JP4794189B2 - Solar power plant - Google Patents

Solar power plant Download PDF

Info

Publication number
JP4794189B2
JP4794189B2 JP2005097643A JP2005097643A JP4794189B2 JP 4794189 B2 JP4794189 B2 JP 4794189B2 JP 2005097643 A JP2005097643 A JP 2005097643A JP 2005097643 A JP2005097643 A JP 2005097643A JP 4794189 B2 JP4794189 B2 JP 4794189B2
Authority
JP
Japan
Prior art keywords
voltage
power
solar cell
solar
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005097643A
Other languages
Japanese (ja)
Other versions
JP2006278858A (en
Inventor
正樹 萬里小路
智英 船越
康弘 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2005097643A priority Critical patent/JP4794189B2/en
Priority to KR1020060014875A priority patent/KR100993652B1/en
Priority to CNB2006100568392A priority patent/CN100517159C/en
Priority to TW095108349A priority patent/TWI400594B/en
Priority to DE602006001067T priority patent/DE602006001067D1/en
Priority to EP06005204A priority patent/EP1708070B1/en
Priority to ES06005204T priority patent/ES2306310T3/en
Priority to AT06005204T priority patent/ATE394727T1/en
Publication of JP2006278858A publication Critical patent/JP2006278858A/en
Application granted granted Critical
Publication of JP4794189B2 publication Critical patent/JP4794189B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1412Containers with closing means, e.g. caps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

A solar power generating device including a first solar battery (1, 2, 3) for generating DC power, a second solar battery (4, 5) for generating DC power having a voltage lower than the voltage of the first solar battery, a boosting circuit (16A, 16B) for boosting the voltage of the DC power generated by the second solar battery, and an inverter circuit (8) for converting the DC power to AC power and carrying out MPPT (maximum power point tracking) control, a voltage sensor (23) for detecting the voltage of the DC power generated by the first solar battery, a timer (25) for counting a continuing time for which a state where the detection voltage of the voltage sensor is not more than a predetermined voltage is continued from the time when the first and second solar batteries start power generation, and a controller (24) for starting the operation of the boosting circuit when the count time of the timer is equal to a predetermined time.

Description

本発明は、太陽電池により発電された出力を供給する太陽光発電装置に関する。詳述すれば、太陽電池により発電された直流電力を昇圧し、交流電力に変換して供給する太陽光発電装置に関する。   The present invention relates to a solar power generation device that supplies an output generated by a solar cell. More specifically, the present invention relates to a solar power generation device that boosts DC power generated by a solar cell, converts the DC power into AC power, and supplies the AC power.

従来のこの種の太陽光発電装置としては、太陽電池にて発電された直流電力を昇圧回路にて昇圧し、昇圧された直流電力をインバータ回路にて交流電力に変換し、変換された交流電力を制御手段により制御し商用電源系統に回生するようにした太陽光発電装置が知られている(例えば、特許文献1参照)。   As a conventional solar power generation device of this type, DC power generated by a solar cell is boosted by a booster circuit, and the boosted DC power is converted into AC power by an inverter circuit, and the converted AC power There is known a solar power generation device that is controlled by a control means and is regenerated to a commercial power supply system (see, for example, Patent Document 1).

そして、上述した太陽光発電装置に用いられる太陽電池の特性としては、太陽電池の出力電圧がVmax(開放電圧)から最大電力点Pmまでは出力電力が次第に増加し、最大電力点Pmを越えて電圧が下がると、出力電圧は最大電力点Pmから次第に減少する。このため、太陽電池から最大電力を取り出す制御として、インバータ回路にて太陽電池の動作点が常に最大電力点Pmを追尾するように変化させる最大電力追尾制御(Maximum Power Point Tracking(以下、「MPPT制御」という))を行うようにしたものが知られている(例えば、特許文献2参照)。
特開2003−9398号公報 特開平11−282553号公報
And as a characteristic of the solar cell used for the solar power generation device described above, the output power gradually increases from the Vmax (open voltage) to the maximum power point Pm and exceeds the maximum power point Pm. When the voltage decreases, the output voltage gradually decreases from the maximum power point Pm. For this reason, as control for taking out the maximum power from the solar cell, maximum power tracking control (hereinafter referred to as “MPPT control”) in which the operating point of the solar cell is changed so as to always track the maximum power point Pm in the inverter circuit. ")") Is known (for example, see Patent Document 2).
JP 2003-9398 A JP-A-11-282553

しかし、前記特許文献2に開示する技術によれば、太陽電池パネルを所定枚数直列に接続し、定格、即ち標準の直流電力を発電可能な標準の太陽電池をインバータ回路に接続すると共に、前記所定の枚数より少ない枚数の太陽電池パネルを直列に接続して発電された電力が前記標準の直流電力より少なく、この直流電力の電圧が前記標準の直流電力の電圧より小さい端数太陽電池を昇圧回路を介してインバータ回路に接続した太陽光発電装置において、例えば朝夕又は悪天候時の日差しが少ないときには、太陽電池の発電量の不足によりインバータ回路が間欠運転状態になり、連続運転状態に入る前に昇圧回路が運転を開始した場合、インバータ回路のMPPT制御に悪影響を与える虞がある。   However, according to the technique disclosed in Patent Document 2, a predetermined number of solar cell panels are connected in series, a standard solar cell capable of generating a rated, that is, standard DC power is connected to an inverter circuit, and the predetermined The power generated by connecting a smaller number of solar cell panels in series than the standard DC power is less than the standard DC power, and the DC power voltage is smaller than the standard DC power voltage. In the solar power generation device connected to the inverter circuit via, for example, when the sunlight during morning and evening or bad weather is low, the inverter circuit becomes intermittently operated due to a shortage of the amount of power generated by the solar cell, and before it enters the continuous operation state, the booster circuit When the operation is started, there is a possibility of adversely affecting the MPPT control of the inverter circuit.

従って、インバータ回路が連続運転していることを確認できた状態にて、昇圧回路の運転を開始することが必要である。この場合、インバータ回路の制御用マイクロコンピュータとの間の通信により連続運転されているか確認することができ、また上記標準の太陽電池回路からの入力部に電圧、電流センサを設け、電力を計測してインバータ回路の連続運転を確認することができる。   Therefore, it is necessary to start operation of the booster circuit in a state where it can be confirmed that the inverter circuit is continuously operating. In this case, it is possible to check whether the inverter is continuously operated by communication with the control microcomputer of the inverter circuit, and to measure the power by providing a voltage / current sensor at the input from the standard solar cell circuit. Thus, continuous operation of the inverter circuit can be confirmed.

しかしながら、前者の場合には、通信に対応したインバータ回路のみ接続可能であって、通信に対応しないインバータ回路は接続できないという問題が発生し、また後者では、部品点数が増加し、コストが上昇するという問題があった。   However, in the former case, only an inverter circuit corresponding to communication can be connected and an inverter circuit not compatible with communication cannot be connected. In the latter case, the number of parts increases and the cost increases. There was a problem.

そこで本発明は、汎用性を維持し、コストの上昇を回避しつつ、昇圧回路が運転を開始した場合、インバータ回路のMPPT制御に悪影響を与えることを防止できるようにし、上述せる問題点を解消することを目的とする。   Therefore, the present invention can prevent the above-described problems from being adversely affected when the booster circuit starts operating while maintaining versatility and avoiding an increase in cost. The purpose is to do.

このため第1の発明は、所定電圧の直流電圧の電力を発電する第1の太陽電池と、この第1の太陽電池より電圧が低い直流電圧の電力を発電する第2の太陽電池と、この第2の太陽電池により発電された電力の電圧を昇圧する昇圧回路と、この昇圧回路にて昇圧された電力及び第1の太陽電池により発電された直流電力を交流電力に変換すると共に最大電力追尾制御を行うインバータ回路とを備えた太陽光発電装置において、前記第1の太陽電池により発電された直流電力の電圧を検出する電圧センサと、前記第1の太陽電池及び第2の太陽電池が発電を開始して前記電圧センサの検出電圧が所定電圧以下の状態の連続時間を計時するタイマと、このタイマが所定時間を計時したときに前記昇圧回路の運転を開始させるように制御する制御装置とを備えたことを特徴とする。   For this reason, the first invention provides a first solar cell that generates power of a DC voltage of a predetermined voltage, a second solar cell that generates power of a DC voltage that is lower in voltage than the first solar cell, and A booster circuit that boosts the voltage of the electric power generated by the second solar cell, and converts the electric power boosted by the booster circuit and the DC power generated by the first solar cell into AC power and also tracks the maximum power In a solar power generation device including an inverter circuit that performs control, a voltage sensor that detects a voltage of DC power generated by the first solar cell, and the first solar cell and the second solar cell generate power. And a control device for controlling to start the operation of the booster circuit when the timer counts the predetermined time. Characterized by comprising and.

また第2の発明は、所定電圧の直流電圧の電力を発電する第1の太陽電池と、この第1の太陽電池より電圧が低い直流電圧の電力を発電する第2の太陽電池と、この第2の太陽電池により発電された電力の電圧を昇圧する昇圧回路と、この昇圧回路にて昇圧された電力及び第1の太陽電池により発電された直流電力を交流電力に変換すると共に最大電力追尾制御を行うインバータ回路とを備えた太陽光発電装置において、前記第1の太陽電池により発電された直流電力の電圧を検出する電圧センサと、前記第1の太陽電池及び第2の太陽電池が発電を開始して前記電圧センサの検出電圧が前記第1の太陽電池の最大出力電圧から予め設定された電圧を減算した電圧以下の状態の連続時間を計時するタイマと、このタイマが所定時間を計時したときに前記昇圧回路の運転を開始させるように制御する制御装置とを備えたことを特徴とする。   According to a second aspect of the present invention, there is provided a first solar cell that generates power of a DC voltage having a predetermined voltage, a second solar cell that generates power of a DC voltage having a voltage lower than that of the first solar cell, A booster circuit that boosts the voltage of the power generated by the second solar cell, and converts the power boosted by the booster circuit and the DC power generated by the first solar cell into alternating current power and maximum power tracking control. In the solar power generation apparatus including the inverter circuit that performs the above, a voltage sensor that detects the voltage of the DC power generated by the first solar cell, and the first solar cell and the second solar cell generate power. A timer that starts and counts a continuous time in a state where the detected voltage of the voltage sensor is equal to or lower than a voltage obtained by subtracting a preset voltage from the maximum output voltage of the first solar cell, and this timer counts a predetermined time Characterized by comprising a control device for controlling so as to initiate the operation of the boost circuit can.

本発明によれば、インバータ回路を通信に対応したものとする必要がなく汎用性を維持し、コストの上昇を回避しつつ、昇圧回路が運転を開始したときに、インバータ回路のMPPT制御に悪影響を与えることを回避することができる。   According to the present invention, it is not necessary to make the inverter circuit compatible with communication, maintain general versatility, avoid an increase in cost, and adversely affect the MPPT control of the inverter circuit when the booster circuit starts operation. Can be avoided.

以下、本発明の実施の形態を図面に基づき説明する。図1は太陽光発電装置の全体システムを示す系統図である。図1において、1〜3は所定の枚数、例えば5枚の太陽電池パネルを直列に接続し、定格、即ち標準の直流電力を発電可能な標準の太陽電池(第1の太陽電池)、4及び5は所定の枚数より少ない枚数、例えば3枚の太陽電池パネルを直列に接続し、発電される直流電力が前記標準の直流電力より少なく、この直流電力の電圧が前記標準の直流電力の電圧より小さい端数太陽電池(第2の太陽電池)である。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing the overall system of the photovoltaic power generation apparatus. In FIG. 1, 1-3 are predetermined numbers, for example, five solar cell panels connected in series, and rated, that is, standard solar cells (first solar cells) that can generate standard DC power, and 5 is a number of solar panels that are less than a predetermined number, for example, three solar battery panels connected in series, and the generated DC power is less than the standard DC power, and the voltage of the DC power is higher than the voltage of the standard DC power. It is a small fraction solar cell (second solar cell).

また、6は後述する昇圧回路(DC/DCコンバータ)を箱体6Aに内蔵した接続装置、7はこの接続装置6に接続されインバータ回路8を備えたパワーコンディショナであり、このパワーコンディショナ7が商用電力系統に接続される。そして、パワーコンディショナ7は太陽電池から最大電力を取り出すように、太陽電池の動作点が常に最大電力点を追尾するように変化させる最大電力追尾制御であるMPPT制御(Maximum Power Point Tracking制御)を行う。   Reference numeral 6 denotes a connection device in which a booster circuit (DC / DC converter), which will be described later, is built in the box 6A. Reference numeral 7 denotes a power conditioner that is connected to the connection device 6 and includes an inverter circuit 8. The power conditioner 7 Is connected to the commercial power system. Then, the power conditioner 7 performs MPPT control (Maximum Power Point Tracking Control) which is maximum power tracking control in which the operating point of the solar cell is changed so as to always track the maximum power point so as to extract the maximum power from the solar cell. Do.

以下、前記接続装置6について図2に基づき、詳細に説明する。10A、10B、10Cは、それぞれ端子11A、11B、11Cを介して標準の太陽電池1、2、3に接続される標準入力回路であり、接続される太陽電池と同数設けられている。また、12A、12B、12Cは、標準入力回路10A、10B、10Cの出力側に接続された逆流防止用のダイオードである。   Hereinafter, the connecting device 6 will be described in detail with reference to FIG. 10A, 10B, and 10C are standard input circuits connected to standard solar cells 1, 2, and 3 through terminals 11A, 11B, and 11C, respectively, and are provided in the same number as the connected solar cells. Reference numerals 12A, 12B, and 12C are backflow prevention diodes connected to the output sides of the standard input circuits 10A, 10B, and 10C.

16A、16Bは昇圧回路(DC/DCコンバータ)であり、昇圧回路16A、16Bは端子17A、17B及び第1、第2の電圧センサ18A、18Bを介して端数太陽電池4、5に接続される。22は昇圧回路16A、16Bの出力電圧を検出する第3の電圧センサ、23は標準入力回路10A、10B、11Cの出力電圧(以下、「標準入力電圧」という)を検出する第4の電圧センサである。ここで、昇圧回路16A、16Bの制御用電源は端数太陽電池4、5から得ているため、太陽電池1、2、3の負荷にはならない。   Reference numerals 16A and 16B denote boosting circuits (DC / DC converters). The boosting circuits 16A and 16B are connected to the fractional solar cells 4 and 5 via terminals 17A and 17B and the first and second voltage sensors 18A and 18B. . Reference numeral 22 denotes a third voltage sensor that detects output voltages of the booster circuits 16A and 16B, and reference numeral 23 denotes a fourth voltage sensor that detects output voltages of the standard input circuits 10A, 10B, and 11C (hereinafter referred to as “standard input voltage”). It is. Here, since the power sources for controlling the booster circuits 16A and 16B are obtained from the fractional solar cells 4 and 5, they do not become loads on the solar cells 1, 2, and 3.

24はマイクロコンピュータである制御装置であり、この制御装置24は図示しないCPU(セントラル・プロセッシング・ユニット)、RAM(ランダム・アクセス・メモリ)、ROM(リード・オンリー・メモリ)及びタイマ25を備え、更に入力電圧検知部26及び出力電圧検知部27を有している。また、制御装置24はPWM(pulse width modulation)制御回路(パルス幅変調制御回路)28を介して昇圧回路16A、16Bに制御信号を出力する。そして、前記接続装置6は出力側端子30を介してパワーコンディショナ7に接続される。   Reference numeral 24 denotes a control device which is a microcomputer. The control device 24 includes a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory) and a timer 25 (not shown). Further, an input voltage detection unit 26 and an output voltage detection unit 27 are provided. The control device 24 outputs a control signal to the booster circuits 16A and 16B via a PWM (pulse width modulation) control circuit (pulse width modulation control circuit) 28. The connection device 6 is connected to the power conditioner 7 via the output side terminal 30.

以下、図3に示したフローチヤートに基づき、太陽光発電装置の動作、特に始動時の動作について説明する。先ず、制御装置24は標準入力電圧の最大値Vmaxを0とし(ゼロにリセットし)、第4の電圧センサ23が検出した現在の標準入力電圧Vsを読み込む。次に、制御装置24は昇圧回路16A、16Bが停止しているか否かを判断し、停止しているときには、予め設定され上記RAMに格納されている標準入力電圧最大値Vmaxを読み込み、前記現在の標準入力電圧Vsと比較する。   Hereinafter, based on the flow chart shown in FIG. 3, the operation of the photovoltaic power generation apparatus, particularly the operation at the time of starting will be described. First, the control device 24 sets the maximum value Vmax of the standard input voltage to 0 (reset to zero), and reads the current standard input voltage Vs detected by the fourth voltage sensor 23. Next, the control device 24 determines whether or not the booster circuits 16A and 16B are stopped. When the booster circuits 16A and 16B are stopped, the control device 24 reads the standard input voltage maximum value Vmax set in advance and stored in the RAM, and To the standard input voltage Vs.

そして、この現在の標準入力電圧Vsが標準入力電圧最大値Vmax以下のときには、この現在の標準入力電圧Vsが標準入力電圧最大値Vmaxから予め設定され上記RAMに格納されている昇圧回路起動判定電圧Vnを減算した値より低いか否か判定する。そして、低い場合には、タイマ25が計時を開始し、この低い状態が予めRAMに記憶されているインバータ回路8の起動判定時間(インバータ回路8が連続運転しているものと判断できる時間)Tnより長く継続して、タイマ25が起動判定時間Tnを計時してタイムアウトしたときには、制御装置24はパワーコンディショナ7のインバータ回路8が起動していると判断し、昇圧回路16A、16Bに始動信号を出力し、各昇圧回路16A、16Bは運転を開始する。   When the current standard input voltage Vs is equal to or lower than the standard input voltage maximum value Vmax, the current standard input voltage Vs is preset from the standard input voltage maximum value Vmax and stored in the RAM. It is determined whether or not the value is lower than the value obtained by subtracting Vn. If it is low, the timer 25 starts measuring time, and this low state is stored in advance in the RAM. The startup determination time of the inverter circuit 8 (the time during which it can be determined that the inverter circuit 8 is continuously operating) Tn. When the timer 25 continues to run for a longer time and times out after measuring the activation determination time Tn, the control device 24 determines that the inverter circuit 8 of the power conditioner 7 is activated, and sends a start signal to the booster circuits 16A and 16B. , And each booster circuit 16A, 16B starts operation.

このように、標準入力電圧Vs、標準入力電圧最大値Vmax及び昇圧回路起動判定電圧Vnに基づき、タイマ25の計時により、インバータ回路8が連続運転していると判断された後に、各昇圧回路16A、16Bが運転を開始するので、パワーコンディショナ7に設けられたインバータ回路8を通信に対応したものとする必要がなく、汎用性を維持し、また標準入力回路10A、10B、10C側に電流センサなどを設ける必要がなくコストの上昇を回避しつつ、昇圧回路16A、16Bが運転を開始したときに、インバータ回路8のMPPT制御に悪影響を与えることを回避することができる。   As described above, after determining that the inverter circuit 8 is continuously operated based on the timer 25 based on the standard input voltage Vs, the standard input voltage maximum value Vmax, and the booster circuit activation determination voltage Vn, each booster circuit 16A. 16B starts operation, the inverter circuit 8 provided in the power conditioner 7 does not need to be compatible with communication, maintains versatility, and has a current flowing to the standard input circuits 10A, 10B, and 10C. It is possible to avoid adversely affecting the MPPT control of the inverter circuit 8 when the booster circuits 16A and 16B start operation while avoiding an increase in cost without providing a sensor or the like.

また、標準入力電圧最大値Vmaxを読み込み、現在の標準入力電圧Vsと比較したとき、この現在の標準入力電圧Vsが標準入力電圧最大値Vmaxより大きいと制御装置24が判断したときには、現在の標準入力電圧Vsを標準入力電圧最大値Vmaxに維持させる。この場合、前述した現在の標準入力電圧Vsが標準入力電圧最大値Vmax以下で、且つ現在の標準入力電圧Vsが標準入力電圧最大値Vmaxから予め設定され上記RAMに格納されている昇圧回路起動判定電圧Vnを減算した値より低いか否かを判定して、高いと判定した場合と同様に、上記タイマ25の計時時間を0とし(ゼロにリセットし)、昇圧回路16A、16Bの運転を停止する。   Further, when the standard input voltage maximum value Vmax is read and compared with the current standard input voltage Vs, when the control device 24 determines that the current standard input voltage Vs is larger than the standard input voltage maximum value Vmax, the current standard input voltage Vmax is determined. The input voltage Vs is maintained at the standard input voltage maximum value Vmax. In this case, the current standard input voltage Vs is equal to or lower than the standard input voltage maximum value Vmax, and the current standard input voltage Vs is preset from the standard input voltage maximum value Vmax and stored in the RAM. It is determined whether or not the voltage Vn is lower than the subtracted value. Similarly to the case where the voltage Vn is determined to be high, the timer 25 is set to 0 (reset to zero) and the booster circuits 16A and 16B are stopped. To do.

また、前述した現在の標準入力電圧Vsが標準入力電圧最大値Vmax以下で、且つ現在の標準入力電圧Vsが標準入力電圧最大値Vmaxから予め設定され上記RAMに格納されている昇圧回路起動判定電圧Vnを減算した値より低いか否かを判定して、タイマ25が計時を開始してタイムアウトするまでの間も昇圧回路16A、16bの停止状態を保持する。   Further, the booster circuit activation determination voltage in which the current standard input voltage Vs is equal to or less than the standard input voltage maximum value Vmax and the current standard input voltage Vs is preset from the standard input voltage maximum value Vmax and stored in the RAM. It is determined whether or not the value is lower than the value obtained by subtracting Vn, and the booster circuits 16A and 16b are held stopped until the timer 25 starts timing and times out.

なお、前記各昇圧回路16A、16Bが起動した後は、第1、第2の電圧センサ18A、18Bにより検出された端数太陽電池4、5の出力電圧、及び第3の電圧センサ22による昇圧回路16A、16Bの出力電圧に基づき、制御装置24の入力電圧検知部26及び出力電圧検知部27が動作し、制御装置24はPWM制御回路28を介して昇圧回路16A、16Bを制御し、各昇圧回路16A、16Bの出力電圧が標準入力回路10A、10B、10Cの出力電圧と等しく保たれ、太陽光発電装置から所定の電圧の電力が供給される。   After each booster circuit 16A, 16B is activated, the output voltage of the fractional solar cells 4, 5 detected by the first and second voltage sensors 18A, 18B and the booster circuit by the third voltage sensor 22 are used. Based on the output voltages of 16A and 16B, the input voltage detection unit 26 and the output voltage detection unit 27 of the control device 24 operate, and the control device 24 controls the boosting circuits 16A and 16B via the PWM control circuit 28 to The output voltages of the circuits 16A and 16B are kept equal to the output voltages of the standard input circuits 10A, 10B, and 10C, and power of a predetermined voltage is supplied from the solar power generation device.

以上本発明の実施態様について説明したが、上述の説明に基づいて種々の代替例、修正又は変形が可能であり、本発明の趣旨を逸脱しない範囲で前述の種々の代替例、修正又は変形を包含するものである。   Although the embodiments of the present invention have been described above, various alternatives, modifications or variations can be made based on the above description, and the various alternatives, modifications or variations described above can be made without departing from the spirit of the present invention. It is included.

太陽光発電装置の全体システム系統図である。It is a whole system system diagram of a solar power generation device. 昇圧回路内蔵接続装置の回路図である。It is a circuit diagram of a booster circuit built-in connection device. 昇圧回路始動時の制御を説明するフローチャートである。It is a flowchart explaining the control at the time of a booster circuit start-up.

符号の説明Explanation of symbols

1、2、3 太陽電池(第1の太陽電池)
4、5 端数太陽電池(第2の太陽電池)
6 接続装置
7 パワーコンディショナ
8 インバータ回路
16A、16B 昇圧回路
23 第4の電圧センサ
24 制御装置
25 タイマ
1, 2, 3 Solar cell (first solar cell)
4,5 fractional solar cell (second solar cell)
6 Connecting Device 7 Power Conditioner 8 Inverter Circuit 16A, 16B Booster Circuit 23 Fourth Voltage Sensor 24 Controller 25 Timer

Claims (2)

所定の定格電圧の直流電圧の電力を発電する第1の太陽電池と、この第1の太陽電池より電圧が低い直流電圧の電力を発電する第2の太陽電池と、この第2の太陽電池により発電された電力の電圧を昇圧する昇圧回路と、この昇圧回路にて昇圧された電力及び第1の太陽電池により発電された直流電力を交流電力に変換すると共に最大電力追尾制御を行うインバータ回路とを備えた太陽光発電装置において、前記第1の太陽電池により発電された直流電力の電圧を検出する電圧センサと、前記第1の太陽電池及び第2の太陽電池が発電を開始して前記電圧センサの検出電圧が所定電圧以下の状態の連続時間を計時するタイマと、このタイマが前記インバータ回路の起動判定時間を計時したときに前記昇圧回路の運転を開始させるように制御する制御装置とを備えたことを特徴とする太陽光発電装置。 A first solar cell that generates power of a DC voltage having a predetermined rated voltage, a second solar cell that generates power of a DC voltage having a voltage lower than that of the first solar cell, and the second solar cell. A booster circuit that boosts the voltage of the generated power, an inverter circuit that converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power and performs maximum power tracking control; A voltage sensor that detects a voltage of DC power generated by the first solar cell, and the first solar cell and the second solar cell start generating power to generate the voltage. controls so that the detection voltage of the sensor is to start a timer for counting a continuous time of the following conditions prescribed voltage, the operation of the boosting circuit when this timer has timed the activation determination time of the inverter circuit Solar power generation apparatus being characterized in that a control device. 所定の定格電圧の直流電圧の電力を発電する第1の太陽電池と、この第1の太陽電池より電圧が低い直流電圧の電力を発電する第2の太陽電池と、この第2の太陽電池により発電された電力の電圧を昇圧する昇圧回路と、この昇圧回路にて昇圧された電力及び第1の太陽電池により発電された直流電力を交流電力に変換すると共に最大電力追尾制御を行うインバータ回路とを備えた太陽光発電装置において、前記第1の太陽電池により発電された直流電力の電圧を検出する電圧センサと、前記第1の太陽電池及び第2の太陽電池が発電を開始して前記電圧センサの検出電圧が前記第1の太陽電池の最大出力電圧から予め設定された電圧を減算した電圧以下の状態の連続時間を計時するタイマと、このタイマが前記インバータ回路の起動判定時間を計時したときに前記昇圧回路の運転を開始させるように制御する制御装置とを備えたことを特徴とする太陽光発電装置。 A first solar cell that generates power of a DC voltage having a predetermined rated voltage, a second solar cell that generates power of a DC voltage having a voltage lower than that of the first solar cell, and the second solar cell. A booster circuit that boosts the voltage of the generated power, an inverter circuit that converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power and performs maximum power tracking control; A voltage sensor that detects a voltage of DC power generated by the first solar cell, and the first solar cell and the second solar cell start generating power to generate the voltage. a timer detecting a voltage of the sensor for measuring a continuous time of the maximum output voltage from a preset voltage and voltage following subtraction state of the first solar cell, the activation determination when the timer of said inverter circuit Solar power generation apparatus, wherein the further comprising a control device for controlling so as to initiate the operation of the booster circuit when measuring a.
JP2005097643A 2005-03-30 2005-03-30 Solar power plant Active JP4794189B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2005097643A JP4794189B2 (en) 2005-03-30 2005-03-30 Solar power plant
KR1020060014875A KR100993652B1 (en) 2005-03-30 2006-02-16 Solar light power generating device
CNB2006100568392A CN100517159C (en) 2005-03-30 2006-03-07 Solar power generating device
TW095108349A TWI400594B (en) 2005-03-30 2006-03-13 Photovoltaic device
DE602006001067T DE602006001067D1 (en) 2005-03-30 2006-03-14 Apparatus for solar energy production
EP06005204A EP1708070B1 (en) 2005-03-30 2006-03-14 Solar power generating device
ES06005204T ES2306310T3 (en) 2005-03-30 2006-03-14 SOLAR ENERGY GENERATOR DEVICE.
AT06005204T ATE394727T1 (en) 2005-03-30 2006-03-14 DEVICE FOR PRODUCING SOLAR ENERGY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097643A JP4794189B2 (en) 2005-03-30 2005-03-30 Solar power plant

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010123769A Division JP5540893B2 (en) 2010-05-31 2010-05-31 Photovoltaic power generation device and connection device

Publications (2)

Publication Number Publication Date
JP2006278858A JP2006278858A (en) 2006-10-12
JP4794189B2 true JP4794189B2 (en) 2011-10-19

Family

ID=36128606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097643A Active JP4794189B2 (en) 2005-03-30 2005-03-30 Solar power plant

Country Status (8)

Country Link
EP (1) EP1708070B1 (en)
JP (1) JP4794189B2 (en)
KR (1) KR100993652B1 (en)
CN (1) CN100517159C (en)
AT (1) ATE394727T1 (en)
DE (1) DE602006001067D1 (en)
ES (1) ES2306310T3 (en)
TW (1) TWI400594B (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
JP5354892B2 (en) * 2007-11-26 2013-11-27 ニッコー株式会社 Wind power generator
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Release mechanism in distributed electrical power apparatus, to wake up and method for closing
WO2009072076A2 (en) 2007-12-05 2009-06-11 Solaredge Technologies Ltd. Current sensing on a mosfet
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US8111052B2 (en) 2008-03-24 2012-02-07 Solaredge Technologies Ltd. Zero voltage switching
EP2294669B8 (en) 2008-05-05 2016-12-07 Solaredge Technologies Ltd. Direct current power combiner
EP2538300B1 (en) * 2010-05-12 2015-07-08 Omron Corporation Voltage conversion device, voltage conversion method, solar power generation system, and management device
JP5540893B2 (en) * 2010-05-31 2014-07-02 三洋電機株式会社 Photovoltaic power generation device and connection device
JP5659240B2 (en) * 2010-11-08 2015-01-28 株式会社日立製作所 Solar power system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102200793A (en) * 2011-05-23 2011-09-28 昆明理工大学 Maximum power point detection tracking method and circuit of power generating device
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
CN104126272A (en) 2012-02-15 2014-10-29 东芝三菱电机产业系统株式会社 Power supply device for power conversion device
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
EP2859650B1 (en) * 2012-05-25 2017-02-15 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN102749931A (en) * 2012-06-21 2012-10-24 上海市电力公司 Photovoltaic energy storage control system
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105186563B (en) * 2015-09-16 2018-08-14 上海载物能源科技有限公司 A kind of high-effect solar energy power generating control system and method based on synchronous boost
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
GB2551753A (en) 2016-06-29 2018-01-03 Liu Xiongwei Apparatus for use in a solar photovoltaic power system and methods of operating the same
JP7073647B2 (en) * 2017-08-07 2022-05-24 オムロン株式会社 Power generation system

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327071A (en) 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
JP3554116B2 (en) * 1996-09-06 2004-08-18 キヤノン株式会社 Power control device and solar power generation system using the same
JPH10341541A (en) 1997-06-05 1998-12-22 Toshiba Corp Storage battery discharging termination controller
CN1161678C (en) * 1998-03-30 2004-08-11 三洋电机株式会社 Solar generating device
JP3732942B2 (en) * 1998-03-30 2006-01-11 三洋電機株式会社 Solar power plant
JP2001128365A (en) * 1999-10-25 2001-05-11 Hitachi Ltd Operating method for photovoltaic power generation system
JP3747313B2 (en) * 2000-04-27 2006-02-22 シャープ株式会社 Grid-connected inverter device
JP2002271991A (en) * 2001-03-14 2002-09-20 Kyocera Corp Photovoltaic power generating system, starting method therefor, and computer-readable storage medium
JP3772096B2 (en) * 2001-04-13 2006-05-10 シャープ株式会社 Power conditioner for photovoltaic system
JP2003009398A (en) * 2001-06-19 2003-01-10 Sanyo Electric Co Ltd Control method of system interconnection power generation system and the system interconnection power generation system
CN1337775A (en) * 2001-06-29 2002-02-27 黎进华 Solar power generator and its inversion step-up circuit
KR100452967B1 (en) 2002-04-24 2004-10-14 헥스파워시스템(주) Apparatus and method for controlling power controller for solar power generation
JP2004146791A (en) * 2002-07-31 2004-05-20 Kyocera Corp Solar power generation device
TWI232361B (en) * 2003-11-25 2005-05-11 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system
TWM258488U (en) * 2004-02-23 2005-03-01 Hu-Tai Fan Solar power control apparatus for handheld devices

Also Published As

Publication number Publication date
TW200643678A (en) 2006-12-16
KR20060106646A (en) 2006-10-12
EP1708070A1 (en) 2006-10-04
CN100517159C (en) 2009-07-22
KR100993652B1 (en) 2010-11-10
DE602006001067D1 (en) 2008-06-19
ES2306310T3 (en) 2008-11-01
CN1841254A (en) 2006-10-04
TWI400594B (en) 2013-07-01
ATE394727T1 (en) 2008-05-15
JP2006278858A (en) 2006-10-12
EP1708070B1 (en) 2008-05-07

Similar Documents

Publication Publication Date Title
JP4794189B2 (en) Solar power plant
JP5081596B2 (en) Power supply system
JP4225923B2 (en) Inverter for grid connection
JP2002369406A (en) System-interconnected power system
JP2000316282A (en) Power conditioner device for solar power generation
JP2014075855A (en) Power control system and photovoltaic power generation system
CN105431992A (en) Control device for solar power generation inverter
JP6566355B2 (en) Power converter
JP4293673B2 (en) Operation method of power supply system having a plurality of inverters
CN103392291B (en) Power conversion device
JP2005269843A (en) Parallel operation device
KR100641127B1 (en) Output power control apparatus for fuel cell system
JP5540893B2 (en) Photovoltaic power generation device and connection device
JP2013102631A (en) Power conditioner for solar power generation
JP6400238B2 (en) Grid-connected inverter device
JPWO2012114469A1 (en) Solar power system
KR100664090B1 (en) Power converting control apparatus and method for line conection type fuel cell system
JP5622923B2 (en) Grid connection power conditioner
JPH09135575A (en) Starting method of power converter for photovoltaic power generation
JP2017077124A (en) Power storage apparatus
JP3762036B2 (en) Power conditioner in solar power generation system
JP4855361B2 (en) Inverter starting device for starting inverter device of solar power generation system, method for starting inverter device, program for realizing inverter starting device, and recording medium recording this program
JP3451945B2 (en) Solar power inverter
JP2013038052A (en) Power conversion apparatus
JP6043223B2 (en) Cooperation system of photovoltaic power generation and storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R151 Written notification of patent or utility model registration

Ref document number: 4794189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3