JP3656531B2 - Solar power system - Google Patents

Solar power system Download PDF

Info

Publication number
JP3656531B2
JP3656531B2 JP2000264268A JP2000264268A JP3656531B2 JP 3656531 B2 JP3656531 B2 JP 3656531B2 JP 2000264268 A JP2000264268 A JP 2000264268A JP 2000264268 A JP2000264268 A JP 2000264268A JP 3656531 B2 JP3656531 B2 JP 3656531B2
Authority
JP
Japan
Prior art keywords
power generation
solar cell
inverter
unit
generation unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000264268A
Other languages
Japanese (ja)
Other versions
JP2002073184A (en
Inventor
晃 吉武
博昭 小新
信一郎 岡本
弘忠 東浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2000264268A priority Critical patent/JP3656531B2/en
Publication of JP2002073184A publication Critical patent/JP2002073184A/en
Application granted granted Critical
Publication of JP3656531B2 publication Critical patent/JP3656531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Description

【0001】
【発明の属する技術分野】
本発明は、太陽光発電システムに関し、詳しくは、日射量が低下した場合においても、システム全体として効率良く発電する太陽光発電システムに関するものである。
【0002】
【従来の技術】
従来からの太陽光発電システムには、太陽電池パネルを直列に接続してなる太陽電池発電部があり、これがインバータと接続して構成される太陽光発電ユニットがある。そして、この太陽光発電ユニットが複数並列に接続されて、例えば電力系統に連系されているものがある。以下、このシステム構造をストリングインバータ方式と呼ぶことにする。
【0003】
しかし、この方式では各インバータに制御装置を備える必要があるため、この制御装置による電力損失(固定損失)が増加するという問題を有している。特に日射量が減少し、低い発電電力で運転を行っている場合は電力損失の影響により効率が大幅に低下してしまう。
【0004】
また、特開平10−69321号記載の太陽光発電システムでは、基本的に太陽電池発電部とインバータが1:1対応で接続されているストリングインバータ方式で構成されているのだが、太陽光発電ユニットをいくつかまとめて組み分けし、その各組ごとに切り換え装置が設けられている。そして、その組内において、予め定められた主となるインバータにいくつかの太陽電池発電部の発電電力が集中するような構造となっている。
【0005】
そして、通常、太陽電池発電部に照射される日射量が充分である時には、各太陽光発電ユニット内において、太陽電池発電部とインバータを1:1対応で接続する。また、日射量の減少時には、予め組み分けされたいくつかの太陽光発電ユニットにおいて、そのそれぞれが有している各太陽電池発電部からの発電電力が集中するような主となるインバータを予め定めておく。そして、いくつかの切り換え装置をスイッチングすることによって、主インバータに発電電力を集中させていくとともに、主インバータでの電力変換を高効率で行えるようにしている。
【0006】
【発明が解決しようとする課題】
ところが、上記従来例にあって、予め定めらている主インバータが故障等の原因で動作しなくなった場合には、日射量が減少した時においても、各太陽光発電ユニットにおいて太陽電池発電部とインバータを1:1対応で接続して個別運転しなければならず、個々のインバータによる電力損失の影響が大きくなり、発電効率が著しく低下してしまう。
【0007】
本発明は、上記事由に鑑みて為されたものであり、日射量の違いやインバータの故障等に応じて自由にいくつかの稼動するインバータを選択し、そのインバータに最もシステム全体の効率がよくなるように発電電力を集中させることができる太陽光発電システムを提供するものである。
【0008】
【課題を解決するための手段】
上記課題を解決するために請求項1記載の太陽光発電システムは、複数の太陽電池パネルを直列接続してなる太陽電池発電部と、この太陽電池発電部からの出力電力を交流に変換するインバータとで構成される太陽電池発電ユニットを複数並列に接続して備えるとともに、複数の太陽電池発電ユニット内にあるインバータのうちから自由に選択された稼動インバータに、これと同一ユニット内にある太陽電池発電部を接続し、かつ、そのとき選択されなかった非稼動インバータから、これと同一ユニット内にある太陽電池発電部を切断して、この切断された太陽電池発電部を前記稼動インバータのうちいずれかに接続するようにスイッチングを行う接続変換部を備え、前記接続変換部は、各太陽光発電ユニットの主電路間を接続する分岐電路と、該主電路に設けられた直流開閉器及び該分岐電路に設けられた直流開閉器とから構成されていることを特徴とするものである。
【0009】
また、請求項2記載の太陽光発電システムは、複数の太陽電池発電ユニット内にあるインバータの発電データをそれぞれ検出し、これら発電データに基づいて前記稼動インバータを選択し、前記接続変換部におけるスイッチングを制御する制御部を設けたことを特徴とするものである。
【0010】
さらに、請求項3記載の太陽光発電システムは、請求項2記載の太陽光発電システムにおいて、前記制御部に、複数の太陽電池発電ユニット内にある太陽電池発電部を構成するいずれかの太陽電池パネルからそれぞれ開放電圧を測定して、前記非稼動インバータとこれと同一ユニット内にある太陽電池発電部とを再接続して得られるこのインバータからの発電電力を予測し、この発電電力に基づいて再接続するかどうかの判断をする制御機能を持たせたことを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について説明する。図1は、本発明の第1実施形態に係る太陽光発電システムの回路構成図である。
【0012】
この第1実施形態の太陽光発電システムは、複数個の太陽電池モジュールからなる太陽電池パネル1を複数直列に接続してなる太陽電池発電部2と、この太陽電池発電部2から出力される直流電力を供給する主電路3と、この主電路3を介して供給された太陽電池発電部2からの直流電力を交流電力に変換するインバータ4とで構成された太陽光発電ユニット5を備えている。そして、複数台の太陽光発電ユニット5が並列に接続されて、商用電源6に連系されている。
【0013】
ここで、太陽光発電ユニット5を区別するために、図1のように左の方から順番にa、b、cとし、太陽光発電ユニット5aを構成するものにはaを、5bを構成するものにはbを、5cを構成するものにはcを付することにする。(以下、同様にして説明する。)
この実施形態において、インバータ4は直流電力を交流電力に変換する電力変換機能とともに、商用電源6の周波数変動や電圧変動、あるいは停電等を検出して、インバータ4と商用電源6を切断する系統連系保護機能を有している。また、インバータ4は主電路3により接続される太陽電池発電部2の最大電力を出力可能なように、各太陽光発電ユニットにおいて個別に最大点出力制御を行う。すなわち、インバータ4aは太陽電池発電部2aに対して最大点出力制御を行うようになっている。
【0014】
また、この太陽光発電システムは、太陽電池発電部2とインバータ4との間の配線を変更する接続変換部7を備えている。この接続変換部7は、各太陽光発電ユニットの主電路間を接続している分岐電路8と、主電路3に設けられた直流開閉器9および分岐電路8に設けられた直流開閉器10から構成されている。本実施形態では、この直流開閉器9および10はインバータ4に内蔵された構造になっている。ただし本発明では、この直流開閉器9および10はインバータ4の外部に設けられていてもよい。
【0015】
本太陽光発電システムの動作について説明する。通常、各太陽電池発電部に照射される日射量が充分である時には、各インバータ4a、4b、4cは各太陽光発電ユニット内において直流開閉器9a、9b、9cを閉じ、各太陽電池発電部と1:1対応で接続して個別に発電を行っている。
【0016】
次に、太陽電池発電部2の設置場所や設置方向の違いにより、1日の太陽の動きによる影響を受けて日射量に違いが生じ、あるインバータの効率が低下した場合について説明する。例えば、太陽電池発電部2aの日射量が減少し発電電力が小さくなったとすると、それに応じてインバータ4aは電力損失の影響を受けやすくなり、効率が悪くなる。そして、このインバータ4aにおいてある程度効率が下がると、自動的に直流開閉器9aを開放して発電を停止し、かわりに直流開閉器10aを閉じるのである。図1において、インバータ4aの直流開閉器9aを開放し、直流開閉器10aを閉じると太陽電池発電部2aは、インバータ4cに接続される。このとき、インバータ4cには太陽電池発電部2aと太陽電池発電部2cが接続されることになり入力電力が増加する。このように、効率が下がったインバータの動作を停止し、これによって切り離された太陽電池発電部の発電電力を別のインバータに集中させることによって、効率が下がったインバータによる電力損失の影響を受けにくくし、システム全体として発電効率を上げるようになっている。このシステム構成によって、住宅等の屋根に取り付ける場合における、一部の太陽電池発電部の日射量が減少したときにおいても、効率の良い発電が可能となる。
【0017】
また、曇りの日や夕方などのように一様に日射量が減少し、各インバータ4a、4b、4cともに低効率領域で動作している場合ついて説明する。図1に示すように、太陽光発電ユニット5a、5b内において、太陽電池発電部2a、2bとインバータ4a、4bを、直流開閉器9a、9bを開放することによって切り離すと同時に、直流開閉器10a、10bを閉じる。このようにして、切り離された太陽電池発電部2a、2bの発電電力はインバータ4cに集中することになり、インバータ1台あたりの入力電力が増加して効率を上げているのである。
【0018】
次に、本発明の第2実施形態について、図2を参照して説明する。この太陽光発電システムは、接続変換部7の制御を行う制御部11を別途設け、かつ直流開閉器9および10をインバータ4の外部に設けた構成となっている点において、上記第1実施形態と異なっている。
【0019】
この太陽光発電システムの動作について、上記した太陽電池発電部2の設置場所や設置方向の違いにより、各太陽電池発電部における日射量に違いが生じた場合について説明する。例えば、太陽電池発電部2aの日射量が減少したとすると、制御部11は各太陽電池発電ユニット内にある各インバータの発電データ(電圧、電流、電力)をそれぞれ検出し、太陽電池発電部2aの発電電力が低下していることを検知する。そして、制御部11は稼動インバータ(日射量減少時に動作するインバータ)を自由に選択することができる。図1において、稼動インバータを4b、4cの2つに選択したとすると、制御部11はそのときに選択されなかった非稼動インバータ4aの直流開閉器9aを開放して太陽電池発電部2aを切り離し、直流開閉器10aを閉じて太陽電池発電部2aの発電電力をインバータ4cに集めている。このとき、選択された稼動インバータ4b、4cは、それぞれの太陽光発電ユニット5b、5c内にある太陽電池発電部2b、2cと、直流開閉器9b、9cを介して接続されている。このように、一部の太陽電池発電部の日射量が減少した場合において、制御部11は動作するインバータ数を減少させ、動作を継続するインバータの太陽電池発電部の並列数を増加させるように、接続変換部7が有する直流開閉器9および10のスイッチングを制御しているのである。
【0020】
なお、何らかの原因でインバータ4のいずれかが故障し動作しなくなった場合においても、制御部11は、その故障したインバータに接続されている太陽電池発電部の発電電力を他の正常なインバータに集中させるように、接続変換部7が有する直流開閉器9および10を制御する。
【0021】
また、曇りの日や夕方など一様に日射量が減少した場合に、例えば図1において、制御部11は各太陽電池発電ユニット内にある各インバータの発電データより、稼動インバータをインバータ4cに選択したとすると、直流開閉器9a、9bを開放し、直流開閉器10a、10b閉じて稼動インバータ4cの入力電力が増加するように制御する。
【0022】
さらに、本実施形態において、稼動インバータのうちいずれかに入力電力が集中して発電しているシステムを、各太陽光発電ユニットにおいて、太陽電池発電部2とインバータ4がもとの1:1対応で接続して個別に発電を行うシステムに戻すときの動作について説明する。日射量が減少し、1台のインバータに複数の太陽電池発電部が並列接続されている状態、例えば図1において、太陽電池発電部2a、2bの発電電力がインバータ4aに集中して発電しているとする。このとき、制御部11は、各太陽電池発電部2a、2bを構成するいずれかの太陽電池パネルから、それぞれ開放電圧を測定し、その開放電圧からインバータ4bを再び動作させて、各太陽光発電ユニット5a、5bを個別に運転した場合に予測される各インバータ4a、4bの発電電力を演算により求めるのである。そして、太陽電池発電部2aと太陽電池発電部2bが並列接続され、インバータ4aが動作している状態において、
p1+p2>P1
p1:開放電圧から予測される個別運転した時のインバータ1aの発電電力
p2:開放電圧から予測される個別運転した時のインバータ1bの発電電力
P1:集中運転を行うインバータ1aの発電電力
である場合、太陽電池発電部2bをインバータ4aから切り離し、個別運転にシフトする。このように、集中運転時と個別運転時の発電電力を比較しながら接続変換部を制御することができるため、太陽電池発電部に雲がかかった場合のような一時的な日射量の減少により、太陽電池発電部が並列に接続されたときにでも、最も効率の良いタイミングで集中運転から個別運転へ移行させることができるのである。
【0023】
【発明の効果】
以上、説明したように、請求項1記載の太陽光発電システムでは、少数のインバータに太陽電池発電部の出力を集中させることにより、インバータが高効率領域で動作できるため、システム全体として効率の向上が図れる。さらに、日射量の違いやインバータの故障等に応じて自由にいくつかの稼動するインバータを選択し、そのインバータに最もシステム全体の効率がよくなるように発電電力を集中させることができる太陽光発電システムを提供することができる。
【0024】
請求項2記載の太陽光発電システムでは、制御部がシステム全体の発電状況を監視しながら、太陽電池発電部とインバータの組み合わせを決定し、接続変換部のスイッチングを制御するため、精度良く、効率的なシステム動作が可能となる。
【0025】
請求項3記載の太陽光発電システムでは、集中運転時と個別運転時の発電電力を比較しながら接続変換部を制御することができるため、最も効率の良いタイミングで集中運転から個別運転へ移行させることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る太陽光発電システムの回路構成図である。
【図2】本発明の第2実施形態に係る太陽光発電システムの構成図である。
【符号の説明】
1 太陽電池パネル
2 太陽電池発電部
4 インバータ
5 太陽光発電ユニット
7 接続変換部
11 制御部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photovoltaic power generation system, and more particularly to a photovoltaic power generation system that efficiently generates power as a whole system even when the amount of solar radiation is reduced.
[0002]
[Prior art]
A conventional solar power generation system includes a solar battery power generation unit formed by connecting solar battery panels in series, and there is a solar power generation unit configured by being connected to an inverter. And some of this photovoltaic power generation unit is connected in parallel, for example, is connected to the power system. Hereinafter, this system structure is called a string inverter system.
[0003]
However, in this method, since it is necessary to provide each inverter with a control device, there is a problem that power loss (fixed loss) due to this control device increases. In particular, when the amount of solar radiation is reduced and operation is performed with low generated power, the efficiency is greatly reduced due to the influence of power loss.
[0004]
Moreover, in the photovoltaic power generation system described in Japanese Patent Laid-Open No. 10-69321, a photovoltaic power generation unit is basically configured by a string inverter system in which a photovoltaic power generation unit and an inverter are connected in a 1: 1 correspondence. Are grouped together and a switching device is provided for each group. And in the group, it has the structure where the generated electric power of several solar cell power generation units concentrates on a predetermined main inverter.
[0005]
And normally, when the solar radiation amount irradiated to a solar cell power generation part is enough, in each solar power generation unit, a solar cell power generation part and an inverter are connected by 1: 1 correspondence. In addition, when the amount of solar radiation decreases, in some of the solar power generation units that have been assembled in advance, a main inverter that concentrates the generated power from each solar cell power generation unit that each has is determined in advance. Keep it. Then, by switching several switching devices, the generated power is concentrated on the main inverter and power conversion at the main inverter can be performed with high efficiency.
[0006]
[Problems to be solved by the invention]
However, in the conventional example described above, when the predetermined main inverter stops operating due to a failure or the like, even when the amount of solar radiation decreases, the solar cell power generation unit in each solar power generation unit Inverters must be connected in a 1: 1 correspondence and operated individually, and the effect of power loss due to the individual inverters is increased, resulting in a significant reduction in power generation efficiency.
[0007]
The present invention has been made in view of the above-mentioned reasons, and several inverters that are freely operated are selected according to the difference in the amount of solar radiation, the failure of the inverter, and the like, and the efficiency of the entire system is most improved in the inverter. Thus, a photovoltaic power generation system capable of concentrating generated power is provided.
[0008]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a solar power generation system according to claim 1 is a solar cell power generation unit in which a plurality of solar cell panels are connected in series, and an inverter that converts output power from the solar cell power generation unit into an alternating current. A plurality of solar cell power generation units connected in parallel to each other, and an operation inverter freely selected from among the inverters in the plurality of solar cell power generation units, a solar cell in the same unit as this The solar cell power generation unit in the same unit as the non-operating inverter that is not selected at that time is connected to the power generation unit, and the solar cell power generation unit thus disconnected is replaced with any of the operating inverters. with a connection conversion unit that performs switching to crab connection, the connection conversion unit, the branch path which connects between the main path of each photovoltaic unit , And is characterized in that it is composed of a DC switchgear provided in the DC switch and the branch path is provided to the main path.
[0009]
The photovoltaic power generation system according to claim 2 detects the power generation data of the inverters in the plurality of solar cell power generation units, selects the operating inverter based on the power generation data, and performs switching in the connection conversion unit. The present invention is characterized in that a control unit for controlling is provided.
[0010]
Furthermore, the solar power generation system according to claim 3 is the solar power generation system according to claim 2, wherein any one of the solar cells constituting the solar cell power generation unit in the plurality of solar cell power generation units is provided in the control unit. Measure the open circuit voltage from each panel, predict the generated power from this inverter obtained by reconnecting the non-operating inverter and the solar cell power generation unit in the same unit, and based on this generated power It is characterized by having a control function for determining whether or not to reconnect.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described. FIG. 1 is a circuit configuration diagram of the photovoltaic power generation system according to the first embodiment of the present invention.
[0012]
The solar power generation system according to the first embodiment includes a solar cell power generation unit 2 in which a plurality of solar cell panels 1 including a plurality of solar cell modules are connected in series, and a direct current output from the solar cell power generation unit 2. A solar power generation unit 5 is provided that includes a main electric circuit 3 that supplies electric power, and an inverter 4 that converts DC power from the solar battery power generation unit 2 supplied through the main electric circuit 3 into AC power. . A plurality of photovoltaic power generation units 5 are connected in parallel and connected to the commercial power source 6.
[0013]
Here, in order to distinguish the photovoltaic power generation unit 5, a, b, and c are set in order from the left as shown in FIG. 1, and a constituting the photovoltaic power generation unit 5a is a and 5b. In this case, b is attached to the object and c is attached to the object constituting 5c. (Hereafter, the same description will be given.)
In this embodiment, the inverter 4 has a power conversion function for converting DC power into AC power, and also detects a frequency fluctuation, voltage fluctuation, power failure, etc. of the commercial power supply 6 and disconnects the inverter 4 from the commercial power supply 6. Has system protection function. In addition, the inverter 4 individually performs maximum point output control in each solar power generation unit so that the maximum power of the solar cell power generation unit 2 connected by the main electric circuit 3 can be output. That is, the inverter 4a performs maximum point output control on the solar cell power generation unit 2a.
[0014]
In addition, this solar power generation system includes a connection conversion unit 7 that changes the wiring between the solar cell power generation unit 2 and the inverter 4. The connection conversion unit 7 includes a branch circuit 8 connecting the main circuits of each photovoltaic power generation unit, a DC switch 9 provided in the main circuit 3, and a DC switch 10 provided in the branch circuit 8. It is configured. In the present embodiment, the DC switches 9 and 10 are built in the inverter 4. However, in the present invention, the DC switches 9 and 10 may be provided outside the inverter 4.
[0015]
The operation of this solar power generation system will be described. Normally, when the solar radiation amount irradiated to each solar cell power generation unit is sufficient, each inverter 4a, 4b, 4c closes the DC switches 9a, 9b, 9c in each solar power generation unit, and each solar cell power generation unit Are connected in a 1: 1 correspondence to generate power individually.
[0016]
Next, a description will be given of a case where the difference in the amount of solar radiation occurs due to the influence of the movement of the sun in the day due to the difference in the installation location and the installation direction of the solar cell power generation unit 2, and the efficiency of a certain inverter decreases. For example, if the amount of solar radiation of the solar cell power generation unit 2a is reduced and the generated power is reduced, the inverter 4a is accordingly susceptible to power loss and the efficiency is deteriorated. When the efficiency of the inverter 4a is lowered to some extent, the DC switch 9a is automatically opened to stop power generation, and the DC switch 10a is closed instead. In FIG. 1, when the DC switch 9a of the inverter 4a is opened and the DC switch 10a is closed, the solar cell power generation unit 2a is connected to the inverter 4c. At this time, the solar cell power generation unit 2a and the solar cell power generation unit 2c are connected to the inverter 4c, and the input power increases. In this way, by stopping the operation of the inverter whose efficiency has been reduced and concentrating the power generated by the solar cell power generation unit thus separated to another inverter, it is less likely to be affected by the power loss caused by the inverter whose efficiency has been reduced. However, the power generation efficiency of the entire system is increased. With this system configuration, efficient power generation is possible even when the amount of solar radiation of some solar cell power generation units when attached to a roof such as a house is reduced.
[0017]
Further, a case will be described in which the amount of solar radiation is reduced uniformly, such as on a cloudy day or in the evening, and each inverter 4a, 4b, 4c is operating in a low efficiency region. As shown in FIG. 1, in the solar power generation units 5a and 5b, the solar cell power generation units 2a and 2b and the inverters 4a and 4b are disconnected by opening the DC switches 9a and 9b, and at the same time, the DC switch 10a. 10b is closed. In this way, the generated power of the separated solar battery power generation units 2a and 2b is concentrated on the inverter 4c, and the input power per inverter increases and the efficiency is increased.
[0018]
Next, a second embodiment of the present invention will be described with reference to FIG. This solar power generation system has a configuration in which a control unit 11 that controls the connection conversion unit 7 is separately provided, and the DC switches 9 and 10 are provided outside the inverter 4. Is different.
[0019]
Regarding the operation of this solar power generation system, a case will be described in which a difference occurs in the amount of solar radiation in each solar cell power generation unit due to the difference in installation location and installation direction of the solar cell power generation unit 2 described above. For example, if the solar radiation amount of the solar cell power generation unit 2a decreases, the control unit 11 detects the power generation data (voltage, current, power) of each inverter in each solar cell power generation unit, and the solar cell power generation unit 2a. It is detected that the generated power is lower. And the control part 11 can select freely an operation | movement inverter (inverter which operate | moves when the amount of solar radiation decreases). In FIG. 1, if two operating inverters 4b and 4c are selected, the control unit 11 opens the DC switch 9a of the non-operating inverter 4a that was not selected at that time and disconnects the solar cell power generation unit 2a. The DC switch 10a is closed and the power generated by the solar cell power generation unit 2a is collected in the inverter 4c. At this time, the selected operation inverters 4b and 4c are connected to the solar cell power generation units 2b and 2c in the respective solar power generation units 5b and 5c via the DC switches 9b and 9c. Thus, when the amount of solar radiation of some solar cell power generation units decreases, the control unit 11 decreases the number of operating inverters and increases the number of parallel solar cell power generation units of the inverter that continues to operate. The switching of the DC switches 9 and 10 included in the connection conversion unit 7 is controlled.
[0020]
Even if one of the inverters 4 fails due to some reason, the control unit 11 concentrates the generated power of the solar cell power generation unit connected to the failed inverter on another normal inverter. The DC switches 9 and 10 included in the connection conversion unit 7 are controlled so as to make the connection.
[0021]
Further, when the amount of solar radiation decreases uniformly, such as on a cloudy day or in the evening, for example, in FIG. 1, the control unit 11 selects the operating inverter as the inverter 4c from the power generation data of each inverter in each solar cell power generation unit. If so, the DC switches 9a and 9b are opened, the DC switches 10a and 10b are closed, and the input power of the operating inverter 4c is controlled to increase.
[0022]
Further, in the present embodiment, a system in which input power is concentrated and generated in any of the operating inverters, in each solar power generation unit, the solar cell power generation unit 2 and the inverter 4 correspond to the original 1: 1. The operation when returning to the system that generates power individually by connecting them will be described. In a state where the amount of solar radiation is reduced and a plurality of solar cell power generation units are connected in parallel to one inverter, for example, in FIG. 1, the power generated by the solar cell power generation units 2a and 2b is concentrated on the inverter 4a to generate power. Suppose that At this time, the control unit 11 measures the open circuit voltage from any of the solar cell panels constituting each of the solar cell power generation units 2a and 2b, operates the inverter 4b again from the open voltage, The generated power of each inverter 4a, 4b predicted when the units 5a, 5b are individually operated is obtained by calculation. And in the state where the solar cell power generation unit 2a and the solar cell power generation unit 2b are connected in parallel and the inverter 4a is operating,
p1 + p2> P1
p1: Generated power of the inverter 1a when individually operated predicted from the open voltage p2: Generated power of the inverter 1b when individually operated predicted from the open voltage P1: Generated power of the inverter 1a performing centralized operation The solar battery power generation unit 2b is disconnected from the inverter 4a and shifted to individual operation. In this way, since the connection conversion unit can be controlled while comparing the generated power during centralized operation and individual operation, it is possible to temporarily reduce the amount of solar radiation when the solar cell power generation unit is clouded. Even when the solar cell power generation units are connected in parallel, it is possible to shift from centralized operation to individual operation at the most efficient timing.
[0023]
【The invention's effect】
As described above, in the photovoltaic power generation system according to claim 1, since the inverter can operate in a high efficiency region by concentrating the output of the solar cell power generation unit on a small number of inverters, the efficiency of the entire system is improved. Can be planned. Furthermore, a solar power generation system that can select several operating inverters freely according to differences in solar radiation, inverter failures, etc., and concentrate the generated power so that the efficiency of the entire system is the best Can be provided.
[0024]
In the solar power generation system according to claim 2, the control unit determines the combination of the solar cell power generation unit and the inverter while monitoring the power generation status of the entire system, and controls the switching of the connection conversion unit. System operation is possible.
[0025]
In the photovoltaic power generation system according to claim 3, since the connection conversion unit can be controlled while comparing the generated power during the central operation and the individual operation, the operation is shifted from the central operation to the individual operation at the most efficient timing. be able to.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a photovoltaic power generation system according to a first embodiment of the present invention.
FIG. 2 is a configuration diagram of a photovoltaic power generation system according to a second embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Solar cell panel 2 Solar cell power generation part 4 Inverter 5 Solar power generation unit 7 Connection conversion part 11 Control part

Claims (3)

複数の太陽電池パネルを直列接続してなる太陽電池発電部と、この太陽電池発電部からの出力電力を交流に変換するインバータとで構成される太陽電池発電ユニットを複数並列に接続して備えるとともに、
複数の太陽電池発電ユニット内にあるインバータのうちから自由に選択された稼動インバータに、これと同一ユニット内にある太陽電池発電部を接続し、かつ、そのとき選択されなかった非稼動インバータから、これと同一ユニット内にある太陽電池発電部を切断して、この切断された太陽電池発電部を前記稼動インバータのうちいずれかに接続するようにスイッチングを行う接続変換部を備え、
前記接続変換部は、各太陽光発電ユニットの主電路間を接続する分岐電路と、該主電路に設けられた直流開閉器及び該分岐電路に設けられた直流開閉器とから構成されていることを特徴とする太陽光発電システム。
A plurality of solar cell power generation units each including a solar cell power generation unit formed by connecting a plurality of solar cell panels in series and an inverter that converts output power from the solar cell power generation unit into alternating current are provided in parallel. ,
From a non-operating inverter not selected at that time, connecting a solar cell power generation unit in the same unit to an operating inverter freely selected from among inverters in a plurality of solar cell power generation units, The solar cell power generation unit in the same unit as this is cut, and a connection conversion unit that performs switching so as to connect the cut solar cell power generation unit to any of the operating inverters ,
The connection conversion unit includes a branch circuit that connects between the main circuits of each photovoltaic power generation unit, a DC switch provided in the main circuit, and a DC switch provided in the branch circuit. A solar power generation system characterized by
複数の太陽電池発電ユニット内にあるインバータの発電データをそれぞれ検出し、これら発電データに基づいて前記稼動インバータを選択し、前記接続変換部におけるスイッチングを制御する制御部を設けたことを特徴とする請求項1記載の太陽光発電システム。  A control unit is provided that detects power generation data of inverters in a plurality of solar cell power generation units, selects the operating inverter based on the power generation data, and controls switching in the connection conversion unit. The photovoltaic power generation system according to claim 1. 前記制御部は、複数の太陽電池発電ユニット内にある太陽電池発電部を構成するいずれかの太陽電池パネルからそれぞれ開放電圧を測定して、前記非稼動インバータとこれと同一ユニット内にある太陽電池発電部とを再接続して得られるこのインバータからの発電電力を予測し、この発電電力に基づいて再接続するかどうかの判断をすることを特徴とする請求項2記載の太陽光発電システム。  The control unit measures an open circuit voltage from any of the solar cell panels constituting the solar cell power generation unit in the plurality of solar cell power generation units, and the non-operating inverter and the solar cell in the same unit. The photovoltaic power generation system according to claim 2, wherein the generated power from the inverter obtained by reconnecting the power generation unit is predicted, and it is determined whether to reconnect based on the generated power.
JP2000264268A 2000-08-31 2000-08-31 Solar power system Expired - Lifetime JP3656531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000264268A JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000264268A JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Publications (2)

Publication Number Publication Date
JP2002073184A JP2002073184A (en) 2002-03-12
JP3656531B2 true JP3656531B2 (en) 2005-06-08

Family

ID=18751706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000264268A Expired - Lifetime JP3656531B2 (en) 2000-08-31 2000-08-31 Solar power system

Country Status (1)

Country Link
JP (1) JP3656531B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1642355A4 (en) 2003-05-28 2015-05-27 Beacon Power Llc Power converter for a solar panel
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
JP5300404B2 (en) * 2008-10-14 2013-09-25 株式会社Nttファシリティーズ Power conversion system, power conversion control device, power conversion control method, and program
ES2338088B8 (en) 2008-10-30 2011-08-04 Asea Brown Boveri, S.A SYSTEM AND METHOD OF OPTIMIZATION OF ENERGY IN PHOTOVOLTAIC GENERATORS.
JP5301685B2 (en) * 2009-02-23 2013-09-25 テンケーソーラー インコーポレイテッド Highly efficient renewable solar energy system
EP2911263A3 (en) 2009-06-15 2015-10-14 Tenksolar, Inc. Illumination agnostic solar panel
KR101097260B1 (en) * 2009-12-15 2011-12-22 삼성에스디아이 주식회사 Grid-connected energy storage system and method for controlling grid-connected energy storage system
US9773933B2 (en) 2010-02-23 2017-09-26 Tenksolar, Inc. Space and energy efficient photovoltaic array
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
GB2485423B (en) * 2011-01-18 2014-06-04 Enecsys Ltd Solar photovoltaic systems
JP5615209B2 (en) * 2011-03-04 2014-10-29 テクノナレッジ・システム有限会社 Solar power plant
CN102611133A (en) * 2012-03-13 2012-07-25 华为技术有限公司 Solar photovoltaic grid-connected electric generating system and electric generating control method
WO2013161307A1 (en) * 2012-04-27 2013-10-31 パナソニック株式会社 Wiring switching system
CN102684297B (en) * 2012-05-16 2015-12-02 华为技术有限公司 Solar power system and N+1 thereof back up power distribution control method
KR101777230B1 (en) * 2012-07-17 2017-09-11 한국전자통신연구원 Inverter system for photovoltaic power generation
US9608438B2 (en) 2012-07-17 2017-03-28 Electronics And Telecommunications Research Institute Inverter system for photovoltaic power generation
KR200466061Y1 (en) * 2012-10-25 2013-04-03 이창수 Inverter tower for photovoltaic power generation apparatus
KR101257639B1 (en) * 2012-10-25 2013-04-29 이창수 Photovoltaic power generation system
EP2770539A1 (en) * 2013-02-20 2014-08-27 Total Marketing Services Electronic management system for electricity generating cells, electricity generating system and method for electronically managing energy flow
US20180262121A1 (en) * 2015-04-13 2018-09-13 FeCon GmbH Method for error handling and partial redundancy in parallel inverters by means of input switches

Cited By (120)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Also Published As

Publication number Publication date
JP2002073184A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
JP3656531B2 (en) Solar power system
JP6521332B2 (en) Cascaded H-bridge inverter and method for handling defects thereof
EP2899606B1 (en) Power conditioner, and method for controlling same
JP2000358330A (en) Photovoltaic power generating apparatus
JP2007518386A (en) DC / DC converter and distributed power generation system including the same
JP2001268800A (en) Solar light power generation control method and apparatus
JP2011019312A (en) Power conversion device
JP2020518213A (en) Device and method for integrating and delivering energy
JPH0767346A (en) Control method of parallel operation of inverter for system interconnection
CN115276549B (en) PID effect suppression system
US11532935B2 (en) Rapid shutdown device for photovoltaic system and control method thereof and protection system
KR102246043B1 (en) Tcs solar generation system and method
JPH04304126A (en) Device for supplying electric power from fuel cell
JP2000270482A (en) System linkage method of natural energy generator
KR101505481B1 (en) Photovoltaic generation system capable of selectively parallel operation
KR101505480B1 (en) Photovoltaic generation system capable of selectively parallel operation
JPH1014111A (en) System-linked power supply system
JPWO2006033142A1 (en) Photovoltaic power generation system and its boosting unit
JPH09322555A (en) System cooperation system
JP2000114567A (en) Solar battery module and solar power generating system
JP3633123B2 (en) Distributed power system
JPH04222420A (en) Fuel cell power supply system
JP3584613B2 (en) Distributed power system
EP3852229A1 (en) Power supply system
CN115149558B (en) High-voltage high-capacity battery energy storage power conversion system with intelligent control architecture

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050228

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120318

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130318

Year of fee payment: 8