WO2006033143A1 - Solar photovoltaic power generation system and booster unit thereof - Google Patents

Solar photovoltaic power generation system and booster unit thereof Download PDF

Info

Publication number
WO2006033143A1
WO2006033143A1 PCT/JP2004/013822 JP2004013822W WO2006033143A1 WO 2006033143 A1 WO2006033143 A1 WO 2006033143A1 JP 2004013822 W JP2004013822 W JP 2004013822W WO 2006033143 A1 WO2006033143 A1 WO 2006033143A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
booster
output
control circuit
boosting
Prior art date
Application number
PCT/JP2004/013822
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Kasugai
Omi Nishi
Hirokazu Nakabayashi
Naoki Nishio
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2004/013822 priority Critical patent/WO2006033143A1/en
Priority to JP2006536276A priority patent/JP4468372B2/en
Publication of WO2006033143A1 publication Critical patent/WO2006033143A1/en

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/66Regulating electric power
    • G05F1/67Regulating electric power to the maximum power available from a generator, e.g. from solar cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the present invention relates to a photovoltaic power generation system and a boosting unit thereof, and in particular, raises the power generation voltage of a solar cell circuit within the input operation range of a power conditioner, and reduces the DC power of the solar cell circuit.
  • the present invention relates to a photovoltaic power generation system that is converted into AC power and interconnected with commercial power, and a boosting unit thereof.
  • a solar power generation system converts DC power generated by a solar cell circuit into AC power using a power conditioner, and links with general commercial power supplied from an electric power company. It is a power generation system that regenerates to the grid side and supplies the insufficient power from the grid side.
  • FIG. 4 is a diagram illustrating an example of a boosting unit of a photovoltaic power generation system disclosed in Patent Document 1.
  • a booster unit 101 is a standard input unit 110 to which a solar cell circuit 100a that is one unit (hereinafter referred to as “solar cell circuit”) configured by connecting a plurality of solar cell modules in series is connected. And a step-up input unit 112 to which the solar cell circuit 100b is connected.
  • the standard input unit 110 is an input unit that does not include a booster circuit, and that requires the number of series connected solar cell circuits that can be supplied without boosting the voltage within the input operation range of the power conditioner 102. is there.
  • the boost input unit 112 is an input unit having a booster circuit, and is an input unit that boosts the voltage of the solar cell circuit to the operating range of the power conditioner by the booster circuit.
  • the standard input unit 110 and the boost input unit 112 are each provided with a switch at each input stage, and the outputs are connected in the boost unit 101 to be grouped together and output to the power conditioner 102.
  • the In the power conditioner 102 the DC power of the solar cell circuit output from the booster unit 101 is converted into AC power and connected to the commercial power system 104 to perform grid interconnection.
  • the boost unit shown in the figure only two solar cell circuits (100a, 100b) are shown for simplification, Usually, more solar cell circuits may be input.
  • the grid connection of the photovoltaic power generation system is an existing technology, so a detailed description is omitted.
  • the step-up input section 112 to which the solar cell circuit 100b is connected includes a main circuit including a rear tuttle, a switching element, a diode, a capacitor, and the like, and a switching element of the main circuit based on the input voltage Vs2 and the output voltage Vo2.
  • a trip signal that generates and outputs a trip signal for tripping the input switch when an error occurs based on the output voltage Vo2 and the temperature T2 of the switching element detected by the temperature sensor.
  • the number generator 1 16 is provided.
  • the booster circuit of the boost input unit 112 includes the number of series connection (nl) of solar cell circuits 100a that do not require a booster circuit and the number of series connections (n2) of solar cell circuits 100b that require a booster circuit.
  • Is set as the target boost ratio ⁇ * ( ⁇ * nl / n2), and the boost ratio is controlled constant.
  • FIG. 5 is a diagram showing the voltage-power characteristics (hereinafter simply referred to as “VP characteristics”) of solar cell circuits having different numbers of series connections.
  • Figure (a) shows the VP characteristics of the solar cell circuit 100a connected to the standard input unit 110 with a solid line (L1), and shows the solar cell circuit 100b connected to the boost input unit 112. The VP characteristic is shown by the broken line (L2).
  • the target step-up ratio (X *) which is expressed as the ratio of the number of solar cell circuits connected in series, is equal to the ratio of the open circuit voltages of each input section (VolZVo2).
  • the voltage ratio (Vp lZVp2) at which the circuit achieves the maximum output is also approximately equal to the target boost ratio, so the VP characteristic of the solar cell circuit 100b connected to the boost input section 1 12 by constant boost ratio control is shown in the figure (b ),
  • the maximum power point P2max of the boost input section 112 moves to P2max 'after boosting.
  • the power conditioner 102 is the standard indicated by the thick line (L5). It operates at the Pmax point of the combined output characteristics of the input unit 1 10 and the boost input unit 1 1 2.
  • the solar cell circuit of the standard input unit 1 10 100a and the solar cell circuit 100b of the step-up input section 112 are operated at the point where the respective output power becomes maximum. Ruko Togashi.
  • the boosting input unit 112 performs constant control of the target boosting ratio so that the target boosting ratio is constant.
  • the booster unit 101 is placed in a no-load state, and when the booster circuit of the booster input unit 112 performs the boosting operation, the output As the voltage increases, the input voltage of the inverter 102 exceeds the allowable input voltage range.
  • the step-up input unit 112 detects such a state, and performs constant voltage control so that the output voltage of the step-up unit 101 falls within the allowable input voltage range of the power conditioner 102.
  • trip signal generator 116 of booster input unit 112 outputs output voltage Vo2 Is detected, and the breaker 121 of the input stage is tripped to open the line with the solar cell circuit, thereby preventing the booster unit 101 and the power conditioner 102 from being damaged.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-51571
  • the booster circuit of the booster unit when the booster circuit of the booster unit is operating stably, when the protection function of the power conditioner is activated and the power conditioner is stopped, a sudden no-load state is caused for the booster unit. As a result, the output voltage of the booster unit may exceed the upper limit within the input voltage range of the inverter. If this happens, the trip signal generator detects an overvoltage and trips the input circuit breaker of the booster circuit to open the line of the solar cell circuit. Is broken If this happens, the overvoltage cannot be detected, the output of the booster circuit becomes an abnormal overvoltage, and the booster unit and the power conditioner may be damaged.
  • the conventional boosting unit trips the input breaker of the boosting circuit to make a solar cell.
  • the circuit lines were opened.
  • a switch such as a magnetic contactor
  • DC power such as a solar cell circuit
  • the conventional boosting unit has a ratio of the number of series connection (nl) of solar cell circuits 100a that do not require a boosting circuit and the number of series connections (n2) of solar cell circuits 100b that require a boosting circuit.
  • Set target boost ratio ⁇ * ( ⁇ * nl / n2) and perform constant boost ratio control, but target if the number of solar cell circuits 100b is one less than solar cell circuit 100a
  • the step-up ratio is small and the actual step-up ratio is almost equal to 1 due to variations in the solar cell circuit or the degree of sunlight irradiation, it is possible to generate annoying noise due to the intermittent operation of the step-up circuit. There was sex.
  • the present invention has been made in view of the above problems, and even when a sudden no-load state occurs in the booster unit, the booster unit and the power conditioner are damaged.
  • the first object is to provide a photovoltaic power generation system and its boosting unit that can be reliably prevented.
  • the present invention provides a photovoltaic power generation system and its boosting unit that can realize the same function without using an expensive switch for tripping DC power in a compact and low-cost manner. The purpose.
  • the third aspect of the present invention provides a photovoltaic power generation system and its boosting unit that can effectively prevent annoying noise that may occur due to intermittent operation of the boosting circuit. Objective.
  • the photovoltaic power generation system converts the direct current output of the solar cell circuit into alternating current and connects with the commercial power system.
  • a step-up unit comprising a plurality of solar cell circuits and a step-up circuit that is connected to each of the plurality of solar cell circuits and boosts a DC voltage output from the connected solar cell circuits
  • a power conditioner that converts DC power output from the boosting unit into AC power, the boosting circuit based on the output voltage before boosting and the output voltage after boosting of the solar cell circuit output
  • a control circuit that outputs a control signal that varies the boost ratio; and a switching element that varies the boost ratio based on the control signal output from the control circuit.
  • the control circuit outputs the output of the boost circuit. When it is necessary to stop, the control signal output to the switching element is stopped.
  • the boosting unit includes the booster circuit connected to each of the plurality of solar cell circuits, and the booster circuit includes the output voltage before boosting of the solar cell circuit output and the booster And a control circuit that outputs a control signal that varies the boost ratio based on the post-output voltage.
  • the control circuit is a switching element for varying the boost ratio when the output of the boost circuit needs to be stopped. Stops the output of the control signal to.
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system including a boosting unit according to the present invention.
  • FIG. 2 is a diagram showing a configuration of each control circuit according to the present invention and a connection configuration between the control circuits.
  • Fig. 3-1 shows an example of the case where the control pulse width (G1) for turning on the switching element is extremely smaller than the control pulse width (G2) for turning off the switching element. is there.
  • FIG. 4 is a diagram showing an example of a boosting unit of a photovoltaic power generation system that is effective in the prior art.
  • FIG. 5 is a diagram showing VP characteristics of solar cell circuits having different numbers of series connections. Explanation of symbols
  • FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system including a boosting unit that works on the present invention. is there.
  • the boost unit shown in the figure three solar cell circuits 1 Oa, 10b, and 10c are shown for simplification of the drawing, but the number of solar cell circuit inputs and the number of boost circuits can be expanded. Needless to say.
  • solar cell circuits 10 a, 10 b, 10 c installed on a small space roof surface such as a dormitory roof are connected to the booster unit 11.
  • the step-up unit 11 includes step-up circuits 20a and 20b connected to the solar cell circuits 10a and 10b, and a standard input unit 18 connected to the solar cell circuit 10c.
  • the outputs of the booster circuits 20 a and 20 b and the standard input unit 18 are connected in the booster unit 11, gathered together, and output to the power conditioner 12.
  • the inverter 12 includes a booster circuit for generating commercial grid voltage, an inverter circuit that converts the DC power of the solar cell circuit to AC power, a protection device for grid connection, etc. (all not shown)
  • maximum power point tracking control In addition to controlling the output of the solar cell circuit so that it operates at the maximum output operating point of the solar cell circuit (maximum power point tracking control), various processes for linking with the commercial power system 14 are performed.
  • the booster circuit 20a includes a main circuit including force such as a rear tuttle 23, a switching element 24, a diode 25, capacitors 26 and 27, a temperature sensor 28, and a current sensor 29, and a control circuit 21a.
  • the control circuit 21a includes the input voltage Vsl of the solar cell circuit 10a, the output voltage Vol of the booster circuit 20a, the current IL1 of the rear tuttle 23 when the switching element detected by the current sensor 29 is turned on, and the booster by the temperature sensor 28 Each signal of the ambient temperature T1 inside the unit is input.
  • the control circuit 21a includes a sensor circuit to which these signals are input, a microcomputer (hereinafter referred to as “microcomputer”) (which is not shown in FIG. 1), which is the center of control.
  • the microcomputer outputs the command value of the gate signal Sgl for turning on and off the switching elements of the main circuit, and generates a boosted output boosted to the target voltage value.
  • the control circuits of each booster circuit are electrically connected to the output overvoltage protection signal Voerr and the input voltage value Vspmax when output to the outside is permitted by the microcomputer of the control circuit. .
  • Each boost of boost unit 11 The microcomputer in the voltage circuit constantly monitors the current operating point on the VP characteristics of each connected solar cell circuit, and controls the solar cell circuit so that this operating point becomes the maximum power point. .
  • the minute change amount (dPsZdVs) of the input power (Ps) with respect to the minute change amount of the input voltage (Vs) is calculated, and the minute change amount (dPsZdVs) is a value that is almost close to 0. It is possible to use a technique such as searching for.
  • the output voltage value of the solar cell circuit at this maximum power point (hereinafter referred to as the “maximum output operating voltage value”) is output, and each control circuit is The highest voltage value (hereinafter referred to as “the maximum value of the maximum output operating voltage value”) is set among the maximum output operating voltage values of the connected solar cell circuits.
  • Each booster circuit sets a boost ratio with the maximum value of the maximum output operation voltage value as a target value, and performs a boost operation.
  • each booster circuit will set the minimum input voltage value at which the rated output of the inverter can be output.
  • a boost ratio is set as a target voltage, and a boost operation is performed.
  • the step-up unit 11 is placed in a no-load state, the output voltage of the step-up circuit performing the step-up operation rapidly increases, and the input voltage of the power conditioner 102 exceeds the allowable input voltage range. It will be.
  • the trip signal generator of the booster circuit detects overvoltage, and trips the breaker of the booster circuit to open the line of the solar cell circuit. It was. However, if its own trip signal generator is faulty, overvoltage cannot be detected, and the output of the booster circuit becomes abnormal overvoltage, which may damage the booster unit and power conditioner. It was.
  • FIG. 2 shows the configuration of each control circuit and the configuration of the present invention. It is a figure which shows the connection structure between each control circuit.
  • an overvoltage detection signal generated based on the output voltage of each booster circuit grouped in a series is transmitted not only to its own booster circuit but also to other booster circuits. ing.
  • the control circuit 21a includes an overvoltage detection circuit 3la that detects the output voltage (Vol) of the output voltage of each booster circuit (that is, the booster unit 11) grouped together, and an overvoltage detection circuit 31a.
  • a gate drive circuit 32a and a microcomputer 33a connected to the outputs are provided.
  • the control signal of the microcomputer 33a is connected to the gate drive circuit 32a.
  • the control circuit 21b which is another booster circuit, is configured in the same manner as the control circuit 21a, and the overvoltage detection signals of the overvoltage detection circuits 31a and 31b of each control circuit are output not only to itself but also to other control circuits. It is configured to be
  • the outputs of the booster circuits 20a and 20b are grouped together in the output stage of the booster unit 11, they should output the same output value except for the transient state. They are shown as Vol and Vo2.
  • a Vol overvoltage detection signal is output to the microcomputer 33a and also to the gate drive circuit 32a.
  • a signal for stopping the switching operation of the switching element 24 is output from the gate drive circuit 32a.
  • This Vol overvoltage detection signal is also output to the control circuit 21b of another booster circuit connected in hardware.
  • the control circuit of another normal boost circuit (in this embodiment, the control circuit 21b)
  • Overvoltage detection circuit 31b) detects an overvoltage, and as indicated by the broken line, the operation of the switching element 24 of the booster circuit in which the overvoltage detection circuit has failed due to a signal from the overvoltage detection circuit 31b of the normal control circuit 21b. Can be stopped.
  • Fig. 3-1 is a diagram showing an example in which the control pulse width (G1) for turning on the switching element is not extremely smaller than the control pulse width (G2) for turning off the switching element.
  • 3—2 is It is a figure which shows an example when the control pulse width (G3) which carries out on control of a switching element is extremely small compared with the control pulse width (G4) which carries out off control.
  • the vertical axis represents the collector terminal of the switching element connected to the positive line of the solar cell circuit output and the emitter terminal of the switching element connected to the negative line. It is shown using the terminal voltage (V) between.
  • the switching element of the booster circuit changes its on / off ratio at a fixed frequency of about several tens of kHz during normal operation, that is, when an appropriate boost ratio is set. Switching operation is performed.
  • the step-up ratio becomes smaller, the on-time of the switching element becomes shorter.
  • the control pulse width for turning on the switching element as shown in Fig. 5 becomes extremely smaller than the control pulse width for turning off the switching element. In this state, the switching operation of the switching element becomes an intermittent operation, and there is a possibility that annoying noise having a frequency component of about several kHz based on this intermittent operation is generated.
  • the booster circuit detects the internal ambient temperature with a temperature sensor, and immediately stops the booster circuit when the internal ambient temperature reaches a predetermined temperature level.
  • the current flowing through the main circuit of the booster circuit is reduced so that the internal ambient temperature does not rise above the predetermined temperature, instead of immediately stopping the booster circuit.
  • the output power may be suppressed.
  • the ON / OFF ratio of the switching element is varied and increased so that the internal ambient temperature does not rise above a predetermined temperature. What is necessary is just to reduce the electric current which flows into the main circuit of a pressure circuit, and to suppress output electric power. If the temperature rises even if the output power is suppressed, turn off the gate signal of the switching element and stop the booster circuit.
  • the configuration of the booster circuit in which the switching control of the switching element changes the ON / OFF pulse width ratio using a fixed frequency of about several tens of kHz will be described as an example.
  • the present invention can be applied to a booster circuit having a configuration in which switching control of a variable frequency is performed.
  • the control circuit determines whether or not the output voltage of its own booster circuit has exceeded a predetermined voltage value. And an overvoltage detection circuit for detecting whether or not an overvoltage detection circuit included in the control circuit of one booster circuit outputs the detected overvoltage detection signal to the control circuit of another booster circuit. Therefore, it is possible to improve the reliability of protection against output overvoltage and to prevent damage due to overvoltage to the boost unit and the power conditioner to which the output is connected due to overvoltage.
  • the boosting operation of the boosting circuit is stopped when the boosting ratio set by itself is less than a predetermined threshold value. Therefore, intermittent switching of the booster circuit can be prevented, and noise caused by the switching can be prevented.
  • the photovoltaic power generation system and its boosting unit of this embodiment when the atmospheric temperature of the boosting circuit reaches a predetermined level, based on the control signal to the switching element. Reduce the current flowing through the booster circuit and control the booster circuit or the temperature inside the booster unit not to increase so as to secure the power generation time as much as possible. Therefore, the power utilization factor of the solar cell circuit can be increased.
  • the photovoltaic power generation system according to the present invention is useful as a clean power generation system that uses inexhaustible solar energy, and the boosting unit is useful as a component that realizes the photovoltaic power generation system. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

In a solar photovoltaic power generation system, even when an abrupt no-load state occurs, the prevention of breakdown of a booster unit and/or a power conditioner can be ensured. A solar photovoltaic power generation system, which converts the DC outputs of its solar battery circuits to an AC output and which is interconnected with a commercial power system, comprises a booster unit (11) including booster circuits (20a,20b) that boost the DC voltages outputted from the plurality of solar battery circuits (10a,10b), and further comprises a power conditioner (12) that converts the DC powers outputted from the booster unit to an AC power. A control circuit (21a,21b) in each of the booster circuits includes an excessive voltage detection circuit (31a,31b) that determines whether the output voltage of the booster circuit exceeds a predetermined voltage value. The excessive voltage detection circuit included in the control circuit of one booster circuit outputs an excessive voltage detection signal to the control circuit of the other booster circuit.

Description

明 細 書  Specification
太陽光発電システムおよびその昇圧ユニット  Photovoltaic power generation system and its boosting unit
技術分野  Technical field
[0001] 本発明は、太陽光発電システムおよびその昇圧ユニットに関するものであり、特に、 太陽電池回路の発電電圧をパワーコンデイショナの入力動作範囲内に上昇させ、太 陽電池回路の直流電力を交流電力に変換して商用電力と系統連系する太陽光発電 システムおよびその昇圧ユニットに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a photovoltaic power generation system and a boosting unit thereof, and in particular, raises the power generation voltage of a solar cell circuit within the input operation range of a power conditioner, and reduces the DC power of the solar cell circuit. The present invention relates to a photovoltaic power generation system that is converted into AC power and interconnected with commercial power, and a boosting unit thereof.
背景技術  Background art
[0002] 太陽光発電システムは、太陽電池回路によって発電した直流電力をパワーコンディ ショナによって交流電力に変換するとともに、電力会社から供給される一般の商用電 源と連系することで、余剰電力は系統側へ回生し、不足電力は系統側から供給され るようにした発電システムである。従来、この種の太陽光発電システムの一般的な構 成として、例えば下記特許文献 1に示されるようなものがある。図 4は、特許文献 1〖こ 示される太陽光発電システムの昇圧ユニットの一例を示す図である。  [0002] A solar power generation system converts DC power generated by a solar cell circuit into AC power using a power conditioner, and links with general commercial power supplied from an electric power company. It is a power generation system that regenerates to the grid side and supplies the insufficient power from the grid side. Conventionally, as a general configuration of this type of photovoltaic power generation system, for example, there is a configuration shown in Patent Document 1 below. FIG. 4 is a diagram illustrating an example of a boosting unit of a photovoltaic power generation system disclosed in Patent Document 1.
[0003] 図 4において、昇圧ユニット 101は、複数の太陽電池モジュールの直列接続で構成 される 1単位 (以下「太陽電池回路」と呼称)である太陽電池回路 100aが接続される 標準入力部 110と、太陽電池回路 100bが接続される昇圧入力部 112と、を備えて いる。標準入力部 110は、昇圧回路を具備しない入力部であり、パワーコンディショ ナ 102の入力動作範囲内の電圧を昇圧することなく供給可能な太陽電池回路の直 列接続数を必要とする入力部である。一方、昇圧入力部 112は、昇圧回路を具備す る入力部であり、昇圧回路により太陽電池回路の電圧をパワーコンデイショナの動作 範囲まで昇圧する入力部である。標準入力部 110および昇圧入力部 112には、それ ぞれの入力段に開閉器が設けられ、各出力は昇圧ユニット 101内で接続されて一系 列にまとめられ、パワーコンディショナ 102に出力される。パワーコンディショナ 102で は、昇圧ユニット 101から出力された太陽電池回路の直流電力が交流電力に変換さ れ、商用電力系統 104と接続されて系統連系を行う。なお、同図に示す昇圧ユニット では、図面簡略化のため 2つの太陽電池回路(100a, 100b)のみを示しているが、 通常はさらに多くの太陽電池回路が入力されることもある。また、太陽光発電システム の系統連系に関しては、既存の技術であるため詳細な説明は省略する。 In FIG. 4, a booster unit 101 is a standard input unit 110 to which a solar cell circuit 100a that is one unit (hereinafter referred to as “solar cell circuit”) configured by connecting a plurality of solar cell modules in series is connected. And a step-up input unit 112 to which the solar cell circuit 100b is connected. The standard input unit 110 is an input unit that does not include a booster circuit, and that requires the number of series connected solar cell circuits that can be supplied without boosting the voltage within the input operation range of the power conditioner 102. is there. On the other hand, the boost input unit 112 is an input unit having a booster circuit, and is an input unit that boosts the voltage of the solar cell circuit to the operating range of the power conditioner by the booster circuit. The standard input unit 110 and the boost input unit 112 are each provided with a switch at each input stage, and the outputs are connected in the boost unit 101 to be grouped together and output to the power conditioner 102. The In the power conditioner 102, the DC power of the solar cell circuit output from the booster unit 101 is converted into AC power and connected to the commercial power system 104 to perform grid interconnection. In the boost unit shown in the figure, only two solar cell circuits (100a, 100b) are shown for simplification, Usually, more solar cell circuits may be input. In addition, the grid connection of the photovoltaic power generation system is an existing technology, so a detailed description is omitted.
[0004] 太陽電池回路 100bが接続される昇圧入力部 1 12には、リアタトル、スイッチング素 子、ダイオード、コンデンサ等からなる主回路と、入力電圧 Vs2および出力電圧 Vo2 に基づいて主回路のスイッチング素子に制御信号 Sg2を供給する制御回路 1 14と、 出力電圧 Vo2および温度センサが検知したスイッチング素子の温度 T2に基づいて 異常時に入力部の開閉器をトリップするためのトリップ信号を生成出力するトリップ信 号発生部 1 16と、が設けられている。  [0004] The step-up input section 112 to which the solar cell circuit 100b is connected includes a main circuit including a rear tuttle, a switching element, a diode, a capacitor, and the like, and a switching element of the main circuit based on the input voltage Vs2 and the output voltage Vo2. A trip signal that generates and outputs a trip signal for tripping the input switch when an error occurs based on the output voltage Vo2 and the temperature T2 of the switching element detected by the temperature sensor. The number generator 1 16 is provided.
[0005] 昇圧入力部 1 12の昇圧回路は、昇圧回路を必要としない太陽電池回路 100aの直 列接続数 (nl)と昇圧回路を必要とする太陽電池回路 100bの直列接続数 (n2)との 比を目標昇圧比 α * ( α * = nl/n2)として設定し、昇圧比一定制御を行う。昇圧入 力部 1 12の制御回路 1 14は、実際の出力電圧 Vo2と入力電圧 Vs2との比である実 昇圧比 a ( a =Vo2/Vs2)と目標昇圧比 oc *とを比較し、その誤差が小さくなるよう にスイッチング素子へ伝送する信号 Sg2のオン'オフ時間を最適化するように制御す る。  [0005] The booster circuit of the boost input unit 112 includes the number of series connection (nl) of solar cell circuits 100a that do not require a booster circuit and the number of series connections (n2) of solar cell circuits 100b that require a booster circuit. Is set as the target boost ratio α * (α * = nl / n2), and the boost ratio is controlled constant. The control circuit 1 14 of the boost input unit 1 12 compares the actual boost ratio a (a = Vo2 / Vs2), which is the ratio of the actual output voltage Vo2 and the input voltage Vs2, with the target boost ratio oc *. Control is performed to optimize the on / off time of the signal Sg2 transmitted to the switching element so that the error is reduced.
[0006] 図 5は、直列接続数の異なる太陽電池回路の電圧-電力特性 (以下単に「V-P特 性」という)を示す図である。同図(a)には標準入力部 1 10に接続される太陽電池回 路 100aの V— P特性を実線 (L 1)で示し、昇圧入力部 1 12に接続される太陽電池回 路 100bの V-P特性を破線 (L2)で示している。同図(a)において、太陽電池回路の 直列接続数の比で表される目標昇圧比 (X *は、各入力部の開放電圧の比 (Vo lZV o2)と等しくなる。また、各太陽電池回路が最大出力となる電圧の比 (Vp lZVp2)も 目標昇圧比 と略等しくなる。したがって、昇圧比一定制御により昇圧入力部 1 12 に接続される太陽電池回路 100bの V-P特性は同図(b)の破線 (L4)で示すようにな り、昇圧入力部 1 12の最大電力点 P2maxが昇圧後には P2max 'に移動する。このと き、パワーコンディショナ 102は、太線 (L5)で示す標準入力部 1 10と昇圧入力部 1 1 2の合成出力特性の Pmax点で動作することになり、入力電力の最大電力を引き出 すことができる。結果として、標準入力部 1 10の太陽電池回路 100aと、昇圧入力部 1 12の太陽電池回路 100bとは、それぞれの出力電力が最大となる点で動作させるこ とがでさる。 FIG. 5 is a diagram showing the voltage-power characteristics (hereinafter simply referred to as “VP characteristics”) of solar cell circuits having different numbers of series connections. Figure (a) shows the VP characteristics of the solar cell circuit 100a connected to the standard input unit 110 with a solid line (L1), and shows the solar cell circuit 100b connected to the boost input unit 112. The VP characteristic is shown by the broken line (L2). In Fig. 5 (a), the target step-up ratio (X *), which is expressed as the ratio of the number of solar cell circuits connected in series, is equal to the ratio of the open circuit voltages of each input section (VolZVo2). The voltage ratio (Vp lZVp2) at which the circuit achieves the maximum output is also approximately equal to the target boost ratio, so the VP characteristic of the solar cell circuit 100b connected to the boost input section 1 12 by constant boost ratio control is shown in the figure (b ), The maximum power point P2max of the boost input section 112 moves to P2max 'after boosting. At this time, the power conditioner 102 is the standard indicated by the thick line (L5). It operates at the Pmax point of the combined output characteristics of the input unit 1 10 and the boost input unit 1 1 2. It can extract the maximum power of the input power.As a result, the solar cell circuit of the standard input unit 1 10 100a and the solar cell circuit 100b of the step-up input section 112 are operated at the point where the respective output power becomes maximum. Ruko Togashi.
[0007] このように、昇圧ユニット 101の出力に接続されるパワーコンディショナ 102が運転 状態にあるとき、昇圧入力部 112は、目標昇圧比 が一定となるような目標昇圧比 一定制御を行う。一方、昇圧ユニットの出力に接続されたパワーコンディショナ 102が 運転状態にないときは、昇圧ユニット 101は無負荷状態に置かれることになり、昇圧 入力部 112の昇圧回路が昇圧動作を行うと出力電圧が上昇し、パワーコンディショナ 102の入力電圧が許容入力電圧範囲を超えることになる。昇圧入力部 112は、この ような状態を検出し、昇圧ユニット 101の出力電圧がパワーコンディショナ 102の許容 入力電圧範囲内に納まるような定電圧制御を行う。  As described above, when the power conditioner 102 connected to the output of the boosting unit 101 is in an operating state, the boosting input unit 112 performs constant control of the target boosting ratio so that the target boosting ratio is constant. On the other hand, when the inverter 102 connected to the output of the booster unit is not in the operating state, the booster unit 101 is placed in a no-load state, and when the booster circuit of the booster input unit 112 performs the boosting operation, the output As the voltage increases, the input voltage of the inverter 102 exceeds the allowable input voltage range. The step-up input unit 112 detects such a state, and performs constant voltage control so that the output voltage of the step-up unit 101 falls within the allowable input voltage range of the power conditioner 102.
[0008] 他方、定電圧制御を行っていても、昇圧ユニット 101の出力電圧がパワーコンディ ショナ 102の許容入力電圧範囲を超える場合には、昇圧入力部 112のトリップ信号 発生部 116が出力電圧 Vo2の過電圧を検出し、入力段のブレーカ 121をトリップして 太陽電池回路との線路を開放することで、昇圧ユニット 101とパワーコンディショナ 10 2とが破損することを防止して 、る。  On the other hand, even if constant voltage control is performed, if the output voltage of booster unit 101 exceeds the allowable input voltage range of power conditioner 102, trip signal generator 116 of booster input unit 112 outputs output voltage Vo2 Is detected, and the breaker 121 of the input stage is tripped to open the line with the solar cell circuit, thereby preventing the booster unit 101 and the power conditioner 102 from being damaged.
[0009] また、昇圧入力部 112のスイッチング素子 122が短絡故障などを起こし、太陽電池 回路 100bの短絡電流が継続して流れ続けるような場合には、スイッチング素子 122 の周辺に設置された温度センサ 124により異常な温度上昇値がトリップ信号発生部 1 16で検出され、入力段のブレーカ 121をトリップして太陽電池回路 100bとの線路を 開放して太陽電池回路 100bの短絡電流が継続して流れることを防止している。  [0009] In addition, when the switching element 122 of the boost input unit 112 causes a short-circuit failure or the like, and the short-circuit current of the solar cell circuit 100b continues to flow, a temperature sensor installed around the switching element 122 An abnormal temperature rise value is detected by the trip signal generator 1 16 due to 124, tripping the breaker 121 in the input stage to open the line with the solar cell circuit 100b, and the short-circuit current of the solar cell circuit 100b continues to flow. To prevent that.
[0010] 特許文献 1 :特開 2002-51571号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-51571
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] ところで、昇圧ユニットの昇圧回路が安定して運転しているとき、パワーコンディショ ナの保護機能が作動してパワーコンデイショナが停止したときには、昇圧ユニットにと つて急激な無負荷状態が発生したこととなり、昇圧ユニットの出力電圧がパワーコン ディショナの入力電圧範囲内の上限を超える場合がある。このような状態に陥った場 合、トリップ信号発生部が過電圧を検出して昇圧回路の入力ブレーカをトリップして 太陽電池回路の線路を開放するように制御するが、万一、トリップ信号発生部が故障 していると過電圧を検出できず、昇圧回路の出力が異常な過電圧となり、昇圧ュニッ ト、パワーコンデイショナが破損する可能性があるといった問題点があった。 [0011] By the way, when the booster circuit of the booster unit is operating stably, when the protection function of the power conditioner is activated and the power conditioner is stopped, a sudden no-load state is caused for the booster unit. As a result, the output voltage of the booster unit may exceed the upper limit within the input voltage range of the inverter. If this happens, the trip signal generator detects an overvoltage and trips the input circuit breaker of the booster circuit to open the line of the solar cell circuit. Is broken If this happens, the overvoltage cannot be detected, the output of the booster circuit becomes an abnormal overvoltage, and the booster unit and the power conditioner may be damaged.
[0012] また、従来の昇圧ユニットは、上述のように、トリップ信号発生部が出力電圧の過電 圧や異常な温度上昇値を検出する場合、昇圧回路の入力ブレーカをトリップして太 陽電池回路の線路を開放するようにしていた。しかし、一般的に太陽電池回路のよう な直流電力をトリップする開閉器 (例えば電磁接触器)は非常に高価であり、部品サ ィズも比較的大きいので、製品のコストが上昇するとともに、製品のサイズも大型化す るという問題点があった。  [0012] Further, as described above, when the trip signal generation unit detects an overvoltage of the output voltage or an abnormal temperature rise value, the conventional boosting unit trips the input breaker of the boosting circuit to make a solar cell. The circuit lines were opened. However, in general, a switch (such as a magnetic contactor) that trips DC power, such as a solar cell circuit, is very expensive and has a relatively large part size. There was a problem that the size of the system also increased.
[0013] さらに、従来の昇圧ユニットは、昇圧回路を必要としない太陽電池回路 100aの直 列接続数 (nl)と昇圧回路を必要とする太陽電池回路 100bの直列接続数 (n2)の比 を目標昇圧比 α * ( α * =nl/n2)として設定し、昇圧比一定制御を行うが、太陽電 池回路 100aに対して太陽電池回路 100bの枚数が 1枚だけ少ない場合など、目標と する昇圧比が小さいときに、太陽電池回路のばらつきや、太陽光の照射の程度など により実際の昇圧比がほとんど 1に等しくなるような場合に、昇圧回路の間欠動作に より耳障りな騒音を発する可能性があった。  [0013] Further, the conventional boosting unit has a ratio of the number of series connection (nl) of solar cell circuits 100a that do not require a boosting circuit and the number of series connections (n2) of solar cell circuits 100b that require a boosting circuit. Set target boost ratio α * (α * = nl / n2) and perform constant boost ratio control, but target if the number of solar cell circuits 100b is one less than solar cell circuit 100a When the step-up ratio is small and the actual step-up ratio is almost equal to 1 due to variations in the solar cell circuit or the degree of sunlight irradiation, it is possible to generate annoying noise due to the intermittent operation of the step-up circuit. There was sex.
[0014] 本発明は、上記の課題に鑑みてなされたものであって、昇圧ユニットに対して急激 な無負荷状態が発生した場合であっても、昇圧ユニットや、パワーコンデイショナの破 損防止を確実に行うことのできる太陽光発電システムおよびその昇圧ユニットを提供 することを第 1の目的とする。  [0014] The present invention has been made in view of the above problems, and even when a sudden no-load state occurs in the booster unit, the booster unit and the power conditioner are damaged. The first object is to provide a photovoltaic power generation system and its boosting unit that can be reliably prevented.
[0015] また、本発明は、直流電力をトリップするための高価な開閉器を用いることなぐ同 機能をコンパクト、かつローコストで実現可能な太陽光発電システムおよびその昇圧 ユニットを提供することを第 2の目的とする。  [0015] Further, the present invention provides a photovoltaic power generation system and its boosting unit that can realize the same function without using an expensive switch for tripping DC power in a compact and low-cost manner. The purpose.
[0016] また、本発明は、昇圧回路の間欠動作によって発生する可能性のある耳障りな騒 音を効果的に防止することができる太陽光発電システムおよびその昇圧ユニットを提 供することを第 3の目的とする。  [0016] The third aspect of the present invention provides a photovoltaic power generation system and its boosting unit that can effectively prevent annoying noise that may occur due to intermittent operation of the boosting circuit. Objective.
課題を解決するための手段  Means for solving the problem
[0017] 上述した課題を解決し、目的を達成するため、本発明にカゝかる太陽光発電システム は、太陽電池回路の直流出力を交流に変換して商用電力系統と連系する太陽光発 電システムにおいて、複数の太陽電池回路と、前記複数の太陽電池回路のそれぞ れに接続され、該接続された太陽電池回路から出力される直流電圧を昇圧する昇圧 回路を具備してなる昇圧ユニットと、前記昇圧ユニットから出力される直流電力を交 流電力に変換するパワーコンディショナと、を備え、前記昇圧回路は、前記太陽電池 回路出力の昇圧前出力電圧と昇圧後出力電圧とに基づいて昇圧比を可変する制御 信号を出力する制御回路と、前記制御回路から出力された制御信号に基づいて昇 圧比を可変するスイッチング素子と、を備え、前記制御回路は、前記昇圧回路の出 力を停止させる必要が生じたときに、前記スイッチング素子への制御信号出力を停 止することを特徴とする。 [0017] In order to solve the above-described problems and achieve the object, the photovoltaic power generation system according to the present invention converts the direct current output of the solar cell circuit into alternating current and connects with the commercial power system. In a power system, a step-up unit comprising a plurality of solar cell circuits and a step-up circuit that is connected to each of the plurality of solar cell circuits and boosts a DC voltage output from the connected solar cell circuits And a power conditioner that converts DC power output from the boosting unit into AC power, the boosting circuit based on the output voltage before boosting and the output voltage after boosting of the solar cell circuit output A control circuit that outputs a control signal that varies the boost ratio; and a switching element that varies the boost ratio based on the control signal output from the control circuit. The control circuit outputs the output of the boost circuit. When it is necessary to stop, the control signal output to the switching element is stopped.
[0018] この発明によれば、昇圧ユニットには、複数の太陽電池回路のそれぞれに接続され る昇圧回路が備えられ、また、昇圧回路には、太陽電池回路出力の昇圧前出力電 圧と昇圧後出力電圧とに基づいて昇圧比を可変する制御信号を出力する制御回路 が備えられ、制御回路は、昇圧回路の出力を停止させる必要が生じたときに、昇圧 比を可変するためのスイッチング素子への制御信号出力を停止する。  [0018] According to the present invention, the boosting unit includes the booster circuit connected to each of the plurality of solar cell circuits, and the booster circuit includes the output voltage before boosting of the solar cell circuit output and the booster And a control circuit that outputs a control signal that varies the boost ratio based on the post-output voltage. The control circuit is a switching element for varying the boost ratio when the output of the boost circuit needs to be stopped. Stops the output of the control signal to.
発明の効果  The invention's effect
[0019] 本発明にかかる太陽光発電システムによれば、昇圧回路の出力を停止させる必要 が生じたときに、スイッチング素子への制御信号出力を停止するようにしているので、 過電圧検出による保護を高価な直流開閉器を製品に搭載してトリップする必要がなく 、装置コストを低減ィ匕し、装置規模を小型化することができるという効果を奏する。 図面の簡単な説明  [0019] According to the photovoltaic power generation system according to the present invention, when the output of the booster circuit needs to be stopped, the control signal output to the switching element is stopped. There is no need to mount an expensive DC switch on the product and trip, reducing the cost of the device and reducing the size of the device. Brief Description of Drawings
[0020] [図 1]図 1は、本発明にかかる昇圧ユニットを含む太陽光発電システムの構成を示す 図である。  FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system including a boosting unit according to the present invention.
[図 2]図 2は、本発明にかかる各制御回路の構成および各制御回路間の接続構成を 示す図である。  FIG. 2 is a diagram showing a configuration of each control circuit according to the present invention and a connection configuration between the control circuits.
[図 3-1]図 3— 1は、スイッチング素子をオン制御する制御パルス幅 (G1)がオフ制御 する制御パルス幅 (G2)に比して極端に小さくな 、場合の一例を示す図である。  [Fig. 3-1] Fig. 3-1 shows an example of the case where the control pulse width (G1) for turning on the switching element is extremely smaller than the control pulse width (G2) for turning off the switching element. is there.
[図 3-2]図 3— 2は、スイッチング素子をオン制御する制御パルス幅 (G3)がオフ制御 する制御パルス幅 (G4)に比して極端に小さ!/、場合の一例を示す図である。 [図 4]図 4は、従来技術に力かる太陽光発電システムの昇圧ユニットの一例を示す図 である。 [Fig. 3-2] Fig. 3-2 shows an example of the case where the control pulse width (G3) for turning on the switching element is extremely small compared to the control pulse width (G4) for turning off! It is. [FIG. 4] FIG. 4 is a diagram showing an example of a boosting unit of a photovoltaic power generation system that is effective in the prior art.
[図 5]図 5は、直列接続数の異なる太陽電池回路の V— P特性を示す図である。 符号の説明  [FIG. 5] FIG. 5 is a diagram showing VP characteristics of solar cell circuits having different numbers of series connections. Explanation of symbols
[0021] 10a, 10b, 10c, 100a, 100b 太陽電池回路  [0021] 10a, 10b, 10c, 100a, 100b solar cell circuit
11, 101 昇圧ユニット  11, 101 Booster unit
12, 102 パワーコンディショナ  12, 102 Inverter
14, 104 商用電力系統  14, 104 Commercial power system
18, 110 標準入力部  18, 110 Standard input section
20a, 20b 昇圧回路  20a, 20b Booster circuit
21a, 21b, 114 制御回路  21a, 21b, 114 control circuit
23 リアタトル  23 Rear Tuttle
24, 30, 122 スイッチング素子  24, 30, 122 Switching element
25 ダイオード  25 Diode
26, 27 コンデンサ  26, 27 capacitors
28, 124 温度センサ  28, 124 Temperature sensor
29 電流センサ  29 Current sensor
31a, 31b 過電圧検出回路  31a, 31b Overvoltage detection circuit
32a, 32b ゲート駆動回路  32a, 32b Gate drive circuit
33a, 33b マイコン  33a, 33b MCU
112 昇圧入力部  112 Boost input section
116 トリップ信号発生部  116 Trip signal generator
121 ブレーカ  121 Breaker
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下に、本発明に力かる太陽光発電システムおよびその昇圧ユニットの実施の形 態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定さ れるものではない。 [0022] Hereinafter, embodiments of a photovoltaic power generation system and its boosting unit according to the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
[0023] 図 1は、本発明に力かる昇圧ユニットを含む太陽光発電システムの構成を示す図で ある。なお、同図に示す昇圧ユニットでは、図面簡略ィ匕のため 3つの太陽電池回路 1 Oa, 10b, 10cを示しているが、太陽電池回路入力数や、昇圧回路の数が拡張でき ることは言うまでもない。 [0023] FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system including a boosting unit that works on the present invention. is there. In the boost unit shown in the figure, three solar cell circuits 1 Oa, 10b, and 10c are shown for simplification of the drawing, but the number of solar cell circuit inputs and the number of boost circuits can be expanded. Needless to say.
[0024] 図 1において、例えば、寄棟屋根などの小スペースの屋根面にそれぞれ設置され た太陽電池回路 10a, 10b, 10cが昇圧ユニット 11に接続されている。昇圧ユニット 1 1には、太陽電池回路 10a, 10bのそれぞれに接続される昇圧回路 20a, 20bと、太 陽電池回路 10cに接続されている標準入力部 18と、が搭載されており、これらの昇 圧回路 20a, 20bおよび標準入力部 18の出力が昇圧ユニット 11内で接続されて一 系列にまとめられ、パワーコンディショナ 12に出力される。パワーコンディショナ 12に は、商用系統電圧を生成するための昇圧回路、太陽電池回路の直流電力を交流電 力に変換するインバータ回路、系統連系するための保護装置等 (いずれも図示省略 )が内蔵されており、太陽電池回路の最大出力動作点で動作するように太陽電池回 路の出力を制御(最大電力点追従制御)するとともに、商用電力系統 14と連系する ための各種処理を行う。  In FIG. 1, for example, solar cell circuits 10 a, 10 b, 10 c installed on a small space roof surface such as a dormitory roof are connected to the booster unit 11. The step-up unit 11 includes step-up circuits 20a and 20b connected to the solar cell circuits 10a and 10b, and a standard input unit 18 connected to the solar cell circuit 10c. The outputs of the booster circuits 20 a and 20 b and the standard input unit 18 are connected in the booster unit 11, gathered together, and output to the power conditioner 12. The inverter 12 includes a booster circuit for generating commercial grid voltage, an inverter circuit that converts the DC power of the solar cell circuit to AC power, a protection device for grid connection, etc. (all not shown) In addition to controlling the output of the solar cell circuit so that it operates at the maximum output operating point of the solar cell circuit (maximum power point tracking control), various processes for linking with the commercial power system 14 are performed.
[0025] つぎに、昇圧回路 20aを用いて本発明の昇圧ユニットにかかる昇圧回路の構成を 説明する。図 1において、昇圧回路 20aは、リアタトル 23、スイッチング素子 24、ダイ オード 25、コンデンサ 26, 27、温度センサ 28、電流センサ 29など力も構成される主 回路と、制御回路 21aと、を備えている。制御回路 21aには、太陽電池回路 10aの入 力電圧 Vslと、昇圧回路 20aの出力電圧 Vol、電流センサ 29によって検出されたス イッチング素子オン時のリアタトル 23の電流 IL1、および温度センサ 28による昇圧ュ ニット内部の雰囲気温度 T1の各信号が入力される。制御回路 21aは、これらの各信 号が入力されるセンサ回路や、制御の中心となるマイクロコンピュータ(以下「マイコン 」と呼称)(いずれも図 1では図示省略)などを備えている。マイコンからは主回路のス イッチング素子をオン Zオフするためのゲート信号 Sglの指令値が出力され、目標と する電圧値に昇圧された昇圧出力が生成される。また、各昇圧回路の制御回路同士 は、出力過電圧保護信号 Voerrと、制御回路のマイコンにより外部への出力を許可さ れた時の入力電圧値 Vspmaxと力 それぞれ電気的に接続されて!、る。  Next, the configuration of the booster circuit according to the booster unit of the present invention using the booster circuit 20a will be described. In FIG. 1, the booster circuit 20a includes a main circuit including force such as a rear tuttle 23, a switching element 24, a diode 25, capacitors 26 and 27, a temperature sensor 28, and a current sensor 29, and a control circuit 21a. . The control circuit 21a includes the input voltage Vsl of the solar cell circuit 10a, the output voltage Vol of the booster circuit 20a, the current IL1 of the rear tuttle 23 when the switching element detected by the current sensor 29 is turned on, and the booster by the temperature sensor 28 Each signal of the ambient temperature T1 inside the unit is input. The control circuit 21a includes a sensor circuit to which these signals are input, a microcomputer (hereinafter referred to as “microcomputer”) (which is not shown in FIG. 1), which is the center of control. The microcomputer outputs the command value of the gate signal Sgl for turning on and off the switching elements of the main circuit, and generates a boosted output boosted to the target voltage value. In addition, the control circuits of each booster circuit are electrically connected to the output overvoltage protection signal Voerr and the input voltage value Vspmax when output to the outside is permitted by the microcomputer of the control circuit. .
[0026] つぎに、昇圧ユニット 11の動作について簡単に説明する。昇圧ユニット 11の各昇 圧回路内のマイコンは、接続されている各太陽電池回路の V— P特性上における現 在の動作点を常時監視し、この動作点が最大電力点になるように太陽電池回路を制 御する。なお、この制御は、例えば、入力電圧 (Vs)の微小変化量に対する入力電力 (Ps)の微小変化量 (dPsZdVs)を算出し、この微小変化量 (dPsZdVs)がほぼ 0に 近い値となる領域を探索するような手法を用いることができる。太陽電池回路個々の 最大電力点での動作が確定できたところで、この最大電力点における太陽電池回路 の出力電圧値 (以下「最大出力動作電圧値」と呼称)が出力され、各制御回路には、 それぞれ接続されて ヽる太陽電池回路の最大出力動作電圧値の中で最も高 、電圧 値 (以下「最大出力動作電圧値の最大値」と呼称)が設定される。各昇圧回路は、こ の最大出力動作電圧値の最大値を目標値として昇圧比を設定し、昇圧動作を行う。 ただし、最大出力動作電圧値の最大値がパワーコンデイショナの定格出力可能な最 低電圧値よりも低い場合には、各昇圧回路は、パワーコンディショナにおける定格出 力可能な最低入力電圧値を目標電圧として昇圧比を設定し、昇圧動作を行う。 Next, the operation of the boost unit 11 will be briefly described. Each boost of boost unit 11 The microcomputer in the voltage circuit constantly monitors the current operating point on the VP characteristics of each connected solar cell circuit, and controls the solar cell circuit so that this operating point becomes the maximum power point. . In this control, for example, the minute change amount (dPsZdVs) of the input power (Ps) with respect to the minute change amount of the input voltage (Vs) is calculated, and the minute change amount (dPsZdVs) is a value that is almost close to 0. It is possible to use a technique such as searching for. When the operation at the maximum power point of each solar cell circuit has been determined, the output voltage value of the solar cell circuit at this maximum power point (hereinafter referred to as the “maximum output operating voltage value”) is output, and each control circuit is The highest voltage value (hereinafter referred to as “the maximum value of the maximum output operating voltage value”) is set among the maximum output operating voltage values of the connected solar cell circuits. Each booster circuit sets a boost ratio with the maximum value of the maximum output operation voltage value as a target value, and performs a boost operation. However, if the maximum value of the maximum output operating voltage value is lower than the minimum voltage value at which the rated output of the inverter can be rated, each booster circuit will set the minimum input voltage value at which the rated output of the inverter can be output. A boost ratio is set as a target voltage, and a boost operation is performed.
[0027] このように、通常時は、パワーコンディショナ 12における定格出力可能な入力電圧 範囲に昇圧された昇圧ユニット 11の出力電圧がパワーコンデイショナ 12に入力され るのでパワーコンディショナ 12は、各太陽電池回路の最大電力を効率よく引き出すこ とがでさる。 [0027] In this way, normally, since the output voltage of the boost unit 11 boosted to the input voltage range in which the rated output of the power conditioner 12 can be output is input to the power conditioner 12, the power conditioner 12 The maximum power of each solar cell circuit can be extracted efficiently.
[0028] つぎに、昇圧ユニット 11に接続されるパワーコンディショナ 12が保護動作などで急 に停止した場合について考える。このとき、昇圧ユニット 11は無負荷状態に置かれて いることになり、昇圧動作を行っている昇圧回路の出力電圧が急激に上昇し、パワー コンディショナ 102の入力電圧が許容入力電圧範囲を超えることになる。このような状 態に陥った場合、上述した従来技術では、昇圧回路のトリップ信号発生部が過電圧 を検出して昇圧回路のブレーカをトリップして太陽電池回路の線路を開放するように 制御していた。しかしながら、自身のトリップ信号発生部が故障している場合には過 電圧を検出することができず、昇圧回路の出力が異常な過電圧となり、昇圧ユニット 、パワーコンデイショナが破損する可能性があった。  Next, consider the case where the power conditioner 12 connected to the booster unit 11 suddenly stops due to a protective operation or the like. At this time, the step-up unit 11 is placed in a no-load state, the output voltage of the step-up circuit performing the step-up operation rapidly increases, and the input voltage of the power conditioner 102 exceeds the allowable input voltage range. It will be. In such a state, in the above-described prior art, the trip signal generator of the booster circuit detects overvoltage, and trips the breaker of the booster circuit to open the line of the solar cell circuit. It was. However, if its own trip signal generator is faulty, overvoltage cannot be detected, and the output of the booster circuit becomes abnormal overvoltage, which may damage the booster unit and power conditioner. It was.
[0029] そこで、本発明では、各昇圧回路の制御回路を図 2のように構成し、前述の問題点 を解決するようにしている。ここで、図 2は、本発明に力かる各制御回路の構成および 各制御回路間の接続構成を示す図である。同図に示す制御回路では、一系列にま とめられた各昇圧回路の出力電圧に基づいて生成された過電圧検出信号を自身の 昇圧回路だけでなく他の昇圧回路に対しても送信するようにしている。 Therefore, in the present invention, the control circuit of each booster circuit is configured as shown in FIG. 2 to solve the above-mentioned problems. Here, FIG. 2 shows the configuration of each control circuit and the configuration of the present invention. It is a figure which shows the connection structure between each control circuit. In the control circuit shown in the figure, an overvoltage detection signal generated based on the output voltage of each booster circuit grouped in a series is transmitted not only to its own booster circuit but also to other booster circuits. ing.
[0030] つぎに、本発明の昇圧ユニットの昇圧回路内に具備される制御回路の構成につい て説明する。図 2において、制御回路 21aは、一系列にまとめられた各昇圧回路 (す なわち昇圧ユニット 11)の出力電圧の出力電圧 (Vol)を検出する過電圧検出回路 3 laと、過電圧検出回路 31aの出力にそれぞれ接続されるゲート駆動回路 32aおよび マイコン 33aとを、備えている。また、マイコン 33aの制御信号がゲート駆動回路 32a に接続されるように構成されている。さらに、他の昇圧回路である制御回路 21bも制 御回路 21aと同様に構成されるとともに、各制御回路の過電圧検出回路 31a、 31bの 過電圧検出信号が自身だけでなく他の制御回路にも出力されるように構成されてい る。  Next, the configuration of the control circuit provided in the booster circuit of the booster unit of the present invention will be described. In FIG. 2, the control circuit 21a includes an overvoltage detection circuit 3la that detects the output voltage (Vol) of the output voltage of each booster circuit (that is, the booster unit 11) grouped together, and an overvoltage detection circuit 31a. A gate drive circuit 32a and a microcomputer 33a connected to the outputs are provided. The control signal of the microcomputer 33a is connected to the gate drive circuit 32a. In addition, the control circuit 21b, which is another booster circuit, is configured in the same manner as the control circuit 21a, and the overvoltage detection signals of the overvoltage detection circuits 31a and 31b of each control circuit are output not only to itself but also to other control circuits. It is configured to be
[0031] つぎに、制御回路の動作について説明する。なお、昇圧回路 20a、 20bの各出力 は昇圧ユニット 11の出力段で一系列にまとめられているため過渡状態を除いて同一 の出力値を出力するはずであるが、説明の便宜上これらの出力を Vol, Vo2として 示している。図 2において、出力電圧 Volを検出している制御回路 21a内の過電圧 検出回路 31aが過電圧を検出すると、 Vol過電圧検出信号がマイコン 33aに出力さ れるとともに、ゲート駆動回路 32aにも出力される。このとき、ゲート駆動回路 32aから 、スイッチング素子 24のスイッチング動作を停止する信号が出力される。この Vol過 電圧検出信号は、ハード的に接続されている他の昇圧回路の制御回路 21bにも出 力される。このように構成された昇圧ユニットによれば、万一、制御回路 21aの過電圧 検出回路 31aが故障した場合であっても、他の正常な昇圧回路の制御回路 (本実施 の形態では、制御回路 21bの過電圧検出回路 31b)が過電圧を検出し、破線で示す ように正常な制御回路 21bの過電圧検出回路 31bからの信号により、過電圧検出回 路が故障している昇圧回路のスイッチング素子 24の動作を停止することが可能とな る。  Next, the operation of the control circuit will be described. Since the outputs of the booster circuits 20a and 20b are grouped together in the output stage of the booster unit 11, they should output the same output value except for the transient state. They are shown as Vol and Vo2. In FIG. 2, when the overvoltage detection circuit 31a in the control circuit 21a that detects the output voltage Vol detects an overvoltage, a Vol overvoltage detection signal is output to the microcomputer 33a and also to the gate drive circuit 32a. At this time, a signal for stopping the switching operation of the switching element 24 is output from the gate drive circuit 32a. This Vol overvoltage detection signal is also output to the control circuit 21b of another booster circuit connected in hardware. According to the boost unit configured in this way, even if the overvoltage detection circuit 31a of the control circuit 21a fails, the control circuit of another normal boost circuit (in this embodiment, the control circuit 21b) Overvoltage detection circuit 31b) detects an overvoltage, and as indicated by the broken line, the operation of the switching element 24 of the booster circuit in which the overvoltage detection circuit has failed due to a signal from the overvoltage detection circuit 31b of the normal control circuit 21b. Can be stopped.
[0032] 図 3— 1は、スイッチング素子をオン制御する制御パルス幅 (G1)がオフ制御する制 御パルス幅(G2)に比して極端に小さくない場合の一例を示す図であり、図 3— 2は、 スイッチング素子をオン制御する制御パルス幅(G3)がオフ制御する制御パルス幅( G4)に比して極端に小さい場合の一例を示す図である。なお、図 3—1および図 3—2 において、縦軸は太陽電池回路出力の正極側線路に接続されるスイッチング素子の コレクタ端子と、負極側線路に接続されるスイッチング素子のェミッタ端子と、の間の 端子電圧 (V )を用いて示している。 [0032] Fig. 3-1 is a diagram showing an example in which the control pulse width (G1) for turning on the switching element is not extremely smaller than the control pulse width (G2) for turning off the switching element. 3—2 is It is a figure which shows an example when the control pulse width (G3) which carries out on control of a switching element is extremely small compared with the control pulse width (G4) which carries out off control. In Fig. 3-1 and Fig. 3-2, the vertical axis represents the collector terminal of the switching element connected to the positive line of the solar cell circuit output and the emitter terminal of the switching element connected to the negative line. It is shown using the terminal voltage (V) between.
CE  CE
[0033] 図 3-1に示すように、昇圧回路のスイッチング素子は、通常時、すなわち適度な昇 圧比に設定されているときは、数十 kHz程度の固定周波数でオン'オフの割合が変 化するスイッチング動作を行っている。一方、昇圧比が小さくなるにしたがって、スイツ チング素子のオン時間が短くなり、出力電圧と入力電圧の差がほとんどない状態で は、基本スイッチング周期内でのオン時間がほとんどなくなり、図 3—2に示すようなス イッチング素子をオン制御する制御パルス幅がオフ制御する制御パルス幅に比して 極端に小さい状態となる。この状態では、スイッチング素子のスイッチング動作が間 欠動作となり、この間欠動作に基づく数 kHz程度の周波数成分を有する耳障りな騒 音を発生させる可能性がある。  [0033] As shown in Fig. 3-1, the switching element of the booster circuit changes its on / off ratio at a fixed frequency of about several tens of kHz during normal operation, that is, when an appropriate boost ratio is set. Switching operation is performed. On the other hand, as the step-up ratio becomes smaller, the on-time of the switching element becomes shorter. When there is almost no difference between the output voltage and the input voltage, the on-time within the basic switching period is almost zero. The control pulse width for turning on the switching element as shown in Fig. 5 becomes extremely smaller than the control pulse width for turning off the switching element. In this state, the switching operation of the switching element becomes an intermittent operation, and there is a possibility that annoying noise having a frequency component of about several kHz based on this intermittent operation is generated.
[0034] 他方、このような状況時においては、昇圧回路に入力される太陽電池回路の最大 出力動作電圧と、目標とする太陽電池回路の最大出力点電圧との間には、ほとんど 差がないため、昇圧する必要はない。したがって、昇圧動作を行う昇圧比に所定のし きい値を設定し、昇圧比がこの所定のしきい値未満のときは、昇圧回路を停止して間 欠的なスイッチング動作を行わな 、ように制御する。このような制御を行うことによって 、昇圧ユニットから発生する騒音を防止することができる。  [0034] On the other hand, in such a situation, there is almost no difference between the maximum output operating voltage of the solar cell circuit input to the booster circuit and the maximum output point voltage of the target solar cell circuit. Therefore, there is no need to boost the voltage. Therefore, a predetermined threshold value is set for the boost ratio at which the boost operation is performed, and when the boost ratio is less than the predetermined threshold value, the booster circuit is stopped and the intermittent switching operation is not performed. Control. By performing such control, noise generated from the boosting unit can be prevented.
[0035] なお、この制御の考え方は、温度センサ出力に基づいて昇圧回路を停止させる場 合にも応用できる。従来の温度制御では、昇圧回路は、温度センサにより内部の雰 囲気温度を検出し、この内部雰囲気温度が所定の温度レベルに達しているときは直 ちに昇圧回路を停止するようにしていた。一方、内部の雰囲気温度が所定のレベル に達したときは、直ちに昇圧回路を停止するのではなぐ内部雰囲気温度が所定の 温度以上に上昇しないように昇圧回路の主回路に流れる電流を減少させて、出力電 力を抑制するようにしてもよい。このような制御を行うことにより、内部雰囲気温度が所 定の温度以上に上昇しな 、ようにスイッチング素子のオン ·オフの比率を可変して昇 圧回路の主回路に流れる電流を減少させ、出力電力を抑制するようにすればよい。 もし、出力電力を抑制しても温度が上昇するような場合は、スイッチング素子のゲート 信号をオフして昇圧回路を停止させるようにすればょ 、。 Note that this control concept can also be applied to the case where the booster circuit is stopped based on the temperature sensor output. In the conventional temperature control, the booster circuit detects the internal ambient temperature with a temperature sensor, and immediately stops the booster circuit when the internal ambient temperature reaches a predetermined temperature level. On the other hand, when the internal ambient temperature reaches a predetermined level, the current flowing through the main circuit of the booster circuit is reduced so that the internal ambient temperature does not rise above the predetermined temperature, instead of immediately stopping the booster circuit. The output power may be suppressed. By performing such control, the ON / OFF ratio of the switching element is varied and increased so that the internal ambient temperature does not rise above a predetermined temperature. What is necessary is just to reduce the electric current which flows into the main circuit of a pressure circuit, and to suppress output electric power. If the temperature rises even if the output power is suppressed, turn off the gate signal of the switching element and stop the booster circuit.
[0036] なお、この実施の形態では、スイッチング素子のスイッチング制御が数十 kHz程度 の固定周波数を用いてオン'オフのパルス幅の比を可変するような昇圧回路の構成 を一例として説明しているが、スイッチング周波数が固定周波数である必要はなぐ 可変周波数のスイッチング制御が行われるような構成の昇圧回路に対しても適用で きることは、言うまでもな ヽことである。  In this embodiment, the configuration of the booster circuit in which the switching control of the switching element changes the ON / OFF pulse width ratio using a fixed frequency of about several tens of kHz will be described as an example. However, it is needless to say that the present invention can be applied to a booster circuit having a configuration in which switching control of a variable frequency is performed.
[0037] 以上説明したように、この実施の形態の太陽光発電システムおよびその昇圧ュ-ッ トによれば、制御回路には、自身の昇圧回路の出力電圧が所定の電圧値を超えたか 否かを検出する過電圧検出回路がさらに備えられ、一の昇圧回路の制御回路に具 備される過電圧検出回路が、検出した過電圧検出信号を他の昇圧回路の制御回路 に出力するようにしているので、出力過電圧に対する保護の確実性を高め、過電圧 による昇圧ユニットやその出力が接続されるパワーコンディショナに対して過電圧に 起因する破損を防止することができる。  [0037] As described above, according to the photovoltaic power generation system of this embodiment and its booster unit, the control circuit determines whether or not the output voltage of its own booster circuit has exceeded a predetermined voltage value. And an overvoltage detection circuit for detecting whether or not an overvoltage detection circuit included in the control circuit of one booster circuit outputs the detected overvoltage detection signal to the control circuit of another booster circuit. Therefore, it is possible to improve the reliability of protection against output overvoltage and to prevent damage due to overvoltage to the boost unit and the power conditioner to which the output is connected due to overvoltage.
[0038] また、この実施の形態の太陽光発電システムおよびその昇圧ユニットによれば、昇 圧回路の出力を停止させる必要が生じたときに、スイッチング素子への制御信号出 力を停止するようにしているので、過電圧検出による保護を、高価な直流開閉器を製 品に搭載してトリップする必要がなぐ装置コストの低減化、および装置規模の小型 化が可能となる。  [0038] Further, according to the photovoltaic power generation system and its boosting unit of this embodiment, when it is necessary to stop the output of the boosting circuit, the control signal output to the switching element is stopped. Therefore, it is possible to reduce the equipment cost and to reduce the scale of the equipment without the need for tripping by mounting an expensive DC switch on the product for protection by overvoltage detection.
[0039] また、この実施の形態の太陽光発電システムおよびその昇圧ユニットによれば、自 身が設定した昇圧比が所定のしき 、値未満の場合に、昇圧回路の昇圧動作を停止 するようにしているので、昇圧回路の間欠的なスイッチングを防止し、当該スィッチン グに起因する騒音を防止することができる。  [0039] Further, according to the photovoltaic power generation system and its boosting unit of this embodiment, the boosting operation of the boosting circuit is stopped when the boosting ratio set by itself is less than a predetermined threshold value. Therefore, intermittent switching of the booster circuit can be prevented, and noise caused by the switching can be prevented.
[0040] また、この実施の形態の太陽光発電システムおよびその昇圧ユニットによれば、昇 圧回路の雰囲気温度が所定のレベルに達して 、る場合に、スイッチング素子への制 御信号に基づいて昇圧回路に流れる電流を減少させ、昇圧回路、あるいは昇圧ュニ ット内の温度が上昇しないように制御して発電時間を可能な限り確保するようにして いるので、太陽電池回路の電力利用率を高めることができる。 [0040] Further, according to the photovoltaic power generation system and its boosting unit of this embodiment, when the atmospheric temperature of the boosting circuit reaches a predetermined level, based on the control signal to the switching element. Reduce the current flowing through the booster circuit and control the booster circuit or the temperature inside the booster unit not to increase so as to secure the power generation time as much as possible. Therefore, the power utilization factor of the solar cell circuit can be increased.
産業上の利用可能性 Industrial applicability
以上のように、本発明に力かる太陽光発電システムは、無尽蔵の太陽エネルギーを 利用するクリーンな発電システムとして有用であり、また、その昇圧ユニットは、太陽 光発電システムを実現する構成品として有用である。  As described above, the photovoltaic power generation system according to the present invention is useful as a clean power generation system that uses inexhaustible solar energy, and the boosting unit is useful as a component that realizes the photovoltaic power generation system. It is.

Claims

請求の範囲 The scope of the claims
[1] 複数の太陽電池回路と、前記複数の太陽電池回路が出力する直流電圧を昇圧可 能な昇圧回路を備える昇圧ユニットと、前記昇圧ユニットから出力される直流電力を 交流電力に変換するパワーコンディショナと、を備える太陽光発電システムであって、 前記昇圧回路は、  [1] A plurality of solar cell circuits, a booster unit including a booster circuit capable of boosting a DC voltage output from the plurality of solar cell circuits, and power for converting DC power output from the booster unit into AC power A photovoltaic power generation system comprising a conditioner, wherein the booster circuit is
前記太陽電池回路出力の昇圧前出力電圧と昇圧後出力電圧とに基づいて昇圧比 を可変する制御信号を出力する制御回路と、  A control circuit that outputs a control signal that varies a boost ratio based on an output voltage before boosting and an output voltage after boosting of the solar cell circuit output;
前記制御回路力 出力された制御信号に基づいて昇圧比を可変するスイッチング 素子と、  A switching element that varies a step-up ratio based on the control signal output from the control circuit force;
を備え、  With
前記制御回路は、前記昇圧回路の出力を停止させる必要が生じたときに、前記ス イッチング素子への制御信号出力を停止することを特徴する太陽光発電システム。  The solar power generation system, wherein the control circuit stops outputting a control signal to the switching element when the output of the booster circuit needs to be stopped.
[2] 前記制御回路は、自身が設定した昇圧比が所定のしきい値未満の場合に、自身が 含まれる昇圧回路の昇圧動作を停止することを特徴する請求項 1に記載の太陽光発 電システム。  [2] The solar power generation device according to claim 1, wherein the control circuit stops the boosting operation of the boosting circuit including the control circuit when the boosting ratio set by the control circuit is less than a predetermined threshold. Electric system.
[3] 前記制御回路は、自身の昇圧回路の出力電圧が所定の電圧値を超えた力否かを 検出する過電圧検出回路をさらに備え、  [3] The control circuit further includes an overvoltage detection circuit that detects whether or not the output voltage of its booster circuit exceeds a predetermined voltage value.
一の昇圧回路の制御回路に具備される過電圧検出回路は、検出した過電圧検出 信号を他の昇圧回路の制御回路に出力することを特徴する請求項 1に記載の太陽 光発電システム。  2. The solar power generation system according to claim 1, wherein the overvoltage detection circuit included in the control circuit of one booster circuit outputs the detected overvoltage detection signal to the control circuit of another booster circuit.
[4] 複数の太陽電池回路と、前記複数の太陽電池回路が出力する直流電圧を昇圧可 能な昇圧回路を備える昇圧ユニットと、前記昇圧ユニットから出力される直流電力を 交流電力に変換するパワーコンディショナと、を備える太陽光発電システムであって、 前記昇圧回路は、  [4] A plurality of solar cell circuits, a booster unit including a booster circuit capable of boosting a DC voltage output from the plurality of solar cell circuits, and power for converting DC power output from the booster unit into AC power A photovoltaic power generation system comprising a conditioner, wherein the booster circuit is
前記太陽電池回路出力の昇圧前出力電圧と昇圧後出力電圧とに基づいて昇圧比 を可変する制御信号を出力する制御回路と、  A control circuit that outputs a control signal that varies a boost ratio based on an output voltage before boosting and an output voltage after boosting of the solar cell circuit output;
前記制御回路力 出力された制御信号に基づいて昇圧比を可変するスイッチング 素子と、 を備え、 A switching element that varies a step-up ratio based on the control signal output from the control circuit force; With
前記制御回路は、自身が含まれる昇圧回路の雰囲気温度が所定のレベルに達し ている場合に、前記スイッチング素子への制御信号に基づいて該昇圧回路に流れる 電流を減少させることを特徴する太陽光発電システム。  The control circuit reduces the current flowing through the booster circuit based on a control signal to the switching element when the ambient temperature of the booster circuit including the control circuit reaches a predetermined level. Power generation system.
[5] 太陽電池回路から出力される直流電圧を所定のレベルまで昇圧する太陽光発電 システムの昇圧ユニットにおいて、 [5] In a booster unit of a photovoltaic power generation system that boosts a DC voltage output from a solar cell circuit to a predetermined level,
前記太陽電池回路が出力する直流電圧を昇圧可能な昇圧回路を備え、 前記昇圧回路は、  A booster circuit capable of boosting a DC voltage output from the solar cell circuit;
前記太陽電池回路出力の昇圧前出力電圧と昇圧後出力電圧とに基づいて昇圧比 を可変する制御信号を出力する制御回路と、  A control circuit that outputs a control signal that varies a boost ratio based on an output voltage before boosting and an output voltage after boosting of the solar cell circuit output;
前記制御回路力 出力された制御信号に基づいて昇圧比を可変するスイッチング 素子と、  A switching element that varies a step-up ratio based on the control signal output from the control circuit force;
を備え、  With
前記制御回路は、前記昇圧回路の出力を停止させる必要が生じたときに、前記ス イッチング素子への制御信号出力を停止することを特徴する太陽光発電システムの 昇圧ユニット。  The boosting unit of a photovoltaic power generation system, wherein the control circuit stops outputting a control signal to the switching element when it is necessary to stop the output of the boosting circuit.
[6] 前記制御回路は、自身が設定した昇圧比が所定のしきい値未満の場合に、自身が 含まれる昇圧回路の昇圧動作を停止することを特徴する請求項 5に記載の太陽光発 電システムの昇圧ユニット。  [6] The solar power generation device according to [5], wherein the control circuit stops the boost operation of the boost circuit including the control circuit when the boost ratio set by the control circuit is less than a predetermined threshold value. Booster unit for electric system.
[7] 前記制御回路は、自身の昇圧回路の出力電圧が所定の電圧値を超えた力否かを 検出する過電圧検出回路をさらに備え、 [7] The control circuit further includes an overvoltage detection circuit that detects whether or not the output voltage of the booster circuit exceeds a predetermined voltage value.
一の昇圧回路の制御回路に具備される過電圧検出回路は、検出した過電圧検出 信号を他の昇圧回路の制御回路に出力することを特徴する請求項 5に記載の太陽 光発電システムの昇圧ユニット。  6. The step-up unit of the solar power generation system according to claim 5, wherein the overvoltage detection circuit included in the control circuit of one booster circuit outputs the detected overvoltage detection signal to the control circuit of another booster circuit.
[8] 太陽電池回路から出力される直流電圧を所定のレベルまで昇圧する太陽光発電 システムの昇圧ユニットにおいて、 [8] In the step-up unit of the photovoltaic power generation system that boosts the DC voltage output from the solar cell circuit to a predetermined level,
前記太陽電池回路が出力する直流電圧を昇圧可能な昇圧回路を備え、 前記昇圧回路は、 前記太陽電池回路出力の昇圧前出力電圧と昇圧後出力電圧とに基づいて昇圧比 を可変する制御信号を出力する制御回路と、 A booster circuit capable of boosting a DC voltage output from the solar cell circuit; A control circuit that outputs a control signal that varies a boost ratio based on an output voltage before boosting and an output voltage after boosting of the solar cell circuit output;
前記制御回路力 出力された制御信号に基づいて昇圧比を可変するスイッチング 素子と、  A switching element that varies a step-up ratio based on the control signal output from the control circuit force;
を備え、  With
前記制御回路は、自身が含まれる昇圧回路の雰囲気温度が所定のレベルに達し ている場合に、前記スイッチング素子への制御信号に基づいて該昇圧回路に流れる 電流を減少させることを特徴する太陽光発電システムの昇圧ユニット。  The control circuit reduces the current flowing through the booster circuit based on a control signal to the switching element when the ambient temperature of the booster circuit including the control circuit reaches a predetermined level. Booster unit for power generation system.
PCT/JP2004/013822 2004-09-22 2004-09-22 Solar photovoltaic power generation system and booster unit thereof WO2006033143A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2004/013822 WO2006033143A1 (en) 2004-09-22 2004-09-22 Solar photovoltaic power generation system and booster unit thereof
JP2006536276A JP4468372B2 (en) 2004-09-22 2004-09-22 Photovoltaic power generation system and its boosting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/013822 WO2006033143A1 (en) 2004-09-22 2004-09-22 Solar photovoltaic power generation system and booster unit thereof

Publications (1)

Publication Number Publication Date
WO2006033143A1 true WO2006033143A1 (en) 2006-03-30

Family

ID=36089910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/013822 WO2006033143A1 (en) 2004-09-22 2004-09-22 Solar photovoltaic power generation system and booster unit thereof

Country Status (2)

Country Link
JP (1) JP4468372B2 (en)
WO (1) WO2006033143A1 (en)

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012100815A1 (en) * 2011-01-24 2012-08-02 Siemens Aktiengesellschaft Regulation method for a photovoltaic system and photovoltaic system
JP2013106433A (en) * 2011-11-14 2013-05-30 Panasonic Corp Power conditioner for photovoltaic power generation
JP2013225191A (en) * 2012-04-20 2013-10-31 Hitachi Ltd Power conversion apparatus for photovoltaic generation
CN104124699A (en) * 2013-04-25 2014-10-29 株式会社安川电机 Grid interconnection apparatus
JP2018102080A (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Electrical equipment
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012205595B4 (en) * 2012-04-04 2015-03-12 Siemens Aktiengesellschaft Operating circuit for a photovoltaic system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010496A (en) * 2000-06-16 2002-01-11 Omron Corp Power conditioner in solar power generating system
JP2002238246A (en) * 2001-02-14 2002-08-23 Sharp Corp Booster unit, power conditioner, and photovoltaic power generation system
JP2002354678A (en) * 2001-05-29 2002-12-06 Canon Inc Power generating device, and its control method
JP2003289626A (en) * 2002-03-28 2003-10-10 Sharp Corp Power conditioner for solar power generation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002010496A (en) * 2000-06-16 2002-01-11 Omron Corp Power conditioner in solar power generating system
JP2002238246A (en) * 2001-02-14 2002-08-23 Sharp Corp Booster unit, power conditioner, and photovoltaic power generation system
JP2002354678A (en) * 2001-05-29 2002-12-06 Canon Inc Power generating device, and its control method
JP2003289626A (en) * 2002-03-28 2003-10-10 Sharp Corp Power conditioner for solar power generation system

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
WO2012100815A1 (en) * 2011-01-24 2012-08-02 Siemens Aktiengesellschaft Regulation method for a photovoltaic system and photovoltaic system
JP2016105335A (en) * 2011-11-14 2016-06-09 パナソニックIpマネジメント株式会社 Power conditioner for solar power generation
JP2013106433A (en) * 2011-11-14 2013-05-30 Panasonic Corp Power conditioner for photovoltaic power generation
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
JP2013225191A (en) * 2012-04-20 2013-10-31 Hitachi Ltd Power conversion apparatus for photovoltaic generation
JP2014215831A (en) * 2013-04-25 2014-11-17 株式会社安川電機 System interconnection device
CN104124699A (en) * 2013-04-25 2014-10-29 株式会社安川电机 Grid interconnection apparatus
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
JP2018102080A (en) * 2016-12-21 2018-06-28 パナソニックIpマネジメント株式会社 Electrical equipment

Also Published As

Publication number Publication date
JP4468372B2 (en) 2010-05-26
JPWO2006033143A1 (en) 2008-05-15

Similar Documents

Publication Publication Date Title
WO2006033143A1 (en) Solar photovoltaic power generation system and booster unit thereof
US6838611B2 (en) Solar battery module and power generation apparatus
US8836162B2 (en) Inverter for photovoltaic systems
US8624561B1 (en) Power conversion having energy storage with dynamic reference
JP4527767B2 (en) Power converter
JP4783294B2 (en) Power converter for grid connection
US20170310239A1 (en) Cascaded h-bridge inverter and method for handling fault thereof
JP6063031B2 (en) Power conditioner and control method thereof
US9906134B1 (en) Insulation detecting circuit, power converting device and insulation impedance value detecting method
US9966866B2 (en) Distributed power system, DC-DC converter, and power conditioner
US11532985B2 (en) Switching circuits having multiple operating modes and associated methods
JP6031519B2 (en) Method and arrangement for surge protection of an inverter for a photovoltaic system
JPWO2013118376A1 (en) Power supply system and charge / discharge power conditioner used therefor
JP3941346B2 (en) Power conditioner in solar power generation system
KR20090129775A (en) Dc feeder groundfault detector
JP2005269843A (en) Parallel operation device
JP4468371B2 (en) Photovoltaic power generation system and its boosting unit
JPH0749721A (en) Protection device for electric apparatus using solar battery as power supply
JP7038327B2 (en) Power converter
JP7281384B2 (en) junction box
KR100708256B1 (en) Advanced Power Conveter Using PWM-Inverter
JP6294447B2 (en) Power conditioner and control method thereof
JP2024018293A (en) Hybrid energy storage system
JP2023018367A (en) Boost connection circuit and power conversion system
JPH0772942A (en) Power supply system start-up/stoppage controller

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006536276

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase