount) of the DC / DC converter unit 3 is adjusted while maintaining the high-frequency inverter 5 in the operation state of the Pmax control. Note that reference numeral 16 in FIG. 3 denotes a system wiring inductance.

【0011】[0011]

【発明が解決しようとする課題】前記従来のこの種太陽
光発電装置は、DC/ACインバータ部4の直流入力電
圧が指令値の一定電圧になるように、DC/DCコンバ
ータ部3のモジュレーションを可変して高周波インバー
タ5のPmax制御の運転を実現しているため、つぎに
説明するように、太陽電池1の直流出力が低下する低出
力時、DC/DCコンバータ部3のモジュレーションが
低くなって連系インバータ全体の効率が低下する問題点
がある。
In this type of conventional solar power generation apparatus, the modulation of the DC / DC converter section 3 is performed so that the DC input voltage of the DC / AC inverter section 4 becomes a constant voltage of a command value. Since the Pmax control operation of the high-frequency inverter 5 is variably realized, as described below, when the DC output of the solar cell 1 is low, the modulation of the DC / DC converter unit 3 is low. There is a problem that the efficiency of the entire interconnected inverter is reduced.

【0012】すなわち、図3の連系インバータ2を10
kWインバータとし、太陽電池1の直流出力の電圧を2
70V,高周波トランス6の変圧比を1:1.5,DC
/ACインバータ部4の直流入力電圧を380Vとする
と、太陽電池1の直流出力が十分に大きく、10kWイ
ンバータとして動作する定格運転時は、このときのDC
/DCコンバータ部3のモジュレーションをM(10)
とすると、モジュレーションM(10)が、つぎの数1
の式に示すように0.94と高くなる。
That is, the interconnection inverter 2 shown in FIG.
kW inverter, and the DC output voltage of the solar cell 1 is 2
70V, transformation ratio of high frequency transformer 6 is 1: 1.5, DC
Assuming that the DC input voltage of the / AC inverter unit 4 is 380 V, the DC output of the solar cell 1 is sufficiently large and the rated DC operation at the time of the rated operation to operate as a 10 kW inverter is performed.
The modulation of the / DC converter unit 3 is M (10)
Then, the modulation M (10) becomes
As shown in the equation, the value becomes as high as 0.94.

【0013】[0013]

【数1】M(10)=380V÷(270V×1.5)
=0.94
## EQU1 ## M (10) = 380V ÷ (270V × 1.5)
= 0.94

【0014】これに対して、太陽電池1の直流出力が例
えば定格(最大出力)の50%に減少する低出力時、こ
のときのDC/DCコンバータ部3のモジュレーション
をM(5)とすると、このモジュレーションM(5)
が、つぎの数2の式に示すように0.47と極めて低く
なる。
On the other hand, when the DC output of the solar cell 1 is low, for example, 50% of the rated (maximum output), and the modulation of the DC / DC converter unit 3 at this time is M (5), This modulation M (5)
Is very low at 0.47 as shown in the following equation (2).

【0015】[0015]

【数2】M(5)=0.5×{380V÷(270V×
1.5)}=0.47
M (5) = 0.5 × {380V} (270V ×
1.5)} = 0.47

【0016】また、フィルタ9を介してDC/ACイン
バータ部4に流れるDC/DCコンバータ部3の出力電
流(実効値)をIDCとすると、電流IDCはつぎの数3の
式から求まる。
If the output current (effective value) of the DC / DC converter section 3 flowing to the DC / AC inverter section 4 via the filter 9 is defined as I DC , the current I DC is obtained from the following equation (3).

【0017】[0017]

【数3】IDC=インバータ部4の交流出力電力(=コン
バータ部3の出力電力)÷太陽電池1の直流電圧(=コ
ンバータ部3の入力電圧)÷コンバータ部3のモジュレ
ーション
I DC = AC output power of inverter unit 4 (= output power of converter unit 3) 電 圧 DC voltage of solar cell 1 (= input voltage of converter unit 3) ÷ modulation of converter unit 3

【0018】そして、モジュレーションM(5)の低出
力時、DC/ACインバータ部4の交流出力電力は5k
W(=5000W)であり、このとき、太陽電池1の直
流電圧を270Vとすると、電流IDCはつぎの数4の式
に示すように39.4Aとなり、モジュレーションM
(10)=0.94の定格出力時と同等の大電流にな
る。
When the modulation M (5) has a low output, the AC output power of the DC / AC inverter unit 4 is 5 k
W (= 5000 W) and is, at this time, when 270V DC voltage of the solar cell 1, 39.4A becomes as shown in Formula 4 Formula of current I DC Hatsugi, modulation M
(10) A large current equivalent to that at the time of the rated output of 0.94 is obtained.

【0019】[0019]

【数4】 5000W÷270V÷0.47=39.4A## EQU4 ## 5000W ÷ 270V ÷ 0.47 = 39.4A

【0020】そして、同じ大きさの連系出力の場合、電
流IDCが大きくなる程、その出力波形等が劣化して連系
インバータ2全体の効率が低下する。
In the case of interconnected outputs having the same magnitude, as the current IDC increases, the output waveform and the like deteriorate, and the efficiency of the interconnected inverter 2 as a whole decreases.

【0021】本発明は、高周波リンク方式の連系インバ
ータを用いたこの種太陽光発電装置において、とくに、
低出力時の連系インバータの効率を改善して向上するこ
とを課題とする。
The present invention relates to a photovoltaic power generator of this type using a high-frequency link type interconnection inverter,
It is an object to improve and improve the efficiency of a grid-connected inverter at the time of low output.

【0022】[0022]

【課題を解決するための手段】前記の課題を解決するた
めに、本発明の太陽光発電装置においては、DC/DC
コンバータ部の高周波インバータの直流入力の電圧,電
流を監視して高周波インバータを太陽電池のPmax制
御で運転する手段と、DC/ACインバータ部の直流入
力電圧が上限電圧より低いときに、Pmax制御の運転
状態で前記直流電圧が上昇するように、高周波インバー
タの運転を制御してDC/DCコンバータ部のモジュレ
ーションを高くする手段と、前記直流入力電圧が上限電
圧に上昇したときに、Pmax制御の運転状態で前記直
流入力電圧が上限電圧に保たれるように、高周波インバ
ータの運転を制御してDC/DCコンバータ部のモジュ
レーションを調整する手段とを備える。
In order to solve the above-mentioned problems, a photovoltaic power generator according to the present invention employs a DC / DC converter.
Means for monitoring the voltage and current of the DC input of the high-frequency inverter of the converter section to operate the high-frequency inverter by Pmax control of the solar cell; and for controlling the Pmax control when the DC input voltage of the DC / AC inverter section is lower than the upper limit voltage. Means for controlling the operation of the high-frequency inverter to increase the modulation of the DC / DC converter so that the DC voltage increases in the operating state; and operating the Pmax control when the DC input voltage increases to the upper limit voltage. Means for controlling the operation of the high-frequency inverter and adjusting the modulation of the DC / DC converter so that the DC input voltage is maintained at the upper limit voltage in the state.

【0023】したがって、太陽電池の直流出力が小さい
連系インバータの低出力時、DC/ACインバータ部の
直流入力電圧が極力その上限電圧(例えば420V)に
上昇するように、DC/DCコンバータ部はPmax制
御の運転状態でモジュレーションが高くなる。
Therefore, the DC / DC converter section is designed so that the DC input voltage of the DC / AC inverter section rises to its upper limit voltage (eg, 420 V) as much as possible at the time of low output of the interconnection inverter having a small DC output of the solar cell. The modulation increases in the operating state of the Pmax control.

【0024】この場合、DC/ACインバータ部の直流
入力電圧を上限電圧より低い一定電圧(例えば380
V)に固定する従来装置に比して、DC/DCコンバー
タ部のモジュレーションが高くなるため、数3の式から
求まる電流IDCが減少してその波形率が改善され、連系
インバータ全体の効率が改善されて向上する。
In this case, the DC input voltage of the DC / AC inverter section is reduced to a constant voltage lower than the upper limit voltage (for example, 380
Since the modulation of the DC / DC converter section is higher than that of the conventional device fixed to V), the current I DC obtained from the equation (3) is reduced, the waveform ratio is improved, and the efficiency of the entire interconnected inverter is improved. Has been improved and improved.

【0025】また、太陽電池の出力が十分大きい連系イ
ンバータの定格運転時等は、DC/ACインバータ部の
直流入力電圧が上限電圧に保持され、この場合も、DC
/ACインバータ部の直流入力電圧が従来装置の直流入
力電圧より高くなるため、連系インバータの効率が改善
されて向上する。
Also, during rated operation of the interconnection inverter having a sufficiently large output from the solar cell, the DC input voltage of the DC / AC inverter is maintained at the upper limit voltage.
Since the DC input voltage of the / AC inverter is higher than the DC input voltage of the conventional device, the efficiency of the interconnection inverter is improved and improved.

【0026】[0026]

【発明の実施の形態】本発明の実施の1形態につき、図
1及び図2を参照して説明する。図1は太陽光発電装置
の全体構成を示し、太陽電池17に高周波リンク方式の
連系インバータ18を接続して形成され、連系インバー
タ18は図3のコンバータ部3に対応する入力側のDC
/DCコンバータ部19と、図3のインバータ部4に対
応する出力側のDC/ACインバータ部20とからな
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an overall configuration of a photovoltaic power generation device, which is formed by connecting a high-frequency link type interconnection inverter 18 to a solar cell 17, and the interconnection inverter 18 has an input side DC corresponding to the converter unit 3 in FIG.
A DC / AC converter section 19 and an output DC / AC inverter section 20 corresponding to the inverter section 4 in FIG.

【0027】そして、太陽電池17の直流出力はDC/
DCコンバータ部19の高周波インバータ21により例
えば数KHz〜数十KHzの高周波交流に変換され、この高
周波交流が入出力絶縁用の高周波トランス22を介して
整流平滑部23に供給され、この整流平滑部23のダイ
オード整流回路24,平滑用L−Cフィルタ25により
整流,平滑されてDC/ACインバータ部20の直流電
源に変換される。
The DC output of the solar cell 17 is DC /
The high-frequency inverter 21 of the DC converter 19 converts the high-frequency AC into a high-frequency AC of several KHz to several tens of KHz, for example, and supplies the high-frequency AC to a rectifying and smoothing unit 23 via a high-frequency transformer 22 for input / output insulation. Rectified and smoothed by a diode rectifier circuit 24 and a smoothing LC filter 25, and converted into a DC power supply of the DC / AC inverter unit 20.

【0028】このとき、高周波インバータ21の直流入
力側に設けられた電圧検出器26及び電流検出器27に
より、太陽電池17の直流出力の電圧,電流、換言すれ
ば高周波インバータ21の入力電圧,入力電流が計測さ
れ、それらの計測出力が高周波インバータ21の駆動制
御部28に設けられた制御回路29に供給される。
At this time, the voltage detector 26 and the current detector 27 provided on the DC input side of the high-frequency inverter 21 use the DC output voltage and current of the solar cell 17, in other words, the input voltage and the input of the high-frequency inverter 21. The current is measured, and the measurement output is supplied to a control circuit 29 provided in the drive control unit 28 of the high-frequency inverter 21.

【0029】そして、制御回路29のソフトウェア制御
により、検出器26,27の計測結果に基づいて高周波
インバータ21の直流入力の電圧,電流を監視して高周
波インバータ21を太陽電池17のPmax制御で運転
する手段が形成され、この手段の運転制御に基づき、駆
動制御部28の駆動回路30から高周波インバータ21
に駆動用のPWMパルスが供給され、このPWMパルス
により高周波インバータ21がPmax制御運転され
る。
Under the software control of the control circuit 29, the DC input voltage and current of the high-frequency inverter 21 are monitored based on the measurement results of the detectors 26 and 27, and the high-frequency inverter 21 is operated under the Pmax control of the solar cell 17. The driving circuit 30 of the driving control unit 28 outputs the high-frequency inverter 21 based on the operation control of this means.
Is supplied with a driving PWM pulse, and the high frequency inverter 21 is subjected to the Pmax control operation by the PWM pulse.

【0030】さらに、フィルタ25の直流電源がDC/
ACインバータ部20の低周波インバータ31に供給さ
れる。
Further, the DC power supply of the filter 25 is DC /
It is supplied to the low frequency inverter 31 of the AC inverter section 20.

【0031】そして、低周波インバータ31の直流入力
側に設けられた電圧検出器33の直流電圧の計測結果及
び交流出力側に設けられた計器用変圧器34の交流電圧
の計測結果と、駆動制御部29からのPmax制御の状
態通知とに基づき、駆動制御部35により低周波インバ
ータ31の駆動用のPWMパルスが形成され、このパル
スにより低周波インバータ31が系統電源32に連系運
転されて直流電源が系統周波数の単相又は3相の交流に
変換され、この交流が系統側に供給される。
The measurement result of the DC voltage of the voltage detector 33 provided on the DC input side of the low-frequency inverter 31 and the measurement result of the AC voltage of the instrument transformer 34 provided on the AC output side, and the drive control Based on the Pmax control state notification from the unit 29, a PWM pulse for driving the low-frequency inverter 31 is formed by the drive control unit 35. With this pulse, the low-frequency inverter 31 is connected to the system power supply 32 to operate. The power is converted into a single-phase or three-phase AC having a system frequency, and this AC is supplied to the system.

【0032】このとき、低周波インバータ31のPWM
パルスのデューティ比は、DC/ACインバータ部20
の直流入力電圧を設定する駆動制御部35の指令値(設
定値)の電圧に応じて変化する。なお、図1の36は系
統の配線インピーダンスである。
At this time, the PWM of the low-frequency inverter 31
The duty ratio of the pulse is determined by the DC / AC inverter unit 20.
Varies according to the voltage of the command value (set value) of the drive control unit 35 for setting the DC input voltage of the drive control unit 35. In FIG. 1, reference numeral 36 denotes a system wiring impedance.

【0033】つぎに、太陽電池17は開放電圧が最も高
く、高周波インバータ21のPmax制御の運転は、そ
のPWMパルスのデューティ比を増減可変し、いわゆる
山登り制御で高周波インバータ21の直流入力の最大電
力点を検出して行われる。
Next, the solar cell 17 has the highest open-circuit voltage, and the Pmax control operation of the high frequency inverter 21 is performed by increasing or decreasing the duty ratio of the PWM pulse. This is done by detecting points.

【0034】このとき、高周波インバータ21の直流の
入力電力は、太陽電池17の出力の最大電力点を頂点と
する山形の特性線に沿って変化し、この特性線の山の左
側のときは高周波インバータ21が最大電力点に到達す
る前の運転状態にあり、山の右側のときは高周波インバ
ータ21が最大電力点を過ぎた運転状態にある。
At this time, the DC input power of the high-frequency inverter 21 changes along a mountain-shaped characteristic line having a peak at the maximum power point of the output of the solar cell 17. The inverter 21 is in an operation state before reaching the maximum power point, and when it is on the right side of the mountain, the high-frequency inverter 21 is in an operation state after the maximum power point.

【0035】そして、駆動制御回路29は高周波インバ
ータ21の時々刻々変化する運転状態を判別し、その判
別結果の山の左側又は右側の情報を、前記のPmax制
御の状態通知として駆動制御部35に送る。
The drive control circuit 29 determines the operating state of the high-frequency inverter 21 that changes every moment, and sends the information on the left or right side of the mountain of the determination result to the drive control unit 35 as the Pmax control state notification. send.

【0036】さらに、この状態通知に基づき、駆動制御
部35は駆動制御部28の駆動回路30を介して高周波
インバータ21のPWMパルスのパルス幅を可変補正
し、その運転を制御し、DC/ACインバータ部20の
直流入力電圧を、極力その低周波インバータ31の素子
耐圧等に基づいて設定された例えば420Vの上限電圧
に近づくように、上昇補正する。
Further, based on this state notification, the drive control unit 35 variably corrects the pulse width of the PWM pulse of the high-frequency inverter 21 via the drive circuit 30 of the drive control unit 28, controls its operation, and controls the DC / AC The DC input voltage of the inverter section 20 is corrected so as to approach the upper limit voltage of, for example, 420 V set based on the element withstand voltage of the low-frequency inverter 31 as much as possible.

【0037】すなわち、この連系インバータ18は駆動
制御部35のソフトウェア制御により、DC/ACイン
バータ部20の直流入力電圧が上限電圧より低いとき
に、高周波インバータ21をPmax制御の運転状態に
保ってDC/ACインバータ部20の直流入力電圧が上
昇するように、高周波インバータ21の運転を制御し、
その駆動のデューティ比を大きくしてDC/DCコンバ
ータ部19のモジュレーションを高くする手段が形成さ
れ、また、DC/ACインバータ部20の直流入力電圧
が上限電圧に上昇したときに、高周波インバータ21を
Pmax制御の運転状態に保ってDC/ACインバータ
部20の直流入力電圧が上限電圧に保つように、高周波
インバータ21の運転を制御し、その駆動のデューティ
比を可変してDC/DCコンバータ部19のモジュレー
ションを調整する手段も形成される。この両手段によ
り、具体的には図2のフローチャートに示す運転制御が
行われる。
That is, the interconnection inverter 18 maintains the high-frequency inverter 21 in the Pmax control operation state when the DC input voltage of the DC / AC inverter section 20 is lower than the upper limit voltage by software control of the drive control section 35. The operation of the high-frequency inverter 21 is controlled so that the DC input voltage of the DC / AC inverter unit 20 increases,
Means for increasing the modulation ratio of the DC / DC converter section 19 by increasing the duty ratio of the driving is formed. When the DC input voltage of the DC / AC inverter section 20 rises to the upper limit voltage, the high frequency inverter 21 is switched off. The operation of the high-frequency inverter 21 is controlled so that the DC input voltage of the DC / AC inverter unit 20 is maintained at the upper limit voltage while maintaining the operation state of the Pmax control, and the duty ratio of the drive is varied to change the DC / DC converter unit 19. Is also formed. Specifically, the operation control shown in the flowchart of FIG. 2 is performed by these two means.

【0038】この運転制御にあっては、DC/ACイン
バータ部20の直流入力電圧の指令値の電圧をVDC・REF
とし、その直流入力電圧の上限電圧を420Vとする
と、ステップS1 により、駆動制御部35がVDC・REF
420Vか否かを判別し、VDC ・REF<420VでDC/
ACインバータ部20の直流入力電圧が上限電圧より低
いときは、ステップS1からステップS2に移行する。
In this operation control, the voltage of the command value of the DC input voltage of the DC / AC inverter unit 20 is set to V DC · REF.
Assuming that the upper limit voltage of the DC input voltage is 420 V, the drive control unit 35 determines in step S 1 that V DC · REF <
To determine 420V or not, V DC · REF <at 420V DC /
When the DC input voltage of the AC inverter 20 is lower than the upper limit voltage, the program proceeds from step S 1 to step S 2.

【0039】そして、駆動制御部35により、駆動回路
30から出力される駆動パルスのデューティ比を単位量
増大補正し、DC/DCコンバータ部19のモジュレー
ションを高くする。
Then, the drive controller 35 corrects the duty ratio of the drive pulse output from the drive circuit 30 by a unit amount to increase the modulation of the DC / DC converter 19.

【0040】さらに、ステップS3 に移行し、駆動制御
部29からのPmax制御の状態通知に基づき、駆動制
御部35が高周波インバータ21の運転状態が前記山の
左側か右側かを判別する。
[0040] Further, the process proceeds to step S 3, based on Pmax control status notification from the drive control unit 29, the drive control unit 35 is the operation state of the high-frequency inverter 21 determines whether the left or right side of the mountain.

【0041】この判別結果が山の左側(最大電力点到達
前)であれば、太陽電池1から取出す出力が少ないた
め、ステップS3からステップS4に移行してDC/AC
インバータ部20の指令値の電圧VDC・REFを単位量引下
げ、逆に判別結果が山の右側(最大電力点通過後)であ
れば、電圧を高くして変換効率を改善するため、ステッ
プS3からステップS5に移行してDC/ACインバータ
部20の指令値の電圧V DC・REFを単位量引上げる。
The result of this determination is on the left side of the mountain (at the maximum power point
Before), the output taken from the solar cell 1 is small.
Step SThreeTo step SFourTo DC / AC
Voltage V of command value of inverter unit 20DC / REFDeduct the unit amount
Conversely, the judgment result is on the right side of the mountain (after passing the maximum power point).
If necessary, increase the voltage to improve the conversion efficiency.
SThreeTo step SFiveTo DC / AC inverter
Voltage V of command value of unit 20 DC / REFIs raised by a unit amount.

【0042】そして、ステップS1からステップS2,S
3を介してステップS4はステップS 5 に到る制御処理の
くり返しにより、DC/DCコンバータ部19の高周波
インバータ21は、太陽電池17の低出力時にもその最
大電力点の電力を取出す運転状態に制御され、かつ、D
C/ACインバータ部20の低周波インバータ31は、
その直流入力電圧が上限電圧(420V)に極力近づく
ように引上げられる。
Then, step S1To step STwo, S
ThreeThrough step SFourIs Step S FiveControl processing
By repeating, high frequency of DC / DC converter section 19
Inverter 21 operates even when solar cell 17 has a low output.
Is controlled to an operation state in which electric power at a high power point is taken out, and D
The low frequency inverter 31 of the C / AC inverter section 20 is
The DC input voltage approaches the upper limit voltage (420V) as much as possible.
To be pulled up.

【0043】このとき、低周波インバータ31の直流入
力電圧の上昇にしたがってDC/DCコンバータ部19
のモジュレーションが高くなり、その高周波インバータ
21の高周波交流の電圧が上昇し、フィルタ25からD
C/ACインバータ部20の低周波インバータ31に供
給される直流電源の電圧が上昇する。
At this time, as the DC input voltage of the low frequency inverter 31 rises, the DC / DC converter 19
Is increased, the voltage of the high-frequency AC of the high-frequency inverter 21 is increased, and D
The voltage of the DC power supplied to the low-frequency inverter 31 of the C / AC inverter unit 20 increases.

【0044】そして、太陽電池17の直流出力が少ない
連系インバータの例えば50%の低出力時、DC/DC
コンバータ部19からDC/ACインバータ部20に給
電される直流電源の電圧が420Vに引上げられると、
DC/DCコンバータ部19のモジュレーションM
(5)’は、前記数2の式と同様のつぎの数5の式に示
すように、M(5)’=0.52になり、従来装置のモ
ジュレーションM(5)=0.49より高くなる。
When the direct current output of the solar cell 17 is low, for example, 50% of the interconnected inverter, the DC / DC
When the voltage of the DC power supplied from the converter 19 to the DC / AC inverter 20 is raised to 420 V,
Modulation M of DC / DC converter section 19
(5) ′ becomes M (5) ′ = 0.52 as shown in the following equation (5), which is similar to the equation (2), and is obtained from the modulation M (5) = 0.49 of the conventional device. Get higher.

【0045】[0045]

【数5】M(5)’=0.5×{420÷(270×
1.5)}=0.52
M (5) ′ = 0.5 × {420} (270 ×
1.5)} = 0.52

【0046】さらに、このモジュレーションM(5)’
に基づくDC/DCコンバータ部19の出力電流を
DC’とすると、出力電流IDC’は、つぎの数6の式に
示すように、IDC’=35.6Aになって従来装置の電
流IDC=39.4Aより減少する。
Further, the modulation M (5) '
Assuming that the output current of the DC / DC converter unit 19 is I DC ′, the output current I DC ′ becomes I DC ′ = 35.6 A, as shown in the following equation (6). It decreases from I DC = 39.4A.

【0047】[0047]

【数6】 IDC’=5000W÷270V÷0.52=35.6AI DC '= 5000 W ÷ 270 V ÷ 0.52 = 35.6 A

【0048】そして、この電流IDC’の減少によりDC
/DCコンバータ部19の波形率が従来より改善され、
連系インバータ18全体の効率が改善されて向上する。
Then, due to the decrease of the current I DC ′, DC
The waveform ratio of the / DC converter unit 19 is improved compared to the prior art,
The efficiency of the entire interconnection inverter 18 is improved and improved.

【0049】つぎに、太陽電池1の直流出力が十分に大
きくなる連系インバータの定格運転時は、DC/ACイ
ンバータ部20の指令値の電圧VDC・REFが上限電圧に上
昇し、このとき、図2のステップS1からステップS6
移動し、駆動制御部35により電圧VDC・REFを上限電圧
(420V)に保ってDC/ACインバータ部20の直
流入力電圧を上限電圧に固定し、低周波インバータ31
の直流電圧の過大を防止する。
Next, during the rated operation of the interconnection inverter where the DC output of the solar cell 1 is sufficiently large, the voltage V DC · REF of the command value of the DC / AC inverter section 20 rises to the upper limit voltage. moves from step S 1 in FIG. 2 in step S 6, the DC input voltage of the DC / AC inverter section 20 is fixed to the upper limit voltage while maintaining a voltage V DC · REF to the upper limit voltage (420 V) by the drive control unit 35 , Low frequency inverter 31
To prevent excessive DC voltage.

【0050】さらに、ステップS7 に移行し、制御回路
29からのPmax制御の状態通知に基づき、駆動制御
部35がステップS3 と同様にして高周波インバータ2
1の運転状態が山の左側か右側かを判別する。
[0050] Further, the process proceeds to step S 7, the control circuit on the basis of the Pmax control status notification from 29, the drive controller 35 Step S 3 high-frequency inverter in the same manner as 2
It is determined whether the operation state 1 is the left or right side of the mountain.

【0051】そして、駆動制御部35は、山の左側(最
大電力点到達前)であれば、ステップS7からステップ
8に移行し、駆動回路30を介して高周波インバータ
21のスイッチングのデューティ比を大きくし、DC/
DCコンバータ部19のモジュレーションを高くする。
Then, if it is on the left side of the mountain (before reaching the maximum power point), the drive control unit 35 proceeds from step S 7 to step S 8 , and through the drive circuit 30, switches the duty ratio of the switching of the high-frequency inverter 21. And DC /
The modulation of the DC converter 19 is increased.

【0052】また、山の右側(最大電力点通過後)であ
れば、ステップS7 からステップS 9に移行し、ステッ
プS8とは逆に、高周波インバータ21のスイッチング
のデューティ比を小さくしてDC/DCコンバータ部1
9のモジュレーションを低くし、DC/DCコンバータ
部19をPmax制御運転する。
On the right side of the mountain (after passing the maximum power point),
If so, step S7To step S 9To step
S8On the contrary, the switching of the high frequency inverter 21
DC / DC converter unit 1 by reducing the duty ratio of
DC / DC converter with low modulation of 9
The section 19 is operated by the Pmax control.

【0053】このとき、DC/DCコンバータ部19の
モジュレーションをM(10)’とすると、このモジュ
レーションM(10)’は、DC/ACインバータ部2
0の直流入力電圧が従来装置の380Vから420Vに
上昇するため、従来装置のモジュレーションM(10)
=0.94より高くなる。そのため、連系インバータ1
8の高出力時の効率も改善されて向上する。
At this time, assuming that the modulation of the DC / DC converter 19 is M (10) ′, the modulation M (10) ′ is the DC / AC inverter 2
Since the DC input voltage of 0 rises from 380V of the conventional device to 420V, the modulation M (10) of the conventional device is performed.
= 0.94. Therefore, the interconnection inverter 1
8 at high output is also improved.

【0054】そして、とくに低出力時の効率が大きく改
善されるため、連系インバータ18は、その出力状態に
よらず、高効率で系統電源32に連系運転され、高周波
リンク方式の連系インバータを用いた効率の高い太陽光
発電装置を提供することができる。
Since the efficiency at the time of low output is greatly improved, the interconnection inverter 18 is connected to the system power supply 32 with high efficiency regardless of the output state, and the high-frequency link type interconnection inverter is operated. It is possible to provide a highly efficient photovoltaic power generation device using the same.

【0055】[0055]

【発明の効果】本発明は、以下に記載する効果を奏す
る。太陽電池17の直流出力が小さい連系インバータ1
8の低出力時、DC/DCコンバータ部19の高周波イ
ンバータ21を最大電力点追尾制御運転し、しかも、D
C/DCコンバータ部19のモジュレーションを高くし
てDC/ACインバータ部20の直流入力電圧を、極力
その上限電圧(例えば420V)になるように、高くす
ることができる。
The present invention has the following effects. Interconnected inverter 1 with small DC output of solar cell 17
8, when the high-frequency inverter 21 of the DC / DC converter unit 19 performs the maximum power point tracking control operation,
By increasing the modulation of the C / DC converter 19, the DC input voltage of the DC / AC inverter 20 can be increased so as to reach its upper limit voltage (eg, 420 V) as much as possible.

【0056】この場合、DC/ACインバータ部20の
直流入力電圧を上限電圧より低い一定電圧(例えば38
0V)に固定してDC/DCコンバータ部19の高周波
インバータ21を最大電力点追尾制御運転する従来装置
より、DC/DCコンバータ部19のモジュレーション
が高くなり、コンバータ部19からインバータ部20に
流れる電流IDCが減少してその波形率を改善し、連系イ
ンバータ18全体の効率を改善して向上することができ
る。
In this case, the DC input voltage of the DC / AC inverter section 20 is changed to a constant voltage lower than the upper limit voltage (for example, 38
0V), the modulation of the DC / DC converter 19 is higher than that of the conventional device that performs the maximum power point tracking control operation of the high frequency inverter 21 of the DC / DC converter 19, and the current flowing from the converter 19 to the inverter 20. IDC can be reduced to improve the waveform ratio, and the efficiency of the interconnection inverter 18 as a whole can be improved and improved.

【0057】また、太陽電池17の出力が十分大きい連
系インバータ18の定格運転時等は、DC/ACインバ
ータ部20の直流入力電圧が上限電圧に保持され、この
電圧を越えないようにして高周波インバータ20を最大
電力点追尾制御運転することができ、この場合も、DC
/ACインバータ部20の直流入力電圧が従来装置の直
流入力電圧より高くなるため、連系インバータ18の効
率を改善して向上することができる。
During the rated operation of the interconnection inverter 18 having a sufficiently large output from the solar cell 17, the DC input voltage of the DC / AC inverter section 20 is maintained at the upper limit voltage. The inverter 20 can perform the maximum power point tracking control operation.
Since the DC input voltage of the / AC inverter unit 20 is higher than the DC input voltage of the conventional device, the efficiency of the interconnection inverter 18 can be improved and improved.

【0058】したがって、高周波リンク方式の連系イン
バータを用いたこの種の太陽電池発電装置において、太
陽電池17の出力状態によらず、高い効率で系統電源3
2に連系運転することができる。
Therefore, in this type of solar cell power generator using a high-frequency link type interconnection inverter, the system power supply 3 can be operated with high efficiency regardless of the output state of the solar cell 17.
2 can be connected and operated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の1形態のブロック結線図であ
る。
FIG. 1 is a block connection diagram of an embodiment of the present invention.

【図2】図1の動作説明用のフローチャートである。FIG. 2 is a flowchart for explaining the operation of FIG. 1;

【図3】従来例のブロック結線図である。FIG. 3 is a block connection diagram of a conventional example.

【符号の説明】[Explanation of symbols]

1,17 太陽電池 2,18 連系インバータ 3,19 DC/DCコンバータ部 4,20 DC/ACインバータ部 5,21 高周波インバータ 6,22 高周波トランス 7,23 整流平滑部 10,32 系統電源 Reference Signs List 1,17 Solar cell 2,18 Interconnected inverter 3,19 DC / DC converter 4,20 DC / AC inverter 5,21 High frequency inverter 6,22 High frequency transformer 7,23 Rectifying smoothing part 10,32 System power supply

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F051 KA03 KA04 5G066 HB06 5H420 BB03 BB12 CC03 DD03 DD04 EB09 EB11 EB26 EB29 EB39 FF03 FF24 FF25 GG07  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F051 KA03 KA04 5G066 HB06 5H420 BB03 BB12 CC03 DD03 DD04 EB09 EB11 EB26 EB29 EB39 FF03 FF24 FF25 GG07

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高周波リンク方式の連系インバータのD
C/DCコンバータ部に設けられた高周波インバータに
より、太陽電池の直流出力を高周波交流に変換し、 前記高周波交流を高周波トランスを介して前記DC/D
Cコンバータ部の整流平滑部に供給し、 前記整流平滑部により、前記高周波交流を整流,平滑し
て後段のDC/ACインバータ部の直流電源を形成し、 前記DC/ACインバータ部により、前記直流電源を系
統周波数の連系出力の交流に変換して系統側に出力する
太陽光発電装置において、 前記高周波インバータの直流の電圧,電流を監視して前
記高周波インバータを前記太陽電池の最大電力点追尾制
御で運転する手段と、 前記DC/ACインバータ部の直流入力電圧が上限電圧
より低いときに、前記最大電力点追尾制御の運転状態で
前記直流入力電圧が上昇するように、前記高周波インバ
ータの運転を制御して前記DC/DCコンバータ部のモ
ジュレーションを高くする手段と、 前記直流入力電圧が前記上限電圧に上昇したときに、前
記最大電力点追尾制御の運転状態で前記直流入力電圧が
前記上限電圧に保たれるように、前記高周波インバータ
の運転を制御して前記DC/DCコンバータ部のモジュ
レーションを調整する手段とを備えたことを特徴とする
太陽光発電装置。
1. A high frequency link type interconnection inverter D
The DC output of the solar cell is converted to a high-frequency AC by a high-frequency inverter provided in a C / DC converter, and the high-frequency AC is converted to a DC / D signal through a high-frequency transformer.
The DC / AC inverter supplies a rectified and smoothed portion to the rectifying and smoothing portion, and the rectifying and smoothing portion rectifies and smoothes the high-frequency AC to form a DC power supply for a subsequent DC / AC inverter. In a photovoltaic power generation device that converts a power supply into an alternating current of a grid frequency output and outputs the alternating current to a grid side, a DC voltage and a current of the high-frequency inverter are monitored, and the high-frequency inverter tracks the maximum power point of the solar cell. Means for controlling the operation of the high-frequency inverter so that the DC input voltage increases in the operation state of the maximum power point tracking control when the DC input voltage of the DC / AC inverter section is lower than an upper limit voltage. Means for increasing the modulation of the DC / DC converter section by controlling the DC / DC converter section, when the DC input voltage rises to the upper limit voltage, Means for controlling the operation of the high-frequency inverter and adjusting the modulation of the DC / DC converter so that the DC input voltage is maintained at the upper limit voltage in the operating state of the maximum power point tracking control. A solar power generation device characterized by the above-mentioned.
JP2001071411A 2001-03-14 2001-03-14 Solarlight power generator Pending JP2002270876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001071411A JP2002270876A (en) 2001-03-14 2001-03-14 Solarlight power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001071411A JP2002270876A (en) 2001-03-14 2001-03-14 Solarlight power generator

Publications (1)

Publication Number Publication Date
JP2002270876A true JP2002270876A (en) 2002-09-20

Family

ID=18929136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001071411A Pending JP2002270876A (en) 2001-03-14 2001-03-14 Solarlight power generator

Country Status (1)

Country Link
JP (1) JP2002270876A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
JP2010252596A (en) * 2009-04-20 2010-11-04 Panasonic Corp System linkage inverter device
JP2010250605A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Maximum output power tracking control apparatus for solar battery
JP2011097727A (en) * 2009-10-29 2011-05-12 Noritz Corp Power conditioner
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
CN102751913A (en) * 2011-04-20 2012-10-24 三星电机株式会社 Electric generating system using solar cell
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
JP2013525908A (en) * 2010-04-26 2013-06-20 クィーンズ ユニバーシティー アット キングストン Maximum power point tracking of power generator
CN103378761A (en) * 2012-04-24 2013-10-30 丰郅(上海)新能源科技有限公司 Three-stage topology photovoltaic inverter
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
US8716892B2 (en) 2010-03-02 2014-05-06 Samsung Sdi Co., Ltd. Energy storage system and method of controlling the same
US8938323B2 (en) 2010-02-25 2015-01-20 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9246397B2 (en) 2006-01-13 2016-01-26 Solarcity Corporation Solar power conditioning unit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8405248B2 (en) 2003-05-06 2013-03-26 Enecsys Limited Power supply circuits
US10291032B2 (en) 2003-05-06 2019-05-14 Tesla, Inc. Power supply circuits
WO2004100348A1 (en) * 2003-05-06 2004-11-18 Enecsys Limited Power supply circuits
US8067855B2 (en) 2003-05-06 2011-11-29 Enecsys Limited Power supply circuits
US9425623B2 (en) 2003-05-06 2016-08-23 Solarcity Corporation Power supply circuits
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9270191B2 (en) 2006-01-13 2016-02-23 Solarcity Corporation Power condition units with MPPT
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
US9246397B2 (en) 2006-01-13 2016-01-26 Solarcity Corporation Solar power conditioning unit
US10193467B2 (en) 2006-01-13 2019-01-29 Tesla, Inc. Power conditioning units
US9812985B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Solar power conditioning unit
US9812980B2 (en) 2006-01-13 2017-11-07 Solarcity Corporation Power conditioning units
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2010250605A (en) * 2009-04-16 2010-11-04 Honda Motor Co Ltd Maximum output power tracking control apparatus for solar battery
JP2010252596A (en) * 2009-04-20 2010-11-04 Panasonic Corp System linkage inverter device
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2011097727A (en) * 2009-10-29 2011-05-12 Noritz Corp Power conditioner
US8938323B2 (en) 2010-02-25 2015-01-20 Samsung Sdi Co., Ltd. Power storage system and method of controlling the same
US8716892B2 (en) 2010-03-02 2014-05-06 Samsung Sdi Co., Ltd. Energy storage system and method of controlling the same
JP2013525908A (en) * 2010-04-26 2013-06-20 クィーンズ ユニバーシティー アット キングストン Maximum power point tracking of power generator
US9496803B2 (en) 2010-06-07 2016-11-15 Solarcity Corporation Solar photovoltaic system with maximized ripple voltage on storage capacitor
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
CN102751913A (en) * 2011-04-20 2012-10-24 三星电机株式会社 Electric generating system using solar cell
US8837177B2 (en) 2011-04-20 2014-09-16 Samsung Electro-Mechanics Co., Ltd. Electric generating system using solar cell
KR101214676B1 (en) 2011-04-20 2012-12-21 성균관대학교산학협력단 Electric generating system using solar cell
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
CN103378761A (en) * 2012-04-24 2013-10-30 丰郅(上海)新能源科技有限公司 Three-stage topology photovoltaic inverter
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Similar Documents

Publication Publication Date Title
JP2002270876A (en) Solarlight power generator
US8737100B2 (en) Method and apparatus for controlling an inverter using pulse mode control
US10141868B2 (en) Method and apparatus for resonant power conversion
US9444367B2 (en) Method and apparatus for generating single-phase power from a three-phase resonant power converter
EP0780750B1 (en) Inverter control method and inverter apparatus using the method
EP2315348B1 (en) Two stage solar converter with DC bus voltage control
JP6031609B2 (en) Control device for inverter for photovoltaic power generation
JP3494987B2 (en) Variable frequency pulse inverter and wind power generation equipment equipped with the pulse inverter
KR101533560B1 (en) Device for power factor correction in three phase power supply and control method thereof
JPH05227795A (en) Controller and control method for induction motor
WO2011135658A1 (en) System interconnection inverter
JPH05316792A (en) Controller and controlling method for induction motor
CN106464150A (en) Power conversion device
JP2010124557A (en) Uninterruptible power supply device
JP6366083B2 (en) Inverter control device
JP2005312158A (en) Power converter and its control method, and solarlight power generator
JP3732942B2 (en) Solar power plant
JP2004259762A (en) Power supply system having solar battery
JP3725102B2 (en) Apparatus and method for suppressing low-speed ripple current in single-phase inverter
JP3086574B2 (en) Grid-connected inverter
TWI514746B (en) Energy voltage regulator and control method applicable thereto
JP3111273B2 (en) Inverter control method and inverter device
JP3595211B2 (en) Inverter control method
JP2005006383A (en) System interconnection inverter apparatus and its controlling method
TWI536729B (en) Three-phase current converter and three-phase d-σ control method with varied inductance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080729