JP3398912B2 - Multi-phase charge recycling step power supply circuit - Google Patents

Multi-phase charge recycling step power supply circuit

Info

Publication number
JP3398912B2
JP3398912B2 JP03395399A JP3395399A JP3398912B2 JP 3398912 B2 JP3398912 B2 JP 3398912B2 JP 03395399 A JP03395399 A JP 03395399A JP 3395399 A JP3395399 A JP 3395399A JP 3398912 B2 JP3398912 B2 JP 3398912B2
Authority
JP
Japan
Prior art keywords
power supply
supply circuit
voltage
staircase
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03395399A
Other languages
Japanese (ja)
Other versions
JP2000232791A (en
Inventor
俊司 中田
順三 山田
隆国 道関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP03395399A priority Critical patent/JP3398912B2/en
Publication of JP2000232791A publication Critical patent/JP2000232791A/en
Application granted granted Critical
Publication of JP3398912B2 publication Critical patent/JP3398912B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、断熱充電電荷リサ
イクルを行う論理回路等の電源回路として使用される階
段状電源回路に係り、特に使用するコンデンサの数を必
要最小にした電源回路に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a step-like power supply circuit used as a power supply circuit for a logic circuit or the like for adiabatic charge recycle, and more particularly to a power supply circuit in which the number of capacitors used is minimized. is there.

【0002】[0002]

【従来の技術】従来のコンデンサを用いた階段状電源回
路は、コンデンサとスイッチにより構成されている(Sv
ensson,L.and Koller,J.G.,"Adiabatic Charging Witho
ut Inductors",Proc.of 1994 int'l Workshop on Low P
oewr Design,p159−164,Apr.1994及び米国特許第547
3526号)。
2. Description of the Related Art A staircase power supply circuit using a conventional capacitor is composed of a capacitor and a switch (Sv
ensson, L.and Koller, JG, "Adiabatic Charging Witho
ut Inductors ", Proc.of 1994 int'l Workshop on Low P
oewr Design, p159-164, Apr. 1994 and US Pat. No. 547.
3526).

【0003】図10は、4ステップの階段状電源回路を
示すもので、3個のコンデンサC1〜C3と、5個のト
ランスミッションゲートG1〜G5により構成されてい
る。ゲートG1とコンデンサC1、ゲートG2とコンデ
ンサC2、ゲートG3とコンデンサC3は、各々電圧V
1の出力端子と接地との間に直列接続され、ゲートG4
は電圧VDDの電源端子と出力端子の間に接続され、ゲー
トG5は出力端子と接地との間に接続されている。出力
端子には断熱充電電荷リサイクルを行う論理回路等の容
量負荷(図示せず)が接続される。
FIG. 10 shows a 4-step stepped power supply circuit, which is composed of three capacitors C1 to C3 and five transmission gates G1 to G5. The gate G1 and the capacitor C1, the gate G2 and the capacitor C2, and the gate G3 and the capacitor C3 have a voltage V, respectively.
1 is connected in series between the output terminal and the ground, and the gate G4
Is connected between the power supply terminal of the voltage VDD and the output terminal, and the gate G5 is connected between the output terminal and the ground. A capacitive load (not shown) such as a logic circuit that performs adiabatic charge recycle is connected to the output terminal.

【0004】この電源回路の動作は以下の通りである。
まず、ゲートG1をオンし1/4VDDの電圧を出力する。次
に、このゲートG1をオフしてゲートG2をオンし2/4V
DDの電圧を出力する。次に、このゲートG2をオフして
ゲートG3をオンし3/4VDDの電圧を出力する。そして、
このゲートG3をオフしてゲートG4をオンし出力電圧
をVDDにする。以上により出力電圧V1は昇圧される
が、今度は降圧動作に移り、ゲートG4をオフしゲート
G3をオンして3/4VDDの電圧を出力する。以下同様に繰
り返し、電荷をコンデンサに戻しつつ出力電圧V1を降
下させる。最後にゲートG5をオンして出力電圧V1を
接地電位とする。以後、同様の動作を繰り返すと、出力
電圧V1は、図11に示すように、4ステップの階段状
電圧となる。
The operation of this power supply circuit is as follows.
First, the gate G1 is turned on and the voltage of 1/4 VDD is output. Next, turn off the gate G1 and turn on the gate G2 to set it to 2 / 4V.
Output the voltage of DD. Next, the gate G2 is turned off and the gate G3 is turned on to output a voltage of 3/4 VDD. And
The gate G3 is turned off and the gate G4 is turned on to set the output voltage to VDD. As a result, the output voltage V1 is boosted, but this time, it shifts to the step-down operation, the gate G4 is turned off and the gate G3 is turned on to output the voltage of 3/4 VDD. The output voltage V1 is dropped while returning charges to the capacitor by repeating the same procedure. Finally, the gate G5 is turned on to set the output voltage V1 to the ground potential. After that, when the same operation is repeated, the output voltage V1 becomes a stepwise voltage of 4 steps as shown in FIG.

【0005】コンデンサC1〜C3は予め1/4VDD、2/4V
DD、3/4VDDに充電させる必要はなく、時間進展と共にそ
れらの値に安定的に落ち着くことが、理論的にも実験的
にも確かめられている。
The capacitors C1 to C3 are preliminarily set to 1 / 4VDD and 2 / 4V.
It has been confirmed theoretically and experimentally that it is not necessary to charge to DD and 3/4 VDD, and they settle down to those values stably over time.

【0006】図12は入力するクロックCKを分周する
分周回路を示す図である。51はクロックCKから反転
クロックを生成する入力バッファ、52〜54はTFF
である。また、図13は図12の分周回路のノード10
0〜107に得られるパルス信号から前記したゲートG
1〜G5を制御するパルス信号T1〜T4,CL1を生
成するパルス生成回路を示す図であり、55〜69はN
ANDゲートである。図12と図13において、同じ符
号は共通接続される。図12におけるノード100,1
02,104,106のパルス信号の波形と図13にお
けるパルス信号T1〜T4、CL1の波形を図11に示
した。なお、トランスミッションゲートの両ゲートには
正相と逆相のパルスが印加されるが、ここでは簡単のた
めに正相のパルスのみを示した。
FIG. 12 is a diagram showing a frequency dividing circuit for dividing an input clock CK. Reference numeral 51 is an input buffer for generating an inverted clock from the clock CK, and 52 to 54 are TFFs.
Is. Further, FIG. 13 shows a node 10 of the frequency divider circuit of FIG.
The gate G described above from the pulse signals obtained from 0 to 107
1 is a diagram showing a pulse generation circuit for generating pulse signals T1 to T4, CL1 for controlling G1 to G5;
It is an AND gate. 12 and 13, the same reference numerals are commonly connected. Nodes 100 and 1 in FIG.
The waveforms of the pulse signals of 02, 104 and 106 and the waveforms of the pulse signals T1 to T4 and CL1 in FIG. 13 are shown in FIG. It should be noted that, although positive and negative phase pulses are applied to both gates of the transmission gate, only the positive phase pulses are shown here for simplicity.

【0007】以上説明した階段状電源回路では、一般
に、外付けのコンデンサをN−1個用いるならば、N個
の階段(Nステップ)をもつ電源回路を作ることができ
る。この電源回路は、消費電力が1/N倍になり、低消費
電力回路に好適であることが知られている。
In the stepwise power supply circuit described above, generally, if N-1 external capacitors are used, a power supply circuit having N steps (N steps) can be produced. It is known that this power supply circuit consumes 1 / N times the power and is suitable for a low power consumption circuit.

【0008】[0008]

【発明が解決しようとする課題】ところで、複雑な論理
処理を行う回路を動作させるために、4相の電荷リサイ
クル電源が必要になったとき、これを前記した階段状電
源回路で実現しようとすると、例えば図14に示すよう
な4相4ステップの電圧波形V1〜V4を発生させる必
要があるが、このためには、図15に示すように、3×
4=12個という多くの数のコンデンサC1〜C12が
必要となる。
By the way, when a four-phase charge recycling power supply is required to operate a circuit for performing complicated logic processing, it is attempted to realize this with the above-mentioned stepped power supply circuit. For example, it is necessary to generate voltage waveforms V1 to V4 of four phases and four steps as shown in FIG. 14, and for this purpose, as shown in FIG.
A large number of capacitors C1 to C12 of 4 = 12 are required.

【0009】また、4相4ステップの電圧V1〜V4を
生成するためには多くの制御用パルス信号を発生する必
要がある。すなわち、図15の階段状電源回路では、各
ゲートG1〜G20を制御するために5×4=20個の
パルスT1〜T16,CL1〜CL4を生成させる必要
があり、そのために多くのパルス生成回路が必要とな
る。
Further, in order to generate the four-phase four-step voltages V1 to V4, it is necessary to generate many control pulse signals. That is, in the staircase power supply circuit of FIG. 15, it is necessary to generate 5 × 4 = 20 pulses T1 to T16 and CL1 to CL4 in order to control the gates G1 to G20, and therefore many pulse generation circuits are required. Is required.

【0010】本発明の課題は第1により少ないコンデン
サにより多相の階段状電圧を生成させること、第2によ
り少ないパルス生成回路により多相の階段状電圧を生成
させることである。
An object of the present invention is to firstly generate a multi-phase staircase voltage with less capacitors, and secondly to generate a multiphase staircase voltage with fewer pulse generation circuits.

【0011】[0011]

【課題を解決するための手段】上記課題を解決するため
の第1の発明は、印加される電圧をNステップの階段状
電圧に変換して出力するNステップ階段状電源回路を複
数個共通電源に対し並列接続して構成され、各Nステッ
プ階段状電源回路からの出力電圧により多相の電圧を出
力する多相式電荷リサイクル階段状電源回路において、
前記複数個のNステップ階段状電源回路のうちのいずれ
か一つのNステップ階段状電源回路のKステップ目(1
≦K≦N−1)に対応するコンデンサを、ステップ電圧
共有電源線により他のNステップ階段状電源回路のKス
テップ目に対応するコンデンサとして接続して共有化し
て構成した。
According to a first aspect of the invention for solving the above-mentioned problems, the applied voltage is stepwise in N steps.
A N-step staircase power supply circuit that converts the voltage and outputs it is output.
In a multi-phase charge recycling staircase power supply circuit configured to be connected in parallel to several common power supplies and outputting a multiphase voltage according to the output voltage from each N step staircase power supply circuit,
Any of the plurality of N-step staircase power supply circuits
Or K-th step of one N steps stepped power supply circuit (1
≤ K ≤ N-1 ) is connected to the K step of another N step stepwise power supply circuit by the step voltage sharing power supply line .
It was configured as a shared capacitor by connecting it as a capacitor corresponding to the step eyes .

【0012】第2の発明は、複数個の階段状電源回路に
より多相の電圧を出力する多相式電荷リサイクル階段状
電源回路において、出力電圧が互いに反転している2個
の階段状電源回路を1組以上具備し、当該組の一方の階
段状電源回路のステップ電圧を生成するためのパルス生
成回路により他方の階段状電源回路のステップ電圧を生
成するよう構成した。
A second aspect of the present invention is a multi-phase charge recycling step-like power supply circuit which outputs multi-phase voltages by a plurality of step-like power supply circuits, in which two output voltages are inverted from each other. And a pulse generation circuit for generating a step voltage of one stepwise power supply circuit of the set, the step voltage of the other stepwise power supply circuit is generated.

【0013】第3の発明は、第1の発明において、出力
電圧が互いに反転している2個のNステップ階段状電源
回路を1組以上具備し、当該組の一方のNステップ階段
状電源回路のステップ電圧を生成するためのパルス生成
回路により他方のNステップ階段状電源回路のステップ
電圧を生成するよう構成した。
According to a third invention, in the first invention, one or more sets of two N-step staircase power supply circuits whose output voltages are mutually inverted are provided, and one N-step staircase power supply circuit of the set is provided. The pulse generation circuit for generating the step voltage of 1 is configured to generate the step voltage of the other N-step staircase power supply circuit.

【0014】[0014]

【発明の実施の形態】[実施形態1]図1は本発明の実
施形態1の階段状電源回路を示す図である。多相式の電
源回路では出力電圧の数は例えば10相でも20相でも
よいが、ここでは簡単のために4相の電圧を出力する電
源回路を例にとり示した。また、図15に示したものと
同一のものには同一の符号を付した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] FIG. 1 is a diagram showing a stepwise power supply circuit according to a first embodiment of the present invention. In the multi-phase power supply circuit, the number of output voltages may be, for example, 10 phases or 20 phases, but here, for the sake of simplicity, a power supply circuit that outputs four-phase voltages is shown as an example. The same parts as those shown in FIG. 15 are designated by the same reference numerals.

【0015】ここでは、コンデンサC1に対して第1ス
テップ電圧共有電源線11によりゲートG1,G6,G
11,G16を共通接続し、コンデンサC2に対して第
2ステップ電圧共有電源線12によりゲートG2,G
7,G12,G17を共通接続し、コンデンサC3に対
して第3ステップ電圧共有電源線13によりゲートG
3,G8,G13,G18を共通接続している。
Here, the gates G1, G6 and G are connected to the capacitor C1 by the first step voltage sharing power supply line 11.
11 and G16 are commonly connected, and gates G2 and G are connected to the capacitor C2 by the second step voltage sharing power supply line 12.
7, G12, and G17 are commonly connected, and the gate G is connected to the capacitor C3 by the third step voltage sharing power supply line 13.
3, G8, G13 and G18 are commonly connected.

【0016】さて、動作させるときは、出力電圧V1に
関しては、G1→G2→G3→G4→G3→G2→G1
→G5→G1の順序で1つづつオンさせる。出力電圧V
2に関しては、G6→G7→G8→G9→G8→G7→
G6→G10→G6の順序で1つづつオンさせる。出力
電圧V3に関しては、G11→G12→G13→G14
→G13→G12→G11→G15→G11の順序で1
つづつオンさせる。出力電圧V4に関しては、G16→
G17→G18→G19→G18→G17→G16→G
20→G16の順序で1つづつオンさせる。
Now, when operating, with respect to the output voltage V1, G1 → G2 → G3 → G4 → G3 → G2 → G1
→ Turn on one by one in the order of G5 → G1. Output voltage V
Regarding 2, G6 → G7 → G8 → G9 → G8 → G7 →
Turn on one by one in the order of G6 → G10 → G6. Regarding the output voltage V3, G11 → G12 → G13 → G14
→ G13 → G12 → G11 → G15 → G11 1 in this order
Turn on one by one. Regarding the output voltage V4, G16 →
G17 → G18 → G19 → G18 → G17 → G16 → G
Turn on one by one in the order of 20 → G16.

【0017】出力電圧V1〜V4の相互の関係(位相
等)については、ゲートG1〜G5のグループ、ゲート
G6〜G10のグループ、ゲートG11〜G15のグル
ープ、ゲートG16〜G20のグループの制御タイミン
グより任意に設定でき、たとえば前記した図14に示し
た関係、あるいはその他の関係に設定できる。
Regarding the mutual relationship (phase etc.) of the output voltages V1 to V4, the control timings of the groups of the gates G1 to G5, the groups of the gates G6 to G10, the groups of the gates G11 to G15 and the groups of the gates G16 to G20 are described. It can be set arbitrarily, for example, the relationship shown in FIG. 14 or other relationships can be set.

【0018】以上のように、4相4ステップの階段状電
圧は、その位相がどのように異なろうとも、各ステップ
の電圧は共通であるので、それらの電圧を共通のコンデ
ンサで供給できる。ここでは、4相の出力電圧でありな
がら、コンデンサの数が図15に示した12個から1/4
の3個に削減されている。このように、ステップ電圧共
有電源線を用いることにより、一般的には、M相(Mは
正の整数)の階段状電源回路のコンデンサの数を、1/
Mに削減することが可能となる(図2)。
As described above, the four-phase, four-step staircase voltage has a common voltage in each step, no matter how the phase is different, so that these voltages can be supplied by a common capacitor. In this case, the number of capacitors is 1/4 as shown in FIG.
Has been reduced to three. In this way, by using the step voltage shared power supply line, in general, the number of capacitors of the M-phase (M is a positive integer) stepped power supply circuit is reduced to 1 /
It is possible to reduce to M (Fig. 2).

【0019】[実施形態2]図3は実施形態2の階段状
電源回路を示す図である。ここで生成する4相の出力電
圧V1〜V4は、図4に示すように、出力電圧V3はV
1の反転電圧、出力電圧V4はV2の反転電圧である。
このような4相の波形は複雑な組合せ論理の論理処理を
行うのに重要なことが知られている(W.C.Athas,"Energ
y Recovery CMOS",in Low Power Desgin Methodologies
edited by J.M.Rabaey and MassoudPedram,Kluwer Aca
demic Publishers,1996,p.64.,あるいは、Y.Moon and
D.K.Jeong,"An Efficient Charge Recovery Logic Circ
uit",IEEE J.Solid-State Circuits,vol.31,p.514-522,
Apr.1996)。
[Second Embodiment] FIG. 3 is a diagram showing a stepwise power supply circuit according to a second embodiment. The four-phase output voltages V1 to V4 generated here are, as shown in FIG. 4, the output voltage V3 is V
The inversion voltage of 1 and the output voltage V4 are the inversion voltages of V2.
It is known that such four-phase waveforms are important for performing complex combinatorial logic processing (WCAthas, "Energ.
y Recovery CMOS ", in Low Power Desgin Methodologies
edited by JMRabaey and MassoudPedram, Kluwer Aca
demic Publishers, 1996, p.64., or Y. Moon and
DKJeong, "An Efficient Charge Recovery Logic Circ
uit ", IEEE J. Solid-State Circuits, vol.31, p.514-522,
Apr.1996).

【0020】さて、出力電圧V1〜V4を生成するため
のパルス信号は、図5〜図8に示すように、前記した図
12に示した分周回路で得られるパルスを利用して作成
する。例えばV1を作成するパルス信号T1〜T4,C
L1(図5)については前記した図13にあるパルス生
成回路により作成する。V2を作成するパルス信号T5
〜T8,CL2(図6)についても同様なパルス生成回
路(図示せず)により作成する。
The pulse signals for generating the output voltages V1 to V4 are created by using the pulses obtained by the frequency dividing circuit shown in FIG. 12 as shown in FIGS. For example, pulse signals T1 to T4, C that generate V1
L1 (FIG. 5) is created by the pulse generation circuit shown in FIG. Pulse signal T5 that creates V2
The same pulse generation circuit (not shown) is used to create T8 and CL2 (FIG. 6).

【0021】しかし、出力電圧V3を作成するパルス信
号T9〜T12,CL3(図7)や、出力電圧V4を作
成するパルス信号T13〜T16,CL4(図8)につ
いては、新たなパルス生成回路を用意する必要はない。
However, for the pulse signals T9 to T12, CL3 (FIG. 7) for producing the output voltage V3 and the pulse signals T13 to T16, CL4 (FIG. 8) for producing the output voltage V4, a new pulse generation circuit is used. No need to prepare.

【0022】すなわち、出力電圧V3については、図7
に示すように、パルス信号T9はパルス信号T3と同じ
であり、またT10はT2と、T11はT1と、T12
はCL1と、CL3はT4と各々同じである。従って、
出力電圧V1を生成するためのパルス生成回路(図1
3)の出力パルスをそのまま使用することができる。
That is, the output voltage V3 is shown in FIG.
, The pulse signal T9 is the same as the pulse signal T3, and T10 is T2, T11 is T1 and T12.
Is the same as CL1 and CL3 is the same as T4. Therefore,
A pulse generation circuit for generating the output voltage V1 (see FIG.
The output pulse of 3) can be used as it is.

【0023】また、出力電圧V4については、図8に示
すように、パルス信号T13はパルス信号T7と同じで
あり、またT14はT6と、T15はT5と、T16は
CL2と、CL4はT8と各々同じである。従って、出
力電圧V2を生成するためのパルス生成回路の出力パル
スをそのまま使用することができる。
Regarding the output voltage V4, as shown in FIG. 8, the pulse signal T13 is the same as the pulse signal T7, and T14 is T6, T15 is T5, T16 is CL2, and CL4 is T8. Each is the same. Therefore, the output pulse of the pulse generation circuit for generating the output voltage V2 can be used as it is.

【0024】以上のように、V3をV1の反転信号と
し、V4をV2の反転信号とするときは、ステップ生成
用のパルス生成回路を1/2に削減することができる。一
般的には、P相(Pは偶数)の階段状電源回路において
P/2相の各出力電圧を残りのP/2相の出力電圧の反
転電圧とするときは、パルス生成回路の数をP/2個に
削減することが可能となる(図9)。
As described above, when V3 is the inverted signal of V1 and V4 is the inverted signal of V2, the pulse generation circuit for step generation can be reduced to 1/2. Generally, in the P-phase (P is an even number) stepped power supply circuit, when each output voltage of the P / 2 phase is used as the inversion voltage of the output voltage of the remaining P / 2 phase, the number of pulse generation circuits is It is possible to reduce the number to P / 2 (FIG. 9).

【0025】[0025]

【発明の効果】以上から本発明によれば、ステップ電圧
共有電源線を用いることにより、M相の階段状電源回路
のコンデンサの数を、1/Mに削減することが可能とな
る。また、P相の階段状電源回路においてP/2相の各
出力電圧を残りのP/2相の出力電圧の反転電圧とする
ときは、パルス生成回路の数をP/2個に削減すること
が可能となる。
As described above, according to the present invention, the number of capacitors of the M-phase stepped power supply circuit can be reduced to 1 / M by using the step voltage shared power supply line. In the P-phase staircase power supply circuit, when each P / 2-phase output voltage is used as the inversion voltage of the remaining P / 2-phase output voltage, the number of pulse generation circuits should be reduced to P / 2. Is possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態1の階段状電源回路の回路
図である。
FIG. 1 is a circuit diagram of a stepped power supply circuit according to a first embodiment of the present invention.

【図2】 実施形態1の効果を示す特性図である。FIG. 2 is a characteristic diagram showing the effect of the first embodiment.

【図3】 本発明の実施形態2の階段状電源回路の回路
図である。
FIG. 3 is a circuit diagram of a stepped power supply circuit according to a second embodiment of the present invention.

【図4】 図3の回路の出力電圧V1〜V4の波形図で
ある。
4 is a waveform diagram of output voltages V1 to V4 of the circuit of FIG.

【図5】 図3の回路の出力電圧V1作成の波形図であ
る。
5 is a waveform diagram for creating an output voltage V1 of the circuit of FIG.

【図6】 図3の回路の出力電圧V2作成の波形図であ
る。
6 is a waveform diagram for creating an output voltage V2 of the circuit of FIG.

【図7】 図3の回路の出力電圧V3作成の波形図であ
る。
7 is a waveform diagram for creating an output voltage V3 of the circuit of FIG.

【図8】 図3の回路の出力電圧V4作成の波形図であ
る。
FIG. 8 is a waveform diagram for creating an output voltage V4 of the circuit of FIG.

【図9】 実施形態2の効果を示す特性図である。FIG. 9 is a characteristic diagram showing the effect of the second embodiment.

【図10】 従来の階段状電源回路の回路図である。FIG. 10 is a circuit diagram of a conventional stepwise power supply circuit.

【図11】 図10の回路の出力電圧V1作成の波形図
である。
11 is a waveform diagram for creating an output voltage V1 of the circuit of FIG.

【図12】 分周回路の回路図である。FIG. 12 is a circuit diagram of a frequency dividing circuit.

【図13】 パルス生成回路の回路図である。FIG. 13 is a circuit diagram of a pulse generation circuit.

【図14】 4相の階段状電圧の波形図である。FIG. 14 is a waveform diagram of four-phase staircase voltage.

【図15】 図14の電圧を生成するための階段状電源
回路の回路図である。
15 is a circuit diagram of a stepped power supply circuit for generating the voltage of FIG.

【符号の説明】[Explanation of symbols]

11,12,13:ステップ電圧共有電源線。 11, 12, 13: Step voltage shared power supply lines.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平10−201241(JP,A) 特開 平9−191639(JP,A) 米国特許5473526(US,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/48 H02M 3/07 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-10-201241 (JP, A) JP-A-9-191639 (JP, A) US Patent 5473526 (US, A) (58) Fields investigated (Int .Cl. 7 , DB name) H02M 7/48 H02M 3/07

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】印加される電圧をNステップの階段状電圧
に変換して出力するNステップ階段状電源回路を複数個
共通電源に対し並列接続して構成され、各Nステップ階
段状電源回路からの出力電圧により多相の電圧を出力す
る多相式電荷リサイクル階段状電源回路において、前記複数個のNステップ階段状電源回路のうちのいずれ
か一つの Nステップ階段状電源回路のKステップ目(1
≦K≦N−1)に対応するコンデンサを、ステップ電圧
共有電源線により他のNステップ階段状電源回路のKス
テップ目に対応するコンデンサとして接続して共有化し
たことを特徴とする多相式電荷リサイクル階段状電源回
路。
1. The applied voltage is a stepwise voltage of N steps.
Multiple N-step staircase power supply circuits that convert to and output
A plurality of N-step staircase power supplies in a multi-phase charge recycling staircase power supply circuit configured to be connected in parallel to a common power supply and outputting a multi-phase voltage according to the output voltage from each N-step staircase power supply circuit. Any of the circuits
Or K-th step of one N steps stepped power supply circuit (1
≤ K ≤ N-1 ) is connected to the K step of another N step stepwise power supply circuit by the step voltage sharing power supply line .
A multi-phase charge recycling staircase power supply circuit characterized by being connected and shared as a capacitor corresponding to the step size.
【請求項2】複数個の階段状電源回路により多相の電圧
を出力する多相式電荷リサイクル階段状電源回路におい
て、 出力電圧が互いに反転している2個の階段状電源回路を
1組以上具備し、当該組の一方の階段状電源回路のステ
ップ電圧を生成するためのパルス生成回路により他方の
階段状電源回路のステップ電圧を生成することを特徴と
する多相式電荷リサイクル階段状電源回路。
2. A multi-phase charge recycling staircase power supply circuit for outputting multi-phase voltages by a plurality of staircase power supply circuits, wherein at least one set of two staircase power supply circuits whose output voltages are mutually inverted. A multi-phase charge recycling stepwise power supply circuit, comprising a pulse generation circuit for generating a step voltage of one stepwise power supply circuit of the set, and generating a step voltage of the other stepwise power supply circuit. .
【請求項3】請求項1において、 出力電圧が互いに反転している2個のNステップ階段状
電源回路を1組以上具備し、当該組の一方のNステップ
階段状電源回路のステップ電圧を生成するためのパルス
生成回路により他方のNステップ階段状電源回路のステ
ップ電圧を生成することを特徴とする多相式電荷リサイ
クル階段状電源回路。
3. The method according to claim 1, comprising one or more sets of two N-step staircase power supply circuits whose output voltages are mutually inverted, and generating a step voltage of one N-step staircase power supply circuit of the set. A multi-phase charge recycling stepwise power supply circuit, wherein a step voltage of the other N-step staircase power supply circuit is generated by a pulse generation circuit for performing the operation.
JP03395399A 1999-02-12 1999-02-12 Multi-phase charge recycling step power supply circuit Expired - Fee Related JP3398912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03395399A JP3398912B2 (en) 1999-02-12 1999-02-12 Multi-phase charge recycling step power supply circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03395399A JP3398912B2 (en) 1999-02-12 1999-02-12 Multi-phase charge recycling step power supply circuit

Publications (2)

Publication Number Publication Date
JP2000232791A JP2000232791A (en) 2000-08-22
JP3398912B2 true JP3398912B2 (en) 2003-04-21

Family

ID=12400870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03395399A Expired - Fee Related JP3398912B2 (en) 1999-02-12 1999-02-12 Multi-phase charge recycling step power supply circuit

Country Status (1)

Country Link
JP (1) JP3398912B2 (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006129627A (en) * 2004-10-29 2006-05-18 Nippon Telegr & Teleph Corp <Ntt> Switched capacitor type charge-reusing power supply circuit
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP4776396B2 (en) * 2006-02-27 2011-09-21 日本電信電話株式会社 Adiabatic charging memory circuit and data writing method
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Release mechanism in distributed electrical power apparatus, to wake up and method for closing
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Also Published As

Publication number Publication date
JP2000232791A (en) 2000-08-22

Similar Documents

Publication Publication Date Title
JP3398912B2 (en) Multi-phase charge recycling step power supply circuit
TWI636652B (en) Charge pump unit and charge pump circuit
US7135910B2 (en) Charge pump with fibonacci number multiplication
US6960955B2 (en) Charge pump-type booster circuit
JP3031419B2 (en) Semiconductor integrated circuit
KR101291803B1 (en) Folding Analog Digital Converter
US6445243B2 (en) Charge-pump circuit and control method thereof
KR100405019B1 (en) Timing difference division circuit and signal controlling method and apparatus
JP2011120407A (en) Charge pump circuit
JP3400124B2 (en) Pass transistor type selector circuit and logic circuit
US6798248B2 (en) Non-overlapping clock generation
TWI392209B (en) Charge pump circuit and method thereof
EP2419832A1 (en) Voltage conversion and integrated circuits with stacked voltage domains
KR19980080329A (en) Delay circuit and oscillation circuit using the same
JP2635789B2 (en) Signal delay circuit and clock signal generation circuit using the circuit
WO1981002080A1 (en) Dynamic ratioless circuitry for random logic applications
CN112599067A (en) Shift register circuit and display device
US5495199A (en) Switched capacitor circuit
JP2004064963A (en) Boosting circuit
CN112599069B (en) Gate driving unit, gate driving circuit and display device
EP0090421A2 (en) Logic circuit
Peng et al. A 16-phase 8-branch charge pump with advanced charge recycling strategy
CN107404316B (en) Signal multiplexing device
JPH02164268A (en) Dc voltage multiplying circuit
JP2848796B2 (en) Signal transmission method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110221

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees