JP2002262461A - Solar power generating device - Google Patents

Solar power generating device

Info

Publication number
JP2002262461A
JP2002262461A JP2001058936A JP2001058936A JP2002262461A JP 2002262461 A JP2002262461 A JP 2002262461A JP 2001058936 A JP2001058936 A JP 2001058936A JP 2001058936 A JP2001058936 A JP 2001058936A JP 2002262461 A JP2002262461 A JP 2002262461A
Authority
JP
Japan
Prior art keywords
solar cell
output
output control
divided
cell panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001058936A
Other languages
Japanese (ja)
Inventor
Koji Toyama
浩司 外山
Shinichi Kobayashi
真一 小林
Hiroyuki Otake
宏之 大嶽
Chuzo Ninagawa
忠三 蜷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001058936A priority Critical patent/JP2002262461A/en
Publication of JP2002262461A publication Critical patent/JP2002262461A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]

Abstract

PROBLEM TO BE SOLVED: To provide a solar power generating device which derives a maximum power as a system by individually chopper-controlling each solar cell panel which is divided into a plurality of pieces. SOLUTION: The solar power generating device has the solar cell panel divided into a plurality of blocks, output control devices which are respectively disposed on every divided solar cell panel and makes respectively the maximum output control, and diodes each of which is serially connected to the output line of each control device and prevents crosscurrent among the respective outputs, and a bus voltage is gained by parallel-connecting the diodes on the output side of the respective diodes. The solar power generating device has the solar cell panel divided into the plurality of blocks, the output control devices which are respectively disposed on every divided solar cell panel and makes respectively the maximum output control, and bypass diodes each of which is parallel-connected to the output line of each control device, and the sum of the voltages of each output control device is obtained by serially connecting the output line of the output control devices.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、複数のブロック
に分割した太陽電池パネルを使った太陽光発電装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic power generator using a solar cell panel divided into a plurality of blocks.

【0002】[0002]

【従来の技術】太陽電池による太陽光発電は、他の自然
エネルギーと異なり、建築物の屋根や壁面に容易に設置
することができ、騒音その他の公害の心配もないため、
魅力的な発電システムとして期待されるようになってき
ている。近年、逆潮流運転を行うことが可能となり、一
般家庭で太陽光発電を行うときは系統連系用インバータ
を使って商用交流電源と系統連系を行うのが一般的にな
っている。
2. Description of the Related Art Unlike other natural energies, solar power generation using solar cells can be easily installed on the roof or wall of a building, and there is no need to worry about noise or other pollution.
It is expected to be an attractive power generation system. In recent years, it has become possible to perform reverse power flow operation, and when performing photovoltaic power generation in ordinary households, it is common to use a grid connection inverter to connect to a commercial AC power supply.

【0003】太陽電池の発電電圧対発電電力の特性の例
は、図4に示すように横軸を発電電圧、縦軸を発電電力
とし、太陽光強度をパラメータとすると図のような曲線
となり、太陽光の強さによって最大電力Pmaxが変化
する。そこで、発電効率を高める方法として常に最大電
力Pmaxを取り出すように制御する最大電力点追従制
御法(Maximum Power Point Tr
acking、以下、MPPT制御法)があり、通常こ
の方法が採用される。
[0003] An example of the characteristic of the generated voltage versus the generated power of a solar cell is a curve as shown in FIG. 4 when the horizontal axis is the generated voltage, the vertical axis is the generated power, and the sunlight intensity is a parameter, as shown in FIG. The maximum power Pmax changes depending on the intensity of sunlight. Therefore, as a method for increasing the power generation efficiency, a maximum power point tracking control method (Maximum Power Point Tr Tr) in which the maximum power Pmax is always controlled to be extracted
acting (hereinafter, MPPT control method), and this method is usually employed.

【0004】太陽光発電装置により所定の電力を取り出
すための実際のシステムは、図5に示すような構成が採
られる。すなわち、複数枚の太陽電池パネル11、1
2、…1nを並列に接続し、昇圧チョッパ80、インバ
ータ5、フィルタ6からなる逆変換装置2を介して商用
交流電源7に接続して系統連系を行う。
[0004] An actual system for extracting predetermined electric power by a photovoltaic power generator has a configuration as shown in FIG. That is, a plurality of solar cell panels 11, 1
.. 1n are connected in parallel, and connected to the commercial AC power supply 7 via the inverting device 2 composed of the step-up chopper 80, the inverter 5, and the filter 6 to perform system interconnection.

【0005】[0005]

【発明が解決しようとする課題】ところが上述の方法で
は複数枚の太陽電池パネル11、12、…、1nは建造
物の屋根や壁面に設置されるので、隣接する建物の陰に
なるものがあったり、パネルが太陽と対向する角度が異
なったりして、パネルが受ける太陽光強度が同一になら
ないことが多い。各パネルの受ける太陽高強度が異なる
と、図4に示したように開放発電電圧も若干差が出る
が、最大発電電力Pmaxが大きく異なることになり、
最大発電電力Pmaxを与える発電電圧も異なってく
る。
However, in the above-mentioned method, since a plurality of solar cell panels 11, 12,..., 1n are installed on the roof or wall of a building, there is a case where the solar cell panels 11, 12,. Or, the angle at which the panel faces the sun is different, so that the sunlight intensity received by the panel often does not become the same. If the solar high intensity received by each panel is different, the open power generation voltage slightly differs as shown in FIG. 4, but the maximum generated power Pmax is greatly different,
The generated voltage that gives the maximum generated power Pmax also differs.

【0006】例えば、1.0kW/m2 の太陽光強度
を受ける太陽電池パネルは、点aにおいて最大電力Pa
を与え、このときの発電電圧はVaとなる。また、0.
4kW/m2 の太陽光強度を受ける太陽電池パネルは
点bにおいて最大電力Pbを与え、このときの発電電圧
はVbとなる。従って、1台の昇圧チョッパにより運転
する場合、受ける太陽光強度が異なる太陽電池パネルを
並列に接続すると、最大電力が大きく内部インピーダン
スの小さなパネルの発電電圧に近い電圧となり、最大電
力の小さなパネルからは最大電力よりも小さな電力しか
取り出すことができず、システム全体の発電電力が低下
してしまうという課題があった。
[0006] For example, a solar cell panel receiving a solar light intensity of 1.0 kW / m2 has a maximum power Pa at a point a.
And the generated voltage at this time is Va. Also, 0.
The solar panel receiving the sunlight intensity of 4 kW / m2 gives the maximum power Pb at the point b, and the generated voltage at this time is Vb. Therefore, when operating with one boost chopper, if solar cell panels receiving different sunlight intensities are connected in parallel, the maximum power will be a voltage close to the generated voltage of a panel with a large internal impedance and a small maximum power. Has a problem that only smaller power than the maximum power can be extracted, and the power generated by the entire system is reduced.

【0007】本発明はこのような背景の下になされたも
ので、複数枚に分割された太陽電池パネルのそれぞれに
ついて個別にチョッパ制御することによってシステムと
して最大電力を取り出すことができる太陽光発電装置を
提供することを目的とする。
The present invention has been made under such a background, and a solar power generation apparatus capable of extracting maximum power as a system by individually controlling a chopper for each of a plurality of divided solar cell panels. The purpose is to provide.

【0008】[0008]

【課題を解決するための手段】請求項1に記載の発明
は、複数ブロックに分割した太陽電池パネルと、該分割
した太陽電池パネル毎に設けられ、それぞれ最大出力制
御を行う出力制御装置と、該制御装置の出力ラインに直
列に接続され、それぞれの出力間の横流を防止するダイ
オードとを具備し、前記ダイオードの出力側で並列接続
してバス電圧を得ることを特徴とする太陽光発電装置を
提供する。
According to the first aspect of the present invention, there is provided a solar cell panel divided into a plurality of blocks, an output control device provided for each of the divided solar cell panels, and each of which controls a maximum output. A diode that is connected in series to an output line of the control device and that prevents a cross current between respective outputs, and that is connected in parallel on the output side of the diode to obtain a bus voltage. I will provide a.

【0009】この発明によれば、太陽電池パネルを複数
ブロックに分割し、個別に最大出力制御を行った後、横
流防止ダイオードを介して共通バス電圧とすることによ
り、太陽電池ブロック間の日射強度が異なった場合でも
システムとして最大出力を得ることができる。
According to the present invention, the solar cell panel is divided into a plurality of blocks, the maximum output is individually controlled, and the common bus voltage is applied to the solar cell panel via the cross current prevention diode. The maximum output can be obtained as a system even if the values are different.

【0010】請求項2に記載の発明は、複数ブロックに
分割した太陽電池パネルと、該分割した太陽電池パネル
毎に設けられ、それぞれ最大出力制御を行う出力制御装
置と、該出力制御装置の出力ラインに並列に接続するバ
イパスダイオードとを具備し、前記出力制御装置の出力
ラインを直列接続して前記各出力制御装置の和の電圧を
得ることを特徴とする太陽光発電装置を提供する。
According to a second aspect of the present invention, there is provided a solar cell panel divided into a plurality of blocks, an output control device provided for each of the divided solar cell panels, for performing maximum output control, and an output of the output control device. And a bypass diode connected in parallel to a line, wherein an output line of the output control device is connected in series to obtain a sum voltage of the output control devices.

【0011】この発明によれば、分割した太陽電池パネ
ルの出力を個別に制御してそれぞれ最大出力を取り出す
とともに、それぞれの出力の和の電圧を得ることができ
るので、商用電源と系統連系を行う場合であっても必ず
しも昇圧チョッパを使用する必要がなくなる。
According to the present invention, it is possible to individually control the outputs of the divided solar cell panels to extract the maximum output and obtain the sum of the respective outputs. Even when performing this, it is not always necessary to use a boosting chopper.

【0012】請求項3に記載の発明は、請求項1または
2記載の太陽光発電装置において、前記太陽電池パネル
は、バイパスダイオードを持たないアモルファスシリコ
ン太陽電池であることを特徴とする。
According to a third aspect of the present invention, in the solar power generation device according to the first or second aspect, the solar cell panel is an amorphous silicon solar cell having no bypass diode.

【0013】この発明によれば、バイパスダイオードを
持たないアモルファスシリコン太陽電池では日射強度の
影響が強くでるが、その場合でもシステムとして最大出
力を得ることができる。
According to the present invention, in an amorphous silicon solar cell having no bypass diode, the influence of solar radiation intensity is strong, but even in such a case, a maximum output can be obtained as a system.

【0014】請求項4に記載の発明は、請求項1または
3記載の太陽光発電装置において、前記出力制御装置
は、昇圧型チョッパによって共通の前記バス電圧を得る
制御を行うことを特徴とする。
According to a fourth aspect of the present invention, in the photovoltaic power generator according to the first or third aspect, the output control device performs control to obtain the common bus voltage by a step-up chopper. .

【0015】この発明によれば、昇圧型チョッパを使っ
て共通のバス電圧になるように直流電圧を制御すること
によってそれぞれの太陽電池パネルの出力を有効に取り
出すことができ、システムとして最大出力を得ることが
できる。
According to the present invention, the output of each solar cell panel can be effectively taken out by controlling the DC voltage so that the common bus voltage is obtained by using the step-up chopper. Obtainable.

【0016】[0016]

【発明の実施の形態】以下、この発明の一実施形態につ
いて図を参照しながら説明する。図1はこの発明の一実
施形態による太陽光発電装置の構成を示すブロック図で
ある。この図において、符号11、12、…、1nは複
数枚に分割された太陽電池パネルであり、その出力はそ
れぞれ昇圧チョッパ21、22、…、2nに接続されて
いる。昇圧チョッパ21、22、…、2nの出力はダイ
オード31、32、…、3nを介して共通に接続され、
インバータ5の入力としている。このインバータ5の出
力はフィルタ6を介して商用交流電源7と接続して系統
連系運転を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a solar power generation device according to one embodiment of the present invention. In this figure, reference numerals 11, 12,..., 1n denote solar cell panels divided into a plurality of sheets, and outputs thereof are connected to boosting choppers 21, 22,. The outputs of the boost choppers 21, 22,..., 2n are commonly connected via diodes 31, 32,.
This is the input of the inverter 5. The output of the inverter 5 is connected to a commercial AC power supply 7 via a filter 6 to perform a system interconnection operation.

【0017】図2は、図1の昇圧チョッパ21、22、
…、2n部分を具体回路化した接続図である。この図に
おいて、昇圧チョッパ21は、太陽電池パネルの電流を
検出する直流電流検出器211、コンデンサ212、リ
アクトル213、スイッチング動作をするIGBT21
4および制御装置215から構成されている。昇圧チョ
ッパ22、…、2nについても同一の構成なので、これ
らの各構成要素には符号を付していない。
FIG. 2 shows the boost choppers 21 and 22 of FIG.
... is a connection diagram in which a 2n portion is formed into a specific circuit. In this figure, a boost chopper 21 includes a DC current detector 211 for detecting a current of a solar cell panel, a capacitor 212, a reactor 213, and an IGBT 21 for performing a switching operation.
4 and a control device 215. Since the boost choppers 22,..., 2n have the same configuration, these components are not denoted by reference numerals.

【0018】次に図1、図2および前出の図4を参照し
てこの発明の一実施形態による太陽光発電装置の動作に
ついて説明する。複数に分割された太陽電池パネル1
1、12、…、1nは建造物の屋根や壁面に設置される
ので、隣接する建物の陰になるものがあったり、太陽電
池パネルが太陽と対向する角度が異なったりして、太陽
電池パネルが受ける太陽光強度が同一にならないことが
多い。各太陽電池パネルの受ける太陽高強度が異なる
と、図4に示したように開放発電電圧も若干差が出る
が、最大発電電力Pmaxが大きく異なることになり、
最大発電電力Pmaxを与える発電電圧も異なってく
る。
Next, the operation of the photovoltaic power generator according to one embodiment of the present invention will be described with reference to FIGS. 1, 2 and FIG. Solar cell panel 1 divided into a plurality
Because 1, 12, ..., 1n are installed on the roof or wall of a building, there are objects that shade the neighboring buildings, or the solar panels face different angles at which the solar panels face the sun. In many cases, the sunlight intensity received by the lights does not become the same. When the solar high intensity received by each solar cell panel is different, the open power generation voltage is slightly different as shown in FIG. 4, but the maximum generated power Pmax is greatly different,
The generated voltage that gives the maximum generated power Pmax also differs.

【0019】例えば、1.0kW/m2 の太陽光強度
を受ける太陽電池パネルは、点aにおいて最大電力Pa
を与え、このときの発電電圧はVaとなる。また、0.
4kW/m2 の太陽光強度を受ける太陽電池パネルは
点bにおいて最大電力Pbを与え、このときの発電電圧
はVbとなる。従って、受ける太陽光強度が異なる太陽
電池パネルを並列に接続し、1つの逆変換装置によって
交流電力に変換して系統連系を行う従来の方式では、太
陽電池パネルの発電電圧は最大電力が大きく内部インピ
ーダンスの小さなパネルの発電電圧Vaに近い電圧とな
り、最大電力の小さなパネルからは最大電力よりも小さ
な電力しか取り出すことができない。
For example, a solar cell panel receiving a sunlight intensity of 1.0 kW / m 2 has a maximum power Pa at a point a.
And the generated voltage at this time is Va. Also, 0.
The solar panel receiving the sunlight intensity of 4 kW / m2 gives the maximum power Pb at the point b, and the generated voltage at this time is Vb. Therefore, in the conventional method in which solar panels receiving different sunlight intensities are connected in parallel, and converted into AC power by one inverter to perform system interconnection, the maximum power generated by the solar panel is large. The voltage becomes close to the generated voltage Va of the panel having a small internal impedance, and only a power smaller than the maximum power can be taken out from the panel having a small maximum power.

【0020】そこで、図1または図2に示すように複数
に分割された太陽電池パネル11、12、…、1nに対
してそれぞれ昇圧チョッパ21、22、…、2nを配設
し、昇圧チョッパによる制御を個別に行うようにする。
昇圧チョッパ21は、直流電流検出器211による太陽
電池パネル11の電流とコンデンサ212の電圧とをチ
ョッパ制御装置215で検出し、IGBT214をスイ
ッチング制御することによって直流出力電圧を制御す
る。
Therefore, as shown in FIG. 1 or FIG. 2, step-up choppers 21, 22,..., 2n are provided for the plurality of divided solar cell panels 11, 12,. Control is performed individually.
The step-up chopper 21 controls the DC output voltage by detecting the current of the solar cell panel 11 and the voltage of the capacitor 212 by the DC current detector 211 with the chopper control device 215 and controlling the switching of the IGBT 214.

【0021】チョッパ制御装置215の制御によってI
GBT214がONしている期間は、リアクトル213
を通してIGBT214に電流が流れ、リアクトル21
3にエネルギーが蓄積される。次に、IGBT214が
OFFすると、リアクトル213に逆起電力が発生し、
この逆起電力による電圧とコンデンサ212の電圧の和
が出力電圧となり、直前にリアクトル213に流れてい
た電流が出力される。したがって、チョッパ制御装置2
15の制御によってIGBT214のONデューティを
変えることにより、直流出力電圧を後続されるインバー
タ5およびフィルタ6の出力が商用電源7との系統連系
に適する電圧に制御しながら、太陽電池パネル11の出
力を最大にすることができる。
Under the control of the chopper controller 215, I
While the GBT 214 is ON, the reactor 213
Current flows through the IGBT 214 through the
Energy is stored in 3. Next, when the IGBT 214 is turned off, a back electromotive force is generated in the reactor 213,
The sum of the voltage due to the back electromotive force and the voltage of the capacitor 212 becomes the output voltage, and the current that has just passed through the reactor 213 is output. Therefore, the chopper control device 2
By changing the ON duty of the IGBT 214 by the control of No. 15, the output of the solar cell panel 11 is controlled while the output of the inverter 5 and the filter 6 is controlled to a voltage suitable for the system interconnection with the commercial power source 7 by controlling the DC output voltage. Can be maximized.

【0022】太陽電池パネル12、…、1nについても
太陽電池パネル11と同様の制御を行うことによってそ
れぞれの太陽電池パネルの動作点を最大出力点に置くこ
とができ、各太陽電池の持つ発電応力を最大にすること
ができる。
By controlling the solar cell panels 12,..., 1n in the same manner as the solar cell panel 11, the operating point of each solar cell panel can be set at the maximum output point, and the power generation stress of each solar cell Can be maximized.

【0023】次に、この発明の他の実施形態について説
明する。図3は、この発明の他の実施形態による太陽光
発電装置の構成を示すブロック図である。この図におい
て、太陽電池パネル11はチョッパ81に接続され、太
陽電池パネル12はチョッパ82に接続されている。ま
た、チョッパ81および82の出力は直列に接続され、
各々の出力電圧の和の電圧がインバータ5に入力され
る。
Next, another embodiment of the present invention will be described. FIG. 3 is a block diagram showing a configuration of a solar power generation device according to another embodiment of the present invention. In this figure, the solar cell panel 11 is connected to a chopper 81, and the solar cell panel 12 is connected to a chopper 82. The outputs of the choppers 81 and 82 are connected in series,
The sum of the output voltages is input to the inverter 5.

【0024】ここで、チョッパ81および82は、それ
ぞれ太陽電池パネル11および12の最大にし、かつ、
チョッパ81および82の出力の和の電圧が系統連系に
適する電圧になるように制御される。この場合、チョッ
パは昇圧チョッパではなく、降圧チョッパであってもよ
く、系統連系に適する電圧になるものであればよい。特
にバイパスダイオードを設けていないアモルファス太陽
電池を使った複数枚の太陽電池パネルを直列に接続する
方法では、この実施形態のよって各太陽電池パネルの発
電応力を最大に引き出すことができる。
Here, the choppers 81 and 82 maximize the solar cell panels 11 and 12, respectively, and
Control is performed so that the sum of the outputs of the choppers 81 and 82 becomes a voltage suitable for system interconnection. In this case, the chopper may be a step-down chopper instead of a step-up chopper, and may be any as long as it has a voltage suitable for system interconnection. In particular, in a method of connecting a plurality of solar cell panels using an amorphous solar cell without a bypass diode in series, the power generation stress of each solar cell panel can be maximized according to this embodiment.

【0025】以上、本発明の一実施形態の動作を図面を
参照して詳述してきたが、本発明はこの実施形態に限ら
れるものではなく、本発明の要旨を逸脱しない範囲の設
計変更等があっても本発明に含まれる。例えば、チョッ
パに使用されるスイッチ素子はIGBTに限られるもの
ではなく、その他の素子であってもよい。また、他の実
施形態の太陽電池パネルの数は2つに限られるものでは
なく、3つ以上であってもよい。
The operation of one embodiment of the present invention has been described in detail with reference to the drawings. However, the present invention is not limited to this embodiment, and a design change or the like within a range not departing from the gist of the present invention. The present invention is also included in the present invention. For example, the switch element used in the chopper is not limited to the IGBT, but may be another element. Further, the number of solar cell panels in other embodiments is not limited to two, but may be three or more.

【0026】[0026]

【発明の効果】これまでに説明したように、請求項1の
発明によれば、複数に分割した太陽電池パネル毎にチョ
ッパを配設し、それぞれ個別に制御して最大出力を得る
ようにし、横流防止ダイオードを介して並列接続してバ
ス電圧とするようにしたので、太陽電池ブロック間の日
射強度が異なった場合でもシステムとして最大出力を得
ることができ、系統連系を安定に行うことができるとい
う効果が得られる。また、太陽電池毎に配設したチョッ
パを個別に制御することによって各チョッパ間の干渉を
防ぎ、安定した動作を行うことができるという効果が得
られる。
As described above, according to the first aspect of the present invention, a chopper is provided for each of a plurality of divided solar cell panels, and the choppers are individually controlled to obtain a maximum output. Since the bus voltage is established by connecting in parallel via a cross current prevention diode, the maximum output can be obtained as a system even when the solar radiation intensity between the solar cell blocks is different, and the system interconnection can be performed stably. The effect that can be obtained is obtained. In addition, by controlling the choppers provided for each solar cell individually, interference between the choppers can be prevented, and an effect that a stable operation can be performed can be obtained.

【0027】また、請求項2の発明によれば複数に分割
した太陽電池パネル毎にチョッパを配設し、それぞれ個
別に制御して最大出力を得るようにし、それぞれの出力
を直列接続してバス電圧とするようにしたので、商用電
源と系統連系を行う場合に必ずしも昇圧チョッパを使用
する必要がなくなるという効果が得られる。
According to the second aspect of the present invention, a chopper is provided for each of a plurality of divided solar cell panels, and the choppers are individually controlled to obtain a maximum output. Since the voltage is set, it is possible to obtain an effect that it is not always necessary to use the step-up chopper when the system is connected to the commercial power supply.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施形態による太陽光発電装置の
構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a solar power generation device according to an embodiment of the present invention.

【図2】 図1の昇圧チョッパ部分を具体回路化した接
続図。
FIG. 2 is a connection diagram in which a boost chopper portion of FIG. 1 is formed into a specific circuit;

【図3】 本発明の他の実施形態による太陽光発電装置
の構成を示すブロック図。
FIG. 3 is a block diagram showing a configuration of a solar power generation device according to another embodiment of the present invention.

【図4】 太陽電池パネルの出力特性を示す特性図。FIG. 4 is a characteristic diagram showing output characteristics of the solar cell panel.

【図5】 従来の技術による太陽光発電装置の構成を示
すブロック図。
FIG. 5 is a block diagram showing a configuration of a solar power generation device according to a conventional technique.

【符号の説明】[Explanation of symbols]

11、12、…、1n…太陽電池パネル 21、22、…、2n…昇圧チョッパ 211…直流電流検出器 212…コンデンサ 213…リアクトル 214…IGBT 215…チョッパ制御装置 2…逆変換装置 31、32、…、3n…ダイオード 4…コンデンサ 5…インバータ 6…フィルタ 7…商用交流電源 81、82…チョッパ 91、92…コンデンサ 11, 12,... 1n solar cell panels 21, 22,... 2n step-up chopper 211. ... 3n ... diode 4 ... capacitor 5 ... inverter 6 ... filter 7 ... commercial AC power supply 81, 82 ... chopper 91, 92 ... capacitor

フロントページの続き (72)発明者 大嶽 宏之 愛知県西春日井郡西枇杷島町旭町3丁目1 番地 三菱重工業株式会社冷熱事業本部内 (72)発明者 蜷川 忠三 愛知県西春日井郡西枇杷島町旭町3丁目1 番地 三菱重工業株式会社冷熱事業本部内 Fターム(参考) 5G066 CA08 DA08 HB06 JB04 5H420 BB03 BB12 BB14 CC03 CC09 DD09 DD10 EA10 EA20 EA40 EA48 EB04 FF03 FF04 FF22Continued on the front page (72) Inventor Hiroyuki Otake 3-1-1 Asahimachi, Nishibiwajima-cho, Nishi-Kasugai-gun, Aichi Prefecture Inside the Cooling Business Division of Mitsubishi Heavy Industries, Ltd. 1 F-term (Ref.) 5M066 CA08 DA08 HB06 JB04 5H420 BB03 BB12 BB14 CC03 CC09 DD09 DD10 EA10 EA20 EA40 EA48 EB04 FF03 FF04 FF22

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 複数ブロックに分割した太陽電池パネル
と、 該分割した太陽電池パネル毎に設けられ、それぞれ最大
出力制御を行う出力制御装置と、 該制御装置の出力ラインに直列に接続され、それぞれの
出力間の横流を防止するダイオードとを具備し、前記ダ
イオードの出力側で並列接続してバス電圧を得ることを
特徴とする太陽光発電装置。
1. A solar cell panel divided into a plurality of blocks, an output control device provided for each of the divided solar cell panels and performing maximum output control, and connected in series to an output line of the control device. And a diode for preventing a cross current between the outputs of the photovoltaic devices, and a bus voltage is obtained by connecting in parallel at the output side of the diode.
【請求項2】 複数ブロックに分割した太陽電池パネル
と、 該分割した太陽電池パネル毎に設けられ、それぞれ最大
出力制御を行う出力制御装置と、 該出力制御装置の出力ラインに並列に接続するバイパス
ダイオードとを具備し、前記出力制御装置の出力ライン
を直列接続して前記各出力制御装置の和の電圧を得るこ
とを特徴とする太陽光発電装置。
2. A solar cell panel divided into a plurality of blocks, an output control device provided for each of the divided solar cell panels and performing a maximum output control, and a bypass connected in parallel to an output line of the output control device. A photovoltaic power generator comprising: a diode; and connecting the output lines of the output control devices in series to obtain a sum voltage of the output control devices.
【請求項3】 前記太陽電池パネルは、 バイパスダイオードを持たないアモルファスシリコン太
陽電池であることを特徴とする請求項1または2記載の
太陽光発電装置。
3. The photovoltaic power generator according to claim 1, wherein the solar cell panel is an amorphous silicon solar cell having no bypass diode.
【請求項4】 前記出力制御装置は、 昇圧型チョッパによって共通の前記バス電圧を得る制御
を行うことを特徴とする請求項1または3記載の太陽光
発電装置。
4. The photovoltaic power generation device according to claim 1, wherein the output control device performs control for obtaining the common bus voltage by a step-up chopper.
JP2001058936A 2001-03-02 2001-03-02 Solar power generating device Withdrawn JP2002262461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001058936A JP2002262461A (en) 2001-03-02 2001-03-02 Solar power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001058936A JP2002262461A (en) 2001-03-02 2001-03-02 Solar power generating device

Publications (1)

Publication Number Publication Date
JP2002262461A true JP2002262461A (en) 2002-09-13

Family

ID=18918581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001058936A Withdrawn JP2002262461A (en) 2001-03-02 2001-03-02 Solar power generating device

Country Status (1)

Country Link
JP (1) JP2002262461A (en)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238010A (en) * 2009-03-31 2010-10-21 Daihen Corp Converter control device, and system interconnection inverter system using the same
KR101095544B1 (en) 2011-05-31 2011-12-16 제이엠씨엔지니어링 주식회사 The solar cell board
CN103872980A (en) * 2012-12-11 2014-06-18 周锡卫 Structure and method of real-time regulation and control converging device based on front deployment
CN103872675A (en) * 2012-12-11 2014-06-18 周锡卫 Structure and method of real-time regulation and control converging device based on rear deployment
WO2014186389A1 (en) * 2013-05-14 2014-11-20 Navsemi Energy Pte. Ltd. Single-stage solar-photovoltaic power conversion circuitry
KR101925528B1 (en) 2007-03-30 2018-12-05 선파워 코포레이션 Localized power point optimizer for solar cell installations
JP2019068623A (en) * 2017-09-29 2019-04-25 大和ハウス工業株式会社 Power supply system
JP2020065337A (en) * 2018-10-16 2020-04-23 株式会社エクソル Power supply system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel

Cited By (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
KR101925528B1 (en) 2007-03-30 2018-12-05 선파워 코포레이션 Localized power point optimizer for solar cell installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2010238010A (en) * 2009-03-31 2010-10-21 Daihen Corp Converter control device, and system interconnection inverter system using the same
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
KR101095544B1 (en) 2011-05-31 2011-12-16 제이엠씨엔지니어링 주식회사 The solar cell board
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
CN103872675B (en) * 2012-12-11 2015-11-25 周锡卫 A kind of method of the real-time monitoring collector-shoe gear based on rearmounted allotment
CN103872980A (en) * 2012-12-11 2014-06-18 周锡卫 Structure and method of real-time regulation and control converging device based on front deployment
CN103872675A (en) * 2012-12-11 2014-06-18 周锡卫 Structure and method of real-time regulation and control converging device based on rear deployment
CN103872980B (en) * 2012-12-11 2016-01-20 周锡卫 A kind of method of the real-time monitoring collector-shoe gear based on preposition allotment
WO2014186389A1 (en) * 2013-05-14 2014-11-20 Navsemi Energy Pte. Ltd. Single-stage solar-photovoltaic power conversion circuitry
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
JP2019068623A (en) * 2017-09-29 2019-04-25 大和ハウス工業株式会社 Power supply system
JP2020065337A (en) * 2018-10-16 2020-04-23 株式会社エクソル Power supply system

Similar Documents

Publication Publication Date Title
JP2002262461A (en) Solar power generating device
JP6522348B2 (en) Solar module
EP2601682B1 (en) Solar power conversion system
KR102242814B1 (en) String-optima having possible output optimal equal voltage
KR101772541B1 (en) Power supply device, and power supply system including the same
JP2009037612A (en) Method and apparatus for converting direct current to alternating current utilizing a plurality of inverters
EP2911261B1 (en) Power conversion apparatus and photovoltaic module
CN105871324A (en) Independent MPPT tracking method for multi-branch input photovoltaic inverter system
Stallon et al. Simulation of High step-up DC-DC converter for photovoltaic module application using MATLAB/SIMULINK
JP2010177554A (en) Solar power generating apparatus
US20140169055A1 (en) Non-isolated dc/ac inverter
Stallon et al. High efficient module of boost converter in PV module
Pathy et al. A modified module integrated—Interleaved boost converter for standalone photovoltaic (PV) application
Thulasiyammal et al. An efficient method of MPPT tracking system of a solar powered Uninterruptible Power Supply application
Dhinesh et al. Online Grid Integrated Photovoltaic System with New Level Inverter System
Luo et al. Distributed MPPT control under partial shading condition
EP2897267B1 (en) Power conversion apparatus and photovoltaic module including the same
Kim et al. A new multilevel inverter with reduced switch count for renewable power applications
KR102279789B1 (en) Power converting apparatus, and photovoltaic module
Mohammad et al. Detailed analysis of dc-dc converters fed with solar-pv system with mppt
Jianqiang et al. Design and experience of grid-connecting photovoltaic power system
Hyung et al. Efficiency control of multi-string PV system considering switching losses analysis
Lopez et al. Evaluation of photovoltaic microinverter configurations based on different converter stages and step-up voltage ratios
Daut et al. High power transformerless photovoltaic inverter
Kaleeswari et al. A modified power electronic converter topology for stand-alone photovoltaic power generation system

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513