TWI400594B - Photovoltaic device - Google Patents

Photovoltaic device Download PDF

Info

Publication number
TWI400594B
TWI400594B TW095108349A TW95108349A TWI400594B TW I400594 B TWI400594 B TW I400594B TW 095108349 A TW095108349 A TW 095108349A TW 95108349 A TW95108349 A TW 95108349A TW I400594 B TWI400594 B TW I400594B
Authority
TW
Taiwan
Prior art keywords
voltage
power
solar cell
solar
timer
Prior art date
Application number
TW095108349A
Other languages
Chinese (zh)
Other versions
TW200643678A (en
Inventor
Masaki Madenokoji
Tomohide Funagoshi
Yasuhiro Makino
Original Assignee
Sanyo Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co filed Critical Sanyo Electric Co
Publication of TW200643678A publication Critical patent/TW200643678A/en
Application granted granted Critical
Publication of TWI400594B publication Critical patent/TWI400594B/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/14Details; Accessories therefor
    • A61J1/1412Containers with closing means, e.g. caps
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell

Abstract

A solar power generating device including a first solar battery (1, 2, 3) for generating DC power, a second solar battery (4, 5) for generating DC power having a voltage lower than the voltage of the first solar battery, a boosting circuit (16A, 16B) for boosting the voltage of the DC power generated by the second solar battery, and an inverter circuit (8) for converting the DC power to AC power and carrying out MPPT (maximum power point tracking) control, a voltage sensor (23) for detecting the voltage of the DC power generated by the first solar battery, a timer (25) for counting a continuing time for which a state where the detection voltage of the voltage sensor is not more than a predetermined voltage is continued from the time when the first and second solar batteries start power generation, and a controller (24) for starting the operation of the boosting circuit when the count time of the timer is equal to a predetermined time.

Description

太陽能發電裝置Solar power plant

本發明係關於可由太陽能電池發電來提供輸出的一種太陽能發電裝置。詳述之、即將太陽能電池所發電之直流電力予以升壓,並轉換為交流電力來供給之太陽能發電裝置。The present invention relates to a solar power generating apparatus that can generate electricity by generating electricity from a solar cell. Specifically, a solar power generation device that boosts DC power generated by a solar cell and converts it into AC power for supply.

習知過去此種太陽能發電裝置,係為將太陽能電池所發電之直流電力在升壓電路予以升壓,經升壓之直流電力再利用換流器電路轉換為交流電力,轉換後之交流電力再以控制裝置予以控制,然後回饋給商用電源系統之太陽能發電裝置(例如、參考專利文獻1)。In the past, such a solar power generation device is configured to boost the DC power generated by the solar cell in the booster circuit, and the boosted DC power is converted into AC power by the inverter circuit, and the converted AC power is re The solar power generation device is controlled by the control device and then fed back to the commercial power supply system (for example, refer to Patent Document 1).

然而上述太陽能發電裝置之太陽能電池的特點為,太陽能電池之輸出電壓從Vmax(開路電壓)變化至最大功率點Pm時,其輸出功率逐漸的增加,當越過最大功率點Pm而電壓逐漸下降時,其輸出電壓亦從最大功率點Pm逐漸的減少。因此,此種從太陽能電池取出最大功率之控制方法,即為使換流器電路的太陽能電池之工作點,能經常追蹤最大功率點Pm而隨之變化的最大功率追蹤控制(Maximum Power Point Tracking(以下稱為〔MPPT〕)(例如、參考專利文獻2)。However, the solar cell of the above solar power generation device is characterized in that when the output voltage of the solar cell changes from Vmax (open circuit voltage) to the maximum power point Pm, the output power thereof gradually increases, and when the voltage exceeds the maximum power point Pm and the voltage gradually decreases, Its output voltage is also gradually reduced from the maximum power point Pm. Therefore, the control method for taking out the maximum power from the solar cell is the maximum power tracking control (Maximum Power Point Tracking) that can continuously track the maximum power point Pm for the operating point of the solar cell of the inverter circuit. Hereinafter, it is called [MPPT]) (for example, refer to Patent Document 2).

專利文獻1:日本專利特開2003-9398號公報Patent Document 1: Japanese Patent Laid-Open Publication No. 2003-9398

專利文獻2:日本專利特開平11-282553號公報Patent Document 2: Japanese Patent Laid-Open No. Hei 11-282553

但根據前述專利文獻2所揭示之技術,將太陽能電池模 板依既定片數串聯連接,使其可發出額定(即標準)直流電力之標準太陽能電池與換流器電路連接之同時,對於比前述規定片數少之數片太陽能電池模板串聯連接,而發電之電力比該標準直流電力少,而此直流電力電壓比該標準直流電力之電壓小的尾數太陽能電池,透過升壓電路與換流器電路連接之太陽能發電裝置,若在早晚或天氣不好日照較少時,由於太陽能電池發電量不足會致使換流器電路成為間歇運轉狀態,此時若在換流器進入連續運轉狀態之前使升壓電路開始運轉,則將對於換流器電路之MPPT控制會有不良影響之虞。However, according to the technique disclosed in the aforementioned Patent Document 2, the solar cell module is The boards are connected in series according to the predetermined number of sheets, so that the standard solar cells capable of emitting rated (ie, standard) DC power are connected to the inverter circuit, and the plurality of solar battery modules having a smaller number of sheets are connected in series to generate electricity. The power is less than the standard DC power, and the DC power voltage is smaller than the voltage of the standard DC power, and the solar power device connected to the inverter circuit through the booster circuit is in the morning or evening or the weather is not good. When there is less, the inverter battery circuit will be in an intermittent operation state due to insufficient power generation of the solar cell. At this time, if the booster circuit starts to operate before the inverter enters the continuous operation state, the MPPT control for the inverter circuit will be performed. There will be adverse effects.

據此,必需在確認換流器電路處於連續運轉狀態時,方能開始升壓電路之運轉。此時、可藉由與換流器電路控制用微電腦之間的通信來確認其是在連續運轉狀態與否。或可於上述標準太陽能電池電路輸入部設置電壓、電流感測器,由功率量測來確認換流器電路的連續運轉狀態。Accordingly, it is necessary to start the operation of the booster circuit when it is confirmed that the inverter circuit is in the continuous operation state. At this time, it is possible to confirm whether it is in a continuous operation state or not by communication with the inverter circuit control microcomputer. Alternatively, a voltage and current sensor may be disposed at the input portion of the standard solar cell circuit, and the continuous operation state of the inverter circuit may be confirmed by power measurement.

然而、上述前者僅適用於具通信功能之換流器電路可以連接,而有不具通信功能之換流器電路無法連接的問題。後者則有零件件數增加,成本上升之問題。However, the former is only applicable to a converter circuit having a communication function that can be connected, and a converter circuit having no communication function cannot be connected. The latter has the problem of an increase in the number of parts and an increase in cost.

因此本發明之目的,在於可維持通用性,且避免成本的上升,並在升壓電路開始運轉時,能防止對換流器電路的MPPT控制造成不良影響的問題。Therefore, an object of the present invention is to maintain versatility and avoid an increase in cost, and to prevent a problem that the MPPT control of the inverter circuit is adversely affected when the booster circuit starts operating.

本專利之第1發明係具備有:第1太陽能電池,其乃產生既定電壓之直流電壓電力;第2太陽能電池,其乃產生較第1太陽能電池低之直流電壓電力;升壓電路,其乃將該第2太陽能電池所產生之電力電壓予以升壓;以及換流 器電路,其乃將經該升壓電路升壓過的電力、及經第1太陽能電池產生的直流電電力,轉換為交流電力,同時執行最大電力追蹤控制;其特徵在於具備有:電壓感測器,其乃檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,其乃對從該第1太陽能電池與第2太陽能電池開始發電起,在該電壓感測器的檢測電壓係既定電壓以下之狀態下的連續時間進行計時;以及控制裝置,其乃控制當該計時器計時達既定時間時,便開始該升壓電路的運轉。The first invention of the present invention includes: a first solar cell that generates DC voltage power of a predetermined voltage; and a second solar cell that generates DC voltage power lower than that of the first solar cell; and a booster circuit; Boosting the power voltage generated by the second solar cell; and commutating And a power circuit that converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power, and performs maximum power tracking control; and is characterized in that: a voltage sensor is provided And detecting a voltage of the direct current power generated by the first solar battery; and a timer for detecting the voltage of the voltage sensor from the first solar battery and the second solar battery The continuous time is counted in a state below the predetermined voltage; and the control device controls the operation of the booster circuit when the timer is timed for a predetermined time.

此外,第2發明係具備有:第1太陽能電池,其乃產生既定電壓之直流電壓電力;第2太陽能電池,其乃產生較第1太陽能電池低之直流電壓電力;升壓電路,其乃將該第2太陽能電池所產生之電力電壓予以升壓;以及換流器電路,其乃將經該升壓電路升壓過的電力、及經第1太陽能電池產生的直流電電力,轉換為交流電力,同時執行最大電力追蹤控制;其特徵在於具備有:電壓感測器,其乃檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,其乃對從該第1太陽能電池與第2太陽能電池開始發電起,在該電壓感測器的檢測電壓係從該第1太陽能電池最大輸出電壓,減掉預設電壓之電壓以下的狀態下之連續時間進行計時;以及控制裝置,其乃控制當該計時器計時達既定時間時,便開始該升壓電路的運轉。Further, the second aspect of the invention includes: a first solar cell that generates DC voltage power of a predetermined voltage; a second solar cell that generates DC voltage power lower than that of the first solar cell; and a booster circuit that The power voltage generated by the second solar cell is boosted, and the inverter circuit converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power. Simultaneously performing maximum power tracking control; characterized by: a voltage sensor for detecting a voltage of DC power generated by the first solar cell; and a timer for the first solar cell and the first 2 when the solar cell starts generating electricity, the detection voltage of the voltage sensor is counted from a continuous time in which the maximum output voltage of the first solar cell is less than the voltage of the preset voltage; and the control device is Controls the operation of the booster circuit when the timer is timed for a predetermined period of time.

因此本發明,不須要求換流器電路具有通信功能,即可維持通用性,且避免成本的上升,並在升壓電路開始運轉 時能防止對換流器電路的MPPT控制造成不良影響。Therefore, the present invention can maintain the versatility without requiring the inverter circuit to have a communication function, and avoids an increase in cost, and starts the operation of the booster circuit. It can prevent adverse effects on the MPPT control of the inverter circuit.

以下,根據圖式詳細說明本發明之實施形態。第1圖係太陽能發電裝置整體的系統圖。在第1圖中,1至3係既定的片數,例如將5片的太陽能電池模板串聯連接,將可發出額定(即標準)直流電力之標準太陽能電池(第1太陽能電池),4及5係比既定的片數少之片數,例如將3片的太陽能電池模板串聯連接,而發電之電力比前述標準直流電力少,此直流電力電壓比前述標準直流電力之電壓小的尾數太陽能電池(第2太陽能電池)。Hereinafter, embodiments of the present invention will be described in detail based on the drawings. Fig. 1 is a system diagram of the entire solar power generation device. In Fig. 1, 1 to 3 are a predetermined number of sheets, for example, a series of five solar cell modules are connected in series, and a standard solar cell (first solar cell) capable of emitting rated (i.e., standard) DC power, 4 and 5 The number of sheets is smaller than a predetermined number of sheets, for example, three solar cell modules are connected in series, and the power generated by the power is less than the standard DC power, and the DC power voltage is smaller than the voltage of the standard DC power. Second solar cell).

此外,6係後述升壓電路(DC/DC轉換器)裝在箱體6A內的連接裝置,7係連接在此連接裝置6並具有換流器電路8之電力調節器,此電力調節器再與商用電力系統連接。而電力調節器7係能從太陽能電池取出最大功率,執行讓太陽能電池工作點能經常追蹤最大功率點而隨之變化之最大功率追蹤裝置的MPPT控制。Further, a 6-series booster circuit (DC/DC converter) is connected to the connection device in the casing 6A, and 7 is connected to the connection device 6 and has a power conditioner of the inverter circuit 8, and the power conditioner is further Connected to commercial power systems. The power conditioner 7 is capable of taking out the maximum power from the solar cell, and performs MPPT control of the maximum power tracking device that allows the solar cell operating point to constantly track the maximum power point and change accordingly.

以下,根據第2圖詳細說明前述連接裝置6。10A、10B、10C係透過各接頭11A、11B、11C與標準太陽能電池1、2、3連接之標準輸入電路,其配置之數目與被連接之太陽能電池相同。此外,12A、12B、12C係防止回流用二極體,與標準輸入電路10A、10B、10C之輸出側相連接。Hereinafter, the above-described connecting device 6 will be described in detail with reference to Fig. 2. 10A, 10B, and 10C are standard input circuits connected to standard solar cells 1, 2, and 3 through respective terminals 11A, 11B, and 11C, and the number of configurations thereof is connected. The solar cells are the same. Further, 12A, 12B, and 12C are diodes for preventing backflow, and are connected to the output sides of the standard input circuits 10A, 10B, and 10C.

16A、16B係升壓電路(DC/DC轉換器),升壓電路16A、16B係透過接頭17A、17B及第1、第2電壓感測器18A、18B與尾數太陽能電池4、5相連接。22係檢測出升壓電路16A、16B輸出電壓之第3電壓感測器,23係檢測出標準輸入電路10A、10B、10C之輸出電壓(以下稱為「標準輸入電 壓」)的第4電壓感測器。在此、升壓電路16A、16B之控制用電源因為可從尾數太陽能電池4、5取得,故並不成為太陽能電池1、2、3的負載。The 16A and 16B are booster circuits (DC/DC converters), and the booster circuits 16A and 16B are connected to the fractional solar cells 4 and 5 via the connectors 17A and 17B and the first and second voltage sensors 18A and 18B. 22 detects the third voltage sensor of the output voltage of the booster circuits 16A and 16B, and 23 detects the output voltage of the standard input circuits 10A, 10B, and 10C (hereinafter referred to as "standard input power" The fourth voltage sensor of the pressure"). Here, since the control power sources of the booster circuits 16A and 16B are available from the mantissa solar cells 4 and 5, they do not become the loads of the solar cells 1, 2, and 3.

24係微電腦之控制裝置,此控制裝置24具備有未圖示之CPU(中央處理器)、RAM(隨機取樣記憶體)、ROM(唯讀記憶體)及計時器25,此外,更擁有輸入電壓偵測器26及輸出電壓偵測器27。另外,控制裝置24係透過PWM(脈衝寬調變控制電路)輸出控制信號給升壓電路16A、16B。而前述連接裝置6則透過輸出側接頭30與電力調節器連接。A control device for a 24 series microcomputer, which includes a CPU (central processing unit), a RAM (random sampling memory), a ROM (read only memory), and a timer 25 (not shown), and further has an input voltage. The detector 26 and the output voltage detector 27. Further, the control device 24 outputs a control signal to the boosting circuits 16A and 16B via a PWM (Pulse Width Modulation Control Circuit). The connecting device 6 is connected to the power conditioner via the output side connector 30.

以下,根據第3圖所顯示之流程圖,說明太陽能發電裝置之動作,特別是關於起動時的動作。首先,控制裝置24設定標準輸入電壓之最大值Vmax為0(重新設定為0),讀取第4電壓感測器所檢測出現在的標準輸入電壓Vs。其次,控制裝置24判斷升壓電路16A、16B是否停止,若停止時,則讀取事先設定並儲存於上述RAM內之標準輸入電壓最大值Vmax,而與前述現在的標準輸入電壓Vs做比較。Hereinafter, the operation of the solar power generating apparatus will be described based on the flowchart shown in Fig. 3, particularly regarding the operation at the time of starting. First, the control device 24 sets the maximum value Vmax of the standard input voltage to 0 (reset to 0), and reads the standard input voltage Vs detected by the fourth voltage sensor. Next, the control device 24 determines whether or not the boosting circuits 16A and 16B are stopped. When the control device 24 stops, it reads the standard input voltage maximum value Vmax set in advance and stored in the RAM, and compares it with the current standard input voltage Vs.

若,此現在的標準輸入電壓Vs在標準輸入電壓最大值Vmax以下時,則判斷該現在的標準輸入電壓Vs是否比從標準輸入電壓最大值Vmax減掉事先設定並儲存於上述RAM內之升壓電路起動判斷電壓Vn之值低。若低時,計時器25開始計時,當此低狀態比事先記憶在RAM內之換流器電路8的起動判斷時間(判斷換流器電路8可連續運轉之時間)Tn持久連續,而計時器25計算起動判斷時間且逾時的時候,控制裝置24判斷電力調節器7之換流器電路8已起動,而對升壓電路16A、16B輸出起動信號,升壓電路 16A、16B開始運轉。If the current standard input voltage Vs is below the standard input voltage maximum value Vmax, it is determined whether the current standard input voltage Vs is less than the standard input voltage maximum value Vmax minus the boost previously set and stored in the RAM. The circuit start determines that the value of the voltage Vn is low. If it is low, the timer 25 starts counting, and when the low state is longer than the start determination time of the inverter circuit 8 previously stored in the RAM (the time when the inverter circuit 8 can be continuously operated) Tn, the timer is continuously continuous. When the start determination time is calculated and the timeout is exceeded, the control device 24 determines that the inverter circuit 8 of the power conditioner 7 has been started, and outputs a start signal to the booster circuits 16A, 16B, and the boosting circuit 16A, 16B started to run.

如此,因為根據標準輸入電壓Vs,標準輸入電壓最大值Vmax及標準升壓電路起動判斷電壓Vn,並由計時器25之計時,而判斷換流器電路8在連續運轉之後,方使升壓電路16A、16B開始運轉,因此,裝設在電力調節器7之換流器電路8不需要具備通信功能,而可維持通用性。又因不需在標準輸入電路10A、10B、10C側裝設電流感測器等,可避免成本的上升,並在升壓電路16A、16B開始運轉時,能防止對換流器電路8的MPPT控制造成不良影響。Thus, since the standard input voltage Vs, the standard input voltage maximum value Vmax, and the standard boost circuit start determination voltage Vn, and are counted by the timer 25, it is judged that the inverter circuit 8 is continuously operated after the boost circuit is operated. Since the 16A and 16B start to operate, the inverter circuit 8 provided in the power conditioner 7 does not need to have a communication function, and the versatility can be maintained. Further, since it is not necessary to install a current sensor or the like on the side of the standard input circuits 10A, 10B, and 10C, cost rise can be avoided, and MPPT to the inverter circuit 8 can be prevented when the booster circuits 16A and 16B start operating. Control has an adverse effect.

此外,讀取標準輸入電壓最大值Vmax,與現在的標準輸入電壓Vs比較,若控制裝置24判斷現在的標準輸入電壓Vs大於標準輸入電壓最大值Vmax時,則讓現在的標準輸入電壓Vs維持在標準輸入電壓最大值Vmax。此時,將判定前述標準輸入電壓Vs是否為標準輸入電壓最大值Vmax以下,且現在的標準輸入電壓Vs是否低於從標準輸入電壓最大值Vmax減掉事先設定並儲存於該RAM內之升壓電路起動判斷電壓Vn之值。與判斷為高於時一樣,將設定該計時器25計時時間為0(重新設定為0),並停止升壓電路16A、16B之運轉。Further, the standard input voltage maximum value Vmax is read, compared with the current standard input voltage Vs, and if the control device 24 determines that the current standard input voltage Vs is greater than the standard input voltage maximum value Vmax, the current standard input voltage Vs is maintained at Standard input voltage maximum Vmax. At this time, it is determined whether the standard input voltage Vs is equal to or lower than the standard input voltage maximum value Vmax, and whether the current standard input voltage Vs is lower than the standard input voltage maximum value Vmax minus the boost previously set and stored in the RAM. The circuit starts to determine the value of the voltage Vn. As is judged to be higher than this, the timer 25 is set to have a count time of 0 (reset to 0), and the operation of the booster circuits 16A, 16B is stopped.

又,當前述標準輸入電壓Vs為標準輸入電壓最大值Vmax以下,且進行判定現在的標準輸入電壓Vs是否低於從標準輸入電壓最大值Vmax減掉事先設定並儲存於該RAM內之升壓電路起動判斷電壓Vn的值,然後開始該計時器25之計時直至逾時之間,也將維持升壓電路16A、16B在停止狀態。Further, when the standard input voltage Vs is equal to or less than the standard input voltage maximum value Vmax, and whether the current standard input voltage Vs is lower than the standard input voltage maximum value Vmax, the boost circuit previously set and stored in the RAM is determined. The value of the determination voltage Vn is started, and then the timer 25 is started until the timeout, and the boost circuits 16A, 16B are also maintained in the stopped state.

此外,在各升壓電路16A、16B起動後,將根據由第1、第2電壓感測器18A、18B檢測出之尾數太陽能電池4、5的輸出電壓,及由第3電壓感測器22檢測之升壓電路16A、16B的輸出電壓,來作動控制裝置24之輸入電壓偵測器26及輸出電壓偵測器27,控制裝置24並透過PWM控制電路28控制升壓電路16A、16B,以保持各升壓電路16A、16B之輸出電壓與標準輸入電路10A、10B、10C之輸出電壓相等,使太陽能發電裝置能提供既定電壓之電力。Further, after the booster circuits 16A and 16B are activated, the output voltages of the solar cells 4 and 5 detected by the first and second voltage sensors 18A and 18B and the third voltage sensor 22 are used. The output voltages of the boost circuits 16A, 16B are detected to actuate the input voltage detector 26 and the output voltage detector 27 of the control device 24, and the control device 24 controls the boost circuits 16A, 16B through the PWM control circuit 28 to The output voltages of the booster circuits 16A and 16B are kept equal to the output voltages of the standard input circuits 10A, 10B, and 10C, so that the solar power generating device can supply power of a predetermined voltage.

以上所述僅為本發明較佳實施例而己,並非用以限定本發明申請專利範圍以及特定使用方式,舉凡在未脫離本發明精神及所揭示申請專利範圍內完成的等效改變或修飾均應涵蓋在本發明內。The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention and the specific use thereof, and equivalent changes or modifications may be made without departing from the spirit of the invention and the scope of the disclosed application. It should be covered within the invention.

1,2,3‧‧‧太陽能電池(第1太陽能電池)1,2,3‧‧‧ solar cells (first solar cell)

4,5‧‧‧尾數太陽能電池(第2太陽能電池)4,5‧‧‧Mant solar cells (2nd solar cell)

6‧‧‧連接裝置6‧‧‧Connecting device

6A‧‧‧箱體6A‧‧‧ cabinet

7‧‧‧電力調節器7‧‧‧Power conditioner

8‧‧‧換流器電路8‧‧‧Inverter circuit

16A,16B‧‧‧升壓電路16A, 16B‧‧‧ booster circuit

23‧‧‧第4電壓感測器23‧‧‧4th voltage sensor

24‧‧‧控制裝置24‧‧‧Control device

25‧‧‧計時器25‧‧‧Timer

第1圖係太陽能發電裝置的整體系統圖。Fig. 1 is an overall system diagram of a solar power generation device.

第2圖係收藏在升壓電路內連接裝置的電路圖。Fig. 2 is a circuit diagram of a connection device housed in a booster circuit.

第3圖係說明控制升壓電路起動時的流程圖。Fig. 3 is a flow chart showing the control of the start of the booster circuit.

1,2,3‧‧‧太陽能電池(第1太陽能電池)1,2,3‧‧‧ solar cells (first solar cell)

4,5‧‧‧尾數太陽能電池(第2太陽能電池)4,5‧‧‧Mant solar cells (2nd solar cell)

6‧‧‧連接裝置6‧‧‧Connecting device

6A‧‧‧箱體6A‧‧‧ cabinet

7‧‧‧電力調節器7‧‧‧Power conditioner

8‧‧‧換流器電路8‧‧‧Inverter circuit

24‧‧‧控制裝置24‧‧‧Control device

25‧‧‧計時器25‧‧‧Timer

Claims (2)

一種太陽能發電裝置,係具備有:第1太陽能電池,產生既定電壓之直流電壓電力;第2太陽能電池,產生較該第1太陽能電池的電壓更低之直流電壓電力;升壓電路,將該第2太陽能電池所產生之電力電壓予以升壓;以及換流器電路,將經該升壓電路升壓後的電力、及由該第1太陽能電池產生的直流電電力,轉換為交流電力,並執行最大電力追蹤控制;其特徵在於具備有:一個以上的電壓感測器,檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,對從該第1太陽能電池與該第2太陽能電池開始發電起,該電壓感測器的檢測電壓係既定電壓以下之狀態下的連續時間進行計時;以及控制裝置,控制成當該計時器計時了既定時間時,便開始該升壓電路的運轉。 A solar power generation device comprising: a first solar cell that generates a DC voltage power of a predetermined voltage; and a second solar cell that generates a DC voltage power lower than a voltage of the first solar cell; and a booster circuit (2) The power voltage generated by the solar cell is boosted; and the inverter circuit converts the power boosted by the booster circuit and the DC power generated by the first solar cell into AC power, and performs maximum Power tracking control; characterized in that: one or more voltage sensors are provided to detect a voltage of direct current power generated by the first solar battery; and a timer for the first solar battery and the second solar battery When the power generation is started, the detection voltage of the voltage sensor is counted for a continuous time in a state below a predetermined voltage; and the control device controls to start the operation of the booster circuit when the timer is timed for a predetermined period of time. 一種太陽能發電裝置,係具備有:第1太陽能電池,產生既定電壓之直流電壓電力;第2太陽能電池,產生較該第1太陽能電池的電壓更低之直流電壓電力; 升壓電路,將該第2太陽能電池所產生之電力電壓予以升壓;以及換流器電路,將經該升壓電路升壓後的電力、及由該第1太陽能電池產生的直流電電力,轉換為交流電力,並執行最大電力追蹤控制;其特徵在於具備有:一個以上的電壓感測器,檢測出由該第1太陽能電池所產生之直流電電力的電壓;計時器,對從該第1太陽能電池與該第2太陽能電池開始發電起,該電壓感測器的檢測電壓係從該第1太陽能電池最大輸出電壓減掉預設電壓所得之電壓以下的狀態下之連續時間進行計時;以及控制裝置,控制成當該計時器計時了既定時間時,便開始該升壓電路的運轉。 A solar power generation device comprising: a first solar cell that generates DC voltage power of a predetermined voltage; and a second solar cell that generates DC voltage power lower than a voltage of the first solar cell; a booster circuit that boosts a power voltage generated by the second solar cell; and an inverter circuit that converts power boosted by the booster circuit and DC power generated by the first solar cell For alternating current power, and performing maximum power tracking control; characterized in that: one or more voltage sensors are provided to detect a voltage of direct current power generated by the first solar battery; and a timer for the first solar energy The battery and the second solar cell start generating electricity, and the detection voltage of the voltage sensor is counted from a continuous time in a state where the maximum output voltage of the first solar cell is lower than a voltage obtained by a predetermined voltage; and the control device Controlled to start the operation of the booster circuit when the timer has expired for a predetermined period of time.
TW095108349A 2005-03-30 2006-03-13 Photovoltaic device TWI400594B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097643A JP4794189B2 (en) 2005-03-30 2005-03-30 Solar power plant

Publications (2)

Publication Number Publication Date
TW200643678A TW200643678A (en) 2006-12-16
TWI400594B true TWI400594B (en) 2013-07-01

Family

ID=36128606

Family Applications (1)

Application Number Title Priority Date Filing Date
TW095108349A TWI400594B (en) 2005-03-30 2006-03-13 Photovoltaic device

Country Status (8)

Country Link
EP (1) EP1708070B1 (en)
JP (1) JP4794189B2 (en)
KR (1) KR100993652B1 (en)
CN (1) CN100517159C (en)
AT (1) ATE394727T1 (en)
DE (1) DE602006001067D1 (en)
ES (1) ES2306310T3 (en)
TW (1) TWI400594B (en)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
JP5354892B2 (en) * 2007-11-26 2013-11-27 ニッコー株式会社 Wind power generator
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Release mechanism in distributed electrical power apparatus, to wake up and method for closing
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
EP2538300B1 (en) * 2010-05-12 2015-07-08 Omron Corporation Voltage conversion device, voltage conversion method, solar power generation system, and management device
JP5540893B2 (en) * 2010-05-31 2014-07-02 三洋電機株式会社 Photovoltaic power generation device and connection device
JP5659240B2 (en) * 2010-11-08 2015-01-28 株式会社日立製作所 Solar power system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102200793A (en) * 2011-05-23 2011-09-28 昆明理工大学 Maximum power point detection tracking method and circuit of power generating device
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
WO2013121540A1 (en) * 2012-02-15 2013-08-22 東芝三菱電機産業システム株式会社 Power supply device for power conversion device
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
EP3499695A1 (en) * 2012-05-25 2019-06-19 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN102749931A (en) * 2012-06-21 2012-10-24 上海市电力公司 Photovoltaic energy storage control system
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105186563B (en) * 2015-09-16 2018-08-14 上海载物能源科技有限公司 A kind of high-effect solar energy power generating control system and method based on synchronous boost
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
GB2551753A (en) * 2016-06-29 2018-01-03 Liu Xiongwei Apparatus for use in a solar photovoltaic power system and methods of operating the same
JP7073647B2 (en) * 2017-08-07 2022-05-24 オムロン株式会社 Power generation system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327071A (en) * 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
US5869956A (en) * 1996-09-06 1999-02-09 Canon Kabushiki Kaisha Solar power generation apparatus and power control device therefor
JPH11282553A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Solar power generator
JP2003009398A (en) * 2001-06-19 2003-01-10 Sanyo Electric Co Ltd Control method of system interconnection power generation system and the system interconnection power generation system
TWM258488U (en) * 2004-02-23 2005-03-01 Hu-Tai Fan Solar power control apparatus for handheld devices
TW200517803A (en) * 2003-11-25 2005-06-01 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10341541A (en) 1997-06-05 1998-12-22 Toshiba Corp Storage battery discharging termination controller
CN1161678C (en) 1998-03-30 2004-08-11 三洋电机株式会社 Solar generating device
JP2001128365A (en) * 1999-10-25 2001-05-11 Hitachi Ltd Operating method for photovoltaic power generation system
JP3747313B2 (en) * 2000-04-27 2006-02-22 シャープ株式会社 Grid-connected inverter device
JP2002271991A (en) * 2001-03-14 2002-09-20 Kyocera Corp Photovoltaic power generating system, starting method therefor, and computer-readable storage medium
JP3772096B2 (en) * 2001-04-13 2006-05-10 シャープ株式会社 Power conditioner for photovoltaic system
CN1337775A (en) * 2001-06-29 2002-02-27 黎进华 Solar power generator and its inversion step-up circuit
KR100452967B1 (en) 2002-04-24 2004-10-14 헥스파워시스템(주) Apparatus and method for controlling power controller for solar power generation
JP2004146791A (en) * 2002-07-31 2004-05-20 Kyocera Corp Solar power generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327071A (en) * 1991-11-05 1994-07-05 The United States Of America As Represented By The Administrator Of The National Aeronautics & Space Administration Microprocessor control of multiple peak power tracking DC/DC converters for use with solar cell arrays
US5869956A (en) * 1996-09-06 1999-02-09 Canon Kabushiki Kaisha Solar power generation apparatus and power control device therefor
JPH11282553A (en) * 1998-03-30 1999-10-15 Sanyo Electric Co Ltd Solar power generator
JP2003009398A (en) * 2001-06-19 2003-01-10 Sanyo Electric Co Ltd Control method of system interconnection power generation system and the system interconnection power generation system
TW200517803A (en) * 2003-11-25 2005-06-01 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system
TWM258488U (en) * 2004-02-23 2005-03-01 Hu-Tai Fan Solar power control apparatus for handheld devices

Also Published As

Publication number Publication date
EP1708070A1 (en) 2006-10-04
KR100993652B1 (en) 2010-11-10
JP4794189B2 (en) 2011-10-19
CN1841254A (en) 2006-10-04
KR20060106646A (en) 2006-10-12
ATE394727T1 (en) 2008-05-15
ES2306310T3 (en) 2008-11-01
TW200643678A (en) 2006-12-16
DE602006001067D1 (en) 2008-06-19
CN100517159C (en) 2009-07-22
EP1708070B1 (en) 2008-05-07
JP2006278858A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
TWI400594B (en) Photovoltaic device
US6493246B2 (en) Power conversion with stop conversion during low integrated power conditions
EP2224571B1 (en) Power supply system
JP4225923B2 (en) Inverter for grid connection
US20020038667A1 (en) Solar battery module and power generation apparatus
JP2005192314A (en) Power converter
JP4719434B2 (en) Solar cell power generator
JP2002369406A (en) System-interconnected power system
WO2011039599A1 (en) Power distribution system
JP2014075855A (en) Power control system and photovoltaic power generation system
JP6566355B2 (en) Power converter
CN105431992A (en) Control device for solar power generation inverter
CN103392291A (en) Power conversion device
JP2005269843A (en) Parallel operation device
JP4039097B2 (en) Solar power system
JP5540893B2 (en) Photovoltaic power generation device and connection device
JP3570283B2 (en) Battery charging / discharging device
JP2006310400A (en) Solar-cell controller and ventilating system using it
JP2013050850A (en) Photovoltaic power generation system and control method therefor, and boost unit
JPH09135575A (en) Starting method of power converter for photovoltaic power generation
JP5622923B2 (en) Grid connection power conditioner
JPH07302130A (en) Power controller
JP3451945B2 (en) Solar power inverter
KR101237571B1 (en) Solar Inverter System
JP2015042100A (en) Power conditioner

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees