JP2004194500A - Power conversion apparatus for solar power generation - Google Patents

Power conversion apparatus for solar power generation Download PDF

Info

Publication number
JP2004194500A
JP2004194500A JP2004088228A JP2004088228A JP2004194500A JP 2004194500 A JP2004194500 A JP 2004194500A JP 2004088228 A JP2004088228 A JP 2004088228A JP 2004088228 A JP2004088228 A JP 2004088228A JP 2004194500 A JP2004194500 A JP 2004194500A
Authority
JP
Japan
Prior art keywords
power
solar cell
converter
inverter
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004088228A
Other languages
Japanese (ja)
Inventor
Masaki Eguchi
政樹 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2004088228A priority Critical patent/JP2004194500A/en
Publication of JP2004194500A publication Critical patent/JP2004194500A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

<P>PROBLEM TO BE SOLVED: To attain improvement of system power generation efficiency by independently performing maximum power follow-up relating to each solar battery array, in a system interconnection inverter connecting in parallel a plurality of the solar battery arrays input. <P>SOLUTION: In the power conversion apparatus for solar power generations with a plurality of solar battery modules 8a, 8b, 8c serving as the power source, boost chopper parts 26a, 26b, 26c for performing maximum power follow-up of each solar battery module 8a, 8b, 8c for every thereof and a DC/DC converter of waveform forming parts 34a, 34b, 34c, 34d, etc. are provided, maximum power is led through from each solar battery module 8a, 8b, 8c thereafter to be collectively converted into an AC output by an inverter 23, a DC/AC converter 36, etc. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、太陽電池を用いた分散型電源に使用する太陽光発電用電力変換装置に関するものである。   The present invention relates to a power converter for photovoltaic power generation used for a distributed power supply using solar cells.

各家庭に設置される太陽電池モジュールを用いた分散型電源は、従来から図5に示すようなものがある(例えば特許文献1)。
特開平8−70533号公報
Conventionally, there is a distributed power supply using a solar cell module installed in each home as shown in FIG. 5 (for example, Patent Document 1).
JP-A-8-70533

図5において、太陽電池アレイ8と、この太陽電池アレイ8から出力される直流電力を交流電力に変えるインバータ(インバータ回路)9を内蔵したインバータ装置10とを備えている。このインバータ装置10は、商用電源の電力系統から分散型電源を切り離す遮断機11と、周波数変動や電圧変動に基づいて、商用電源の電力系統1の遮断機5の解列を検知して遮断機11を解列させる単独運転検知手段12とを含む系統連系保護装置を内蔵した構成となっている。ここで3は変電所、4は配電線、6は柱上トランスである。   In FIG. 5, a solar cell array 8 and an inverter device 10 having a built-in inverter (inverter circuit) 9 for converting DC power output from the solar cell array 8 into AC power are provided. The inverter device 10 detects a disconnection of a circuit breaker 11 for disconnecting a distributed power supply from a power system of a commercial power supply and a breaker 5 of the power system 1 of a commercial power supply based on frequency fluctuation and voltage fluctuation. It has a built-in system interconnection protection device including an islanding detection means 12 for disconnecting the power line 11. Here, 3 is a substation, 4 is a distribution line, and 6 is a pole transformer.

かかる系統連系システムにおいては、計測される太陽電池アレイ8の出力電圧及び出力電流に基づいて、太陽電池アレイ8の発電電力を演算する演算手段14と、太陽電池アレイ8の出力電圧を変化させる出力可変手段15と、この出力可変手段15を制御して太陽電池アレイ8の出力電圧を変化させることにより、演算手段14で演算された発電電力が最大となる出力電圧値を探索する探索動作を、一定の時間間隔をあけて断続的に行う制御手段16と、発電量が異常であるときなどに表示を行う表示手段17とを備えている。   In such a system interconnection system, based on the measured output voltage and output current of the solar cell array 8, the calculating means 14 for calculating the generated power of the solar cell array 8 and the output voltage of the solar cell array 8 are changed. The output variable means 15 and a search operation for controlling the output variable means 15 to change the output voltage of the solar cell array 8 to search for an output voltage value at which the generated power calculated by the calculation means 14 is maximized. , A control means 16 for performing the operation intermittently at regular time intervals, and a display means 17 for displaying when the power generation amount is abnormal.

そして、前記単独運転検知手段12、演算手段14、出力可変手段15及び制御手段16は、マイクロコンピュータ20によって構成されている。この制御手段16は出力可変手段15を介してインバータ回路9を制御することにより太陽電池アレイ8の出力電圧を変化させ、演算手段14から出力される電力が最大となる電圧値を探索するものである。   The isolated operation detecting means 12, the calculating means 14, the output varying means 15 and the control means 16 are constituted by a microcomputer 20. The control means 16 changes the output voltage of the solar cell array 8 by controlling the inverter circuit 9 via the output variable means 15, and searches for a voltage value at which the power output from the arithmetic means 14 becomes maximum. is there.

上記の系統連系システムにおいて、電源装置は一般的には図6に示すように、例えば1kW出力の3枚の太陽電池アレイ8に対して1個の3kWのインバータ9を使用している。また図7に示すように太陽電池アレイ8の出力に等しい容量のインバータ9を使用し、複数枚の太陽電池アレイ8の出力側の夫々をインバータ9の入力側に接続し、これらインバータ9の出力側を1本にして系統と連系するシステムも開示されている。   In the above-described system interconnection system, the power supply device generally uses one 3 kW inverter 9 for three solar cell arrays 8 having a 1 kW output, for example, as shown in FIG. Also, as shown in FIG. 7, an inverter 9 having a capacity equal to the output of the solar cell array 8 is used, and each of the output sides of the plurality of solar cell arrays 8 is connected to the input side of the inverter 9. There is also disclosed a system in which one side is connected to a system.

また、図8に示すように夫々の太陽電池アレイ8の出力側を電力変換部であるDC/DCコンバータ21の入力側に接続し、これらのDC/DCコンバータの出力側を他の電力変換部であるインバータ9の入力側に逆流防止ダイオード22を介して接続し、系統と連系するシステムが開示されている。   As shown in FIG. 8, the output side of each solar cell array 8 is connected to the input side of a DC / DC converter 21 which is a power conversion unit, and the output side of these DC / DC converters is connected to another power conversion unit. A system is disclosed that is connected to the input side of the inverter 9 via the backflow prevention diode 22 and is connected to the system.

従って、第1の太陽電池アレイ8の出力がDC200V、第2の太陽電池アレイ8の出力がDC100V、第3の太陽電池アレイ8の出力がDC50Vである場合、第1のDC/DCコンバータ21ではその出力をそのままDC200Vに制御し、第2、第3のDC/DCコンバータ21では出力をDC200Vに昇圧してインバータ9に入力させるようになっている。   Therefore, when the output of the first solar cell array 8 is DC 200 V, the output of the second solar cell array 8 is DC 100 V, and the output of the third solar cell array 8 is DC 50 V, the first DC / DC converter 21 The output is directly controlled to DC 200 V, and the second and third DC / DC converters 21 boost the output to DC 200 V and input the same to the inverter 9.

上述したような出力を一定電圧制御するDC/DCコンバータによって、各太陽電池アレイからDC/DCコンバータを介して得られる電圧をそろえてDC/DCコンバータの出力で電力を結合する場合、太陽電池の最大電力追従が正確に行えずシステム発電効率が低下するという問題があった。つまり、各DC/DCコンバータの出力電圧を同一に制御するだけでは各太陽電池アレイに対して要求される電流を分配する制御を行うことができず、各太陽電池アレイに対する安定な最大電力の追従が行えない。   When the DC / DC converter that controls the output at a constant voltage as described above adjusts the voltage obtained from each solar cell array via the DC / DC converter and combines power with the output of the DC / DC converter, There was a problem that the maximum power tracking could not be performed accurately and the system power generation efficiency was reduced. In other words, simply controlling the output voltage of each DC / DC converter in the same way cannot control the distribution of the current required for each solar cell array, and follows the stable maximum power for each solar cell array. Can not do.

また、太陽電池モジュールの直列数の異なる太陽電池アレイを直接並列接続して、1台のインバータで制御した場合のP(電力)−V(電圧)特性は例えば図9に示すようになる。2つの太陽電池アレイの最大電力はMPP(a)、MPP(b)であるが、その合成特性の最大電力MPP(a+b)と真の最大電力MPP(a)+MPP(b)との関係は、MPP(a+b)<MPP(a)+MPP(b)であり、得られる最大電力は真の最大電力に比べて図9に記載の損失分だけ低下する。   Further, a P (power) -V (voltage) characteristic in a case where solar cell arrays having different numbers of series of solar cell modules are directly connected in parallel and controlled by one inverter is as shown in FIG. 9, for example. Although the maximum power of the two solar cell arrays is MPP (a) and MPP (b), the relationship between the maximum power MPP (a + b) of the combined characteristics and the true maximum power MPP (a) + MPP (b) is as follows. MPP (a + b) <MPP (a) + MPP (b), and the obtained maximum power is lower than the true maximum power by the loss shown in FIG.

また、現状の最適電力追従制御では最悪の場合、図9におけるMPP(a)の位置で動作する場合も予想される。このような太陽電池アレイ間の最適動作電圧のアンバランスは太陽電池モジュールの直列数が同じ場合においても部分的な影の影響により電流が太陽電池アレイ内のバイパスダイオードを経由するような場合に発生する。   In the worst case of the current optimal power tracking control, it is expected that the operation will be performed at the position of MPP (a) in FIG. Such an imbalance in the optimal operating voltage between the photovoltaic arrays occurs when the current passes through the bypass diode in the photovoltaic array due to the partial shadow even when the number of photovoltaic modules in series is the same. I do.

上記課題を解決するために本発明は、DC/DCコンバータの出力電圧をそろえるのではなく、各DC/DCコンバータが各太陽電池アレイの最大電力追従を行う構成とすることを含め、各太陽電池アレイ毎に最大電力を追従する機能を有する電力変換器を介して電力を統合してインバータ装置に入力し、系統と連系運転を行うようにした。   In order to solve the above-described problems, the present invention provides a method of controlling each of the solar cells, not including equalizing the output voltages of the DC / DC converters, including setting each DC / DC converter to follow the maximum power of each solar cell array. The power is integrated via a power converter having a function of following the maximum power for each array, and the power is integrated and input to the inverter device, so that the system is connected to the grid.

本発明の太陽光発電用電力変換装置は、複数の太陽電池電力入力部と、該複数の太陽電池電力入力部に接続された各々の太陽電池アレイに対する最大電力追従を行う最大電力追従部と、前記複数の太陽電池電力入力部より入力される入力電力を前記太陽光発電用電力変換装置の主回路内で結合する結合手段と、該結合手段で結合した各入力電力の総和を交流電力に変換するインバータを設けた太陽光発電用電力変換装置において、前記複数の太陽電池電力入力部はDC/DCコンバータで構成され、該DC/DCコンバータの出力端で各々の電力が結合され、その後段に接続されるインバータにより交流電力に変換され、前記DC/DCコンバータは、各々に接続された太陽電池アレイの動作電圧を該アレイの最大電力点に制御するとともに、電力結合された出力端の電圧が所定の保護電圧値より大きくなる場合は最大電力追従を止めて、前記DC/DCコンバータの電力結合された出力端の電圧が前記保護電圧値を超えないように、前記DC/DCコンバータによって供給される電力を抑制することを特徴とするものである。   The power conversion device for photovoltaic power generation of the present invention includes a plurality of solar cell power input units, and a maximum power tracking unit that performs maximum power tracking for each solar cell array connected to the plurality of solar cell power input units, Coupling means for coupling input power input from the plurality of solar cell power input units in the main circuit of the power converter for photovoltaic power generation, and converting the sum of the input powers coupled by the coupling means into AC power In the photovoltaic power conversion device provided with an inverter, the plurality of solar cell power input units are constituted by DC / DC converters, and respective powers are coupled at an output terminal of the DC / DC converter, and the power is supplied to a subsequent stage. The DC / DC converter is converted into AC power by a connected inverter, and controls the operating voltage of the solar cell array connected to each to the maximum power point of the array. When the voltage at the power-coupled output terminal is greater than a predetermined protection voltage value, the maximum power tracking is stopped so that the voltage at the power-coupled output terminal of the DC / DC converter does not exceed the protection voltage value. , Wherein the power supplied by the DC / DC converter is suppressed.

従って、各太陽電池アレイに対して最大電力追従を行うことができる。この際、電力結合した後のDC/DCコンバータの出力端電圧は、DC/DCコンバータでは制御されず、最大電力追従の状態によって変化する。更に結合された電力はインバータ装置を介して交流に変換されて出力されるが、このような電力結合した位置より後段に位置するインバータ装置が更に結合後の電力に対する最大電力追従制御を行うことで、トータルとしての最大電力追従が行われる。   Therefore, maximum power tracking can be performed for each solar cell array. At this time, the output terminal voltage of the DC / DC converter after power coupling is not controlled by the DC / DC converter, and varies depending on the state of maximum power following. Further, the combined power is converted into AC through the inverter device and output, and the inverter device located at a stage subsequent to the power-coupled position further performs maximum power tracking control on the combined power. , The maximum power tracking is performed as a total.

また、後段のインバータ装置の出力が、前段のDC/DCコンバータ群の出力よりも小さい場合に、電力結合部の電圧が定格以上に上昇するのを抑制する作用を有する。   Further, when the output of the inverter at the subsequent stage is smaller than the output of the DC / DC converter group at the previous stage, it has the effect of suppressing the voltage of the power coupling unit from rising above the rating.

また、本発明の太陽光発電用電力変換装置は、複数の太陽電池電力入力部と、該複数の太陽電池電力入力部に接続された各々の太陽電池アレイに対する最大電力追従を行う最大電力追従部と、前記複数の太陽電池電力入力部より入力される入力電力を前記太陽光発電用電力変換装置の主回路内で結合する結合手段と、該結合手段で結合した各入力電力の総和を交流電力に変換するインバータを設けた太陽光発電用電力変換装置において、前記複数の太陽電池電力入力部は、電流共振型の高周波インバータ部と絶縁トランス部と整流部の順序で構成され、各整流部の出力を結合して後段のインバータ部で交流電力に変換することを特徴とするものである。   In addition, the photovoltaic power conversion device of the present invention includes a plurality of solar cell power input units, and a maximum power tracking unit that performs maximum power tracking for each solar cell array connected to the plurality of solar cell power input units. Coupling means for coupling the input power input from the plurality of solar cell power input units in the main circuit of the power converter for photovoltaic power generation; and In the power converter for photovoltaic power generation provided with an inverter for converting into, the plurality of solar cell power input units are configured in the order of a current resonance type high-frequency inverter unit, an insulating transformer unit, and a rectifying unit. It is characterized in that the outputs are combined and converted into AC power by a subsequent inverter unit.

従って、最大電力追従制御は前段の電流共振型の高周波インバータ部のみで実施されるとともに、電流波形生成も同時に行われるので、後段のインバータ部では商用周波数による波形の折り返し制御だけを行って交流電力を出力できる。   Therefore, the maximum power follow-up control is performed only by the current-stage high-frequency inverter of the preceding stage, and the current waveform is also generated at the same time. Can be output.

本発明は上記のような構成であるので、太陽光発電用電力変換装置において、複数の太陽電池電力入力部は、太陽電池アレイの動作電圧を該アレイの最大電力点に制御するDC/DCコンバータで構成され、該DC/DCコンバータの出力端で各々の電力が結合され、その後段に接続されるインバータにより交流電力を得るようにしているので、各太陽電池アレイに対して最大電力追従を行うことができ、太陽光発電のシステム効率を向上することができる。   Since the present invention is configured as described above, in the power converter for photovoltaic power generation, the plurality of solar cell power input units are DC / DC converters for controlling the operating voltage of the solar cell array to the maximum power point of the array. And the respective powers are combined at the output terminal of the DC / DC converter, and AC power is obtained by an inverter connected to the subsequent stage, so that the maximum power tracking is performed for each solar cell array. And the system efficiency of the photovoltaic power generation can be improved.

さらにDC/DCコンバータは、電力結合された出力端の電圧が所定値より大きくなる場合は、前記DC/DCコンバータによって供給される電力を抑制するようにしているので、後段のインバータ装置の最大定格入力電圧を超えないようにしてインバータ装置の破損を防止することができる。   Further, the DC / DC converter suppresses the power supplied by the DC / DC converter when the voltage of the power-coupled output terminal becomes larger than a predetermined value. The inverter device can be prevented from being damaged by not exceeding the input voltage.

また、太陽光発電用電力変換装置において、複数の太陽電池電力入力部を、電流共振型の高周波インバータ部と絶縁トランス部と整流部より成る波形成形部で構成し、各整流部の出力を結合して後段のインバータ部で交流電力に変換することにより、最大電力追従制御は前段の電流共振型の高周波インバータ部のみで行わせることができ、最大電力追従の制御を簡素化することができる。さらに各太陽電池アレイに対して最大電力追従を行うことができ、太陽光発電のシステム効率を向上することができる。   In the power converter for photovoltaic power generation, a plurality of solar cell power input units are configured by a waveform shaping unit including a current resonance type high-frequency inverter unit, an insulating transformer unit, and a rectifying unit, and the outputs of the rectifying units are combined. By converting the AC power into AC power by the subsequent inverter, the maximum power tracking control can be performed only by the current resonance type high frequency inverter of the preceding stage, and the control of the maximum power tracking can be simplified. Furthermore, maximum power tracking can be performed for each solar cell array, and the system efficiency of solar power generation can be improved.

(実施形態1)図1は本発明の第1の実施形態を示す太陽光発電用電力変換装置の要部構成図であり、一例として複数の太陽電池電力を入力して、系統と連系運転を行う系統連系インバータ41の構成を示す。太陽電池アレイ8a、8b、8cは、各々独立に系統連系インバータ41に接続され、リアクトル28a、28b、28cとスイッチ素子40a、40b、40cとダイオード27a、27b、27cとで構成される昇圧チョッパ部26a、26b、26cには直流電力が入力される。   (Embodiment 1) FIG. 1 is a configuration diagram of a main part of a photovoltaic power converter according to a first embodiment of the present invention. 1 shows a configuration of a system interconnection inverter 41 that performs the following. Each of the solar cell arrays 8a, 8b, 8c is independently connected to the system interconnection inverter 41, and includes a step-up chopper including reactors 28a, 28b, 28c, switching elements 40a, 40b, 40c, and diodes 27a, 27b, 27c. DC power is input to the units 26a, 26b, 26c.

リアクトル28a、28b、28cの電流はスイッチ素子40a、40b、40cのオン時間とオフ時間とのデューティによって制御され、リアクトル28a、28b、28cに蓄えられたエネルギーはダイオード27a、27b、27cを介してコンデンサ29に充電される。コンデンサ29の電圧はインバータ部23に入力され、系統電圧に同期した交流電力に変換されて系統に出力される。各昇圧チョッパ部26a、26b、26cに入力される電圧と電流は電力検出部24a、24b、24cで検出され、制御回路25に入力される。   The currents of the reactors 28a, 28b, 28c are controlled by the duty of the on-time and off-time of the switch elements 40a, 40b, 40c, and the energy stored in the reactors 28a, 28b, 28c passes through the diodes 27a, 27b, 27c. The capacitor 29 is charged. The voltage of the capacitor 29 is input to the inverter unit 23, converted into AC power synchronized with the system voltage, and output to the system. Voltages and currents input to the boost choppers 26a, 26b, 26c are detected by the power detectors 24a, 24b, 24c and input to the control circuit 25.

制御回路25は電力検出部24a、24b、24cで検出される電圧、電流から入力電力を算出し、入力電力が最大となるように各スイッチ素子40a、40b、40cのゲート信号ga、gb、gcのデューティ制御を行う。また、制御回路25はインバータ入力電圧(コンデンサ29の電圧)を分圧抵抗30から検出し、所定の保護電圧値以上になると最大電力追従を止めて前記デューティを小さくしてコンデンサ29の電圧が保護電圧値を越えないように制御する。   The control circuit 25 calculates the input power from the voltages and currents detected by the power detection units 24a, 24b, and 24c, and controls the gate signals ga, gb, and gc of the switch elements 40a, 40b, and 40c so that the input power is maximized. Is performed. Further, the control circuit 25 detects the inverter input voltage (voltage of the capacitor 29) from the voltage dividing resistor 30, and when the voltage exceeds a predetermined protection voltage value, stops the following of the maximum power and reduces the duty to protect the voltage of the capacitor 29. Control so as not to exceed the voltage value.

さらに制御回路25はインバータ部23内のスイッチ素子のゲート信号の制御、前記インバータ入力電圧およびインバータ出力電力に基づいた最大電力追従制御、系統連系保護制御などを行う。このように、各昇圧チョッパ部26a、26b、26cおよびインバータ部23がともに最大電力追従制御を行うことにより、系統連系インバータ41に接続された各太陽電池アレイ8a、8b、8cの最大電力を取り出すことができる。   Further, the control circuit 25 performs control of a gate signal of a switch element in the inverter section 23, maximum power follow-up control based on the inverter input voltage and inverter output power, system interconnection protection control, and the like. As described above, the boost chopper units 26a, 26b, 26c and the inverter unit 23 both perform the maximum power tracking control, so that the maximum power of each of the solar cell arrays 8a, 8b, 8c connected to the system interconnection inverter 41 is reduced. Can be taken out.

(実施形態2)図2は本発明の第2の実施形態を示す太陽光発電用電力変換装置の要部構成図であり、一例として2系統の太陽電池電力を入力して、系統と連系運転を行う系統連系インバータ41の構成を示すものである。太陽電池アレイ8aは、逆流防止ダイオード22を介してコンデンサ29を充電し、太陽電池アレイ8bはリアクトル28とスイッチ素子40とダイオード27とで構成される昇圧チョッパ部26に接続される。リアクトル28の電流はスイッチ素子40のオン時間とオフ時間とのデューティによって制御され、リアクトル28に蓄えられたエネルギーはダイオード27を介してコンデンサ29に充電される。   (Embodiment 2) FIG. 2 is a configuration diagram of a main part of a power converter for photovoltaic power generation according to a second embodiment of the present invention. 3 shows a configuration of a system interconnection inverter 41 that performs operation. The solar cell array 8a charges the capacitor 29 via the backflow prevention diode 22, and the solar cell array 8b is connected to the boost chopper section 26 including the reactor 28, the switch element 40, and the diode 27. The current of the reactor 28 is controlled by the duty of the on time and the off time of the switch element 40, and the energy stored in the reactor 28 is charged to the capacitor 29 via the diode 27.

コンデンサ29の電圧はインバータ部23に入力され、系統電圧に同期した交流電力に変換されて系統に出力される。昇圧チョッパ部26に入力される電圧と電流は電力検出部24で検出され、制御回路25に入力される。制御回路25は電力検出部24で検出される電圧、電流から入力電力を算出し、入力電力が最大となるようにスイッチ素子40のゲート信号gのデューティ制御を行う。   The voltage of the capacitor 29 is input to the inverter unit 23, converted into AC power synchronized with the system voltage, and output to the system. The voltage and current input to the boost chopper section 26 are detected by the power detection section 24 and input to the control circuit 25. The control circuit 25 calculates the input power from the voltage and current detected by the power detection unit 24, and performs duty control of the gate signal g of the switch element 40 so that the input power becomes maximum.

また、制御回路25はインバータ部23の入力電圧(コンデンサ29の電圧)を分圧抵抗30から検出し、所定の保護電圧値以上になると最大電力追従を止めて前記デューティを小さくしてコンデンサ29の電圧が保護電圧値を越えないように制御する。さらに制御回路25はインバータ部23内のスイッチ素子のゲート信号の制御、前記インバータ入力電圧およびインバータ出力電力に基づいた最大電力追従制御、系統連系保護制御などを行う。   Further, the control circuit 25 detects the input voltage of the inverter unit 23 (voltage of the capacitor 29) from the voltage dividing resistor 30, and when the voltage becomes equal to or higher than a predetermined protection voltage value, stops the maximum power following and reduces the duty to reduce the duty. Control so that the voltage does not exceed the protection voltage value. Further, the control circuit 25 performs control of a gate signal of a switch element in the inverter section 23, maximum power follow-up control based on the inverter input voltage and inverter output power, system interconnection protection control, and the like.

本実施形態では太陽電池アレイ8aの開放電圧が太陽電池アレイ8bの開放電圧より大きな太陽電池アレイが接続され、コンデンサ29の電圧は太陽電池アレイ8aの動作電圧となる。この電圧は昇圧チョッパ部26の最大電力制御によって上昇するが、インバータ入力電圧はインバータ部23の最大電力追従制御により太陽電池アレイ8aの最大電力点となる。このようにして系統連系インバータ41に接続された太陽電池アレイ8a、8bの最大電力を取り出すことができる。   In the present embodiment, a solar cell array in which the open voltage of the solar cell array 8a is larger than the open voltage of the solar cell array 8b is connected, and the voltage of the capacitor 29 becomes the operating voltage of the solar cell array 8a. This voltage is increased by the maximum power control of the step-up chopper section 26, but the inverter input voltage becomes the maximum power point of the solar cell array 8a by the maximum power tracking control of the inverter section 23. Thus, the maximum power of the solar cell arrays 8a and 8b connected to the grid interconnection inverter 41 can be extracted.

(実施形態3)図3は本発明による第3の実施形態を示す太陽光発電用電力変換装置の要部構成図であり、一例として複数の太陽電池電力を入力して、系統と連系運転を行う系統連系インバータ41の構成を示すものである。太陽電池アレイ8a、8b、8c、8dは、各々独立に系統連系インバータ41の波形成形部34a、34b、34c、34dに接続される。波形成形部34aは電流共振型高周波インバータ31aと高周波トランス32aと整流ダイオード33aで構成され、電流共振型高周波インバータ31aは制御回路37によって電流波形生成を行うと同時に最大電力追従制御が行われる。   (Embodiment 3) FIG. 3 is a main part configuration diagram of a power converter for photovoltaic power generation according to a third embodiment of the present invention. 1 shows a configuration of a system interconnection inverter 41 that performs the following. The solar cell arrays 8a, 8b, 8c, 8d are independently connected to the waveform shaping units 34a, 34b, 34c, 34d of the system interconnection inverter 41, respectively. The waveform shaping section 34a includes a current resonance type high frequency inverter 31a, a high frequency transformer 32a, and a rectifier diode 33a. The current resonance type high frequency inverter 31a generates a current waveform by the control circuit 37 and simultaneously performs maximum power tracking control.

電流共振型高周波インバータ31aの高周波交流出力は高周波トランス32aを介して整流ダイオード33a、33a'で整流され、他の波形生成部34b、34c、34dの出力電流と合成される。この場合、波形生成部34b、34c、34dは上記波形生成部34aと同様に、電流共振型高周波インバータ、高周波トランスおよび整流ダイオード(いずれも図示せず)で構成される。   The high-frequency AC output of the current resonance type high-frequency inverter 31a is rectified by the rectifier diodes 33a and 33a 'via the high-frequency transformer 32a and combined with the output currents of the other waveform generators 34b, 34c and 34d. In this case, the waveform generators 34b, 34c, and 34d are composed of a current resonance type high-frequency inverter, a high-frequency transformer, and a rectifier diode (all not shown), similarly to the waveform generator 34a.

上記波形成形部34a、34b、34c、34dからの出力が合成された電流は、フィルタ用のコンデンサ35を経て商用周波インバータ36に入力される。商用周波インバータ36に入力される電流は図4の(a)に示すような全波整流状の直流波形となり(図3におけるA点)、これを商用周波インバータ36で系統電圧に同期して折り返して、図4の(b)にしめすような交流電流出力を得られる(図3におけるB点)。更にこれをACフィルタ39で平滑化して図4の(c)に示すような正弦波電流波形を得ることができる(図3におけるC点)。   The current obtained by combining the outputs from the waveform shaping units 34a, 34b, 34c, and 34d is input to the commercial frequency inverter 36 via the filter capacitor 35. The current input to the commercial frequency inverter 36 has a full-wave rectified DC waveform as shown in FIG. 4A (point A in FIG. 3), which is turned back by the commercial frequency inverter 36 in synchronization with the system voltage. Thus, an alternating current output as shown in FIG. 4B can be obtained (point B in FIG. 3). This is further smoothed by the AC filter 39 to obtain a sinusoidal current waveform as shown in FIG. 4C (point C in FIG. 3).

制御回路38は上述のような商用周波インバータ36の折り返し制御および系統連系保護制御を行うとともに、制御回路37に系統との同期信号を送る。制御回路37はこの同期信号に同期した電流波形生成を行うように、波形成形部34a、34b、34c、34dを制御している。このように各太陽電池アレイ毎に設けた波形生成部34a、34b、34c、34dが最大電力追従制御を行うことにより系統連系インバータ41に接続された各太陽電池アレイ8a、8b、8c、8dの最大電力を取り出すことができる。   The control circuit 38 performs the return control and the system interconnection protection control of the commercial frequency inverter 36 as described above, and sends a synchronization signal to the control circuit 37 to the system. The control circuit 37 controls the waveform shaping units 34a, 34b, 34c and 34d so as to generate a current waveform synchronized with the synchronization signal. As described above, the waveform generators 34a, 34b, 34c, 34d provided for the respective solar cell arrays perform the maximum power follow-up control, so that the respective solar cell arrays 8a, 8b, 8c, 8d connected to the system interconnection inverter 41. Maximum power can be extracted.

本発明の一実施形態の要部構成図である。FIG. 1 is a configuration diagram of a main part of an embodiment of the present invention. 本発明の他の実施形態の要部構成図である。It is a principal part block diagram of other embodiment of this invention. 本発明の更に他の実施形態の要部構成図である。It is a principal part block diagram of other embodiment of this invention. 図3に示す本発明の実施形態の動作説明図である。FIG. 4 is an operation explanatory diagram of the embodiment of the present invention shown in FIG. 3. 太陽電池を用いた分散型電源の動作説明図である。It is operation | movement explanatory drawing of the distributed power supply using a solar cell. 従来の系統連系インバータのブロック図である。It is a block diagram of the conventional system interconnection inverter. 系統連系インバータの他の従来例のブロック図である。It is a block diagram of other conventional examples of a system interconnection inverter. 系統連系インバータの更に他の従来例のブロック図である。FIG. 11 is a block diagram of still another conventional example of a system interconnection inverter. 太陽電池アレイの電力−電圧特性図である。It is a power-voltage characteristic diagram of a solar cell array.

符号の説明Explanation of reference numerals

1 商用電力系統
3 変電所
4 配電線
5 遮断器
6 柱上トランス
8、8a、8b、8c、8d 太陽電池アレイ
9 インバータ回路
10 インバータ装置
11 遮断器
12 単独運転検知手段
14 演算手段
15 出力可変手段
16 制御手段
17 表示手段
20 マイクロコンピュータ
21 DC/DCコンバータ
22 逆流防止ダイオード
23 インバータ部
24、24a、24b、24c 電力検出部
25 制御回路
26、26a、26b、26c 昇圧チョッパ部
27、27a、27b、27c ダイオード
28、28a、28b、28c リアクトル
29 コンデンサ
30 分圧抵抗
31a 電流共振型高周波インバータ
32a 高周波絶縁トランス
33a、33a' 整流ダイオード
34a、34b、34c、34d 波形成形部
35 コンデンサ
36 商用周波インバータ
37、38 制御回路
39 ACフィルタ
40、40a、40b、40c スイッチ素子
41 系統連系インバータ
DESCRIPTION OF SYMBOLS 1 Commercial power system 3 Substation 4 Distribution line 5 Circuit breaker 6 Pole-mounted transformer 8, 8a, 8b, 8c, 8d Solar cell array 9 Inverter circuit 10 Inverter device 11 Circuit breaker 12 Individual operation detection means 14 Calculation means 15 Output variable means 16 Control Means 17 Display Means 20 Microcomputer 21 DC / DC Converter 22 Backflow Prevention Diode 23 Inverter 24, 24a, 24b, 24c Power Detector 25 Control Circuit 26, 26a, 26b, 26c Booster Chopper 27, 27a, 27b, 27c Diode 28, 28a, 28b, 28c Reactor 29 Capacitor 30 Voltage dividing resistor 31a Current resonance type high frequency inverter 32a High frequency insulation transformer 33a, 33a 'Rectifying diode 34a, 34b, 34c, 34d Waveform shaping part 35 Capacitor 36 commercial frequency inverter 37, 38 control circuit 39 AC filter 40, 40a, 40b, 40c switch element 41 system interconnection inverter

Claims (2)

複数の太陽電池電力入力部と、該複数の太陽電池電力入力部に接続された各々の太陽電池アレイに対する最大電力追従を行う最大電力追従部と、前記複数の太陽電池電力入力部より入力される入力電力を前記太陽光発電用電力変換装置の主回路内で結合する結合手段と、該結合手段で結合した各入力電力の総和を交流電力に変換するインバータを設けた太陽光発電用電力変換装置において、
前記複数の太陽電池電力入力部はDC/DCコンバータで構成され、該DC/DCコンバータの出力端で各々の電力が結合され、その後段に接続されるインバータにより交流電力に変換され、
前記DC/DCコンバータは、各々に接続された太陽電池アレイの動作電圧を該アレイの最大電力点に制御するとともに、電力結合された出力端の電圧が所定の保護電圧値より大きくなる場合は最大電力追従を止めて、前記DC/DCコンバータの電力結合された出力端の電圧が前記保護電圧値を超えないように、前記DC/DCコンバータによって供給される電力を抑制することを特徴とする太陽光発電用電力変換装置。
A plurality of solar cell power input units, a maximum power tracking unit that performs maximum power tracking for each solar cell array connected to the plurality of solar cell power input units, and input from the plurality of solar cell power input units. A power converter for photovoltaic power generation, comprising: coupling means for coupling input power in a main circuit of the power converter for photovoltaic power generation, and an inverter for converting a sum of input powers coupled by the coupling means into AC power. At
The plurality of solar cell power input units are constituted by DC / DC converters, each power is combined at an output terminal of the DC / DC converter, and is converted into AC power by an inverter connected to a subsequent stage,
The DC / DC converter controls an operating voltage of a solar cell array connected to each of the DC / DC converters to a maximum power point of the array and, when a voltage of a power-coupled output terminal becomes larger than a predetermined protection voltage value, a maximum. The solar power supply is stopped and the power supplied by the DC / DC converter is suppressed so that the voltage of the power-coupled output terminal of the DC / DC converter does not exceed the protection voltage value. Power converter for photovoltaic power generation.
複数の太陽電池電力入力部と、該複数の太陽電池電力入力部に接続された各々の太陽電池アレイに対する最大電力追従を行う最大電力追従部と、前記複数の太陽電池電力入力部より入力される入力電力を前記太陽光発電用電力変換装置の主回路内で結合する結合手段と、該結合手段で結合した各入力電力の総和を交流電力に変換するインバータを設けた太陽光発電用電力変換装置において、
前記複数の太陽電池電力入力部は、電流共振型の高周波インバータ部と絶縁トランス部と整流部の順序で構成され、各整流部の出力を結合して後段のインバータ部で交流電力に変換することを特徴とする太陽光発電用電力変換装置。
A plurality of solar cell power input units, a maximum power tracking unit that performs maximum power tracking for each solar cell array connected to the plurality of solar cell power input units, and input from the plurality of solar cell power input units. A power converter for photovoltaic power generation, comprising: coupling means for coupling input power in a main circuit of the power converter for photovoltaic power generation, and an inverter for converting a sum of input powers coupled by the coupling means into AC power. At
The plurality of solar cell power input sections are configured in the order of a current resonance type high-frequency inverter section, an insulating transformer section, and a rectifying section, and the outputs of the respective rectifying sections are combined and converted into AC power by a subsequent-stage inverter section. A power converter for photovoltaic power generation.
JP2004088228A 2004-03-25 2004-03-25 Power conversion apparatus for solar power generation Pending JP2004194500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088228A JP2004194500A (en) 2004-03-25 2004-03-25 Power conversion apparatus for solar power generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004088228A JP2004194500A (en) 2004-03-25 2004-03-25 Power conversion apparatus for solar power generation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12469298A Division JP3568023B2 (en) 1998-05-07 1998-05-07 Power converter for photovoltaic power generation

Publications (1)

Publication Number Publication Date
JP2004194500A true JP2004194500A (en) 2004-07-08

Family

ID=32768320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088228A Pending JP2004194500A (en) 2004-03-25 2004-03-25 Power conversion apparatus for solar power generation

Country Status (1)

Country Link
JP (1) JP2004194500A (en)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020813B1 (en) * 2010-04-08 2011-03-09 플러스이앤지 주식회사 Solar cell generating apparatus
CN102237690A (en) * 2010-12-30 2011-11-09 保定天威集团有限公司 Method for improving overall efficiency of photovoltaic inverter system
CN102237823A (en) * 2010-12-30 2011-11-09 保定天威集团有限公司 Photovoltaic power optimizer
JP2012019675A (en) * 2010-07-11 2012-01-26 Triune Ip Llc Dynamic energy harvesting control
WO2012140781A1 (en) * 2011-04-15 2012-10-18 三菱電機株式会社 Dc/dc power conversion device and photovoltaic power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
GB2498790A (en) * 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
CN105553391A (en) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 Photovoltaic energy storage battery power generation system and control method
EP2017948A3 (en) * 2007-07-16 2016-05-25 Enphase Energy, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN108777502A (en) * 2018-06-27 2018-11-09 佛山市诺行科技有限公司 A kind of accumulator direct-furnish driving device of lift-sliding parking equipment
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations

Cited By (163)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8587151B2 (en) 2006-12-06 2013-11-19 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US8659188B2 (en) 2006-12-06 2014-02-25 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
EP2017948A3 (en) * 2007-07-16 2016-05-25 Enphase Energy, Inc. Method and apparatus for converting a direct current to alternating current utilizing a plurality of inverters
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US8773092B2 (en) 2007-08-06 2014-07-08 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US8599588B2 (en) 2007-12-05 2013-12-03 Solaredge Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US8710699B2 (en) 2009-12-01 2014-04-29 Solaredge Technologies Ltd. Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
KR101020813B1 (en) * 2010-04-08 2011-03-09 플러스이앤지 주식회사 Solar cell generating apparatus
WO2011126346A2 (en) * 2010-04-08 2011-10-13 플러스이앤지 주식회사 Solar photovoltaic device and a control method therefor
WO2011126346A3 (en) * 2010-04-08 2012-01-26 플러스이앤지 주식회사 Solar photovoltaic device and a control method therefor
JP2012019675A (en) * 2010-07-11 2012-01-26 Triune Ip Llc Dynamic energy harvesting control
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
CN102237690A (en) * 2010-12-30 2011-11-09 保定天威集团有限公司 Method for improving overall efficiency of photovoltaic inverter system
CN102237823A (en) * 2010-12-30 2011-11-09 保定天威集团有限公司 Photovoltaic power optimizer
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
WO2012140781A1 (en) * 2011-04-15 2012-10-18 三菱電機株式会社 Dc/dc power conversion device and photovoltaic power generation system
JP5528622B2 (en) * 2011-04-15 2014-06-25 三菱電機株式会社 DC / DC power converter and solar power generation system
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
GB2498790A (en) * 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
CN105553391A (en) * 2016-01-22 2016-05-04 成都瑞顶特科技实业有限公司 Photovoltaic energy storage battery power generation system and control method
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
CN108777502A (en) * 2018-06-27 2018-11-09 佛山市诺行科技有限公司 A kind of accumulator direct-furnish driving device of lift-sliding parking equipment

Similar Documents

Publication Publication Date Title
JP3568023B2 (en) Power converter for photovoltaic power generation
JP2004194500A (en) Power conversion apparatus for solar power generation
US20210273579A1 (en) Maximizing power in a photovoltaic distributed power system
Chen et al. Design and implementation of three-phase two-stage grid-connected module integrated converter
US8704493B2 (en) Battery system
De Brito et al. Research on photovoltaics: review, trends and perspectives
US20050105224A1 (en) Inverter apparatus connected to a plurality of direct current power sources and dispersed-power-source system having inverter apparatus linked to commercial power system to operate
US9077202B1 (en) Power converter with series energy storage
US9048692B2 (en) Controlled converter architecture with prioritized electricity supply
US9866144B2 (en) Three port converter with dual independent maximum power point tracking and dual operating modes
US20120161526A1 (en) Dc power source conversion modules, power harvesting systems, junction boxes and methods for dc power source conversion modules
JP2013013306A (en) Dc to dc power converters and methods of controlling the same
KR20070033395A (en) String-based solar power control device
KR101214676B1 (en) Electric generating system using solar cell
EP3433914B1 (en) Maximizing power in a photovoltaic distributed power system
JPWO2014147771A1 (en) Solar power system
Lee et al. Current sensorless MPPT control method for dual-mode PV module-type interleaved flyback inverters
Agamy et al. A high efficiency DC-DC converter topology suitable for distributed large commercial and utility scale PV systems
Ertan et al. Comparison of efficiency of two dc-to-ac converters for grid connected solar applications
KR101099919B1 (en) Power conversion control device using solar cell
Kanakasabapathy Multistring seven-level inverter for standalone photovoltaic systems
KR100996507B1 (en) Solar cell generation using multi-phase step-up converter
KR20140093355A (en) Photovoltaic system that contains the string voltage booster
WO2013098844A2 (en) Grid tie inverter
KR20140140656A (en) Solar power supplying apparatus and cotroll method of power supplying thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060627