JPH07222436A - Life detection apparatus of smoothing electrolytic capacitor - Google Patents

Life detection apparatus of smoothing electrolytic capacitor

Info

Publication number
JPH07222436A
JPH07222436A JP6006738A JP673894A JPH07222436A JP H07222436 A JPH07222436 A JP H07222436A JP 6006738 A JP6006738 A JP 6006738A JP 673894 A JP673894 A JP 673894A JP H07222436 A JPH07222436 A JP H07222436A
Authority
JP
Japan
Prior art keywords
voltage
electrolytic capacitor
life
smoothing electrolytic
smoothing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6006738A
Other languages
Japanese (ja)
Inventor
Koji Yamada
幸治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP6006738A priority Critical patent/JPH07222436A/en
Publication of JPH07222436A publication Critical patent/JPH07222436A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To obtain a life detection apparatus in which the proper replacement timing of a smoothing electrolytic capacitor is displayed by a method wherein the ripple voltage or the ripple current, of the smoothing electrolytic capacitor, which is increased with a drop in an electrostatic capacity due to the degradation of the smoothing electrolytic capacitor is detected, the ripple voltage or the ripple current is compared with a preset judgment level and the life of the capacitor is judged. CONSTITUTION:The terminal voltage of a smoothing electrolytic capacitor 4 in a voltage-type inverter device 1 is detected by a voltage detector 6, and the terminal voltage is compared with a life judgment level in a voltage comparator 7. An output is generated only for a period during which the terminal voltage of the smoothing capacitor 4 is less than the life judgment level. In addition, a current which flows in the smoothing electrolytic capacitor 4 is detected by a Hall element 5, it is converted into a DC voltage by a voltage detector 6', and the DC voltage is compared with a life level in a voltage comparator 7'. When a ripple current exceeds the life judgment level, a life detection signal is output. The outputs of the voltage comparators 7, 7' are ANDed with a power-supply condition by respective AND circuits 8, 8', only a life signal is sent to a CPU, and the life of the smoothing electrolytic capacitor is displayed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、交流電源を入力し直流
電圧に変換する順変換回路の出力直流電圧を平滑する平
滑用電解コンデンサの寿命検出装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a life detecting device for a smoothing electrolytic capacitor which smoothes an output DC voltage of a forward conversion circuit which inputs an AC power source and converts it into a DC voltage.

【0002】[0002]

【従来の技術】誘導電動機などを駆動する電圧形インバ
−タ装置など、交流電源を入力し直流電圧に変換する順
変換回路からなる電力変換装置において前記順変換回路
の出力直流電圧を平滑するために、比較的大容量の電解
コンデンサが使用されている。図5は、電圧形インバ−
タ装置1を示すものであって、交流電源(AC)電圧を
整流して直流電圧に変換するダイオ−ドからなる順変換
回路2、直流電圧を交流電圧に変換するGTOなど半導
体スイッチ素子からなる逆変換回路3、前記順変換回路
2の出力直流電圧を平滑する平滑用電解コンデンサ4、
交流電源AC投入時の突入電流を抑制するための抵抗
R、及び交流電源AC投入後に接点を閉じるスイッチM
Cから構成されている。
2. Description of the Related Art In order to smooth the output DC voltage of a forward conversion circuit in a power conversion device including a forward conversion circuit that inputs an AC power source and converts it into a DC voltage, such as a voltage source inverter device that drives an induction motor. In addition, a relatively large capacity electrolytic capacitor is used. FIG. 5 shows a voltage source inverter.
1 shows a switching device 1, which comprises a forward conversion circuit 2 composed of a diode for rectifying an AC power supply (AC) voltage and converting it into a DC voltage, and a semiconductor switching device such as a GTO converting a DC voltage into an AC voltage. An inverse conversion circuit 3, a smoothing electrolytic capacitor 4 for smoothing the output DC voltage of the forward conversion circuit 2,
A resistor R for suppressing an inrush current when the AC power supply AC is turned on, and a switch M for closing the contacts after the AC power supply AC is turned on.
It is composed of C.

【0003】このような電圧形インバ−タ装置の寿命を
決定する重要なものとして平滑用電解コンデンサ4の経
年変化による特性の劣化がある。
Degradation of characteristics of the smoothing electrolytic capacitor 4 due to aging is an important factor in determining the life of such a voltage source inverter device.

【0004】電圧形インバ−タ装置1を運転すると、順
変換回路2の出力直流電圧により平滑用電解コンデンサ
4にはリプル電流が流れ逆変換回路3の入力直流電圧を
平滑するが、該リプル電流により平滑用電解コンデンサ
4は温度上昇を引き起こし時間の経過と共に静電容量が
減少していく性質を持っている。
When the voltage source inverter device 1 is operated, a ripple current flows through the smoothing electrolytic capacitor 4 due to the output DC voltage of the forward conversion circuit 2 and the input DC voltage of the inverse conversion circuit 3 is smoothed. As a result, the electrolytic capacitor 4 for smoothing has a property that it causes a temperature rise and its capacitance decreases with the passage of time.

【0005】平滑用電解コンデンサ4の寿命は、温度と
時間で規定され約10℃上昇すると寿命(使用可能時
間)は半分になるといわれている。
The life of the smoothing electrolytic capacitor 4 is defined by temperature and time, and it is said that the life (usable time) is halved when the temperature rises by about 10 ° C.

【0006】[0006]

【発明が解決しようとする課題】従来の電圧形インバ−
タ装置など電力変換装置における平滑用電解コンデンサ
の寿命は、該電力変換装置内の他の部品と比較して短い
ので、定期的に平滑用電解コンデンサのみを交換すると
いうメンテナンス作業が必要となる。
DISCLOSURE OF THE INVENTION Conventional voltage source inverter
Since the life of the smoothing electrolytic capacitor in the power converter such as a power converter is shorter than that of other parts in the power converter, it is necessary to periodically perform maintenance work to replace only the smoothing electrolytic capacitor.

【0007】このようなメンテナンス作業は、一般的に
は、数年おきに平滑用電解コンデンサの劣化の有無に関
係なく、電力変換装置の運転条件からシュミレ−ション
した計算寿命によって行なわれるが、この計算寿命は実
際の寿命よりも安全計数を大きくとって早期に交換する
計算方法を採用しているため、実際には未だ交換する時
期にないものまで交換をしてしまうという問題がある。
[0007] Such maintenance work is generally performed every several years with a calculated life that is simulated from the operating conditions of the power converter regardless of the deterioration of the smoothing electrolytic capacitor. Since the calculated life is calculated by taking a safety factor larger than the actual life and replacing it at an early stage, there is a problem that even a product that has not actually been replaced yet is replaced.

【0008】本発明は、この平滑用電解コンデンサの交
換時期を該平滑用電解コンデンサの寿命によって定まる
適切な交換時期になるように、適切な交換時期を表示す
る電力変換装置の寿命検出装置を提供するものである。
The present invention provides a life detecting device for a power conversion device, which displays an appropriate replacement time so that the replacement time of the smoothing electrolytic capacitor is an appropriate replacement time determined by the life of the smoothing electrolytic capacitor. To do.

【0009】[0009]

【課題を解決する手段】平滑用電解コンデンサの静電容
量の変化に伴い変動する該平滑用電解コンデンサのリプ
ル電圧あるいはリプル電流を検出する検出手段と、前記
検出手段により検出されたリプル電圧あるいはリプル電
流と所定の寿命判定レベルとを比較する比較手段と、前
記比較手段の出力を判断する判断手段とで構成する。
SOLUTION: A detecting means for detecting a ripple voltage or a ripple current of the smoothing electrolytic capacitor which fluctuates with a change in the electrostatic capacitance of the smoothing electrolytic capacitor, and a ripple voltage or a ripple detected by the detecting means. It comprises a comparison means for comparing the current and a predetermined life judgment level and a judgment means for judging the output of the comparison means.

【0010】[0010]

【作用】平滑用電解コンデンサの劣化による静電容量の
低下と共に、増加する該平滑用電解コンデンサのリプル
電圧あるいはリプル電流が予め定められた寿命判定レベ
ルを超過したとき比較手段からの出力の発生をもって該
平滑用電解コンデンサの交換時期の表示とする。
With the decrease of the electrostatic capacitance due to the deterioration of the smoothing electrolytic capacitor and the increase of the ripple voltage or the ripple current of the smoothing electrolytic capacitor exceeds the predetermined life judgment level, the output from the comparing means is generated. The time for replacing the smoothing electrolytic capacitor is indicated.

【0011】[0011]

【実施例】以下、本発明をその実施例で詳しく説明をす
る。
The present invention will be described in detail below with reference to its examples.

【0012】図1は、本発明の平滑用電解コンデンサの
寿命検出装置の実施例を示すものであって、リプル電圧
の検出による寿命検出装置は、電圧形インバ−タ1の平
滑用電解コンデンサ4の端子電圧(インバ−タ1の直流
側電圧)であるリプル電圧を検出する電圧検出器6、電
解コンデンサ4の端子電圧と寿命判定レベル電圧とを比
較して平滑用電解コンデンサ4の端子電圧が寿命判定レ
ベル電圧より低下したとき出力する電圧比較器7、及び
該電圧比較器7の出力と所定の測定条件との論理積をと
りCPU(中央処理装置)に出力するAND回路8とか
ら構成されており、また、リプル電流の検出による寿命
検出装置は、平滑用電解コンデンサ4のリプル電流(充
放電々流)を検出するホ−ル素子5、該ホ−ル素子5の
出力電圧を整流して前記リプル電流に応じた直流電圧に
変換する電流検出器6’、該電流検出器6’の出力電圧
と寿命判定レベル電圧とを比較して該出力電圧が寿命判
定レベルを越えたとき出力する電圧比較器7’及び該電
圧比較器7’の出力と所定の測定条件との論理積をとり
CPU(中央処理装置)に出力するAND回路8’とか
ら構成されている。
FIG. 1 shows an embodiment of a life detecting device for a smoothing electrolytic capacitor according to the present invention. A life detecting device for detecting a ripple voltage is a smoothing electrolytic capacitor 4 of a voltage source inverter 1. The voltage detector 6 for detecting the ripple voltage which is the terminal voltage (DC side voltage of the inverter 1), the terminal voltage of the electrolytic capacitor 4 is compared with the life judgment level voltage, and the terminal voltage of the smoothing electrolytic capacitor 4 is It is composed of a voltage comparator 7 that outputs a voltage lower than the life judgment level voltage, and an AND circuit 8 that logically ANDs the output of the voltage comparator 7 and a predetermined measurement condition and outputs the logical product to a CPU (central processing unit). In addition, the life detecting device by detecting the ripple current rectifies the hall element 5 for detecting the ripple current (charge / discharge current) of the smoothing electrolytic capacitor 4 and the output voltage of the hall element 5. A current detector 6'converting into a DC voltage according to the ripple current, and a voltage output when the output voltage of the current detector 6'compared with the life judgment level voltage and the life judgment level voltage. It is composed of a comparator 7'and an AND circuit 8'which takes the logical product of the output of the voltage comparator 7'and a predetermined measurement condition and outputs the logical product to a CPU (central processing unit).

【0013】なお、上記所定の測定条件とは、平滑用電
解コンデンサ4の劣化以外の原因で前記リプル電圧また
はリプル電流が増加する条件、例えば電圧形インバ−タ
装置1の入力側の三相交流電源の停電、電源断あるいは
欠相など交流電源の異常状態条件であって、平滑用電解
コンデンサ4の交換時期を正確に判断するための測定条
件である。
The predetermined measurement condition is a condition in which the ripple voltage or ripple current increases due to causes other than deterioration of the smoothing electrolytic capacitor 4, for example, three-phase AC on the input side of the voltage source inverter device 1. It is an abnormal condition of the AC power supply, such as a power failure, a power failure, or a missing phase of the power supply, and is a measurement condition for accurately determining the replacement time of the smoothing electrolytic capacitor 4.

【0014】次に、図1に示す寿命検出装置の動作を図
2,3、4を用いて説明をする。
Next, the operation of the life detecting device shown in FIG. 1 will be described with reference to FIGS.

【0015】(1).リプル電圧検出による寿命検出に
ついて 電圧形インバータ装置1における主回路直流電圧は、三
相交流電源(AC)電圧が順変換回路2により整流され
直流電圧(図2 (a))となり、該直流電圧は、電圧形イ
ンバータ装置1の交流負荷(図示せず)に応じて変化す
るが、大略、平滑用電解コンデンサ4無しの場合は
(イ)波形、平滑用電解コンデンサ4正常の場合は
(ロ)波形、平滑用電解コンデンサ4劣化の場合は
(ハ)波形のように(イ)波形に近い波形となる。即
ち、図2(a) に示すように、電圧形インバータ装置1の
主回路直流電圧である平滑用電解コンデンサ4の端子電
圧は、いずれもリプル電圧を含むものであって、平滑用
電解コンデンサ4の劣化(静電容量の減少)に伴ってリ
プル電圧が増加し、変動が激しいものとなる。
(1). Life Detection by Ripple Voltage Detection The main circuit DC voltage in the voltage source inverter device 1 is a DC voltage (FIG. 2 (a)) obtained by rectifying the three-phase AC power supply (AC) voltage by the forward conversion circuit 2 and the DC voltage is , The waveform varies depending on the AC load (not shown) of the voltage source inverter device 1. Generally, the waveform (a) is obtained without the smoothing electrolytic capacitor 4, and the waveform (b) is obtained when the smoothing electrolytic capacitor 4 is normal. When the smoothing electrolytic capacitor 4 is deteriorated, the waveform becomes a waveform close to the waveform (a) like the waveform (c). That is, as shown in FIG. 2A, the terminal voltage of the smoothing electrolytic capacitor 4 which is the main circuit DC voltage of the voltage source inverter device 1 includes the ripple voltage, and the smoothing electrolytic capacitor 4 The ripple voltage increases with the deterioration of (reduction of electrostatic capacity), and the fluctuation becomes severe.

【0016】図2(a) に示すような平滑用電解コンデン
サ4の端子電圧は、電圧検出器6によって検出され、電
圧比較器7において寿命判定レベル(図2(a-ニ))と比
較され、平滑用電解コンデンサ4の端子電圧が寿命判定
レベルを下回る期間だけ出力(図2(b))が発生する。
The terminal voltage of the smoothing electrolytic capacitor 4 as shown in FIG. 2 (a) is detected by the voltage detector 6 and compared with the life judgment level (FIG. 2 (a-d)) by the voltage comparator 7. The output (FIG. 2B) is generated only while the terminal voltage of the smoothing electrolytic capacitor 4 is below the life judgment level.

【0017】電圧比較器7の出力信号である寿命検出信
号(図2 (b))は、平滑用電解コンデンサ4の劣化のみ
を検出するため、他の測定条件信号とAND回路8にお
いて論理積をとり、その出力をCPU等の処理装置に送
出することにより、平滑用電解コンデンサ4の寿命検出
が行われる。
The life detection signal (FIG. 2 (b)), which is the output signal of the voltage comparator 7, detects only the deterioration of the smoothing electrolytic capacitor 4, so that the AND operation is performed in the AND circuit 8 with other measurement condition signals. Then, the output of the smoothing electrolytic capacitor 4 is detected by sending the output to a processing device such as a CPU.

【0018】(2).リプル電流検出による寿命検出に
ついて 電圧形インバータ装置1における主回路直流電圧、即ち
平滑用電解コンデンサ4の端子電圧は、図2(a) に示す
ようにリプル電圧を含んでおり、該平滑用電解コンデン
サ4にはそのリプル電圧周波数の充放電電流(リプル電
流)が流れる。
(2). About Life Detection by Ripple Current Detection The main circuit DC voltage in the voltage source inverter device 1, that is, the terminal voltage of the smoothing electrolytic capacitor 4 includes the ripple voltage as shown in FIG. 2 (a). A charging / discharging current (ripple current) having the ripple voltage frequency flows through the switch 4.

【0019】平滑用電解コンデンサ4に流れるリプル電
流は、図2(c),(c')に示すように、平滑用電解コンデン
サ4の端子電圧(図2(a−ロ,ハ))が、三相交流電
源(AC)電圧を整流した順変換回路2の出力電圧(図
2(a−イ))より下回ったとき充電電流として流れ、
上回ったとき放電電流として流れる交流電流となり、平
滑用電解コンデンサ4の劣化(静電容量の減少)に伴っ
て増加するものである。このリプル電流は、ホール素子
5により検出され電流検出器6’において直流電圧に変
換されて電圧比較器7’において寿命判定レベルと比較
され、リプル電流が寿命判定レベルを上回ったとき寿命
検出信号が出力し、AND回路8’おいて他の測定条件
信号との論理積をとり、その出力をCPUなどの処理装
置に送出することにより、平滑用電解コンデンサ4の寿
命検出が行われる。
As shown in FIGS. 2 (c) and 2 (c '), the ripple current flowing in the smoothing electrolytic capacitor 4 is equal to the terminal voltage of the smoothing electrolytic capacitor 4 (FIG. 2 (a-b)). When it falls below the output voltage (FIG. 2 (a-a)) of the forward conversion circuit 2 that rectifies the voltage of the three-phase AC power supply (AC), it flows as a charging current
When it exceeds, it becomes an alternating current that flows as a discharge current, and increases with deterioration of the smoothing electrolytic capacitor 4 (decrease in electrostatic capacity). This ripple current is detected by the Hall element 5, converted into a DC voltage in the current detector 6 ', and compared with the life judgment level in the voltage comparator 7'. When the ripple current exceeds the life judgment level, the life detection signal is output. The AND circuit 8'outputs the logical product with other measurement condition signals and sends the output to a processing device such as a CPU to detect the life of the smoothing electrolytic capacitor 4.

【0020】上記(1)、(2)の寿命検出装置におけ
るAND回路8,8’への所定の測定条件は先に説明し
たように、平滑用電解コンデンサ4の劣化以外で該平滑
用電解コンデンサ4の端子電圧、充放電電流(リプル電
流)に変動を与える要因、すなわち三相交流電源(A
C)の停電、電源断、あるいは電源の欠相などの条件で
あって、電圧比較器7、7’の出力信号である寿命検出
信号とAND回路8、8’において論理積をとることに
より、前記交流電源(AC)の停電、欠相及び電源断な
ど電源異常時において前記寿命検出信号のCPUなどの
処理装置への送出を「断」として、平滑用電解コンデン
サ4の劣化時のみ前記寿命検出信号をCPUなどの処理
装置に送出して平滑用電解コンデンサ4の寿命を正確に
表示することができるようにしたものである。
As described above, the predetermined measurement conditions for the AND circuits 8 and 8'in the life detecting device of the above (1) and (2) are, as described above, other than the deterioration of the smoothing electrolytic capacitor 4, the smoothing electrolytic capacitor. No. 4 terminal voltage, a factor that causes fluctuations in charging / discharging current (ripple current), that is, three-phase AC power supply (A
Under conditions such as C) power failure, power supply interruption, or power supply phase loss, by ANDing the life detection signal, which is the output signal of the voltage comparator 7, 7 ', with the AND circuits 8, 8', When the AC power supply (AC) has a power failure, such as a power failure, a phase failure, or a power failure, the life detection signal is sent to a processing device such as a CPU as "interruption", and the life detection is performed only when the smoothing electrolytic capacitor 4 deteriorates. The signal is sent to a processing device such as a CPU so that the life of the smoothing electrolytic capacitor 4 can be accurately displayed.

【0021】以下、所定の測定条件である交流電源(A
C)の停電、欠相及び電源「断」など電源異常状態の検
出について説明する。
Hereinafter, the AC power supply (A
The detection of an abnormal power supply state such as a power failure, a phase loss, and a power supply cutoff in C) will be described.

【0022】交流電源(AC)の停電、及び「断」につ
いては、電圧形インバータ装置1の入力側交流電源(A
C)電圧の有無によって簡単に検出することができるの
で、交流入力電源ACの「欠相」の検出について説明を
する。
Regarding the power failure and "disconnection" of the AC power supply (AC), the input side AC power supply (A
C) The "open phase" of the AC input power source AC will be described because it can be easily detected depending on the presence or absence of voltage.

【0023】図3は、欠相検出回路の一例を示すもので
あって、この欠相検出回路は電圧形インバータ装置1
(図1)の交流電源(AC)を入力とした三相全波整流
回路11、並びに抵抗RとコンデンサCとのフィルタ回
路、及び電圧比較器13,13'等からなるフィルタコンパレ
ータ部12により構成されている。
FIG. 3 shows an example of the open phase detection circuit. The open phase detection circuit is a voltage type inverter device 1.
(FIG. 1) A three-phase full-wave rectifier circuit 11 using an AC power source (AC) as an input, a filter circuit of a resistor R and a capacitor C, and a filter comparator unit 12 including voltage comparators 13 and 13 '. Has been done.

【0024】図4は、図3に示す欠相検出回路におけ
る、三相交流電源(AC)による三相全波整流回路11の
動作波形(a)、前記三相全波整流回路11の直流出力電圧、
フィルタコンデンサCの端子電圧波形、及び電圧比較器
13,13’の判定レベル(b)、電圧比較器13,13’の出力(c,
d)をそれぞれ示すものである。
FIG. 4 shows the operation waveform (a) of the three-phase full-wave rectifier circuit 11 by the three-phase AC power supply (AC) in the open-phase detection circuit shown in FIG. 3, and the DC output of the three-phase full-wave rectifier circuit 11. Voltage,
Terminal voltage waveform of filter capacitor C and voltage comparator
13, 13 'judgment level (b), output of voltage comparator 13, 13' (c,
d) is shown respectively.

【0025】なお、電圧比較器13の判定レベルは、抵抗
器R1,R2,R3による分圧により電圧比較器13’の
判定レベルより高く設定しており、また、レベル変換器
14,14’は電圧比較器13,13'の両比較器からの出力レベ
ルを略同一レベルとして、OR(論理和)回路15に入力
させるためのものである。
The judgment level of the voltage comparator 13 is set higher than the judgment level of the voltage comparator 13 'by the voltage division by the resistors R1, R2, R3, and the level converter
Reference numerals 14 and 14 'are for inputting to the OR (logical sum) circuit 15 with the output levels from both comparators of the voltage comparators 13 and 13' being substantially the same level.

【0026】欠相検出回路の動作を図3、4を用いて説
明をすると、 (1).三相交流電源(AC)が正常な場合 三相全波整流回路11の各相ダイオード(u〜z、図示な
し)の動作電圧波形は、図4(a)の点線のごとくなり、
その直流出力電圧波形は、図4(b)の点線で示すような
リプル電圧を含むものとなる。電圧比較器13には抵抗R
とコンデンサCからなるフィルタを介して、略、直流出
力電圧の最高値に充電された直流電圧Cvが供給され、
分圧抵抗R1,R2,R3で定まる判定レベルV1と比較され
るが、コンデンサCの充電電圧Cvが判定レベルV1より
高いのでその出力(図4 (c))は発生しない。また、電
圧比較器13'には三相全波整流回路11の直流出力電圧
(図4(b)点線)が供給され、前記判定レベルV1より低
電圧の判定レベルV2と比較されるが、前記直流電圧Cv
が判定レベルV2より高いのでその出力(図4 (d))は
発生しない。
The operation of the open phase detection circuit will be described with reference to FIGS. When the three-phase AC power supply (AC) is normal, the operating voltage waveform of each phase diode (u to z, not shown) of the three-phase full-wave rectifier circuit 11 is as shown by the dotted line in FIG.
The DC output voltage waveform contains a ripple voltage as shown by the dotted line in FIG. 4 (b). The voltage comparator 13 has a resistor R
The DC voltage Cv charged to the maximum value of the DC output voltage is supplied through the filter including the capacitor C and
Although it is compared with the judgment level V1 determined by the voltage dividing resistors R1, R2, R3, its output (FIG. 4 (c)) does not occur because the charging voltage Cv of the capacitor C is higher than the judgment level V1. Further, the DC output voltage (dotted line in FIG. 4 (b)) of the three-phase full-wave rectifier circuit 11 is supplied to the voltage comparator 13 'and compared with the judgment level V2 lower than the judgment level V1. DC voltage Cv
Is higher than the judgment level V2, its output (FIG. 4 (d)) does not occur.

【0027】以上のように、電圧比較器13,13'の比較出
力が発生しないときは、欠相検出回路(図3)の欠相出
力が発生せず、寿命検出回路(図1)におけるAND
8,8’には三相交流電源ACの正常時の信号が供給さ
れる。
As described above, when the comparison output of the voltage comparators 13 and 13 'does not occur, the open phase output of the open phase detection circuit (FIG. 3) does not occur, and the AND in the life detection circuit (FIG. 1) does not occur.
Signals at the time of normal operation of the three-phase AC power supply AC are supplied to 8, 8 '.

【0028】(2).三相交流電源(AC)が欠相の場
合 いま、三相交流電源(AC)のV相が欠相したとする
と、三相全波整流回路11の各相ダイオード(u〜z、図
示なし)の動作電圧波形は図4(a)実線で示すようにな
り、その直流出力電圧は図4(b) 実線に示すように大き
なリプル電圧を含むものとなる。
(2). When the three-phase AC power supply (AC) is open-phase Now, assuming that the V-phase of the three-phase AC power supply (AC) is open-phase, each phase diode of the three-phase full-wave rectifier circuit 11 (u to z, not shown) The operating voltage waveform of is as shown by the solid line in FIG. 4 (a), and its DC output voltage includes a large ripple voltage as shown by the solid line in FIG. 4 (b).

【0029】電圧比較器13には、三相全波整流回路11の
直流出力電圧(図4 (b)実線)によりコンデンサCに充
電された端子電圧Cv が供給され、該電圧比較器13にお
いて分圧抵抗R1,R2,R3によって定まる判定レベルV1
と比較される。また、電圧比較器13'には、三相全波整
流回路11の直流出力電圧(図4(b)実線)がそのまま供
給され、該電圧比較器13'において分圧抵抗R1、R2、R3
によって定まる判定レベルV2と比較される。
The voltage comparator 13 is supplied with the terminal voltage Cv charged in the capacitor C by the DC output voltage of the three-phase full-wave rectifier circuit 11 (solid line in FIG. 4 (b)). Judgment level V1 determined by piezoresistors R1, R2, R3
Compared to. Further, the DC output voltage (solid line in FIG. 4B) of the three-phase full-wave rectification circuit 11 is supplied to the voltage comparator 13 ′ as it is, and the voltage dividers R1, R2, R3 are supplied to the voltage comparator 13 ′.
Is compared with the determination level V2 determined by

【0030】電圧比較器13において、供給されるフィル
タコンデンサCの端子電圧Cv は、交流電源(AC)の
欠相による三相全波整流回路11の直流出力電圧(図4
(b))の低下に伴い時間の経過と共に徐々に低下するの
で、欠相状態が継続している或る時点tにおいて判定レ
ベルV1を下回り比較出力(図4(c))が発生する。
In the voltage comparator 13, the terminal voltage Cv of the filter capacitor C supplied is the DC output voltage of the three-phase full-wave rectification circuit 11 due to the open phase of the AC power supply (AC) (see FIG. 4).
Since it gradually decreases with the lapse of time in accordance with the decrease in (b)), the comparison output (FIG. 4 (c)) is generated below the determination level V1 at a certain time t when the open phase state continues.

【0031】一方、電圧比較器13’において、供給され
る三相全波整流回路11の出力直流電圧(図4(b)実線)
は三相交流電源(AC)の毎サイクル2回判定レベルV
2を下回るので、その都度比較出力(図4(d))が発生す
る。
On the other hand, in the voltage comparator 13 ', the output DC voltage of the supplied three-phase full-wave rectifier circuit 11 (solid line in FIG. 4 (b)).
Is a three-phase AC power supply (AC) twice every cycle
Since it is less than 2, a comparison output (Fig. 4 (d)) is generated each time.

【0032】電圧比較器13,13'の比較出力信号は、レベ
ル変換器14,14'でレベル調整をし、OR回路15を介して
三相交流電源(AC)の欠相条件信号として発生する。
The comparison output signals of the voltage comparators 13 and 13 'are level-adjusted by the level converters 14 and 14', and are generated as the open-phase condition signal of the three-phase AC power supply (AC) via the OR circuit 15. .

【0033】以上の欠相検出回路の動作によれば、該欠
相検出回路は、電圧比較器における判定レベルを2段階
(V1,V2)もたせることにより、三相交流電源(A
C)の欠相が、ある一定時間以上継続した場合と、瞬間
に発生した場合とが検出でき、この欠相検出信号を寿命
検出装置(図1)におけるAND回路8,8’の測定条
件信号として使用することにより、平滑用電解コンデン
サ4の劣化による交換時期を正確に表示することができ
る。
According to the above operation of the open-phase detecting circuit, the open-phase detecting circuit allows the three-phase AC power supply (A
It is possible to detect the case where the phase loss of C) continues for a certain period of time or more and the case where it occurs at an instant. By using it as, it is possible to accurately display the replacement time due to deterioration of the smoothing electrolytic capacitor 4.

【0034】なお、上記欠相検出回路は、欠相判定レベ
ルを2段階(V1,V2)として瞬間欠相と一定時間継続
する欠相との判別をするために高低二つの判定レベルを
各々もたせる電圧比較器2個(13,13')を用いている
が、高判定レベルをもつ電圧比較器13及びフィルタ
(R,C)を廃して低判定レベルをもつ電圧比較器13’
のみとしてその比較出力(図4(d))を積算して所定値
に至った時点(t)において欠相検出信号を発生するよう
にしてもよい。
The open-phase detection circuit sets the open-phase determination level to two levels (V1, V2) and provides two levels of determination, high and low, to determine the instantaneous open-phase and the open-phase that continues for a fixed time. Although two voltage comparators (13, 13 ') are used, the voltage comparator 13 having a high decision level and the filters (R, C) are eliminated and the voltage comparator 13' having a low decision level.
Alternatively, the comparison output (FIG. 4 (d)) may be integrated to generate the open phase detection signal at the time (t) when the predetermined value is reached.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、以下の
ような効果を奏することができる。
As described above, according to the present invention, the following effects can be obtained.

【0036】(1).平滑用電解コンデンサの寿命を、
計算による推定ではなく、リプル電圧、リプル電流とい
う定量的な測定で検出することができるので、前記平滑
用電解コンデンサの交換が無駄なく行うことができ、適
切なメンテナンスの実施及びそれが使用されている電圧
形インバータなど電力変換装置の信頼性の向上を図るこ
とができる。
(1). The life of the smoothing electrolytic capacitor
Since it can be detected by quantitative measurement of ripple voltage and ripple current instead of estimation by calculation, the smoothing electrolytic capacitor can be replaced without waste, and proper maintenance is performed and used. It is possible to improve the reliability of a power conversion device such as a voltage source inverter.

【0037】(2).電圧形インバ−タ装置の交流電源
の欠相、停電、電源「断」の状態を平滑用電解コンデン
サの寿命検出の測定条件としたので、それら交流電源の
欠相、停電、電源「断」などの電源異常時に平滑用電解
コンデンサの寿命を検出する誤動作を回避することがで
き、寿命検出装置の信頼性の向上を図ることができる。
(2). Since the measurement conditions for detecting the life of the electrolytic capacitor for smoothing are the AC power supply open phase, power failure, and power supply "off" of the voltage source inverter, those AC power supply open phase, power failure, power supply "off", etc. It is possible to avoid a malfunction that detects the life of the smoothing electrolytic capacitor when the power supply is abnormal, and improve the reliability of the life detecting device.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の平滑用電解コンデンサの寿命検出装
置の実施例
FIG. 1 is an embodiment of a life detecting device for a smoothing electrolytic capacitor according to the present invention.

【図2】 本発明の平滑用電解コンデンサの寿命検出装
置の実施例の各部電圧・電流波形図
FIG. 2 is a voltage / current waveform diagram of each part of an embodiment of a life detecting device for a smoothing electrolytic capacitor according to the present invention.

【図3】 交流電源の欠相検出回路[Figure 3] AC power supply open phase detection circuit

【図4】 交流電源の欠相時における欠相検出回路の各
部電圧波形図
FIG. 4 is a voltage waveform diagram of each part of the open phase detection circuit when the AC power supply has open phase.

【図5】 電力変換装置(電圧形インバ−タ装置)FIG. 5: Power conversion device (voltage source inverter device)

【符号の説明】[Explanation of symbols]

1 : 電圧形インバ−タ装置 2 : 順変換回路 3 : 逆変換回路 4 : 平滑用電解コンデンサ 5 : 電流検出用ホ−ル素子 6 : 電圧検出器 6’: 電流検出器 7 : 電圧比較器 7’: 電圧比較器 1: Voltage source inverter device 2: Forward conversion circuit 3: Reverse conversion circuit 4: Smoothing electrolytic capacitor 5: Current detection hall element 6: Voltage detector 6 ': Current detector 7: Voltage comparator 7 ': Voltage comparator

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 交流電源を入力し直流電圧に変換する順
変換回路の直流出力電圧を平滑する平滑用電解コンデン
サと、 前記平滑用電解コンデンサの端子間電圧であるリプル電
圧を検出する検出回路と、 前記検出回路で検出したリプル電圧と所定の寿命判定レ
ベル電圧とを比較する電圧比較器と、 前記電圧比較器の比較出力信号に基づいて前記平滑用電
解コンデンサの寿命を判断する判別回路と、 を備えることを特徴とした平滑用電解コンデンサの寿命
検出装置。
1. A smoothing electrolytic capacitor that smoothes a DC output voltage of a forward conversion circuit that inputs an AC power source and converts it into a DC voltage, and a detection circuit that detects a ripple voltage that is a voltage between terminals of the smoothing electrolytic capacitor. A voltage comparator that compares the ripple voltage detected by the detection circuit with a predetermined life judgment level voltage; and a judgment circuit that judges the life of the smoothing electrolytic capacitor based on a comparison output signal of the voltage comparator, An apparatus for detecting the life of a smoothing electrolytic capacitor, characterized by comprising:
【請求項2】 前記判別回路が、前記交流電源の異常状
態を検出した異常条件信号と前記比較出力信号との論理
積をとる論理積回路からなることを特徴とした請求項1
記載の平滑用電解コンデンサの寿命検出装置。
2. The discriminating circuit comprises a logical product circuit that obtains a logical product of an abnormal condition signal for detecting an abnormal state of the AC power supply and the comparative output signal.
An apparatus for detecting the life of a smoothing electrolytic capacitor as described above.
【請求項3】 交流電源を入力し直流電圧に変換する順
変換回路の直流出力電圧を平滑する平滑用電解コンデン
サと、 前記平滑用電解コンデンサの充放電電流であるリプル電
流を検出する検出回路と、 前記検出回路で検出したリプル電流と所定の寿命判定レ
ベル電流とを比較する電圧比較器と、 前記電圧比較器の比較出力信号に基づいて前記平滑用電
解コンデンサの寿命を判断する判別回路と、 を備えることを特徴とした平滑用電解コンデンサの寿命
検出装置。
3. A smoothing electrolytic capacitor that smoothes a DC output voltage of a forward conversion circuit that inputs an AC power source and converts it into a DC voltage, and a detection circuit that detects a ripple current that is a charging / discharging current of the smoothing electrolytic capacitor. A voltage comparator that compares the ripple current detected by the detection circuit with a predetermined life judgment level current; and a judgment circuit that judges the life of the smoothing electrolytic capacitor based on a comparison output signal of the voltage comparator, An apparatus for detecting the life of a smoothing electrolytic capacitor, characterized by comprising:
【請求項4】 前記判別回路が、前記交流電源の異常状
態を検出した異常条件信号と前記比較出力との論理積を
とる論理積回路からなることを特徴とした請求項3記載
の平滑用電解コンデンサの寿命検出装置。
4. The smoothing electrolysis according to claim 3, wherein the discrimination circuit comprises a logical product circuit that obtains a logical product of an abnormal condition signal that detects an abnormal state of the AC power supply and the comparison output. Capacitor life detection device.
JP6006738A 1994-01-26 1994-01-26 Life detection apparatus of smoothing electrolytic capacitor Pending JPH07222436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6006738A JPH07222436A (en) 1994-01-26 1994-01-26 Life detection apparatus of smoothing electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6006738A JPH07222436A (en) 1994-01-26 1994-01-26 Life detection apparatus of smoothing electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH07222436A true JPH07222436A (en) 1995-08-18

Family

ID=11646563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6006738A Pending JPH07222436A (en) 1994-01-26 1994-01-26 Life detection apparatus of smoothing electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH07222436A (en)

Cited By (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104298A (en) * 1996-09-25 1998-04-24 Sansha Electric Mfg Co Ltd Evaluating device of ripple current carried to capacitor
FR2768228A1 (en) * 1997-09-08 1999-03-12 Univ Claude Bernard Lyon METHOD AND DEVICE FOR DETERMINING THE AGING CONDITION OF A CAPACITOR
US6678174B2 (en) 2000-11-27 2004-01-13 Canon Kabushiki Kaisha Power converting apparatus, control method therefor, and power generation system
JP2006236666A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Lighting device, luminaire, and lighting system
JP2008091295A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Induction heating type rice cooker
US7557523B2 (en) 2004-10-26 2009-07-07 Panasonic Electric Works Co., Ltd. Discharge lamp lighting device, and lighting equipment and lighting system using the device
CN102445615A (en) * 2007-09-14 2012-05-09 雅达电子国际有限公司 Health monitoring for power converter capacitors
EP2637030A1 (en) * 2012-03-05 2013-09-11 ebm-papst Mulfingen GmbH & Co. KG Method for life-cycle monitoring of an electrolyte condenser and device with a monitored electrolyte condenser
US9379577B2 (en) 2012-08-30 2016-06-28 Honeywell International Inc. Capacitive power system having a service life extending approach
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
JP2017098168A (en) * 2015-11-27 2017-06-01 岩崎電気株式会社 LED lighting device and LED lighting device
JP6216833B1 (en) * 2016-06-01 2017-10-18 株式会社川本製作所 Water supply unit and method for controlling water supply unit
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
JP6352467B1 (en) * 2017-03-16 2018-07-04 東芝エレベータ株式会社 Elevator control device
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
JP2019138657A (en) * 2018-02-06 2019-08-22 ファナック株式会社 Motor driver including shorting determination unit of dc link unit capacitor
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
CN113447737A (en) * 2021-06-12 2021-09-28 四川虹美智能科技有限公司 Electrolytic capacitor monitoring method in air conditioner variable frequency controller
KR20210123208A (en) * 2020-04-02 2021-10-13 니혼 덴산 산쿄 가부시키가이샤 Relay device
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104298A (en) * 1996-09-25 1998-04-24 Sansha Electric Mfg Co Ltd Evaluating device of ripple current carried to capacitor
FR2768228A1 (en) * 1997-09-08 1999-03-12 Univ Claude Bernard Lyon METHOD AND DEVICE FOR DETERMINING THE AGING CONDITION OF A CAPACITOR
WO1999013348A1 (en) * 1997-09-08 1999-03-18 Universite Claude Bernard Lyon I Method and device for determining a capacitor ageing condition
US6678174B2 (en) 2000-11-27 2004-01-13 Canon Kabushiki Kaisha Power converting apparatus, control method therefor, and power generation system
US7557523B2 (en) 2004-10-26 2009-07-07 Panasonic Electric Works Co., Ltd. Discharge lamp lighting device, and lighting equipment and lighting system using the device
JP2006236666A (en) * 2005-02-23 2006-09-07 Matsushita Electric Works Ltd Lighting device, luminaire, and lighting system
JP4736464B2 (en) * 2005-02-23 2011-07-27 パナソニック電工株式会社 Lighting device, lighting apparatus, and lighting system
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2008091295A (en) * 2006-10-05 2008-04-17 Matsushita Electric Ind Co Ltd Induction heating type rice cooker
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
CN102445615A (en) * 2007-09-14 2012-05-09 雅达电子国际有限公司 Health monitoring for power converter capacitors
US9438037B2 (en) 2007-10-15 2016-09-06 Ampt, Llc Systems for optimized solar power inversion
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9442504B2 (en) 2009-04-17 2016-09-13 Ampt, Llc Methods and apparatus for adaptive operation of solar power systems
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10032939B2 (en) 2009-10-19 2018-07-24 Ampt, Llc DC power conversion circuit
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
EP2637030A1 (en) * 2012-03-05 2013-09-11 ebm-papst Mulfingen GmbH & Co. KG Method for life-cycle monitoring of an electrolyte condenser and device with a monitored electrolyte condenser
US9379577B2 (en) 2012-08-30 2016-06-28 Honeywell International Inc. Capacitive power system having a service life extending approach
US10186898B2 (en) 2012-08-30 2019-01-22 Honeywell International Inc. Capacitive power system having a service life extending approach
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
JP2017098168A (en) * 2015-11-27 2017-06-01 岩崎電気株式会社 LED lighting device and LED lighting device
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
JP2017216839A (en) * 2016-06-01 2017-12-07 株式会社川本製作所 Water supply unit, and control method for water supply unit
JP6216833B1 (en) * 2016-06-01 2017-10-18 株式会社川本製作所 Water supply unit and method for controlling water supply unit
JP2018154429A (en) * 2017-03-16 2018-10-04 東芝エレベータ株式会社 Elevator control device
JP6352467B1 (en) * 2017-03-16 2018-07-04 東芝エレベータ株式会社 Elevator control device
US10554165B2 (en) 2018-02-06 2020-02-04 Fanuc Corporation Motor drive apparatus including short-circuit judgment unit for capacitor of DC link unit
JP2019138657A (en) * 2018-02-06 2019-08-22 ファナック株式会社 Motor driver including shorting determination unit of dc link unit capacitor
KR20210123208A (en) * 2020-04-02 2021-10-13 니혼 덴산 산쿄 가부시키가이샤 Relay device
CN113447737A (en) * 2021-06-12 2021-09-28 四川虹美智能科技有限公司 Electrolytic capacitor monitoring method in air conditioner variable frequency controller
CN113447737B (en) * 2021-06-12 2022-09-13 四川虹美智能科技有限公司 Electrolytic capacitor monitoring method in air conditioner variable frequency controller

Similar Documents

Publication Publication Date Title
JPH07222436A (en) Life detection apparatus of smoothing electrolytic capacitor
EP2660962B1 (en) Filter capacitor degradation detection apparatus, method and computer program
EP2605394B1 (en) Power-supply control apparatus and heat pump apparatus having the power-supply control apparatus
US20200044457A1 (en) Converter, inverter, ac motor driving apparatus, and air conditioner using the same
JP3409327B2 (en) Inverter device
JP7147325B2 (en) power converter
US10910832B2 (en) Converter apparatus having function of detecting short circuit failure, and method for detecting short circuit failure of converter apparatus
JPH0880055A (en) Inverter device
US6618275B2 (en) Portable generator
JPH02231922A (en) Inrush current prevention system for motor driver upon recovery from instantaneous power interruption
US11644506B2 (en) Power switch fault detection method and power switch fault detection circuit
JPH04156222A (en) Inverter device
JPH08256439A (en) Power converter
JP2006340532A (en) Inrush current prevention circuit and power conversion device
JPS63238566A (en) Method for detecting alternating current input voltage
JPH11160377A (en) Deterioration detection system of capacitor for power converter
JP2009092505A (en) Capacitor failure detecting circuit and power supply
JPH02266820A (en) Lifetime judging circuit in smoothing capacitor for power converter
KR100675648B1 (en) Method for discriminating input open-phase of inverter in 3-phase ac motor
JP2001268933A (en) Overvoltage inhibition circuit of capacitor
JP2004023878A (en) Converter with power supply phase interruption detection circuit
JP2022183808A (en) Power conversion device, electric apparatus, and method for detecting unbalanced state in three-phase ac power source
JPH03207274A (en) Detector for abnormality of inverter device
JPH07184316A (en) Open phase detecting circuit
JP2010081665A (en) Converter device