JP2006041440A - Ac module, its manufacturing method, and solar energy power generating system - Google Patents

Ac module, its manufacturing method, and solar energy power generating system Download PDF

Info

Publication number
JP2006041440A
JP2006041440A JP2004223332A JP2004223332A JP2006041440A JP 2006041440 A JP2006041440 A JP 2006041440A JP 2004223332 A JP2004223332 A JP 2004223332A JP 2004223332 A JP2004223332 A JP 2004223332A JP 2006041440 A JP2006041440 A JP 2006041440A
Authority
JP
Japan
Prior art keywords
converter
module
photovoltaic
photovoltaic element
series
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004223332A
Other languages
Japanese (ja)
Inventor
Takaaki Mukai
隆昭 向井
Meiji Takabayashi
明治 高林
Seiki Itoyama
誠紀 糸山
Ichiro Kataoka
一郎 片岡
Hidehisa Makita
英久 牧田
Masaaki Matsushita
正明 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004223332A priority Critical patent/JP2006041440A/en
Publication of JP2006041440A publication Critical patent/JP2006041440A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To improve a reliability of an AC (alternating current) module, by reducing the mechanical load on wiring members electrically connecting a DC-DC converter with a photoelectromotive element. <P>SOLUTION: In the AC module, in which the DC-DC converter is electrically connected with each serial connecting objects via the wiring members, and an inverter having an output cable is electrically connected with the DC-DC converter via parallel connecting members, having a plurality of pieces of the serial connecting objects of photoelectromotive elements consisting of at least one piece of the photoelectromotive element; a gap is formed in adjacent 2 pieces of the photoelectromotive elements or the serial connecting members; the gap arranges the DC-DC converter in a region in which a forming phtoelectromotive element does not exist; furthermore, at least one part of the above-mentioned parallel connecting members are fixed to a non-light-receiving surface side of the photoelectromotive element. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ACモジュール及びその製造方法及び太陽光発電システムに関する。   The present invention relates to an AC module, a manufacturing method thereof, and a photovoltaic power generation system.

環境問題の深刻化に伴い、無尽蔵且つクリーンな太陽エネルギーを利用する太陽光発電システムに対する注目度は年々増してきている。   As environmental problems become more serious, attention to solar power generation systems that use inexhaustible and clean solar energy has been increasing year by year.

一般住宅の屋根、公共施設の屋上、発電所等に設置されている太陽光発電システムの多くは、図1に示すように、複数の太陽電池モジュール10を直並列接続することで構成される太陽電池アレイ11、太陽電池アレイで発電した直流電力を集電する集電箱12、集電された電力を交流電力に変換する電力変換装置13により構成されており、負荷あるいは商用電力系統14に電力を供給している(特許文献1参照)。   Many solar power generation systems installed on roofs of public houses, rooftops of public facilities, power plants, etc., are configured by connecting a plurality of solar cell modules 10 in series and parallel as shown in FIG. It consists of a battery array 11, a current collection box 12 that collects the DC power generated by the solar cell array, and a power converter 13 that converts the collected power into AC power. (See Patent Document 1).

現在、上記のシステム形態が主流であるが、小・中規模の発電システム及び非常用電源をターゲットとして、光起電力素子で発電した直流電力を昇圧するDC−DCコンバータ、昇圧後の直流電力を交流電力に変換する小型のインバータが一体化された交流出力の太陽電池モジュール(以下「ACモジュール」と呼ぶ)の開発が盛んに行われている。
特開平07−168638号公報
Currently, the above system form is the mainstream, but targeting DC power generated by photovoltaic devices, targeting DC power generated by photovoltaic devices, and DC power after boosting, targeting small and medium-scale power generation systems and emergency power supplies. Development of an AC output solar cell module (hereinafter referred to as an “AC module”) in which a small inverter for converting to AC power is integrated has been actively conducted.
JP 07-168638 A

本発明者等は、上記ACモジュールの低コスト化の検討を行っており、図2のようなACモジュールを考えた。前記ACモジュールは、光起電力素子20を2枚直列接続した直列接続体を複数枚有する。各直列接続体の正極電極及び負極電極には配線材21が電気接続されており、前記配線材はDC−DCコンバータ22の入力端子に電気接続されている。光起電力素子で発電する直流電力は大電流低電圧であり、DC−DCコンバータと光起電力素子を電気接続する配線材の距離が長いと配線材での電力損失が大きくなるため、DC−DCコンバータは、直列接続体の両電極から距離が近く、且つ、DC−DCコンバータと光起電力素子の距離が短い図2の位置に配置されている。   The present inventors have been studying the cost reduction of the AC module, and considered the AC module as shown in FIG. The AC module has a plurality of series-connected bodies in which two photovoltaic elements 20 are connected in series. A wiring member 21 is electrically connected to the positive electrode and the negative electrode of each series connection body, and the wiring member is electrically connected to the input terminal of the DC-DC converter 22. The DC power generated by the photovoltaic device is a large current and low voltage, and if the distance between the wiring material that electrically connects the DC-DC converter and the photovoltaic device is long, the power loss in the wiring material increases. The DC converter is disposed at a position in FIG. 2 where the distance from both electrodes of the series connection body is short, and the distance between the DC-DC converter and the photovoltaic element is short.

前記ACモジュールの角部には出力ケーブル24を有するインバータ26が1個設けられており、各DC−DCコンバータの出力端子は、並列接続部材23により前記インバータの入力端子に電気接続されている。   One inverter 26 having an output cable 24 is provided at the corner of the AC module, and the output terminal of each DC-DC converter is electrically connected to the input terminal of the inverter by a parallel connection member 23.

また、光起電力素子は、耐環境性を向上させるため被覆材25により封止された構造となっている。なお、ここで被覆材25がDC−DCコンバータ及びインバータを封止しないのは、DC−DCコンバータ及びインバータは、光起電力素子と比較して熱に弱く、被覆材を光起電力素子に加熱圧着する工程での加熱に耐えられないためであり、また、DC−DCコンバータ及びインバータの厚みは光起電力素子と比較して厚いので、被覆材に気泡が残る、しわが発生する等の問題が起こり、うまく被覆することができないためである。   The photovoltaic element has a structure sealed with a covering material 25 in order to improve environmental resistance. Here, the covering material 25 does not seal the DC-DC converter and the inverter because the DC-DC converter and the inverter are weak against heat as compared with the photovoltaic element, and the covering material is heated to the photovoltaic element. This is because the DC-DC converter and the inverter are thicker than the photovoltaic element, so that bubbles remain in the coating material and wrinkles are generated. This is because the film cannot be coated well.

前記ACモジュールは、単独で商用電力と周波数及び電圧が同一の電力を供給することができるため、非常時にはACモジュールを別の場所に運び独立電源として利用することができる。また、ACモジュールは、1枚単位での設置が可能であり初期投資負担が少ないため少ない資金でも設置が可能となる。さらに、任意の場所に設置することができ増設も簡単にできるといったメリットがある。   Since the AC module can supply the same frequency and voltage as commercial power independently, the AC module can be carried to another place and used as an independent power source in an emergency. In addition, AC modules can be installed in units of one sheet, and the initial investment burden is small, so it can be installed with a small amount of funds. Furthermore, there is a merit that it can be installed in any place and expansion can be easily performed.

しかし、図2に示すACモジュールには以下に示す問題がある事が判明した。   However, the AC module shown in FIG. 2 has the following problems.

すなわち、施工現場において、前記ACモジュールを持ち運びする際、作業者はACモジュールの両端に存在する光起電力素子又はその近傍に存在する被覆材を掴むため、並列接続部材及びDC−DCコンバータは配線材のみで支持されることになる。そのため、搬送時及び施工時に作業者が並列接続部材を引っ掛けた場合、配線材に力が集中し、前記配線材が損傷・断線する可能性が高い。   That is, when carrying the AC module at the construction site, the operator grasps the photovoltaic elements existing at both ends of the AC module or the covering material existing in the vicinity thereof, so that the parallel connection member and the DC-DC converter are wired. It will be supported only by the material. Therefore, when an operator hooks the parallel connection member during transportation and construction, there is a high possibility that force concentrates on the wiring material and the wiring material is damaged or disconnected.

また、配線材に力が繰り返し作用することで被覆材と配線材の界面に剥離が発生し、光起電力素子に雨水が浸入する可能性がある。   Further, when force repeatedly acts on the wiring material, peeling may occur at the interface between the covering material and the wiring material, and rainwater may enter the photovoltaic element.

さらに、前記配線材が、電気抵抗低減を目的とした厚みを有する機械的強度の高い部材であった場合、並列接続部材又はDC−DCコンバータが力を受けると、配線材の代わりに光起電力素子が変形する。これにより、光起電力素子が塑性変形すると、光起電力素子の信頼性が大幅に低下するため好ましくない。上記課題の対策として、光起電力素子、配線材、DC−DCコンバータの非受光面側に補強板を配置し、前記補強板に光起電力素子、配線材、DC−DCコンバータを固定する方法が考えられるが、補強板等の材料費、補強板を設け前記補強板に各部材を固定する工程がACモジュールのコストアップの要因となるため好ましくない。   Further, when the wiring material is a member having a high mechanical strength having a thickness for the purpose of reducing electric resistance, when the parallel connection member or the DC-DC converter receives a force, a photovoltaic power is used instead of the wiring material. The element is deformed. Accordingly, when the photovoltaic element is plastically deformed, the reliability of the photovoltaic element is significantly lowered, which is not preferable. As a countermeasure for the above-mentioned problems, a reinforcing plate is disposed on the non-light-receiving surface side of the photovoltaic element, wiring material, and DC-DC converter, and the photovoltaic element, wiring material, and DC-DC converter are fixed to the reinforcing plate. However, the material cost of the reinforcing plate and the process of providing the reinforcing plate and fixing each member to the reinforcing plate are not preferable because they increase the cost of the AC module.

また、図2に示すACモジュールでは、DC−DCコンバータが光起電力素子間に存在するギャップ27の延長線上に設けられており、前記光起電力素子間における柔軟性が失われている。施工作業等でACモジュールを持ち運びする際、DC−DCコンバータはある程度の重量物なので、ACモジュールに撓みが生じるが、光起電力素子間のフレキな部分が減少すれば光起電力素子自身が変形することになる。結果として、光起電力素子の最も機械的強度の弱い電極部に無理な力が作用するケースが生まれ、信頼性低下を引き起こす可能性が高い。上記課題の対策として、図3に示すように、DC−DCコンバータ32を光起電力素子間に存在するギャップ37の延長線上からずらした形態が考えられるが、直列接続体とDC−DCコンバータを電気接続する配線材31が長くなり電力損失の増大を引き起こすため好ましくない。   Further, in the AC module shown in FIG. 2, the DC-DC converter is provided on the extended line of the gap 27 existing between the photovoltaic elements, and the flexibility between the photovoltaic elements is lost. When carrying an AC module during construction work, the DC-DC converter is heavy to some extent, so the AC module will bend, but if the flexible part between the photovoltaic elements is reduced, the photovoltaic element itself will be deformed. Will do. As a result, there is a case where an excessive force acts on the electrode portion having the weakest mechanical strength of the photovoltaic element, which is likely to cause a decrease in reliability. As a countermeasure for the above problem, as shown in FIG. 3, a configuration in which the DC-DC converter 32 is shifted from the extension line of the gap 37 existing between the photovoltaic elements is conceivable. This is not preferable because the wiring material 31 to be electrically connected becomes long and causes an increase in power loss.

本発明は、上述の問題点を解決するために考案されたもので、新たな補強部材の使用することや電力損失の増大をまねくことなく、DC−DCコンバータと光起電力素子とを電気接続する配線材の機械的な負担を軽減し、ACモジュールの信頼性向上を図ることを目的とする。   The present invention has been devised to solve the above-mentioned problems, and the DC-DC converter and the photovoltaic element are electrically connected without using a new reinforcing member or increasing the power loss. The purpose is to reduce the mechanical burden of the wiring material to be used and improve the reliability of the AC module.

上記課題を解決するための手段を以下に示す。   Means for solving the above problems will be described below.

本発明のACモジュールは、少なくとも1枚の光起電力素子からなる光起電力素子の直列接続体を複数枚有し、各直列接続体には配線材を介してDC−DCコンバータが電気接続されており、前記DC−DCコンバータには並列接続部材を介して出力ケーブルを有するインバータが電気接続されており、隣接する2枚の光起電力素子又は直列接続体にはズレが存在し、前記ズレが形成する光起電力素子不在領域にDC−DCコンバータが配され、並列接続部材の少なくとも一部が光起電力素子の非受光面側に固定されていることを特徴とする。   The AC module of the present invention has a plurality of series-connected bodies of photovoltaic elements composed of at least one photovoltaic element, and a DC-DC converter is electrically connected to each series-connected body via a wiring material. An inverter having an output cable is electrically connected to the DC-DC converter through a parallel connection member, and there is a deviation between two adjacent photovoltaic elements or series connection bodies. The DC-DC converter is disposed in the region where the photovoltaic element is not formed, and at least a part of the parallel connection member is fixed to the non-light-receiving surface side of the photovoltaic element.

光起電力素子又は直列接続体にズレを設けて配置し、並列接続部材の少なくとも一部を光起電力素子の非受光面側に固定することで、施工時又は施工後に作業者が並列接続部材を引っ掛けても、前記並列接続部材の一部が光起電力素子に支持されているため、光起電力素子とDC−DCコンバータを電気接続する配線材に力が集中しない。したがって、新たに補強板などを設けることなく前記配線材の破損を防止でき、ACモジュールの信頼性が低下するのを防止することができる。   The photovoltaic device or the serial connection body is provided with a deviation, and at least part of the parallel connection member is fixed to the non-light-receiving surface side of the photovoltaic device, so that the worker can connect the parallel connection member during or after the construction. Even when a part of the parallel connection member is hooked, a force is not concentrated on the wiring member that electrically connects the photovoltaic element and the DC-DC converter because a part of the parallel connection member is supported by the photovoltaic element. Therefore, it is possible to prevent the wiring member from being damaged without newly providing a reinforcing plate or the like, and to prevent the reliability of the AC module from being lowered.

また、光起電力素子間に存在するギャップの延長線上にDC−DCコンバータ及びインバータが存在しなければ、ACモジュールに撓みが生じても、光起電力素子間に存在するギャップで折れ曲がり、光起電力素子自体が大きく撓むことはないため、光起電力素子が塑性変形を起こす等のトラブルが生じるのを防止できる。   In addition, if there is no DC-DC converter and inverter on the extended line of the gap existing between the photovoltaic elements, even if the AC module is bent, it bends at the gap existing between the photovoltaic elements and Since the power element itself does not bend greatly, it is possible to prevent troubles such as plastic deformation of the photovoltaic element.

さらに、複数枚の直列接続体が、被覆材及び/又はテープ部材により一体化されていれば、光起電力素子同士を電気接続する電極にかかる力を低減することができるため好ましい。   Furthermore, it is preferable that a plurality of series-connected bodies are integrated by a covering material and / or a tape member because a force applied to electrodes that electrically connect photovoltaic elements can be reduced.

本発明のACモジュールの製造方法は、少なくとも1枚の光起電力素子からなる光起電力素子の直列接続体を形成する工程、前記直列接続体に配線材を設ける工程、複数枚の直列接続体を一体化する工程、DC−DCコンバータを光起電力素子不在領域に配し前記配線材と電気接続する工程、DC−DCコンバータとインバータを並列接続部材により電気接続する工程、インバータに出力ケーブルを設ける工程、並列接続部材の少なくとも一部を光起電力素子の非受光面側に固定する工程、活電部が露出した領域に絶縁処理を施す工程を有する。   The method for producing an AC module of the present invention includes a step of forming a series connection body of photovoltaic elements composed of at least one photovoltaic element, a step of providing a wiring member on the series connection body, and a plurality of series connection bodies. , A step of arranging a DC-DC converter in a region where a photovoltaic element is absent and electrically connecting the wiring material, a step of electrically connecting the DC-DC converter and the inverter by a parallel connection member, and connecting an output cable to the inverter A step of providing, a step of fixing at least a part of the parallel connection member to the non-light-receiving surface side of the photovoltaic element, and a step of performing an insulation process on the region where the live part is exposed.

前記光起電力素子の直列接続体を形成する工程、又は複数枚の直列接続体を一体化する工程において、隣接する2枚の光起電力素子又は直列接続体にズレを形成することが望ましい。   In the step of forming a series connection body of the photovoltaic elements or the step of integrating a plurality of series connection bodies, it is desirable to form a gap between two adjacent photovoltaic elements or series connection bodies.

また、本発明において、前記複数枚の直列接続体を一体化する工程が、一重真空室方式のラミネート装置、二重真空室方式のラミネート装置、ロールラミネート装置の何れかによるものであること、活電部が露出した領域に絶縁処理を施す工程が、絶縁性テープ、絶縁性樹脂のどちらかを用いて行うこと、予めDC−DCコンバータ、インバータ、並列接続部材、出力ケーブルを一体化して電力変換ユニットを形成し、前記電力変換ユニットを直列接続体に設けられた配線材に電気接続することが望ましい。   In the present invention, the step of integrating the plurality of serially connected bodies is performed by any one of a single vacuum chamber type laminating apparatus, a double vacuum chamber type laminating apparatus, and a roll laminating apparatus, The process of applying insulation treatment to the area where the electrical parts are exposed is performed using either insulating tape or insulating resin, and the DC-DC converter, inverter, parallel connection member, and output cable are integrated in advance to convert power. It is desirable to form a unit and to electrically connect the power conversion unit to a wiring member provided in the series connection body.

以上説明したように、本発明は少なくとも1枚の光起電力素子からなる光起電力素子の直列接続体を複数枚有し、各直列接続体には配線材を介してDC−DCコンバータが電気接続されており、且つ、前記DC−DCコンバータには並列接続部材を介して出力ケーブルを有するインバータが電気接続されてなるACモジュールにおいて、隣接する2枚の光起電力素子又は直列接続体にズレを形成し、前記ズレが形成する光起電力素子不在領域にDC−DCコンバータを配し、前記並列接続部材の少なくとも一部を光起電力素子の非受光面側に固定することで、施工時又は施工後にDC−DCコンバータ及び並列接続部材に力が作用した際に、DC−DCコンバータと光起電力素子を電気接続する配線材に力が集中するのを防止でき、ACモジュールの信頼性が低下するのを防ぐことが可能となる。   As described above, the present invention has a plurality of series-connected bodies of photovoltaic elements composed of at least one photovoltaic element, and a DC-DC converter is electrically connected to each series-connected body via a wiring material. In an AC module in which an inverter having an output cable is electrically connected to the DC-DC converter via a parallel connection member, the DC-DC converter is displaced between two adjacent photovoltaic elements or series connection bodies. At the time of construction by arranging a DC-DC converter in the photovoltaic element absence region formed by the deviation and fixing at least a part of the parallel connection member to the non-light-receiving surface side of the photovoltaic element. Or, when force is applied to the DC-DC converter and the parallel connection member after construction, it is possible to prevent the force from concentrating on the wiring material that electrically connects the DC-DC converter and the photovoltaic element, and the reliability of the AC module is improved. To prevent it from dropping Is possible.

以下、本発明のACモジュール及びその製造方法を示す好適な実施態様について詳細に説明するが、本発明は以下の実施態様に限定されるものではない。   Hereinafter, preferred embodiments showing the AC module of the present invention and the manufacturing method thereof will be described in detail, but the present invention is not limited to the following embodiments.

本発明の一例を示すACモジュールを受光面側から見た平面図を図4に示す。   FIG. 4 shows a plan view of an AC module showing an example of the present invention as seen from the light receiving surface side.

本例のACモジュールは、光起電力素子40にズレを設けて直列化した直列接続体を複数枚有し、前記複数枚の直列接続体はテープ状の部材46により一体化されている。各直列接続体の両電極には配線材41を介してDC−DCコンバータ42の入力端子が電気接続されており、前記DC−DCコンバータの出力端子には、並列接続部材43を介して出力ケーブル44を有するインバータ45の入力端子が電気接続されている。   The AC module of this example has a plurality of serially connected bodies that are serially provided by shifting the photovoltaic elements 40, and the plurality of serially connected bodies are integrated by a tape-like member 46. An input terminal of a DC-DC converter 42 is electrically connected to both electrodes of each series connection body via a wiring material 41, and an output cable is connected to an output terminal of the DC-DC converter via a parallel connection member 43. An input terminal of an inverter 45 having 44 is electrically connected.

ここで、前記DC−DCコンバータは、光起電力素子のズレが形成する光起電力素子不在領域に配置されており、且つ、前記DC−DCコンバータの出力端子とインバータの入力端子を電気接続する並列接続部材は、少なくとも一部が光起電力素子の非受光面側に固定されている。   Here, the DC-DC converter is arranged in a photovoltaic element absent region formed by a deviation of the photovoltaic elements, and electrically connects the output terminal of the DC-DC converter and the input terminal of the inverter. At least a part of the parallel connection member is fixed to the non-light-receiving surface side of the photovoltaic element.

また、本例のACモジュールにおいて、DC−DCコンバータ及びインバータは、光起電力素子間に存在するギャップの延長線上に存在しないように配置されている。   In the AC module of this example, the DC-DC converter and the inverter are arranged so as not to exist on the extended line of the gap existing between the photovoltaic elements.

前記ACモジュールの製造方法は、光起電力素子を直列接続して直列接続体を形成する工程、前記直列接続体の両電極に配線材を設ける工程、複数枚の直列接続体を一体化する工程、DC−DCコンバータ、インバータ、並列接続部材、出力ケーブルを一体化して電力変換ユニットを形成し、前記DC−DCコンバータが光起電力素子不在領域に配されるように、前記電力変換ユニットを直列接続体に設けられた配線材に取り付ける工程、並列接続部材の少なくとも一部を光起電力素子の非受光面側に固定する工程、活電部が露出した領域に絶縁処理を施す工程を有する。   The method of manufacturing the AC module includes a step of connecting photovoltaic elements in series to form a series connection body, a step of providing wiring members on both electrodes of the series connection body, and a step of integrating a plurality of series connection bodies. , A DC-DC converter, an inverter, a parallel connection member, and an output cable are integrated to form a power conversion unit, and the power conversion units are arranged in series so that the DC-DC converter is disposed in the region where there is no photovoltaic element. There are a step of attaching to the wiring member provided in the connection body, a step of fixing at least a part of the parallel connection member to the non-light-receiving surface side of the photovoltaic element, and a step of performing an insulating process on the region where the live part is exposed.

本例においては、直列接続体を形成する工程において、光起電力素子にズレを形成する。   In this example, in the step of forming the series connection body, a shift is formed in the photovoltaic element.

(直列接続体)
本発明において、直列接続体とは、光起電力素子単体あるいは2枚以上の光起電力素子を直列接続した構造体を意味する。
(Series connection)
In the present invention, the series connection body means a structure body in which a single photovoltaic element or two or more photovoltaic elements are connected in series.

本発明の直列接続体を構成する光起電力素子は、少なくとも光電変換層、透明電極層、裏面反射層、裏面電極層、集電電極、及び取り出し電極を有する。以下に、更に光電変換層、透明電極層、裏面反射層、裏面電極層、集電電極、及び取り出し電極に関する説明を記載する。   The photovoltaic element constituting the series connection body of the present invention includes at least a photoelectric conversion layer, a transparent electrode layer, a back surface reflection layer, a back surface electrode layer, a current collecting electrode, and an extraction electrode. Below, the description regarding a photoelectric converting layer, a transparent electrode layer, a back surface reflection layer, a back surface electrode layer, a current collection electrode, and an extraction electrode is described.

光電変換層は光を電気に変える機能を有する。この光電変換層の材料としてはSi、C、Ge等のV族元素、SiGe、SiC等のIV族元素合金、GaAs、InSb、GaP、GaSb、InP、InAs等のIII−V族化合物、ZnSe、CdTe、ZnS、CdS、CdSe等のII−VI族化合物、CuInSe等のI−III−VI族化合物が挙げられるがこれに限られるものではない。   The photoelectric conversion layer has a function of converting light into electricity. Materials for this photoelectric conversion layer include group V elements such as Si, C and Ge, group IV element alloys such as SiGe and SiC, group III-V compounds such as GaAs, InSb, GaP, GaSb, InP and InAs, ZnSe, Examples include, but are not limited to, II-VI group compounds such as CdTe, ZnS, CdS, and CdSe, and I-III-VI group compounds such as CuInSe.

光電変換層は、少なくとも一組のpn接合、pin接合、ヘテロ接合あるいはショットキー障壁を形成する。また、光電変換層の好適な形成方法としては、マイクロ波プラズマCVD法、VHFプラズマCVD法、RFプラズマCVD法等の各種化学気相成長法が挙げられる。   The photoelectric conversion layer forms at least one set of pn junction, pin junction, heterojunction, or Schottky barrier. Moreover, as a suitable formation method of a photoelectric converting layer, various chemical vapor deposition methods, such as a microwave plasma CVD method, a VHF plasma CVD method, and RF plasma CVD method, are mentioned.

透明電極層は、光を透過する光入射側の電極であると共に、その膜厚を最適化することによって反射防止膜としての役割も果たす。   The transparent electrode layer is an electrode on the light incident side that transmits light, and also serves as an antireflection film by optimizing the film thickness.

透明電極層は、光電変換層の吸収可能な波長領域において高い透過率を有すること、電気抵抗が低いことが必要とされ、その材料として、In2O3、SnO2、ITO(In2O3+SnO2)、ZnO、CdO、Cd2SnO4、TiO2、Ta2O5、Bi2O3、MoO3、NaxWO3等の導電性酸化物あるいはこれらを混合したものが好適に用いられる。   The transparent electrode layer is required to have a high transmittance in the wavelength region that can be absorbed by the photoelectric conversion layer, and to have a low electric resistance. In2O3, SnO2, ITO (In2O3 + SnO2), ZnO, CdO, Cd2SnO4 Conductive oxides such as TiO2, Ta2O5, Bi2O3, MoO3, NaxWO3, or a mixture thereof are preferably used.

透明電極層の形成方法として、微量の酸素を含有するスパッタ用ガスによりスパッタ形成する方法が好適に用いられる。   As a method of forming the transparent electrode layer, a method of forming by sputtering with a sputtering gas containing a trace amount of oxygen is preferably used.

裏面反射層は、光電変換層で吸収しきれなかった光を再度光電変換層に反射する光反射層としての機能を有する。   The back surface reflection layer has a function as a light reflection layer that reflects light that could not be absorbed by the photoelectric conversion layer to the photoelectric conversion layer again.

裏面反射層の材料としては、Au、Ag、Cu、Al、Ni、Fe、Cr、Mo、W、Ti、Co、Ta、Nb、Zr等の金属又はステンレス等の合金が挙げられるが、中でもAl、Cu、Ag、Au等の反射率の高い金属が特に好ましい。   Examples of the material for the back reflective layer include metals such as Au, Ag, Cu, Al, Ni, Fe, Cr, Mo, W, Ti, Co, Ta, Nb, and Zr, and alloys such as stainless steel. Metals with high reflectivity such as Cu, Ag, Au are particularly preferred.

裏面電極層は、光電変換層の非受光面側で発生した電荷を集電する集電電極としての機能を有する。具体的な材料として、Al、Au、Ag、Cu、Ti、Ta、W等の金属が挙げられるがこれに限られるものではない。裏面電極層を形成する方法として、化学気相成長法、スパッタ法等が好適に用いられる。また、裏面電極層として、外部から加えられた力によって各層が破損しないように支持する支持基板としての機能を有する導電性基板が好適に用いられる。導電性基板の具体的な材料としては、Fe、Ni、Cr、Al、Mo、Au、Nb、Ta、V、Ti、Pt、Pb等の金属又はこれらの合金の薄膜およびその複合体が挙げられるがこれに限られるものではない。   The back electrode layer functions as a current collecting electrode that collects charges generated on the non-light-receiving surface side of the photoelectric conversion layer. Specific materials include, but are not limited to, metals such as Al, Au, Ag, Cu, Ti, Ta, and W. As a method for forming the back electrode layer, a chemical vapor deposition method, a sputtering method, or the like is preferably used. Further, as the back electrode layer, a conductive substrate having a function as a support substrate for supporting each layer so as not to be damaged by an externally applied force is suitably used. Specific materials for the conductive substrate include thin films of metals such as Fe, Ni, Cr, Al, Mo, Au, Nb, Ta, V, Ti, Pt, and Pb, or alloys thereof, and composites thereof. Is not limited to this.

(電極)
電極は、光起電力素子の光電変換層の受光面側及び非受光面側で発生した電荷を取り出す機能を有する。この電極は光起電力素子の透明電極層の受光面、及び裏面電極層の非受光面と電気的に接続されている。その接続方法として、銀ペースト、導電性テープ、スポット溶接、半田などが挙げられる。
(electrode)
The electrode has a function of extracting charges generated on the light receiving surface side and the non-light receiving surface side of the photoelectric conversion layer of the photovoltaic element. This electrode is electrically connected to the light receiving surface of the transparent electrode layer and the non-light receiving surface of the back electrode layer of the photovoltaic element. Examples of the connection method include silver paste, conductive tape, spot welding, and solder.

集電電極としては箔体が好適に用いられ、具体的な材料としては、銅箔、すずメッキ銅箔、銀メッキ銅箔、ニッケルメッキ銅箔などが挙げられる。また、銅箔としては、無酸素銅、タフピッチ銅、りん脱酸銅のいずれかからなり、厚みが0.1mm以上0.3mm以下であるものが好適である。   A foil body is preferably used as the current collecting electrode, and specific materials include copper foil, tin-plated copper foil, silver-plated copper foil, nickel-plated copper foil, and the like. The copper foil is preferably made of oxygen-free copper, tough pitch copper, or phosphorous deoxidized copper, and has a thickness of 0.1 mm to 0.3 mm.

(配線材)
配線材は、直列接続体で発電した直流電力をDC−DCコンバータに入力するために設けられた部材であり、直列接続体の電極及びDC−DCコンバータの入力端子に電気接続されている。その接続方法として銀ペースト、半田、スポット溶接、ボルト・ナット、ねじ等が好適に用いられる。また、配線材の具体的な材料としては、ポリ塩化ビニル、ポリ塩化ビニリデン等で表面が被覆された電線又はケーブル線、あるいは絶縁被覆されていない銅箔、すずメッキ銅箔、銀メッキ銅箔、ニッケルメッキ銅箔等が挙げられるがこれに限定されるものではない。
(Wiring material)
The wiring member is a member provided to input DC power generated by the series connection body to the DC-DC converter, and is electrically connected to the electrode of the series connection body and the input terminal of the DC-DC converter. As the connection method, silver paste, solder, spot welding, bolts / nuts, screws and the like are preferably used. In addition, as a specific material of the wiring material, an electric wire or cable wire whose surface is coated with polyvinyl chloride, polyvinylidene chloride, or the like, or a copper foil that is not insulation-coated, a tin plated copper foil, a silver plated copper foil, Although nickel plating copper foil etc. are mentioned, it is not limited to this.

(DC−DCコンバータ)
DC−DCコンバータは、直列接続体で発電した直流電力をインバータの入力電圧に合った直流電力に変換する役割を果たす。DC−DCコンバータ、直流電力を電圧の異なる直流電力に昇圧する昇圧回路、DC−DCコンバータの起動/停止、光起電力素子の動作点の最適化、運転モード等を制御する制御回路、入出力端子等で構成される。
(DC-DC converter)
The DC-DC converter plays a role of converting DC power generated by the series connection body into DC power matching the input voltage of the inverter. DC-DC converter, booster circuit that boosts DC power to DC power of different voltage, start-up / stop of DC-DC converter, optimization of photovoltaic element operating point, control circuit for controlling operation mode, input / output It consists of terminals.

昇圧回路としては、絶縁、非絶縁を問わず公知公用の様々な回路構成を用いることができる。制御回路は、CPU、PWM波形制御回路、最適動作点追従制御回路、制御電源生成回路、周波数・電圧基準発生器及びスイッチング制御回路等を備える。また、制御回路は、通信線等を介して外部から操作できるようにしてもよく、制御回路の一部機能をDC−DCコンバータ外に配置して、複数のDC−DCコンバータを一括制御することもできる。   As the booster circuit, various known and publicly available circuit configurations can be used regardless of insulation or non-insulation. The control circuit includes a CPU, a PWM waveform control circuit, an optimum operating point tracking control circuit, a control power supply generation circuit, a frequency / voltage reference generator, a switching control circuit, and the like. In addition, the control circuit may be operable from the outside via a communication line or the like, and a part of the function of the control circuit is arranged outside the DC-DC converter to collectively control a plurality of DC-DC converters. You can also.

DC−DCコンバータの構造をできるだけ簡素化しコストダウンと信頼性の向上を図るために、制御回路としては、制御電源生成回路、スイッチング周波数を規定するスイッチング基準波形生成回路及び固定デューティーでスイッチング素子を駆動可能なスイッチング素子駆動回路を少なくとも有する構成が好ましい。また、主回路としては、前記スイッチング素子駆動回路によりON/OFFされるスイッチング素子と、所定の巻数比で作成されたスイッチングトランスを有することが好ましい。   In order to simplify the structure of the DC-DC converter as much as possible and reduce costs and improve reliability, the control circuit includes a control power supply generation circuit, a switching reference waveform generation circuit that defines the switching frequency, and a switching element that is driven with a fixed duty. A configuration having at least a possible switching element driving circuit is preferable. The main circuit preferably includes a switching element that is turned ON / OFF by the switching element driving circuit and a switching transformer that is created with a predetermined turn ratio.

このような固定デューティー制御された直流−直流コンバータが複数個並列接続されたシステムでは、後段の電力変換装置の入力電圧を変化させることにより直流−直流コンバータの入力電圧を変化させることができ、これにより光起電力素子の動作点を最適動作点になるよう制御することができる。   In such a system in which a plurality of DC-DC converters controlled at a fixed duty are connected in parallel, the input voltage of the DC-DC converter can be changed by changing the input voltage of the subsequent power converter. Thus, the operating point of the photovoltaic element can be controlled to be the optimum operating point.

(インバータ)
インバータは、直流電力を交流電力に変換するインバータ回路、並びに、電力変換の起動/停止、太陽電池の動作点の最適化、運転モード等を制御する制御回路、系統連係保護回路、通信回路、入出力端子等から構成され、その出力は負荷で使用されるかあるいは系統連携される。
(Inverter)
The inverter is an inverter circuit that converts DC power to AC power, as well as control circuit that controls start / stop of power conversion, optimization of the operating point of the solar cell, operation mode, system linkage protection circuit, communication circuit, input circuit, etc. It is composed of output terminals and the like, and the output is used in a load or linked to the system.

インバータ回路としては、IGBTやMOSFETをスイッチング素子に使用する電圧型インバータが好ましい。制御回路の制御信号により、スイッチング素子のゲートを駆動することで、所望する周波数、位相及び電圧を有する交流電力を得ることができる。   As the inverter circuit, a voltage type inverter using IGBT or MOSFET as a switching element is preferable. By driving the gate of the switching element by the control signal of the control circuit, AC power having a desired frequency, phase and voltage can be obtained.

制御回路は、CPU、PWM波形制御回路、最適動作点追従制御回路、制御電源生成回路、周波数・電圧基準発生器及びスイッチング制御回路等を備える。また、インバータを複数の光起電力素子に各々接続する場合、制御回路は、通信線等を介して外部から操作できるようにしてもよく、制御回路自体はインバータ外に配置して、複数のインバータを一括制御することもできる。   The control circuit includes a CPU, a PWM waveform control circuit, an optimum operating point tracking control circuit, a control power supply generation circuit, a frequency / voltage reference generator, a switching control circuit, and the like. In addition, when the inverter is connected to each of the plurality of photovoltaic elements, the control circuit may be operable from the outside via a communication line or the like, and the control circuit itself is disposed outside the inverter, Can be collectively controlled.

(並列接続部材)
並列接続部材は、DC−DCコンバータの出力端子とインバータの入力端子を電気接続するための部材である。
(Parallel connection member)
The parallel connection member is a member for electrically connecting the output terminal of the DC-DC converter and the input terminal of the inverter.

並列接続部材の具体的な材料としては、ポリ塩化ビニル、ポリ塩化ビニリデン等で表面が被覆された電線又はケーブル線等が挙げられるがこれに限られるものではない。   Specific materials for the parallel connection member include, but are not limited to, electric wires or cable wires whose surfaces are coated with polyvinyl chloride, polyvinylidene chloride, and the like.

(光起電力素子不在領域)
本発明において光起電力素子不在領域とは、2枚の光起電力素子50又は直列接続体にズレを設けて配置することで形成される斜線部の領域51のことを意味する。(図5参照)
(Photovoltaic element absence area)
In the present invention, the photovoltaic element absent region means a hatched region 51 formed by disposing the two photovoltaic elements 50 or the serial connection body so as to be displaced. (See Figure 5)

本実施例のACモジュールを受光面側及び非受光面側から見た平面図を図6に、ACモジュールを構成する光起電力素子の平面図及び断面図を図7に示す。   FIG. 6 is a plan view of the AC module of this embodiment viewed from the light-receiving surface side and the non-light-receiving surface side, and FIG. 7 is a plan view and a cross-sectional view of the photovoltaic element constituting the AC module.

本例のACモジュールは、光起電力素子60、光起電力素子で発電した直流電力をインバータの入力電圧に昇圧するDC−DCコンバータ61、昇圧後の直流電力を交流電力に変換するインバータ62、前記光起電力素子を封止する被覆材63、光起電力素子とDC−DCコンバータを電気接続する配線材64、DC−DCコンバータとインバータを電気接続する並列接続部材65、交流電力を外部に取り出す出力ケーブル66により構成されている。   The AC module of this example includes a photovoltaic element 60, a DC-DC converter 61 that boosts DC power generated by the photovoltaic element to an input voltage of the inverter, an inverter 62 that converts the boosted DC power into AC power, Covering material 63 for sealing the photovoltaic element, wiring material 64 for electrically connecting the photovoltaic element and the DC-DC converter, a parallel connection member 65 for electrically connecting the DC-DC converter and the inverter, AC power to the outside The output cable 66 is taken out.

前記光起電力素子は受光面側より、樹脂層70、透明電極層71、光電変換層72、裏面反射層73、裏面電極層74という層構成になっており、樹脂層はアクリルウレタン系の樹脂、透明電極層はITO、光電変換層はP−I−N型の非晶質シリコン、裏面反射層はZnO及びAl、裏面電極層はステンレスによってそれぞれ構成されている。また、透明電極層の受光面には銀メッキ銅箔からなる正極電極75、裏面電極層の非受光面には銅箔からなる負極電極76が設けられている。   The photovoltaic element has a layer structure of a resin layer 70, a transparent electrode layer 71, a photoelectric conversion layer 72, a back surface reflection layer 73, and a back surface electrode layer 74 from the light receiving surface side, and the resin layer is an acrylic urethane resin. The transparent electrode layer is composed of ITO, the photoelectric conversion layer is composed of PIN type amorphous silicon, the back surface reflecting layer is composed of ZnO and Al, and the back surface electrode layer is composed of stainless steel. A positive electrode 75 made of silver-plated copper foil is provided on the light receiving surface of the transparent electrode layer, and a negative electrode 76 made of copper foil is provided on the non-light receiving surface of the back electrode layer.

本例のACモジュールは、前記光起電力素子2枚を、間隔を5mm設けて直列接続することで形成される直列接続体を4枚有している。前記直列接続体を構成する2枚の光起電力素子には50mmのズレが形成されている。   The AC module of this example has four series-connected bodies formed by connecting the two photovoltaic elements in series with an interval of 5 mm. A deviation of 50 mm is formed between the two photovoltaic elements constituting the series connection body.

前記光起電力素子の受光面側には、四フッ化エチレン−エチレン共重合体(ETFE)及びエチレン−酢酸ビニル共重合体(EVA)からなるETFE/EVAフィルムが、非受光面側には、エチレン−酢酸ビニル共重合体(EVA)及びポリエチレンテレフタレート(PET)からなるEVA/PET/EVAフィルムがそれぞれ設けられており、前記フィルムで構成される被覆材により直列接続体4枚が間隔を5mm設けて封止されている。   On the light receiving surface side of the photovoltaic element, an ETFE / EVA film made of tetrafluoroethylene-ethylene copolymer (ETFE) and ethylene-vinyl acetate copolymer (EVA), on the non-light receiving surface side, EVA / PET / EVA films made of ethylene-vinyl acetate copolymer (EVA) and polyethylene terephthalate (PET) are provided, respectively, and 4 series-connected bodies are provided with a spacing of 5 mm by the coating material composed of the film. Are sealed.

各直列接続体の正極電極及び負極電極には、ニッケルメッキ銅箔からなる配線材が電気接続されており、図6に示すように、前記配線材64が被覆材の端部より突出している。配線材の突出部にはDC−DCコンバータの入力端子がそれぞれ電気接続されており、各DC−DCコンバータの出力端子及びインバータの入力端子は2sqのIV線からなる並列接続部材により電気接続されている。DC−DCコンバータは、光起電力素子にズレを設けて配置することで形成される光起電力素子不在領域に配置されており、且つ、光起電力素子間に存在するギャップの延長線上に存在しない。   A wiring material made of nickel-plated copper foil is electrically connected to the positive electrode and the negative electrode of each series connection body, and as shown in FIG. 6, the wiring material 64 protrudes from the end of the covering material. The input terminal of the DC-DC converter is electrically connected to the protruding portion of the wiring material, and the output terminal of each DC-DC converter and the input terminal of the inverter are electrically connected by a parallel connection member composed of 2sq IV lines. Yes. The DC-DC converter is arranged in the photovoltaic element absent region formed by arranging the photovoltaic elements with a deviation, and exists on the extended line of the gap existing between the photovoltaic elements. do not do.

前記並列接続部材が光起電力素子の非受光面側に位置する領域では、並列接続線と光起電力素子がポリイミドフィルムテープ67で固定されている。   In the region where the parallel connection member is located on the non-light-receiving surface side of the photovoltaic element, the parallel connection line and the photovoltaic element are fixed by the polyimide film tape 67.

本例のACモジュールを受光面側から見た平面図を図8に示す。なお、ここに特記しない点に関しては、実施例1と同様である。   A plan view of the AC module of this example viewed from the light receiving surface side is shown in FIG. Note that points not specifically mentioned here are the same as those in the first embodiment.

本例のACモジュールは、受光面及び非受光面がフッ素樹脂によりコーティングされた光起電力素子80を10枚有する。各光起電力素子の正極電極及び負極電極には配線材81が設けられており、前期配線材にDC−DCコンバータ82が電気接続されている。   The AC module of this example has ten photovoltaic elements 80 in which the light receiving surface and the non-light receiving surface are coated with a fluororesin. A wiring material 81 is provided on the positive electrode and the negative electrode of each photovoltaic device, and a DC-DC converter 82 is electrically connected to the previous wiring material.

DC−DCコンバータは、隣接する光起電力素子で形成される光起電力素子不在領域に配置されており、端辺側上部にDC−DCコンバータが配置された光起電力素子と短辺側下部にDC−DCコンバータが配置された光起電力素子が交互に配置されている。   The DC-DC converter is arranged in a photovoltaic element absent region formed by adjacent photovoltaic elements, and the photovoltaic element in which the DC-DC converter is arranged on the upper end side and the lower part on the short side The photovoltaic elements in which the DC-DC converters are arranged are alternately arranged.

各DC−DCコンバータは、並列接続部材83を介してインバータ84に電気接続されており、前記並列接続部材が光起電力素子の非受光面側に位置する領域において、並列接続部材が光起電力素子の非受光面にポリイミドフィルムテープ85で固定されている。   Each DC-DC converter is electrically connected to the inverter 84 via a parallel connection member 83. In the region where the parallel connection member is located on the non-light-receiving surface side of the photovoltaic element, the parallel connection member is a photovoltaic device. A polyimide film tape 85 is fixed to the non-light-receiving surface of the element.

光起電力素子は、隣接する光起電力素子とポリイミドフィルムテープ86で2箇所固定されている。ここで、光起電力素子間のギャップは5mm、隣接する光起電力素子とのずれは50mmとする。   The photovoltaic elements are fixed at two locations by adjacent photovoltaic elements and polyimide film tape 86. Here, the gap between the photovoltaic elements is 5 mm, and the deviation from the adjacent photovoltaic elements is 50 mm.

本例のACモジュールの製造方法について以下に説明する。なお、ここに特記しない点に関しては、実施例1乃至2と同様である。   A method for manufacturing the AC module of this example will be described below. Note that the points not specifically mentioned here are the same as those in the first and second embodiments.

本例では、最初に直列接続体を形成する作業を行う。直列接続体を形成する作業は、ズレが形成されるように2枚の光起電力素子を配置し、電極を延長するL字型銅箔の一端を一方の光起電力素子の正極電極に、他端を他方の光起電力素子の負極電極に半田を用いて電気接続することで行われる。直列接続体を形成した後、直列接続体の正極電極及び負極電極に厚み100μmの銅箔からなる配線材を半田にて電気接続する作業を行う。   In this example, an operation for forming a series connection body is performed first. The work of forming the series connection body is to arrange two photovoltaic elements so as to form a gap, and one end of the L-shaped copper foil extending the electrode to the positive electrode of one photovoltaic element, The other end is electrically connected to the negative electrode of the other photovoltaic element using solder. After forming the series connection body, an operation of electrically connecting a wiring material made of a copper foil having a thickness of 100 μm to the positive electrode and the negative electrode of the series connection body is performed.

前記直列接続体を形成する作業と同時に、DC−DCコンバータ、インバータ、並列接続部材及び出力ケーブルを一体化して電力変換ユニットを形成する作業も行う。電力変換ユニットを形成する作業は、2sqのIV線の両端にY型端子を有する圧着スリーブを設けて並列接続部材を形成し、前記Y型端子をDC−DCコンバータの出力端子及びインバータの入力端子にネジで固定する作業とポリ塩化ビニルで被覆されたケーブル線の一端にY型端子を有する圧着スリーブを、他端に防水コネクターを設けて出力ケーブルを形成し、出力ケーブルのY型端子を前記インバータの出力端子にネジで固定する作業からなる。   Simultaneously with the operation of forming the series connection body, the operation of forming a power conversion unit by integrating the DC-DC converter, the inverter, the parallel connection member, and the output cable is also performed. The operation of forming the power conversion unit is to form a parallel connection member by providing crimp sleeves having Y-type terminals at both ends of the 2sq IV line, and the Y-type terminals are output terminals of the DC-DC converter and input terminals of the inverter. A cable sleeve coated with polyvinyl chloride and a crimp sleeve having a Y-shaped terminal at one end of the cable wire covered with polyvinyl chloride, and a waterproof connector at the other end to form an output cable. The work consists of fixing to the output terminal of the inverter with screws.

配線材が設けられた直列接続体は、一重真空方式のラミネート装置を用いて一体化する。積層方法は、ラミネート装置にEVA(230μm)/PET(100μm)/EVA(230μm)フィルム、EVA/PET/EVAフィルムの上に4枚の直列接続体(受光面が上向き)、直列接続体の受光面にETFE(50μm)/EVA(460μm)フィルムを配置し、排気速度104(Pa/sec)、真空度670(Pa)で30分間排気後、160℃の熱風オ−ブンにラミネート装置を投入し、50分間真空加熱する。その後、ラミネート装置を熱風オーブンから取り出し、常温で冷却すれば封止完了である。   The series connection body provided with the wiring material is integrated using a single vacuum laminating apparatus. Lamination method is EVA (230μm) / PET (100μm) / EVA (230μm) film on laminating device, 4 series connection body (light receiving surface upward) on EVA / PET / EVA film, light reception of series connection body An ETFE (50μm) / EVA (460μm) film is placed on the surface, exhausted at a pumping speed of 104 (Pa / sec) and a vacuum of 670 (Pa) for 30 minutes, and then a laminating device is put into a hot air oven at 160 ° C. Heat in a vacuum for 50 minutes. Thereafter, the laminating apparatus is taken out from the hot air oven and cooled at room temperature to complete the sealing.

直列接続体を一体化した後、電力変換ユニットに設けられたDC−DCコンバータの入力端子と直列接続体に設けられた配線材とを半田にて電気接続すると共に、ポリイミドフィルムテープを用いて並列接続部材を光起電力素子の非受光面に固定する。   After integrating the series connection body, the input terminal of the DC-DC converter provided in the power conversion unit and the wiring material provided in the series connection body are electrically connected with solder and in parallel using a polyimide film tape. The connecting member is fixed to the non-light-receiving surface of the photovoltaic element.

最後に活電部が露出した電気接続部にエポキシ樹脂をポッティングし、活電部をすべて封止する。   Finally, an epoxy resin is potted on the electrical connection part where the live part is exposed to seal all live parts.

本実施例の太陽光発電システムを示す斜視図及び断面図を図9に示す。なお、ここに特記しない点に関しては、実施例1乃至3と同様である。   FIG. 9 shows a perspective view and a cross-sectional view of the solar power generation system of this example. Note that the points not specifically mentioned here are the same as those in the first to third embodiments.

本例の太陽光発電システムは、複数のACモジュール90及び前記ACモジュールを設置するための架台91により構成されている。   The photovoltaic power generation system of this example includes a plurality of AC modules 90 and a gantry 91 for installing the AC modules.

前記架台は、傾斜ブロック91aを地面に接する一端辺を支店として支持ブロック91bに載置することで形成されている。傾斜ブロック及び支持ブロックは高さ100mm、幅190mm、長さ390mmの空洞コンクリートブロックからなる。   The gantry is formed by placing the inclined block 91a on the support block 91b with one end side in contact with the ground as a branch. The inclined block and the support block are made of hollow concrete blocks having a height of 100 mm, a width of 190 mm and a length of 390 mm.

図9に示すように、架台の各列の端部には、遮へいブロック94が設置されている。前記遮へいブロックは、強風時に傾斜ブロック及び支持ブロックにより形成される空間95に風が浸入してブロックが浮き上がるのを防止する役割を果たす。   As shown in FIG. 9, a shielding block 94 is installed at the end of each row of the gantry. The shielding block plays a role of preventing the wind from entering the space 95 formed by the inclined block and the support block when the wind is strong and the block rising.

各ACモジュールは、エポキシ系の弾性接着剤にてコンクリートブロックに密着固定されている。   Each AC module is tightly fixed to the concrete block with an epoxy-based elastic adhesive.

架台の列と列の間には商用電力系統93が配されており、各ACモジュールのインバータ96に設けられた出力ケーブル92が電気接続されている。   A commercial power system 93 is arranged between the columns of the gantry, and an output cable 92 provided in the inverter 96 of each AC module is electrically connected.

従来の太陽光発電システムを示す図である。It is a figure which shows the conventional solar power generation system. 従来のACモジュールを示す平面図である。It is a top view which shows the conventional AC module. 解決すべき課題の一例を示すACモジュールの平面図である。It is a top view of the AC module which shows an example of the problem which should be solved. 実施の形態例を示すACモジュールの平面図である。It is a top view of the AC module which shows an embodiment. 光起電力素子不在領域を説明する平面図である。It is a top view explaining a photovoltaic element absent region. 実施例1を示すACモジュールの平面図である。1 is a plan view of an AC module showing Example 1. FIG. 実施例1を示す光起電力素子の平面図及び断面図である。It is the top view and sectional drawing of a photovoltaic device which show Example 1. 実施例2を示すACモジュールの平面図である。6 is a plan view of an AC module showing Embodiment 2. FIG. 実施例4を示す太陽光発電システムの斜視図である。It is a perspective view of the solar energy power generation system which shows Example 4. FIG.

符号の説明Explanation of symbols

10 太陽電池モジュール
11 太陽電池モジュールアレイ
12 集電箱
13 電力変換装置
14、93 商用電力系統
20、30、40、50、60、80 光起電力素子
21、31、41、64、81 配線材
22、32、42、61、82 DC−DCコンバータ
23、33、43、65、83 並列接続部材
24、34、44、66、92 出力ケーブル
25、35、63 被覆財
26、36、45、62、84、96 インバータ
27、37、47 ギャップ
46、67、85、86 テープ部材
51 光起電力素子不在領域
70 樹脂層
71 透明電極層
72 光電変換層
73 裏面反射層
74 裏面電極層
75、76 電極
90 ACモジュール
91 架台
94 遮へいブロック
95 空間
10 Solar cell module
11 Solar cell module array
12 Current collection box
13 Power converter
14, 93 Commercial power system
20, 30, 40, 50, 60, 80 Photovoltaic elements
21, 31, 41, 64, 81 Wiring material
22, 32, 42, 61, 82 DC-DC converter
23, 33, 43, 65, 83 Parallel connection member
24, 34, 44, 66, 92 Output cable
25, 35, 63 Covered goods
26, 36, 45, 62, 84, 96 Inverter
27, 37, 47 gap
46, 67, 85, 86 Tape material
51 Photovoltaic element absence area
70 Resin layer
71 Transparent electrode layer
72 Photoelectric conversion layer
73 Back reflective layer
74 Back electrode layer
75, 76 electrodes
90 AC module
91 frame
94 Shield block
95 space

Claims (11)

少なくとも1枚の光起電力素子からなる光起電力素子の直列接続体を複数枚有し、各直列接続体には配線材を介してDC−DCコンバータが電気接続されており、且つ、前記DC−DCコンバータには並列接続部材を介して出力ケーブルを有するインバータが電気接続されてなるACモジュールにおいて、隣接する2枚の光起電力素子又は直列接続体にはズレが存在し、前記ズレが形成する光起電力素子不在領域にDC−DCコンバータが配され、前記並列接続部材の少なくとも一部が光起電力素子の非受光面側に固定されていることを特徴とするACモジュール。   There are a plurality of series-connected bodies of photovoltaic elements composed of at least one photovoltaic element, a DC-DC converter is electrically connected to each series-connected body via a wiring material, and the DC -In an AC module in which an inverter having an output cable is electrically connected to a DC converter via a parallel connection member, there is a deviation between two adjacent photovoltaic elements or series connection bodies, and the deviation is formed. An AC module, wherein a DC-DC converter is arranged in a region where there is no photovoltaic element, and at least a part of the parallel connection member is fixed to the non-light-receiving surface side of the photovoltaic element. 光起電力素子間に存在するギャップの延長線上にDC−DCコンバータ及びインバータが存在しないことを特徴とする請求項1に記載のACモジュール。   2. The AC module according to claim 1, wherein a DC-DC converter and an inverter are not present on an extended line of a gap existing between photovoltaic elements. 前記複数枚の直列接続体が、被覆材により一体化されてなることを特徴とする請求項1に記載のACモジュール。   The AC module according to claim 1, wherein the plurality of serially connected bodies are integrated with a covering material. 前記複数枚の直列接続体が、テープ部材により一体化されてなることを特徴とする請求項1に記載のACモジュール。   The AC module according to claim 1, wherein the plurality of serially connected bodies are integrated by a tape member. 少なくとも1枚の光起電力素子を有する光起電力素子の直列接続体を形成する工程、前記直列接続体に配線材を設ける工程、複数枚の直列接続体を一体化する工程、DC−DCコンバータを光起電力素子不在領域に配し前記配線材と電気接続する工程、DC−DCコンバータとインバータを並列接続部材により電気接続する工程、インバータに出力ケーブルを設ける工程、並列接続部材の少なくとも一部を光起電力素子の非受光面側に固定する工程、活電部が露出した領域に絶縁処理を施す工程を有することを特徴とするACモジュールの製造方法。   A step of forming a series connection body of photovoltaic elements having at least one photovoltaic element, a step of providing a wiring material on the series connection body, a step of integrating a plurality of series connection bodies, a DC-DC converter Is disposed in the photovoltaic element absent region and electrically connected to the wiring material, the DC-DC converter and the inverter are electrically connected by a parallel connection member, the output cable is provided to the inverter, and at least a part of the parallel connection member A method for manufacturing an AC module, comprising: a step of fixing the photovoltaic element to the non-light-receiving surface side of the photovoltaic element; and a step of performing an insulation treatment on a region where the live part is exposed. 少なくとも2枚以上の光起電力素子で直列接続体を形成する工程において、直列接続体を構成する一部の光起電力素子にズレを設けることを特徴とする請求項5に記載のACモジュールの製造方法。   6. The AC module according to claim 5, wherein in the step of forming the series connection body with at least two photovoltaic elements, a deviation is provided in some of the photovoltaic elements constituting the series connection body. Production method. 複数枚の直列接続体を一体化する工程において、ACモジュールを構成する一部の直列接続体にズレを設けることを特徴とする請求項5に記載のACモジュールの製造方法。   6. The method of manufacturing an AC module according to claim 5, wherein, in the step of integrating a plurality of series-connected bodies, a deviation is provided in some series-connected bodies constituting the AC module. 複数枚の直列接続体を一体化する工程において、一重真空室方式のラミネート装置、二重真空室方式のラミネート装置、ロールラミネート装置の何れかを用いることを特徴とする請求項5に記載のACモジュールの製造方法。   6. The AC according to claim 5, wherein any one of a single vacuum chamber type laminating apparatus, a double vacuum chamber type laminating apparatus, and a roll laminating apparatus is used in the step of integrating a plurality of series-connected bodies. Module manufacturing method. 活電部が露出した領域に絶縁処理を施す工程において、絶縁性テープ、絶縁性樹脂のどちらかを用いて行うことを特徴とする請求項5に記載のACモジュールの製造方法。   6. The method of manufacturing an AC module according to claim 5, wherein the insulating treatment is performed on the region where the live part is exposed using either an insulating tape or an insulating resin. 予め、DC−DCコンバータ、インバータ、並列接続部材、出力ケーブルを一体化して電力変換ユニットを形成し、前記電力変換ユニットを直列接続体に設けられた配線材に電気接続することを特徴とする請求項5に記載のACモジュールの製造方法。   A DC-DC converter, an inverter, a parallel connection member, and an output cable are integrated in advance to form a power conversion unit, and the power conversion unit is electrically connected to a wiring member provided in a series connection body. Item 6. A method for manufacturing an AC module according to Item 5. 請求項1乃至4のいずれか1項に記載のACモジュールを用いた太陽光発電システム。   The solar power generation system using the AC module of any one of Claims 1 thru | or 4.
JP2004223332A 2004-07-30 2004-07-30 Ac module, its manufacturing method, and solar energy power generating system Withdrawn JP2006041440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004223332A JP2006041440A (en) 2004-07-30 2004-07-30 Ac module, its manufacturing method, and solar energy power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004223332A JP2006041440A (en) 2004-07-30 2004-07-30 Ac module, its manufacturing method, and solar energy power generating system

Publications (1)

Publication Number Publication Date
JP2006041440A true JP2006041440A (en) 2006-02-09

Family

ID=35906071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004223332A Withdrawn JP2006041440A (en) 2004-07-30 2004-07-30 Ac module, its manufacturing method, and solar energy power generating system

Country Status (1)

Country Link
JP (1) JP2006041440A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013064828A1 (en) 2011-11-01 2013-05-10 Enecsys Limited Photovoltaic power conditioning units
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (124)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US10141745B2 (en) 2011-01-11 2018-11-27 Tesla, Inc. Photovoltaic power conditioning units
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
WO2013064828A1 (en) 2011-11-01 2013-05-10 Enecsys Limited Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units
US9520803B2 (en) 2011-11-01 2016-12-13 Solarcity Corporation Photovoltaic power conditioning units
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring

Similar Documents

Publication Publication Date Title
JP2006041440A (en) Ac module, its manufacturing method, and solar energy power generating system
US6966184B2 (en) Photovoltaic power generating apparatus, method of producing same and photovoltaic power generating system
US7612283B2 (en) Solar power generation apparatus and its manufacturing method
US10003299B2 (en) Photovoltaic module
US7126053B2 (en) Power generation system and power generation apparatus
JP2004055603A (en) Solar cell module, solar cell array, and photovoltaic power generation system
EP1469527A2 (en) Solar cell module with power converters
US20100116325A1 (en) High efficiency solar panel and system
EP1429393A2 (en) Solar cell module
JP2004096090A (en) Solar power generation equipment, solar power generation system, and method for manufacturing solar power generation equipment
WO2004006342A1 (en) Solar power generation apparatus and its manufacturing method
US20090014058A1 (en) Rooftop photovoltaic systems
US9397610B2 (en) Photovoltaic module and control method thereof
US20120267901A1 (en) Combination photovoltaic and wind power generation installation
JP2002111038A (en) Solar battery module and its manufacturing method, and generation device
US11424714B2 (en) Angled polymer solar modules
WO2016196759A1 (en) Single-cell encapsulation and flexible-format module architecture and mounting assembly for photovoltaic power generation and method for constructing, inspecting and qualifying the same
JP2005183660A (en) Solar cell module
JP2670472B2 (en) Solar cell and installation method of solar cell
JP2004047585A (en) Solar generator system
JP2006165169A (en) Solar cell module, manufacturing method thereof and installing method thereof
JP2006066762A (en) Flexible solar cell module and its installation method
JP2004193586A (en) Solar power generator, its manufacturing method and solar power generation system
JP2006165232A (en) Solar cell module, manufacturing method thereof and installing method thereof
JP2003282911A (en) Solar cell module array, manufacturing method therefor, solar cell module and manufacturing method therefor

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071002