JPS62154122A - Charging control system in solar generating device - Google Patents

Charging control system in solar generating device

Info

Publication number
JPS62154122A
JPS62154122A JP60293962A JP29396285A JPS62154122A JP S62154122 A JPS62154122 A JP S62154122A JP 60293962 A JP60293962 A JP 60293962A JP 29396285 A JP29396285 A JP 29396285A JP S62154122 A JPS62154122 A JP S62154122A
Authority
JP
Japan
Prior art keywords
converter
output voltage
voltage
input
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60293962A
Other languages
Japanese (ja)
Inventor
Yasuhiko Umezawa
梅澤 泰彦
Shinji Fukuba
福羽 真治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP60293962A priority Critical patent/JPS62154122A/en
Publication of JPS62154122A publication Critical patent/JPS62154122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To obtain a charging control system high in working efficiency by removing a DC/DC converter when the ratio between the input voltage and the output voltage of the DC/DC converter is kept between the conversion efficiency of the DC/DC converter and the reciprocal of said conversion efficiency. CONSTITUTION:When an accumulator 3 has a level less than a full charge mode, the DC voltage generated by a solar battery 1 is raised or dropped via a DC/DC converter 5 after a switch 12 is closed. Then a charging current and a load current are supplied to the accumulator 3 and the load 4 respectively in response to the output voltage of the converter 5. While the rise and drop are nor required for the output voltage of the battery 1 by the function of the converter 5 when the ratio between the output voltage V0 and the input voltage Vi of the converter 5 is kept between the conversion efficiency FC of the converter 5 and its reciprocal 1/FC. Thus an input/output voltage comparison control circuit 9 opens the switch 12 and separates the converter 5 from the load 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、太陽電池を用いる太陽光発電装置における蓄
電池の充電制御方式に関し、特に太陽電池からの直流を
DC/DCコンバータを介して蓄電池に充電するように
構成された太陽光発電装置における充電制御方式に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a charging control method for a storage battery in a solar power generation device using solar cells, and in particular, the present invention relates to a charging control method for a storage battery in a solar power generation device using a solar cell, and in particular, a method for controlling the charging of a storage battery by direct current from a solar cell via a DC/DC converter. The present invention relates to a charging control method in a solar power generation device configured to charge.

〔従来技術〕[Prior art]

第2図は従来のDC/DCコンバータを具備する太陽光
発電装置のシステム構成を示すブロック図である。太陽
電池1により発電された直流はその電圧がD C/D 
Cコンバータ5で昇圧或いは降圧され、その出力電圧に
応じた充電電流及び負荷X流が蓄電池3及び負荷4に供
給される。蓄電池3の端子電圧が満充電の時の端子電圧
になれば満充電検出制御回路7は、開閉器2を開放し太
陽電池1を切り離し、蓄電池3の過充電を防止する。
FIG. 2 is a block diagram showing the system configuration of a solar power generation device equipped with a conventional DC/DC converter. The voltage of the direct current generated by the solar cell 1 is D C/D
The voltage is stepped up or stepped down by the C converter 5, and a charging current and a load X current according to the output voltage are supplied to the storage battery 3 and the load 4. When the terminal voltage of the storage battery 3 reaches the terminal voltage at full charge, the full charge detection control circuit 7 opens the switch 2 and disconnects the solar cell 1, thereby preventing overcharging of the storage battery 3.

第3図は光量をパラメータとした太陽電池1の出力電圧
−1を温特性を示す図である。図示するように太陽電池
1は光ff1LQ、−LQ、に応じて出力電圧V及び出
力電流■が変化する。従ってこのような特性を有する太
陽電池1の発電電力を有効に利用するには、出力が最大
電力点P、−P、になるように出力電流I及び出力電圧
Vを維持しなければならない。即ち太陽電池1の出力が
点線A上にあるように出力電流工及び出力電圧Vを制御
する必要がある。
FIG. 3 is a diagram showing the temperature characteristics of the output voltage -1 of the solar cell 1 using the amount of light as a parameter. As shown in the figure, the output voltage V and the output current ■ of the solar cell 1 change depending on the light ff1LQ, -LQ. Therefore, in order to effectively utilize the power generated by the solar cell 1 having such characteristics, the output current I and the output voltage V must be maintained so that the output becomes the maximum power point P, -P. That is, it is necessary to control the output current and the output voltage V so that the output of the solar cell 1 is on the dotted line A.

第2図に示す太陽光発電装置において、最大電力点追尾
制御装置6は、太陽電池1の出力電圧V及び電流センサ
8からの出力電流■により、太陽電池1の出力が第3図
の点線A上に維持されるようにD C/D Cコンバー
タ5の出力電圧を調整し蓄電池3への充it流及び負荷
4への負荷電流を制御している。
In the solar power generation device shown in FIG. 2, the maximum power point tracking control device 6 controls the output voltage V of the solar cell 1 and the output current ■ from the current sensor 8 to adjust the output of the solar cell 1 to the dotted line A in FIG. The output voltage of the DC/DC converter 5 is adjusted so that the voltage is maintained at the level above, and the charging current to the storage battery 3 and the load current to the load 4 are controlled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の太陽光発電装置においては、DC/DCコン
バータ5は、その入力電圧の大きさ及び出力電圧の太き
感に関係なく接続きれているため、常にDC/DCコン
バータ5の変換効率(約95%)による損失分を伴なっ
ている。ところでDC/DCコンバータ5の入力電圧と
出力電圧が略等しい状態では、太陽電池1の出力電圧を
昇圧或いは降圧するD C/D Cコンバータ5の作用
は不必要になる。しかしながら、第2図に示す従来の太
陽光発電装置においては、DC/DCコンバータ5の入
力電圧と出力電圧が接近しているときでも接続している
ためDC/DCコンバータ5による損失分が無駄に消費
されるという欠点があり、特にこのD C/D Cコン
バータ5による損失は小規模の太陽光発電装置において
は無視できない重要な問題であった。
In the conventional solar power generation device described above, the DC/DC converter 5 is always connected regardless of the magnitude of the input voltage and the thickness of the output voltage, so the conversion efficiency of the DC/DC converter 5 (approximately 95%). By the way, when the input voltage and the output voltage of the DC/DC converter 5 are substantially equal, the action of the DC/DC converter 5 to step up or step down the output voltage of the solar cell 1 becomes unnecessary. However, in the conventional solar power generation device shown in FIG. 2, since the input voltage and output voltage of the DC/DC converter 5 are connected even when they are close to each other, the loss caused by the DC/DC converter 5 is wasted. There is a drawback that the power is consumed, and in particular, the loss caused by the DC/DC converter 5 is an important problem that cannot be ignored in small-scale solar power generation devices.

本発明は上述の点に鑑みてなされたもので、上記従来の
欠点を除去し、D C/D Cコンバータ5の入力電圧
と出力電圧とが近づいたら、該DC/DCコンバータ5
を負荷側から切り離すと共にその入力側を直接負荷側へ
接続し、太陽電池1の出力を直接蓄電池3に供給するよ
うにしてDC/DCコンバータ5の損失分を有効に利用
できる太陽光発電装置における充電制御方式を提供する
ことにある。
The present invention has been made in view of the above-mentioned points, and eliminates the above-mentioned conventional drawbacks, and when the input voltage and output voltage of the DC/DC converter 5 approach
In a solar power generation device, in which the loss of the DC/DC converter 5 can be effectively used by separating the input side from the load side and directly connecting the input side to the load side, and supplying the output of the solar cell 1 directly to the storage battery 3. The object of the present invention is to provide a charging control method.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するため本発明は、太陽電池と、該太
陽電池で発電される直流の電圧を昇圧或いは降圧するD
C/DCコンバータと、該DC/DCコンバータの出力
側に接続された蓄電池等を具備する太陽光発電装置にお
いて、前記DC/DCコンバータを負荷側から切り離す
第1の開閉器と、該DC/DCコンバータの入力側を直
接負荷側へ接続する第2の開閉器と、前記DC/DCコ
ンバータの入力電圧と出力電圧とを比較し入力電圧と出
力電圧の比がDC/DCコンバータの変換効率と該変換
効率の逆数の間にあるときは前記第1の開閉器を開放し
前記DC/DCコンバータを負荷側から切り離すと共に
前記第2の開閉器を閉してD C/D Cコンバータの
入力側を直接負荷側に接続するように構成した。
In order to solve the above problems, the present invention provides a solar cell and a D
In a solar power generation device comprising a C/DC converter and a storage battery connected to an output side of the DC/DC converter, a first switch that disconnects the DC/DC converter from a load side; A second switch that connects the input side of the converter directly to the load side compares the input voltage and output voltage of the DC/DC converter, and determines whether the ratio of the input voltage to the output voltage corresponds to the conversion efficiency of the DC/DC converter. When the conversion efficiency is between the reciprocals of the conversion efficiency, the first switch is opened to disconnect the DC/DC converter from the load side, and the second switch is closed to disconnect the input side of the DC/DC converter. It was configured to connect directly to the load side.

〔作用〕[Effect]

上記のように構成することにより、入力電圧と出力電圧
の比がDC/DCコンバータの変換効率と該変換動、7
<の逆数の間にあるときは、即ちDC/DCコンバータ
の入力電圧が出力電圧に近づいたとき、DC/DCコン
バータを負荷側から切り離すのでD・−/DCコンバー
タの損失分が有効に利用できることになる。
By configuring as above, the ratio of the input voltage to the output voltage is equal to the conversion efficiency of the DC/DC converter and the conversion efficiency, 7
When the voltage is between the reciprocals of become.

〔実施例〕〔Example〕

第1図は本発明に係る充電制御方式を適用する太陽光発
電装置のシステム構成を示すブロック図である。同図に
おいて、第2図と同一符号を付した部分は同−又は相当
部分を示す。11はDC/DCコンバータ5の入力側即
ち太陽電池1の出力端を負荷側に直接接続する開閉器、
12はDC/DCコンバータ5を蓄電池3及び負荷4の
負荷側より切り離したり、負荷側へ接続したりする開閉
器、9はDC/DCコンバータ5の入力電圧Viと出力
電圧■。を比較し、その比が所定の関係になったら開閉
器12及び開閉器11を閉じたり開放したりする入出力
電圧比較制御回路である。
FIG. 1 is a block diagram showing the system configuration of a solar power generation device to which a charging control method according to the present invention is applied. In this figure, parts given the same reference numerals as those in FIG. 2 indicate the same or equivalent parts. 11 is a switch that directly connects the input side of the DC/DC converter 5, that is, the output end of the solar cell 1 to the load side;
12 is a switch that disconnects the DC/DC converter 5 from the storage battery 3 and the load side of the load 4, and connects it to the load side; 9 is the input voltage Vi and output voltage (■) of the DC/DC converter 5; This is an input/output voltage comparison control circuit that compares the voltages and closes or opens the switch 12 and the switch 11 when the ratio reaches a predetermined relationship.

上記の如く構成された太陽光発電装置において、先ず蓄
電池3が満充電以下である場合、開閉器12を閉じると
太陽電池1で発1された直流の電圧はDC/DCコンバ
ータ5を介して昇圧或いは降圧され、該DC/DCコン
バータ5の出力電圧に応じた充1を電流及び負荷IE流
が蓄電池3及び負荷4に供給きれる。このとき太陽電池
1のDC/DCコンバータ5への入力電圧Viと入力電
流Ifが最大電力点追尾制御装置6に入力され、該最大
電力点追尾制御装置6でDC/DCコンバータ5を制御
し太陽電池1が最大出力点になるように制御する。二の
時蓄電池3の端子電圧即ちDC/DCコンバータ5の出
力電圧Voと太陽電池1の出力電圧即しD C/D C
コンバータ5の入力電圧Viとが所定の関係になったと
き、入出力電圧比較制御回路9は開閉器12を開放して
DC/DCコンバータ5を蓄電池3及び負荷4のいわゆ
る負荷側から切り離すと共に、開閉器11を閉じDC/
DCコンバータ5の入力側を直接負荷側に接続する。こ
れにより太陽電池1で発電された直流はD C/D C
コンバータ5を通さずに蓄電池3及び負荷4に供給され
ることになり、DC/DCコンバータ5による電流損失
がなくなり、その分太陽電池1で発電された電力が有効
に利用されることになる。また、蓄電池3の充電が進み
満充電となれば入出力電圧比較制御回路9はそれを検出
し、開閉器12を開放し蓄電池3の過充電を防止する。
In the solar power generation device configured as described above, first, when the storage battery 3 is less than fully charged, when the switch 12 is closed, the DC voltage 1 generated by the solar cell 1 is boosted via the DC/DC converter 5. Alternatively, the voltage is stepped down, and the current and load IE current corresponding to the output voltage of the DC/DC converter 5 can be supplied to the storage battery 3 and the load 4. At this time, the input voltage Vi and input current If of the solar cell 1 to the DC/DC converter 5 are input to the maximum power point tracking control device 6, and the maximum power point tracking control device 6 controls the DC/DC converter 5. Control is performed so that battery 1 reaches its maximum output point. Second, the terminal voltage of the storage battery 3, that is, the output voltage Vo of the DC/DC converter 5, and the output voltage of the solar cell 1, that is, D C/D C
When the input voltage Vi of the converter 5 reaches a predetermined relationship, the input/output voltage comparison control circuit 9 opens the switch 12 to disconnect the DC/DC converter 5 from the so-called load side of the storage battery 3 and the load 4. Close the switch 11 and
The input side of the DC converter 5 is directly connected to the load side. As a result, the direct current generated by solar cell 1 is D C/D C
Since the power is supplied to the storage battery 3 and the load 4 without passing through the converter 5, there is no current loss caused by the DC/DC converter 5, and the power generated by the solar cell 1 can be effectively used. Further, when the storage battery 3 is charged to full charge, the input/output voltage comparison control circuit 9 detects this and opens the switch 12 to prevent the storage battery 3 from being overcharged.

いまここで、DC/DCコンバータ5(7)を換効率を
Fcとし、DC/DCコンバータ5の出力電圧Voと入
力電圧Viの比(Vo/Vi)をCpとした場合、上記
DC/DCコンバータ5の出力電圧と入力電圧の関係が
所定の関係になったときは、下記の式が成立したときを
いう。
Now, if the conversion efficiency of the DC/DC converter 5 (7) is Fc, and the ratio (Vo/Vi) of the output voltage Vo to the input voltage Vi of the DC/DC converter 5 is Cp, then the above DC/DC converter 5, when the relationship between the output voltage and the input voltage becomes a predetermined relationship, it means when the following equation is established.

F c < Cp < 1 / F c       
  (1)即ち、前記DC/DCコンバータ5の出力電
圧VOと入力電圧Viの比がDC/DCコンバータ5の
変換効率Fcと該変換効率の逆数1 / F cの間橙
あると゛きであり、このときDC/DCコンバータ5の
入力電圧は出力電圧に接近し、DC/DCコンバータ5
により太陽電池1の出力電圧の昇圧及び降圧が不必要に
なるから、入出力電圧比較制御回路9は開閉器12を開
放してD C/D Cコンバータ5を負荷側より切り離
すと共に、開閉器11を閉じてDC/DCコンバータ5
の入力側を直接負荷側に接続することにより、゛DC/
DCコンバータ5を通さない太陽電池1を直接蓄電池3
及び負荷4に接続する。これによりD C/D Cコン
バータ5の出力電圧vOと入力電圧Viが上記(1)式
の関係にあるときのD C/D Cコンバータ5の電流
損失分を無駄にすることがない。
Fc<Cp<1/Fc
(1) That is, the ratio of the output voltage VO to the input voltage Vi of the DC/DC converter 5 is between the conversion efficiency Fc of the DC/DC converter 5 and the reciprocal of the conversion efficiency 1/Fc, and this When the input voltage of the DC/DC converter 5 approaches the output voltage, the DC/DC converter 5
Therefore, the input/output voltage comparison control circuit 9 opens the switch 12 to disconnect the DC/DC converter 5 from the load side, and also opens the switch 11. Close the DC/DC converter 5
By directly connecting the input side of the
The solar cell 1 that does not pass through the DC converter 5 is directly connected to the storage battery 3
and connect to load 4. This prevents the current loss of the DC/DC converter 5 from being wasted when the output voltage vO of the DC/DC converter 5 and the input voltage Vi have the relationship expressed by the above equation (1).

以上説明したように、上記実施例によれば、DC/DC
コンバータ5を、負荷側から切り離す第1の開閉器12
と、該D C/D Cコンバータ5の入力側を直接負荷
側へ接続する第2の開閉器11と、DC/DCコンバー
タ5の入力電圧と出力電圧とを比較し入力電圧と出力電
圧の比がDC/DCコンバータ5の変換効率と該変換効
率の逆数の間にあるときは第1の開閉器12を開放し、
DC/DCコンバータ5を負荷側から切り離すと共に第
2の開閉器11を閉じてD C/D Cコンバータ5の
入力側を直接負荷側へ接続するように構成したので、入
力1圧と出力電圧の比がDC/DCコンバータ5の変換
効率と該変換効率の逆数の間にあるとき、即ちDC/D
Cコンバータ5の入力電圧Viが出力電圧Voに近づい
たとき、DC/DCコンバータ5を負荷側から切り離す
ので、従来無駄に消費していたD C/D Cコンバー
タ5の電流損失分を有効に利用することになる。
As explained above, according to the above embodiment, the DC/DC
A first switch 12 that disconnects the converter 5 from the load side
and a second switch 11 that directly connects the input side of the DC/DC converter 5 to the load side, and compares the input voltage and output voltage of the DC/DC converter 5 to determine the ratio of the input voltage and output voltage. is between the conversion efficiency of the DC/DC converter 5 and the reciprocal of the conversion efficiency, the first switch 12 is opened,
Since the DC/DC converter 5 is disconnected from the load side and the second switch 11 is closed to connect the input side of the DC/DC converter 5 directly to the load side, the input voltage and output voltage are When the ratio is between the conversion efficiency of the DC/DC converter 5 and the reciprocal of the conversion efficiency, that is, DC/D
When the input voltage Vi of the C converter 5 approaches the output voltage Vo, the DC/DC converter 5 is disconnected from the load side, so the current loss of the DC/DC converter 5, which was wasted in the past, can be effectively used. I will do it.

なお、第1図に示す最大電力点追尾制御装置6としては
種々のものが考えられるが、例えば特開昭58−694
69号公報或いは特開昭56−132174号公報に口
承された技術を用いてもよい。
Note that various types of maximum power point tracking control device 6 shown in FIG.
The technique orally passed down in Japanese Patent Application Laid-open No. 69 or Japanese Patent Application Laid-open No. 132174/1984 may be used.

また、上記実施例においては、DC/DCコンバータ5
を負荷側から切り離すと共に該DC/DCコンバータ5
の入力側を直接負荷側に接続する手段として開閉器12
及び開閉器11を用いたがこれに限定きれるものではな
く、例えば半導体素子を用いた無接点式の開閉手段であ
ったもよい。
Further, in the above embodiment, the DC/DC converter 5
is disconnected from the load side and the DC/DC converter 5
The switch 12 is used as a means to directly connect the input side of the switch to the load side.
Although the switch 11 and the switch 11 are used, the present invention is not limited to this. For example, a non-contact switching means using a semiconductor element may be used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、DC/DCコンバ
ータの入力電圧と出力電圧の比がDC/DCコンバータ
の変換効率と該変換効率の逆数の間にあるときは、DC
/DCコンバータを太陽光発電装置から切り離すので、
従来D C/D Cコンバータで消費されていた損失分
を有効に利用できるという優れた効果が得られる。
As explained above, according to the present invention, when the ratio of the input voltage to the output voltage of the DC/DC converter is between the conversion efficiency of the DC/DC converter and the reciprocal of the conversion efficiency, the DC
/Since the DC converter is separated from the solar power generation device,
An excellent effect can be obtained in that the loss that was conventionally consumed in a DC/DC converter can be effectively utilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る充電制御方式を適用する太陽光発
電装置のシステム構成を示すブロック図、第2図は従来
のD C/D Cコンバータを具備する太陽光発電装置
のシステム構成を示すブロック図、第3r2LJは光量
をパラメータとした太陽電池の出力電圧−電流特性を示
す図である。 図中、1・・・・太陽電池、3・・・・蓄電池、4・・
・・負荷、5・・・・DC/DCコンバータ、6・・・
・最大電力点追尾制御装置、8・・・・電流センサ、9
・・・・入出力電圧比較制御回路、11.12・・・・
開閉器。
FIG. 1 is a block diagram showing the system configuration of a solar power generation device to which the charging control method according to the present invention is applied, and FIG. 2 is a block diagram showing the system configuration of a solar power generation device equipped with a conventional DC/DC converter. Block diagram No. 3r2LJ is a diagram showing the output voltage-current characteristics of the solar cell with the amount of light as a parameter. In the figure, 1...solar battery, 3...storage battery, 4...
...Load, 5...DC/DC converter, 6...
・Maximum power point tracking control device, 8...Current sensor, 9
...Input/output voltage comparison control circuit, 11.12...
switch.

Claims (1)

【特許請求の範囲】[Claims] 太陽電池と、該太陽電池で発電される直流の電圧を昇圧
或いは降圧するDC/DCコンバータと、該DC/DC
コンバータの出力側に接続された蓄電池等を具備する太
陽光発電装置において、前記DC/DCコンバータを負
荷側から切り離すと共に該DC/DCコンバータの入力
側を負荷側に直接接続する手段を設け、前記DC/DC
コンバータの入力電圧と出力電圧とを比較し入力電圧と
出力電圧の比がDC/DCコンバータの変換効率と該変
換効率の逆数の間にあるときは前記DC/DCコンバー
タをを負荷側から切り離すと共にその入力側を負荷側に
直接接続することを特徴とする太陽光発電装置における
充電制御方式。
A solar cell, a DC/DC converter that boosts or steps down the DC voltage generated by the solar cell, and the DC/DC converter.
In a solar power generation device comprising a storage battery or the like connected to the output side of a converter, means is provided for separating the DC/DC converter from the load side and directly connecting the input side of the DC/DC converter to the load side, DC/DC
Compare the input voltage and output voltage of the converter, and if the ratio of the input voltage to the output voltage is between the conversion efficiency of the DC/DC converter and the reciprocal of the conversion efficiency, disconnect the DC/DC converter from the load side and A charging control method for a solar power generation device characterized by directly connecting the input side to the load side.
JP60293962A 1985-12-27 1985-12-27 Charging control system in solar generating device Pending JPS62154122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60293962A JPS62154122A (en) 1985-12-27 1985-12-27 Charging control system in solar generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60293962A JPS62154122A (en) 1985-12-27 1985-12-27 Charging control system in solar generating device

Publications (1)

Publication Number Publication Date
JPS62154122A true JPS62154122A (en) 1987-07-09

Family

ID=17801439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60293962A Pending JPS62154122A (en) 1985-12-27 1985-12-27 Charging control system in solar generating device

Country Status (1)

Country Link
JP (1) JPS62154122A (en)

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336974A (en) * 2003-05-12 2004-11-25 Origin Electric Co Ltd Power supply
JP2011501400A (en) * 2007-10-12 2011-01-06 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Controllable switching device for solar modules
WO2011059067A1 (en) * 2009-11-16 2011-05-19 オムロン株式会社 Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
JP2011107904A (en) * 2009-11-16 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
JP2011108220A (en) * 2010-06-18 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
JP2011211885A (en) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd Power storage system
WO2012046549A1 (en) 2010-10-07 2012-04-12 ソニー株式会社 Power control device, power control method, and feed system
JP2013080731A (en) * 2011-09-30 2013-05-02 Toshiba Corp Pv panel diagnostic device, pv panel diagnostic method and pv panel diagnostic program
WO2014203490A1 (en) * 2013-06-18 2014-12-24 三洋電機株式会社 Power feeding apparatus for solar cell, and solar cell system
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
CN105515157A (en) * 2015-12-11 2016-04-20 中国电子科技集团公司第十八研究所 Lithium battery constant-current constant-voltage charging control method for solar generating
JP2018019577A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power supply system
EP3561881A1 (en) * 2007-12-05 2019-10-30 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP3565082A1 (en) * 2018-05-04 2019-11-06 ABB Schweiz AG Autonomous wireless sensor device and corresponding startup method
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
CN110912402A (en) * 2018-09-18 2020-03-24 力智电子股份有限公司 Power supply conversion circuit
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134733A (en) * 1983-12-21 1985-07-18 富士電機株式会社 Solar light generator apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60134733A (en) * 1983-12-21 1985-07-18 富士電機株式会社 Solar light generator apparatus

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004336974A (en) * 2003-05-12 2004-11-25 Origin Electric Co Ltd Power supply
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
JP2011501400A (en) * 2007-10-12 2011-01-06 フラウンホッファー−ゲゼルシャフト ツァ フェルダールング デァ アンゲヴァンテン フォアシュンク エー.ファオ Controllable switching device for solar modules
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
EP3561881A1 (en) * 2007-12-05 2019-10-30 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
WO2011059067A1 (en) * 2009-11-16 2011-05-19 オムロン株式会社 Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
JP2011107904A (en) * 2009-11-16 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
US9035491B2 (en) 2009-11-16 2015-05-19 Omron Corporation Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
JP2011211885A (en) * 2010-03-11 2011-10-20 Sanyo Electric Co Ltd Power storage system
JP2011108220A (en) * 2010-06-18 2011-06-02 Omron Corp Voltage setting device, photovoltaic power generation system, and control method of voltage setting device
US9325202B2 (en) 2010-10-07 2016-04-26 Sony Corporation Power control device, power control method, and feed system
KR20130121824A (en) 2010-10-07 2013-11-06 소니 주식회사 Power control device, power control method, and feed system
TWI448045B (en) * 2010-10-07 2014-08-01 Sony Corp Power control devices, power control methods, and power supply systems
WO2012046549A1 (en) 2010-10-07 2012-04-12 ソニー株式会社 Power control device, power control method, and feed system
CN103154844A (en) * 2010-10-07 2013-06-12 索尼公司 Power control device, power control method, and feed system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
JP2013080731A (en) * 2011-09-30 2013-05-02 Toshiba Corp Pv panel diagnostic device, pv panel diagnostic method and pv panel diagnostic program
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9871403B2 (en) 2013-06-18 2018-01-16 Panasonic Intellectual Property Management Co., Ltd. Power feeding apparatus for solar cell, and solar cell system
WO2014203490A1 (en) * 2013-06-18 2014-12-24 三洋電機株式会社 Power feeding apparatus for solar cell, and solar cell system
JPWO2014203490A1 (en) * 2013-06-18 2017-02-23 パナソニックIpマネジメント株式会社 Solar cell power feeder and solar cell system
JP2015018555A (en) * 2013-07-10 2015-01-29 エルエス産電株式会社Lsis Co., Ltd. Photovoltaic system
JPWO2015099159A1 (en) * 2013-12-27 2017-03-23 株式会社フジクラ Power storage system and power storage method
JP5668132B1 (en) * 2013-12-27 2015-02-12 株式会社フジクラ Power storage system and power storage method
WO2015099159A1 (en) 2013-12-27 2015-07-02 株式会社フジクラ Electricity storage system and electricity storage method
US10181748B2 (en) 2013-12-27 2019-01-15 Fujikura Ltd. Power storage system and power storage method
CN105515157A (en) * 2015-12-11 2016-04-20 中国电子科技集团公司第十八研究所 Lithium battery constant-current constant-voltage charging control method for solar generating
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
JP2018019577A (en) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 Power supply system
EP3565082A1 (en) * 2018-05-04 2019-11-06 ABB Schweiz AG Autonomous wireless sensor device and corresponding startup method
CN110912402B (en) * 2018-09-18 2022-03-15 力智电子股份有限公司 Power supply conversion circuit
CN110912402A (en) * 2018-09-18 2020-03-24 力智电子股份有限公司 Power supply conversion circuit

Similar Documents

Publication Publication Date Title
JPS62154122A (en) Charging control system in solar generating device
US8058748B2 (en) Power supply converter/s with controller/s responsive to voltage, current, and power
JPS62154121A (en) Charging control system in solar generating device
JPH1031525A (en) Photovoltaic power generation system
EP3012942A1 (en) Power feeding apparatus for solar cell, and solar cell system
JPH0686536A (en) Carrying-over circuit for ac-dc converter
JP3656694B2 (en) Power converter
CN1098553C (en) Method and arrangement for disconnecting consumers
US6853097B2 (en) Uniterruptible power supply and its starting method
JPH11312022A (en) Inverter device for generating photovoltatic power and method for controlling the same device
JP3629791B2 (en) Charge control device for battery pack
JP2001178010A (en) Charging control system for battery of electric storage cells, particularly for battery of lithium cells
JP3293683B2 (en) DC power supply
JP3311670B2 (en) Series / parallel switching power supply
JP4349773B2 (en) Battery charging method and backup power supply apparatus for implementing the charging method
JP2003169424A (en) Secondary battery charging method and charging device
JP2995142B2 (en) Series battery charger
JP2000184622A (en) Uninterruptible power supply
JP2000175363A (en) Power supply
JPS6176034A (en) Auxiliary-machinery battery charger for electric car
JP3190329B2 (en) Power supply
JPH06153421A (en) Device for charging storage battery by solar battery
JPH02164236A (en) Uninterruptible power supply
JPH02266870A (en) Power conversion device for battery
CN111355294A (en) Micro-nano satellite power supply control method