JPH0767346A - Control method of parallel operation of inverter for system interconnection - Google Patents

Control method of parallel operation of inverter for system interconnection

Info

Publication number
JPH0767346A
JPH0767346A JP5211988A JP21198893A JPH0767346A JP H0767346 A JPH0767346 A JP H0767346A JP 5211988 A JP5211988 A JP 5211988A JP 21198893 A JP21198893 A JP 21198893A JP H0767346 A JPH0767346 A JP H0767346A
Authority
JP
Japan
Prior art keywords
inverter
inverters
power
control method
parallel operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5211988A
Other languages
Japanese (ja)
Other versions
JP3254839B2 (en
Inventor
Takeyuki Akatsuka
健之 赤塚
Hisashi Fujimoto
久 藤本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21198893A priority Critical patent/JP3254839B2/en
Publication of JPH0767346A publication Critical patent/JPH0767346A/en
Application granted granted Critical
Publication of JP3254839B2 publication Critical patent/JP3254839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

PURPOSE:To maintain the proper value of power conversion efficiency as the whole inverter system for system interconnection consisting of a plurality of inverters and a DC power supply such as a solar cell respectively. CONSTITUTION:When the sum of the output power of both inverters 2A and 2B detected by an output voltage detector 6 is smaller than a set value thereof, an electromagnetic 3C for varying interconnection among both inverters and both solar cells 1A, 1B is closed, and either one inverter selected in both inverters is supplied with electricity from both solar cells. When the sum of both output power is larger than the set value thereof, the electromagnetic switch 3C is opened. Accordingly, the inverters are operated in both combination of the inverter 2A and the solar cell 1A and the inverter 2B and the solar cell 1B, and the operation of the inverters is controlled in conformity with a specified program in a switching control circuit 7 so as to maintain the proper value of the power conversion efficiency of the inverters by the increase of the load factor of the inverters regarding the inverters selected to be worked.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、その出力が変動する
太陽電池電源又は風力発電等による交流電力を整流して
得た直流電源をその入力源として所定の交流電力を出力
すると共に、交流系統電源との並列運転を行い系統連系
用インバータシステムを構成する複数のインバータの並
列運転制御方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses a DC power source obtained by rectifying AC power from a solar cell power source or a wind power generator whose output fluctuates as an input source to output a predetermined AC power, and also to an AC system. The present invention relates to a parallel operation control method for a plurality of inverters that operate in parallel with a power source to form a grid interconnection inverter system.

【0002】[0002]

【従来の技術】従来のこの種系統連系用インバータの並
列運転制御方法としては、太陽光発電システムを例とす
る図6の系統連系用インバータシステムの構成図に従っ
て行われるものが知られている。図6において1はその
出力が変動する直流電源としての太陽電池であり、その
複数台の内訳を1A,1B,……,1Nとし、また2は
インバータであり、前記の太陽電池1A,1B,……,
1Nをそれぞれその直流電源とする複数台のインバータ
を2A,2B,……,2Nとする。
2. Description of the Related Art As a conventional parallel operation control method for this type of grid interconnection inverter, one is known which is performed according to the configuration diagram of the grid interconnection inverter system of FIG. There is. In FIG. 6, 1 is a solar cell as a DC power source whose output fluctuates, and the breakdown of the plurality of solar cells is 1A, 1B, ..., 1N, and 2 is an inverter, and the solar cells 1A, 1B, ……,
Let 2A, 2B, ..., 2N be a plurality of inverters each having 1N as its DC power source.

【0003】また31は前記のインバータ2を交流系統
電源4に並入させる開閉手段としての電磁開閉器3の接
点であり、前記各インバータ2A,2B,……,2Nに
対応しそれぞれ31A,31B,……,31Nとする。
即ち、前記の如き従来の系統連系用インバータシステム
は、交流系統電源4と並列運転される各直流/交流変換
系統を1A−2A−31A,……,1N−2N−31N
の如く、直流電源1とインバータ2と電磁開閉器3(或
いは接点31)との1対1の固定された関係において構
成し、前記各変換系統毎に独立してそのインバータの運
転・停止制御と電磁開閉器の開閉制御とを行うものであ
る。
Reference numeral 31 is a contact of an electromagnetic switch 3 as switching means for inserting the inverter 2 into the AC system power source 4 in parallel, corresponding to the inverters 2A, 2B, ..., 2N, respectively, 31A and 31B. , ..., 31N.
That is, in the conventional system interconnection inverter system as described above, each DC / AC conversion system that is operated in parallel with the AC system power source 4 has 1A-2A-31A, ..., 1N-2N-31N.
As described above, the DC power supply 1, the inverter 2, and the electromagnetic switch 3 (or the contact 31) are configured in a fixed relationship of 1: 1 and the inverter operation / stop control is independently performed for each conversion system. The opening / closing control of the electromagnetic switch is performed.

【0004】[0004]

【発明が解決しようとする課題】一般にインバータは低
出力時においてその電力変換効率が低いため、出来るだ
け高負荷率で或いは高出力状態で運転されることが望ま
しい。一方前記の如く、従来の系統連系用インバータシ
ステムでは各インバータとその直流電源との対応は1対
1の固定関係にある。
Generally, since the inverter has a low power conversion efficiency at the time of low output, it is desirable that the inverter is operated at a high load factor or a high output state as much as possible. On the other hand, as described above, in the conventional system interconnection inverter system, the correspondence between each inverter and its DC power source is a fixed one-to-one relationship.

【0005】従ってインバータの直流電源を太陽電池と
すれば、低日照状態においてはその発電電力は小であ
り、この太陽電池をその直流電源とする個々のインバー
タ或いはその集合としてのインバータシステム全体とし
ては低い電力変換効率にて運転せざるを得ず、電力損失
の増大を伴って望ましくない運転状態となる。更にま
た、前記インバータシステムを構成する何れかのインバ
ータが故障停止すれば、この故障インバータに給電する
太陽電池が日照を受けて正常に発電しており且つこの太
陽電池の出力に対し前記インバータシステム全体として
その電力変換能力に余力のある場合においても、前記故
障インバータに給電する太陽電池の出力はインバータシ
ステム全体としての発電に寄与出来なくなる。
Therefore, if the DC power source of the inverter is a solar cell, the generated power is small in the low sunshine state, and the individual inverters using the solar cell as the DC power source or the inverter system as a whole is There is no choice but to operate with low power conversion efficiency, and an undesired operating state occurs with an increase in power loss. Furthermore, if any of the inverters forming the inverter system fails and stops, the solar cell that supplies power to the failed inverter receives sunlight and normally generates power, and the inverter system as a whole responds to the output of the solar cell. As a result, even when there is a surplus in the power conversion capability, the output of the solar cell that feeds the faulty inverter cannot contribute to the power generation of the entire inverter system.

【0006】上記に鑑みこの発明は、前記インバータシ
ステムにおける各複数のインバータと直流電源との任意
の組み合わせを可能とし、直流電源の適当な集約により
運転インバータにおける変換効率の適値維持を図り、ま
た何れかのインバータの故障停止に際しても、前記各直
流電源の全ての発生電力を交流電力へ変換し得る系統連
系用インバータの並列運転制御方法の提供を目的とする
ものである
In view of the above, the present invention enables any combination of a plurality of inverters and a DC power source in the above-mentioned inverter system, and achieves an appropriate value of the conversion efficiency in the operating inverter by appropriately consolidating the DC power sources. It is an object of the present invention to provide a parallel operation control method of a grid interconnection inverter capable of converting all generated power of each DC power supply into AC power even when any of the inverters fails and stops.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
に、この発明の系統連系用インバータの並列運転制御方
法においては、1)第一の手段として、その出力が変動
する複数の直流電源からの直流電力を所定の交流電力に
変換すると共にその出力側に設置された開閉手段を介し
て交流系統電源との並列運転を行い系統連系用のインバ
ータシステムを構成する複数のインバータの並列運転制
御方法において、前記各インバータと各直流電源間相互
の任意の組み合わせ接続を行う接続切換手段と、前記交
流系統電源と並列運転中の各インバータの出力電力の総
和を検出する電力検出手段と、所定のプログラムに従い
前記の各インバータと接続切換手段とを駆動制御する開
閉制御手段とを設け、前記インバータ出力電力の総和を
各運転インバータがその最適の変換効率にて分担し得る
如くなした前記の各運転インバータと各直流電源との組
み合わせを前記所定のプログラムに従って選択すると共
に、この選択結果に従って特定された各インバータの起
動・停止と前記接続切換手段の開閉制御とを行うものと
し、また、2)第二の手段として、前記第一の手段にお
ける所定のプログラムは、前記各インバータの故障停止
状態とその復旧後の運転可能状態とに対応しその運転可
能なインバータ台数に関して自動修正されるものとし、
また、3)第三の手段として、前記第一の手段における
所定のプログラムに従い行われる各インバータの起動・
停止制御時、次段動作への移行までに時限要素による一
定の状態確認時間を設定するものとする。
In order to achieve the above object, in the parallel operation control method of the grid interconnection inverter according to the present invention, 1) a first means is a plurality of DC power supplies whose outputs vary. Parallel operation of a plurality of inverters that form an inverter system for grid interconnection by converting the DC power from the AC power supply to a predetermined AC power and performing parallel operation with the AC power supply through the opening / closing means installed on the output side In the control method, connection switching means for performing any combinational connection between each inverter and each DC power supply, power detection means for detecting the total output power of each inverter operating in parallel with the AC power supply, and a predetermined value. And a switching control means for driving and controlling each of the inverters and the connection switching means in accordance with the program of FIG. A combination of each of the operating inverters and each DC power source that can be shared with the optimum conversion efficiency is selected according to the predetermined program, and the start / stop of each inverter specified according to the selection result and the above Opening / closing control of the connection switching means is performed, and 2) As a second means, a predetermined program in the first means is set to a failure stop state of each inverter and an operable state after the restoration. Correspondingly, it shall be automatically corrected regarding the number of operable inverters,
3) As a third means, the start-up of each inverter performed according to the predetermined program in the first means.
During stop control, a fixed state confirmation time is set by the time-limit element before the transition to the next stage operation.

【0008】[0008]

【作用】一般にインバータはその低負荷低出力時におけ
る電力変換効率が低く、従って出来るだけ高負荷高出力
状態で運転されることが望ましい。上記に対応してこの
発明の第一のものは、系統連系用インバータシステム全
体としての電力変換効率の適値維持を図るものであり、
前記インバータシステムを構成する複数のインバータと
太陽電池等の複数の直流電源間の任意の組み合わせ接続
を可能とする電磁開閉器から成る接続切換手段を設け、
変動する前記各直流電源総合の発電電力に対応してそれ
ぞれその最適の高出力状態が得られる如くなしたインバ
ータ運転台数の決定と、前記高出力状態に対応して各運
転インバータに集約接続すべき直流電源数の決定と、こ
れら両決定に従い行われるインバータと直流電源との各
組み合わせの特定と、を所定のプログラムに従って常時
行い、前記インバータシステムをその直流電源群総合の
発電電力に対応した最適の電力変換効率にて運用させる
ものである。
In general, the inverter has a low power conversion efficiency when the load is low and the output is low. Therefore, it is desirable that the inverter be operated in a high load and high output state as much as possible. In response to the above, the first aspect of the present invention is to maintain an appropriate value of the power conversion efficiency of the entire grid interconnection inverter system,
Providing a connection switching means consisting of an electromagnetic switch that enables arbitrary combination connection between a plurality of inverters constituting the inverter system and a plurality of DC power sources such as solar cells,
It is necessary to determine the number of operating inverters so as to obtain the optimum high output state corresponding to the fluctuating generated power of each DC power source, and collectively connect to each operating inverter corresponding to the high output state. The determination of the number of DC power supplies and the identification of each combination of the inverter and the DC power supply performed according to both of these determinations are always performed according to a predetermined program, and the inverter system is optimized for the total generated power of the DC power supply group. It is operated at power conversion efficiency.

【0009】またこの発明の第二のものは、前記のイン
バータシステムを構成する何れかのインバータの故障停
止に際し、この故障インバータに連なる直流電源を前記
接続切換手段を介して他の正常なインバータへ接続変更
しその発生電力の有効な利用を図るものであり、前記接
続切換手段を制御する前記所定のプログラムを、前記各
インバータの故障停止状態とその復旧後の運転可能状態
とに対応してその運転可能なインバータ台数に関して自
動修正するものである。
The second aspect of the present invention, when any one of the inverters constituting the above-mentioned inverter system fails to stop, the DC power source connected to the failed inverter is transferred to another normal inverter via the connection switching means. The connection is changed and the generated power is effectively used, and the predetermined program for controlling the connection switching means is provided in correspondence with the failure stop state of each inverter and the operable state after the restoration. The number of operable inverters is automatically corrected.

【0010】またこの発明の第三のものは、例えば日照
状態の急変によってその出力電力の急変の起こり得る太
陽電池電源等に対し前記インバータシステムの安定した
運転を図るために、前記所定のプログラムに従う各イン
バータの起動・停止の切換え制御時、次段動作への移行
までに時限要素による一定の状態確認時間を設定するも
のである。
A third aspect of the present invention follows the above predetermined program in order to ensure stable operation of the inverter system with respect to a solar cell power source or the like in which the output power may suddenly change due to a sudden change in the sunshine state. During start / stop switching control of each inverter, a fixed state confirmation time is set by the time-limit element before the transition to the next stage operation.

【0011】[0011]

【実施例】以下この発明の実施例を図面に従って説明す
る。図1は系統連系用インバータシステムを例示する太
陽光発電システムの構成図であり、図2は図1に示す開
閉制御回路の回路図であり、図3〜図5はそれぞれ前記
開閉制御回路により実行される制御プログラムのフロー
チャートである。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of a photovoltaic power generation system exemplifying a grid interconnection inverter system, FIG. 2 is a circuit diagram of the switching control circuit shown in FIG. 1, and FIGS. 6 is a flowchart of a control program executed.

【0012】先ず図1は、それぞれ直流電源とインバー
タとから成る2組の直流/交流変換系統と商用電源等の
交流系統電源との間の連系状態を示すものであり、1は
その出力が変動する直流電源としての太陽電池でありそ
の2組の内訳を1A,1Bとし、2はインバータであり
その2組の内訳を2A,2Bとする。また3は電磁開閉
器でありその内訳を示す3Aと3Bとはそれぞれ前記の
インバータ2Aと2Bとを交流の系統電源4に並入させ
る並列用開閉手段をなすものであり、3Cは前記の太陽
電池1A,1Bとインバータ2A,2B間相互の接続変
更を行う接続切換手段をなすものである。
First, FIG. 1 shows an interconnection state between two sets of a DC / AC conversion system consisting of a DC power supply and an inverter, and an AC system power supply such as a commercial power supply. A solar cell as a fluctuating DC power source has two sets of 1A and 1B, and an inverter 2 has two sets of 2A and 2B. Reference numeral 3 is an electromagnetic switch, the details of which are 3A and 3B, respectively, which form a parallel opening / closing means for inserting the inverters 2A and 2B into the AC system power supply 4 respectively, and 3C is the sun. It serves as connection switching means for changing the mutual connection between the batteries 1A and 1B and the inverters 2A and 2B.

【0013】なお前記の電磁開閉器3は、接点(31)
と接点駆動用コイルとから構成されるものである。また
6は系統電源4に給電する2Aと2B両インバータの出
力電力の和を検出する出力電力検出器であって、前記両
インバータ共通の出力母線における電圧と変流器5によ
り検出された母線電流とをその入力とするものである。
The electromagnetic switch 3 has contact points (31).
And a contact drive coil. Reference numeral 6 denotes an output power detector for detecting the sum of the output powers of both the inverters 2A and 2B feeding the system power supply 4, and the voltage at the output busbar common to both inverters and the bus current detected by the current transformer 5. And are the inputs.

【0014】なお前記両インバータの出力電力の和は前
記1A,1B両太陽電池総合の発電電力に対応するもの
として代替使用されるものである。またCPは比較器で
あり、抵抗RS1とRS2との分圧電圧として与えられる設
定電力と前記検出器6の出力電圧として与えられる前記
両インバータの出力電力の和との大小比較を行い、その
比較結果を信号SP として出力するものである。
The sum of the output powers of the two inverters is used as a substitute for the total output power of the 1A and 1B solar cells. CP is a comparator, which compares the set power given as the divided voltage of the resistors R S1 and R S2 with the sum of the output powers of the two inverters given as the output voltage of the detector 6, The comparison result is output as a signal S P.

【0015】また7の開閉制御回路は、インバータ2A
と2B両者の出力電力の和に対応してこれらインバータ
の両者或いは何れか一方がその最適の高出力状態で運転
出来る様に、前記の両インバータと両太陽電池間の最適
の組合わせを特定すると共に、前記両インバータの起動
・停止制御と電磁開閉器3A,3B,3Cの開閉制御と
を行うプログラムを有するものであり、インバータ2A
と2Bそれぞれの故障停止状態を示す信号SF1,SF2
前記電力比較信号SP とをその入力とし、電磁開閉器3
A,3B,3Cそれぞれに対する開閉制御信号SC1,S
C2,SC3を出力するものである。
The open / close control circuit 7 includes an inverter 2A.
And 2B, the optimum combination between the inverters and the solar cells is specified so that both or either of the inverters can operate in the optimum high output state according to the sum of the output powers of both inverters. At the same time, the inverter 2A has a program for controlling the start / stop of both the inverters and the switching control of the electromagnetic switches 3A, 3B, 3C.
The signals S F1 and S F2 indicating the failure and stop states of each of the electromagnetic switches 2 and 2B and the power comparison signal S P are input to the electromagnetic switch 3
Switching control signals S C1 and S for A, 3B and 3C respectively
It outputs C2 and S C3 .

【0016】次に図2は、開閉制御回路7における前記
プログラムの処理部の回路図を例示するものであり、図
示の如く前記処理部はOR,NOR,AND,INV或
いは図示していない時限要素等の各要素により構成され
た論理回路をなすものであり、各信号はH/L又は1/
0の2値論理値で処理される。以下図2に示す回路にお
ける信号処理内容を図3〜図5に示す制御プログラムの
フローチャートに従って説明する。
Next, FIG. 2 illustrates a circuit diagram of a processing unit of the program in the opening / closing control circuit 7. As shown in the drawing, the processing unit is OR, NOR, AND, INV or a time element not shown. Is a logic circuit made up of various elements such as H / L or 1 /
A binary logical value of 0 is processed. The signal processing contents in the circuit shown in FIG. 2 will be described below with reference to the flowcharts of the control programs shown in FIGS.

【0017】図3は、インバータ2Aと2B両者の出力
電力の和に対応した系統連系用インバータシステムの運
転処理状態を示すフローチャートであって、前記第一と
第三両発明の実施例を示すものであり、下記順序で処理
が進行する。なおインバータ2Aと電磁開閉器3A、同
様に2Bと3B、とは起動と閉路,停止と開路の両動作
をそれぞれ同時に行うものとする。
FIG. 3 is a flow chart showing the operation processing state of the grid interconnection inverter system corresponding to the sum of the output powers of both inverters 2A and 2B, showing the first and third embodiments of the invention. The process proceeds in the following order. The inverter 2A and the electromagnetic switch 3A, as well as 2B and 3B, simultaneously perform both start and close operations and stop and open operations.

【0018】1)前記両インバータが正常状態にあり
(SF1;0,SF2;0)、且つ両者の出力電力の和(以
下その検出値をPT とする)がその設定値(以下PS
する)よりも小(PS >PT ,SP ;0)なる状態にお
いて; インバータ2A:起動〔電磁開閉器3A閉路(SC1
1)〕 電磁開閉器3C:閉路(SC3;1) インバータ2B:停止〔電磁開閉器3B開路(SC2
0)〕 とし、太陽電池1Aと1B両者の発生電力を共にインバ
ータ2Aに給電する。
1) Both the inverters are in a normal state (S F1 ; 0, S F2 ; 0), and the sum of the output powers of both (hereinafter, the detected value is referred to as P T ) is the set value (hereinafter referred to as P T ). S )) (P S > P T , S P ; 0); Inverter 2A: Start [Electromagnetic switch 3A closed (S C1 ;
1)] Electromagnetic switch 3C: closed circuit (S C3 ; 1) Inverter 2B: stop [electromagnetic switch 3B open circuit (S C2 ;
0)] and both of the power generated by the solar cells 1A and 1B are supplied to the inverter 2A.

【0019】2)その後PS <PT の如く前記の電力関
係が反転すれば; 電磁開閉器3C:開路(SC3;0) 但しPS <PT 成立より時間ΔT経過後にSC3;1→0 インバータ2B:起動 但しPS <PT 成立より時間ΔT経過後に起動 とし、太陽電池1Aと1Bの発生電力をそれぞれインバ
ータ2Aと2Bとに給電する。なお前記ΔTは前記電力
T の状態変動確認用の設定時間であってタイマ回路の
セットとリセット操作によりプログラムされるものであ
る。
2) After that, if the above power relation is reversed as P S <P T ; electromagnetic switch 3C: open circuit (S C3 ; 0), but S C3 ; 1 after a lapse of time ΔT after establishment of P S <P T → 0 Inverter 2B: Start-up However, it is started after a time ΔT has elapsed since P S <P T is established, and power generated by the solar cells 1A and 1B is supplied to the inverters 2A and 2B, respectively. Note that ΔT is a set time for confirming the state variation of the power P T , and is programmed by setting and resetting the timer circuit.

【0020】3)その後PS >PT の如く前記の電力関
係が再度反転すれば; 電磁開閉器3C:閉路(SC3;1) 但しPS >PT 成立より時間ΔT経過後にSC3;0→1 インバータ2B:停止 但しPS >PT 成立より時間ΔT経過後に停止 とし、その運転を継続するインバータ2Aに太陽電池1
Aと1B両者の発生電力を再度給電する。
3) After that, if the above-mentioned power relation is reversed again as P S > P T ; electromagnetic switch 3C: closed circuit (S C3 ; 1) However, after the time ΔT has elapsed since P S > P T , S C3 ; 0 → 1 Inverter 2B: Stop However, it will be stopped after the time ΔT has elapsed since P S > P T is established, and the solar cell 1 will be connected to the inverter 2A that continues its operation.
Power generated by both A and 1B is supplied again.

【0021】また図4は、同時運転中のインバータ2A
と2Bの何れか一方に故障が発生した場合の前記インバ
ータシステムの運転処理状態を示すフローチャートであ
って、前記第二の発明の実施例を示すものであり、下記
順序で処理が進行する。 1)電磁開閉器3Cの開路状態でインバータ2Aと2B
両者が運転中に、インバータ2Bに故障が発生すれば; 電磁開閉器3C:閉路(SC3;1) インバータ2B:停止 とし、その運転を継続するインバータ2Aに太陽電池1
Aと1B両者の発生電力を給電する。
Further, FIG. 4 shows an inverter 2A operating simultaneously.
2B is a flowchart showing an operation processing state of the inverter system in the case where a failure occurs in any one of 1 and 2B, showing an embodiment of the second invention, and the processing proceeds in the following order. 1) Inverters 2A and 2B with the electromagnetic switch 3C open.
If a failure occurs in the inverter 2B while both are in operation; electromagnetic switch 3C: closed circuit (S C3 ; 1) inverter 2B: stop and the inverter 2A that continues its operation has the solar cell 1
Power generated by both A and 1B is supplied.

【0022】2)続いてインバータ2Bの故障が回復し
故障閉塞状態のリセット(RESET)に成功すれば; 電磁開閉器3C:開路(SC3;0) インバータ2B:起動 とし、太陽電池1Aと1Bの発生電力をそれぞれインバ
ータ2Aと2Bとに給電する運転を再開させる。
2) Subsequently, if the failure of the inverter 2B is recovered and the failure closed state is reset (RESET) successfully, the electromagnetic switch 3C: open circuit (S C3 ; 0) the inverter 2B: start, and the solar cells 1A and 1B. The operation of supplying the generated electric power to the inverters 2A and 2B is restarted.

【0023】3)またインバータ2Bの故障が回復せ
ず、更にインバータ2Aに故障が発生すれば; インバータ2A:停止 とし、インバータ2Aと2B両者の運転を停止する。 4)また前項3)でのインバータ2Aの故障が回復し故
障閉塞状態のリセット(RESET)に成功すれば; インバータ2A:起動 とし、インバータ2Aに太陽電池1Aと1B両者の発生
電力を再度給電する。
3) Further, if the failure of the inverter 2B is not recovered and further failure occurs in the inverter 2A; inverter 2A: stop, and operation of both inverters 2A and 2B is stopped. 4) Also, if the failure of the inverter 2A in the previous section 3) is recovered and reset (RESET) of the failure closed state is successful; .

【0024】なお上記1)〜4)項記載の各制御状態は
インバータ故障が2Bより先行発生した場合のものであ
るが、上記各項においてインバータの2Aと2Bとを入
れ替えることにより、インバータ故障が2Aより先行発
生した場合も全く同様に説明出来るものである。また上
記1)〜4)項記載の各インバータの起動・停止或いは
各電磁開閉器の開閉制御時には、図示していない設定時
間による故障状態の確認が、図3における場合と同様に
なされているものとする。
Each of the control states described in 1) to 4) above is a case where the inverter failure occurs prior to 2B. However, by replacing the inverters 2A and 2B in each of the above items, the inverter failure is detected. The same can be said for the case where the occurrence occurs prior to 2A. Further, at the time of starting / stopping each inverter or controlling the opening / closing of each electromagnetic switch according to the above 1) to 4), the confirmation of the failure state by a set time not shown is performed in the same manner as in FIG. And

【0025】また図5は、インバータ2A或いは2B何
れか一方の単独運転中これに故障が発生した場合の前記
インバータシステムの運転処理状態を示すフローチャー
トであって、図4と同様前記第二の発明の実施例を示す
ものであり、下記順序で処理が進行する。 1)電磁開閉器3Cの閉路状態で単独運転中のインバー
タ2Aに故障が発生すれば、これを停止させると共にイ
ンバータ2Bの故障状態を確認し; インバータ2Bが正常であれば; インバータ2B:起動 インバータ2Bが故障状態にあれば、その故障が回
復し故障閉塞状態のリセット(RESET)に成功した段階に
おいて; インバータ2B:起動 とし、当初のインバータ2Aに代えてインバータ2Bの
単独運転を行う。
FIG. 5 is a flow chart showing the operation processing state of the inverter system in the case where a failure occurs in either one of the inverters 2A or 2B during the independent operation. The present invention shows an example of the above, and the processing proceeds in the following order. 1) If a failure occurs in the inverter 2A that is operating independently with the electromagnetic switch 3C closed, stop it and check the failure status of the inverter 2B; if the inverter 2B is normal; inverter 2B: start inverter If 2B is in a failure state, at the stage where the failure is recovered and reset (RESET) of the failure closed state is successful; Inverter 2B: Start, and the inverter 2B is operated independently instead of the original inverter 2A.

【0026】2)故障したインバータ2Aに代えてのイ
ンバータ2Bの単独運転中に、インバータ2Aの故障が
回復し故障閉塞状態のリセット(RESET)に成功すれば; インバータ2A:起動 インバータ2B:停止 とし、当初のインバータ2Aの単独運転に復帰させる。
2) If the failure of the inverter 2A recovers and the resetting of the failure closed state succeeds (RESET) during the independent operation of the inverter 2B instead of the failed inverter 2A; inverter 2A: start inverter 2B: stop , The original operation of the inverter 2A is restored.

【0027】なお電磁開閉器3Cの閉路状態でのインバ
ータ2Aの単独運転中においても、インバータ2Bの故
障状態の確認と、その故障発生時には、その故障閉塞状
態のリセット操作は常時行うものとする。なおまた上記
1),2)各項記載の各インバータの起動・停止時に
は、図示してい設定時間による故障状態の確認が、図3
における場合と同様になされているものとする。
Even during the independent operation of the inverter 2A in the closed state of the electromagnetic switch 3C, the confirmation of the failure state of the inverter 2B and the reset operation of the failure closed state when the failure occurs are always performed. In addition, at the time of starting / stopping each inverter described in 1) and 2) above, it is possible to confirm the failure state by the set time shown in FIG.
The same shall apply as in the case of.

【0028】[0028]

【発明の効果】この発明によれば、その出力が変動する
複数の直流電源からの直流電力を所定の交流電力に変換
すると共にその出力側に設置された開閉手段を介して交
流系統電源との並列運転を行い系統連系用のインバータ
システムを構成する複数のインバータの並列運転制御方
法において、前記の各インバータと各直流電源間相互の
任意の組み合わせ接続を行う接続切換手段と、前記交流
系統電源と並列運転中の各インバータの出力電力の総和
を検出する電力検出手段と、所定のプログラムに従い前
記の各インバータと接続切換手段とを駆動制御する開閉
制御手段とを設け、前記インバータ出力電力の総和を各
運転インバータがその最適の変換効率にて分担し得る如
くなした前記各運転インバータと各直流電源との組み合
わせを前記所定のプログラムに従って選択すると共に、
この選択結果に従って特定された各インバータの起動・
停止と前記接続切換手段の開閉制御とを行うことによ
り、その出力の変動する太陽電池等の各直流電源の低出
力状態においても、その台数を制限した運転インバータ
への直流電源の適当な集約が可能となり、その負荷率の
増大に伴って前記運転インバータにおける電力変換効
率,従ってまたインバータシステム全体としての電力変
換効率の適値維持を図ることが出来る。
According to the present invention, DC power from a plurality of DC power supplies whose outputs fluctuate is converted into a predetermined AC power, and the AC power supply is connected to the AC power supply via the opening / closing means installed on the output side. In a parallel operation control method of a plurality of inverters that perform parallel operation and constitute an inverter system for system interconnection, a connection switching means for performing an arbitrary combination connection between each inverter and each DC power source, and the AC system power source And an opening / closing control means for driving and controlling each of the inverters and the connection switching means according to a predetermined program, and a power detection means for detecting the total output power of the inverters in parallel operation. The combination of each operation inverter and each DC power source, which is configured such that each operation inverter can share the optimum conversion efficiency, As well as selected according to the program,
Start-up of each inverter specified according to the selection result
By performing the stop and the opening / closing control of the connection switching means, even in the low output state of each DC power source such as a solar cell whose output fluctuates, it is possible to properly integrate the DC power source into the operation inverter with the number limited. This makes it possible to maintain an appropriate value of the power conversion efficiency in the operating inverter, and hence the power conversion efficiency of the entire inverter system, as the load factor increases.

【0029】また前記所定のプログラムを、前記各イン
バータの故障停止状態とその復旧後の運転可能状態とに
対応してその運転可能なインバータ台数に関して自動修
正することにより、何れかのインバータの故障停止に際
しても故障インバータをインバータシステムから切離し
てその直流電源の発生電力を他の正常なインバータに振
替えることが可能となり、前記各直流電源の全発生電力
の有効利用を図ることが出来る。
Further, the predetermined program is automatically corrected with respect to the number of operable inverters corresponding to the failure stop state of each inverter and the operable state after the restoration, thereby stopping the failure of any inverter. Also in this case, it is possible to disconnect the faulty inverter from the inverter system and transfer the generated power of the DC power supply to another normal inverter, so that it is possible to effectively use all the generated power of each DC power supply.

【0030】更にまた、前記所定のプログラムに従って
行われる各インバータの起動・停止制御時と前記接続切
換手段の開閉制御時とにおいて次段動作への移行までに
時限要素による一定の状態確認時間を設定することによ
り、太陽電池等の各直流電源における出力急変等に伴う
運転状態変更時のチャッタリングの防止を図り、前記イ
ンバータシステムの安定した運転を行うことが出来る。
Furthermore, during the start / stop control of each inverter and the open / close control of the connection switching means, which are performed according to the predetermined program, a constant state confirmation time is set by the time-limiting element before the transition to the next stage operation. By doing so, it is possible to prevent chattering when the operating state is changed due to a sudden change in the output of each DC power source such as a solar cell, and to perform stable operation of the inverter system.

【0031】即ち、以上の諸対策によって前記インバー
タシステムを全体として高効率且つ高信頼性のものとな
すことが出来る。
That is, the above-mentioned various measures can make the inverter system as a whole highly efficient and highly reliable.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す系統連系用太陽光発電
システムの構成図
FIG. 1 is a configuration diagram of a grid interconnection solar power generation system showing an embodiment of the present invention.

【図2】図1における開閉制御回路の回路図FIG. 2 is a circuit diagram of an opening / closing control circuit in FIG.

【図3】第一と第三の発明の実施例を示すフローチャー
FIG. 3 is a flowchart showing an embodiment of the first and third inventions.

【図4】第二の発明の実施例を示すフローチャート(2
台同時運転時)
FIG. 4 is a flowchart (2) showing an embodiment of the second invention.
(When operating simultaneously)

【図5】第二の発明の実施例を示すフローチャート(単
独運転時)
FIG. 5 is a flowchart showing an embodiment of the second invention (during single operation).

【図6】従来技術の実施例を示す系統連系用インバータ
システムの構成図
FIG. 6 is a configuration diagram of a grid interconnection inverter system showing an example of a conventional technique.

【符号の説明】[Explanation of symbols]

1 太陽電池(1A,1B,……,1N) 2 インバータ(2A,2B,……,2N) 3 電磁開閉器(3A,3B) 4 系統電源(交流) 5 変流器 6 出力電力検出器 7 開閉制御回路 31 電磁開閉器3の接点(31A,31B,……,
31N) CP 比較器
1 Solar cell (1A, 1B, ..., 1N) 2 Inverter (2A, 2B, ..., 2N) 3 Electromagnetic switch (3A, 3B) 4 System power supply (AC) 5 Current transformer 6 Output power detector 7 Switching control circuit 31 Contact points of electromagnetic switch 3 (31A, 31B, ...,
31N) CP comparator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】その出力が変動する複数の直流電源から給
電される直流電力を所定の交流電力に変換すると共にそ
の出力側に設置された開閉手段を介して交流系統電源と
の並列運転を行い系統連系用のインバータシステムを構
成する複数のインバータの並列運転制御方法であって、
前記各インバータと各直流電源間相互の任意の組み合わ
せ接続を行う接続切換手段と、前記交流系統電源と並列
運転中の各インバータの出力電力の総和を検出する電力
検出手段と、所定のプログラムに従い前記の各インバー
タと接続切換手段とを駆動制御する開閉制御手段とを設
け、前記インバータ出力電力の総和を各運転インバータ
がその最適の変換効率にて分担し得る如くなした前記の
各運転インバータと各直流電源との組み合わせを前記所
定のプログラムに従って選択すると共に、この選択結果
に従い特定された各インバータの起動・停止と前記接続
切換手段の開閉制御とを行うことを特徴とする系統連系
用インバータの並列運転制御方法。
1. A DC power supplied from a plurality of DC power supplies whose outputs fluctuate is converted into a predetermined AC power and is operated in parallel with an AC power supply through an opening / closing means installed on the output side. A parallel operation control method for a plurality of inverters that form an inverter system for grid interconnection,
Connection switching means for performing an arbitrary combination connection between each inverter and each DC power supply, power detection means for detecting the total output power of each inverter operating in parallel with the AC power supply, and according to a predetermined program, And a switching control means for driving and controlling the respective inverters and connection switching means, so that the respective operating inverters can share the total sum of the inverter output power with the optimum conversion efficiency and the respective operating inverters. In addition to selecting a combination with a DC power supply according to the predetermined program, starting / stopping each inverter specified according to the selection result and controlling the opening / closing of the connection switching means are performed. Parallel operation control method.
【請求項2】請求項1記載の系統連系用インバータの並
列運転制御方法において、前記の選択プログラムは、前
記各インバータの故障停止状態とその復旧後の運転可能
状態とに対応しその運転可能なインバータ台数に関して
自動修正されることを特徴とする系統連系用インバータ
の並列運転制御方法。
2. The parallel operation control method for a grid interconnection inverter according to claim 1, wherein the selection program corresponds to a failure stop state of each of the inverters and an operable state after the restoration, and the operation is possible. Parallel operation control method of inverters for grid interconnection, characterized in that the number of inverters is automatically corrected.
【請求項3】請求項1記載の系統連系用インバータの並
列運転制御方法において、前記の選択プログラムに従う
各インバータの起動・停止制御時、次段動作への移行ま
でに時限要素による一定の状態確認時間を設定すること
を特徴とする系統連系用インバータの並列運転制御方
法。
3. A parallel operation control method for a grid interconnection inverter according to claim 1, wherein at the time of starting / stopping control of each inverter according to the selection program, a constant state is established by a timed element before shifting to the next stage operation. A parallel operation control method of a grid interconnection inverter characterized by setting a confirmation time.
JP21198893A 1993-08-27 1993-08-27 Parallel operation control method of grid connection inverter Expired - Lifetime JP3254839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21198893A JP3254839B2 (en) 1993-08-27 1993-08-27 Parallel operation control method of grid connection inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21198893A JP3254839B2 (en) 1993-08-27 1993-08-27 Parallel operation control method of grid connection inverter

Publications (2)

Publication Number Publication Date
JPH0767346A true JPH0767346A (en) 1995-03-10
JP3254839B2 JP3254839B2 (en) 2002-02-12

Family

ID=16615037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21198893A Expired - Lifetime JP3254839B2 (en) 1993-08-27 1993-08-27 Parallel operation control method of grid connection inverter

Country Status (1)

Country Link
JP (1) JP3254839B2 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system
JP2000341959A (en) * 1999-05-31 2000-12-08 Kawasaki Steel Corp Power generating system
JP2001016859A (en) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd Power converter
US6259017B1 (en) 1998-10-15 2001-07-10 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
JP2001190026A (en) * 1999-10-18 2001-07-10 Yuasa Corp Apparatus and method for operation of system link inverter and recording medium, in which program for operation of system link inverter is recorded and, which can be read by computer
JP2001522218A (en) * 1997-11-03 2001-11-13 アロイス・ヴォベン Variable frequency pulse inverter and wind power generation equipment equipped with the pulse inverter
JP2002044869A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Power conversion device
JP2003518898A (en) * 1999-12-21 2003-06-10 インターナショナル パワー システムズ、インコーポレイテッド Step wave power converter
JP2007043824A (en) * 2005-08-03 2007-02-15 Shinko Electric Co Ltd Power generator
KR100686281B1 (en) * 1999-04-20 2007-02-23 산요덴키가부시키가이샤 Method of operating a power supply system having parallel-connected inverters, and power converting system
JP2009225489A (en) * 2008-03-13 2009-10-01 Omron Corp Operation controller for power conditioner and solar light generating system
KR100922537B1 (en) * 2007-11-20 2009-10-21 카코뉴에너지 주식회사 Power management system of renewable energy
US7808125B1 (en) 2006-07-31 2010-10-05 Sustainable Energy Technologies Scheme for operation of step wave power converter
JP2010267106A (en) * 2009-05-15 2010-11-25 Ntt Facilities Inc Photovoltaic power generation system and control method
JP2011160657A (en) * 2000-08-14 2011-08-18 Aloys Wobben Wind power plant
JP2011188665A (en) * 2010-03-10 2011-09-22 Daihen Corp Inverter control circuit and grid-connected inverter system equipped with the same
US8031495B2 (en) 2007-06-04 2011-10-04 Sustainable Energy Technologies Prediction scheme for step wave power converter and inductive inverter topology
CN102884689A (en) * 2010-05-12 2013-01-16 东芝三菱电机产业系统株式会社 Connection device for electric power converters
US8384364B2 (en) 2009-10-15 2013-02-26 Fuji Electric Co., Ltd. Unit inverter system
JP2014054068A (en) * 2012-09-06 2014-03-20 Toshiba Corp Charger and charge system
US8716891B2 (en) 2009-12-15 2014-05-06 Samsung Sdi Co., Ltd. Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
JP2014158401A (en) * 2013-02-18 2014-08-28 Sekisui Chem Co Ltd Power conditioner, photovoltaic power generation system, method for controlling power conditioner, and method for controlling photovoltaic power generation system
KR20170115808A (en) * 2016-04-08 2017-10-18 엘에스산전 주식회사 Method for controlling of inverter system
KR20190032865A (en) * 2017-09-20 2019-03-28 엘에스산전 주식회사 An energy storage system
WO2020122605A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Micro-grid system with un-interruptible power supply

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522218A (en) * 1997-11-03 2001-11-13 アロイス・ヴォベン Variable frequency pulse inverter and wind power generation equipment equipped with the pulse inverter
JPH11341816A (en) * 1998-05-22 1999-12-10 Sanyo Electric Co Ltd Method for operating inverter and power system
US6259017B1 (en) 1998-10-15 2001-07-10 Canon Kabushiki Kaisha Solar power generation apparatus and control method therefor
KR100686281B1 (en) * 1999-04-20 2007-02-23 산요덴키가부시키가이샤 Method of operating a power supply system having parallel-connected inverters, and power converting system
JP2000341959A (en) * 1999-05-31 2000-12-08 Kawasaki Steel Corp Power generating system
JP2001016859A (en) * 1999-06-29 2001-01-19 Nissin Electric Co Ltd Power converter
JP2001190026A (en) * 1999-10-18 2001-07-10 Yuasa Corp Apparatus and method for operation of system link inverter and recording medium, in which program for operation of system link inverter is recorded and, which can be read by computer
JP2003518898A (en) * 1999-12-21 2003-06-10 インターナショナル パワー システムズ、インコーポレイテッド Step wave power converter
JP2002044869A (en) * 2000-07-21 2002-02-08 Matsushita Electric Ind Co Ltd Power conversion device
JP2011160657A (en) * 2000-08-14 2011-08-18 Aloys Wobben Wind power plant
JP2007043824A (en) * 2005-08-03 2007-02-15 Shinko Electric Co Ltd Power generator
US7808125B1 (en) 2006-07-31 2010-10-05 Sustainable Energy Technologies Scheme for operation of step wave power converter
US8031495B2 (en) 2007-06-04 2011-10-04 Sustainable Energy Technologies Prediction scheme for step wave power converter and inductive inverter topology
KR100922537B1 (en) * 2007-11-20 2009-10-21 카코뉴에너지 주식회사 Power management system of renewable energy
JP2009225489A (en) * 2008-03-13 2009-10-01 Omron Corp Operation controller for power conditioner and solar light generating system
JP2010267106A (en) * 2009-05-15 2010-11-25 Ntt Facilities Inc Photovoltaic power generation system and control method
US8384364B2 (en) 2009-10-15 2013-02-26 Fuji Electric Co., Ltd. Unit inverter system
US8716891B2 (en) 2009-12-15 2014-05-06 Samsung Sdi Co., Ltd. Energy storage system connected to a grid and multiple power generation modules and method of controlling the same
JP2011188665A (en) * 2010-03-10 2011-09-22 Daihen Corp Inverter control circuit and grid-connected inverter system equipped with the same
CN102884689A (en) * 2010-05-12 2013-01-16 东芝三菱电机产业系统株式会社 Connection device for electric power converters
US9252600B2 (en) 2010-05-12 2016-02-02 Toshiba Mitsubishi-Electric Industrial Systems Corporation Connection apparatus for power converter
JP2014054068A (en) * 2012-09-06 2014-03-20 Toshiba Corp Charger and charge system
JP2014158401A (en) * 2013-02-18 2014-08-28 Sekisui Chem Co Ltd Power conditioner, photovoltaic power generation system, method for controlling power conditioner, and method for controlling photovoltaic power generation system
KR20170115808A (en) * 2016-04-08 2017-10-18 엘에스산전 주식회사 Method for controlling of inverter system
KR20190032865A (en) * 2017-09-20 2019-03-28 엘에스산전 주식회사 An energy storage system
WO2020122605A1 (en) * 2018-12-13 2020-06-18 주식회사 포스코 Micro-grid system with un-interruptible power supply
KR20200072747A (en) * 2018-12-13 2020-06-23 주식회사 포스코 An micro-grid system with un-interrutable power supply
US11456618B2 (en) 2018-12-13 2022-09-27 Posco Micro-grid system with un-interruptible power supply

Also Published As

Publication number Publication date
JP3254839B2 (en) 2002-02-12

Similar Documents

Publication Publication Date Title
JPH0767346A (en) Control method of parallel operation of inverter for system interconnection
US8242634B2 (en) High efficiency remotely controllable solar energy system
US6262900B1 (en) Modular power supply system with control command verification
JP3687464B2 (en) Solar power plant
JP6790071B2 (en) Power generation system, power conditioner, power control device, power control method and power control program
JP2000116010A (en) Distributed power supply system
JP2002073184A (en) Photovoltaic power generation system
JP6668991B2 (en) Power supply device and power supply system
US20110291483A1 (en) Electric power system
JPH1023671A (en) Power conditioner and dispersed power supplying system
JP2001008383A (en) Photovoltaic power generating set
JP7126243B2 (en) power supply system
JPH07325635A (en) Output controller for inverter
JP6369803B2 (en) Power storage device
JP2017118598A (en) Power supply system
JPH10229679A (en) Inverter device linked to system
JPH0951638A (en) Distributed power supply
CN116301186A (en) Maximum power point tracking method, photovoltaic system and computer readable storage medium
JPH0965582A (en) Power supply system utilizing solar cell
JP3147724B2 (en) Distributed power supply
JP2009247185A (en) System-cooperative inverter and its self-sustaining operation method
JP3534914B2 (en) Power supply
JP2003116224A (en) Photovoltaic generation system, power converter thereof, and control method therefor
JPH0946926A (en) Distributed power unit
JP6704479B2 (en) POWER SUPPLY SYSTEM, POWER SUPPLY DEVICE, AND POWER SUPPLY SYSTEM CONTROL METHOD

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071130

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 12

EXPY Cancellation because of completion of term