JP2006278755A - Solar battery module and solar power generation system using same - Google Patents

Solar battery module and solar power generation system using same Download PDF

Info

Publication number
JP2006278755A
JP2006278755A JP2005096097A JP2005096097A JP2006278755A JP 2006278755 A JP2006278755 A JP 2006278755A JP 2005096097 A JP2005096097 A JP 2005096097A JP 2005096097 A JP2005096097 A JP 2005096097A JP 2006278755 A JP2006278755 A JP 2006278755A
Authority
JP
Japan
Prior art keywords
solar cell
cell module
power generation
power
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005096097A
Other languages
Japanese (ja)
Inventor
Yoshikazu Ijiri
善和 井尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005096097A priority Critical patent/JP2006278755A/en
Publication of JP2006278755A publication Critical patent/JP2006278755A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a module which effectively suppresses a rise in temperature of a solar battery device to increase power generation efficiency, and to provide a solar power generation system which can suppress a spread of a fire breaking out in a house and a secondary disaster such as an electric shock by stopping the solar battery module from generating electric power when the fire breaks out in the house. <P>SOLUTION: The solar battery module is constituted by arranging a translucent substrate, the solar battery device, and a reverse-surface protecting material one over another. A gap connecting with the outside is provided between the translucent substrate and solar battery device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気冷却構造を有する太陽電池モジュール及びこれを用いた太陽光発電システムに関する。   The present invention relates to a solar cell module having an air cooling structure and a solar power generation system using the solar cell module.

近年、地球環境問題、省エネルギーへの関心の高まりとともに、自然エネルギーを利用した新エネルギー技術が注目されている。そのひとつとして、太陽エネルギーを利用したシステムへの関心が高く、特に、太陽光発電装置の住宅への普及が加速されてきている。   In recent years, attention has been paid to new energy technology using natural energy as global environmental problems and energy conservation have increased. As one of them, interest in solar energy-based systems is high, and in particular, the spread of solar power generation devices to homes has been accelerated.

太陽光発電装置は、その主要な構成要素である太陽電池モジュールにより太陽光エネルギーを電力に変換して利用することにより家庭の電気負荷を低減させるものである。住宅においては、家屋の屋根上に太陽電池モジュールを配設して利用されることが多いため、屋根上への太陽電池モジュールの取り付け構造も種々考案されている。この太陽光発電システムに使用される太陽電池モジュールは住宅屋根に代表される既設の設置面、また地上架台、陸屋根架台等に代表されるような新設された設置面に設置される。それらの設置面に設置するための太陽電池モジュールは、複数の太陽電池素子を直並列に接続し、強化ガラス・封入樹脂・耐候性フィルムで挟持する構造が一般的である。   A solar power generation device reduces the electric load of a home | home by converting solar energy into electric power and using it by the solar cell module which is the main component. In a house, since a solar cell module is often used on a roof of a house, various structures for mounting the solar cell module on the roof have been devised. The solar cell module used in this solar power generation system is installed on an existing installation surface represented by a residential roof, or a newly installed surface represented by a ground mount, a flat roof mount, or the like. Solar cell modules for installation on those installation surfaces generally have a structure in which a plurality of solar cell elements are connected in series and sandwiched between tempered glass, encapsulating resin, and a weather resistant film.

図7は従来の太陽光発電装置に係る太陽電池モジュールの概略断面図である。   FIG. 7 is a schematic cross-sectional view of a solar cell module according to a conventional solar power generation device.

図7に示す太陽電池モジュール40によれば、20は太陽電池素子であり、たとえばシリコン等から成る半導体の光電変換効果を利用して電力が得られるように構成したものであって、このような太陽電池素子20を複数個直列および並列に電気的に接続し、そして、耐候性のある素材で覆うように成し、所要の出力電圧や出力電流を得るようにしている。この太陽電池素子は単結晶や多結晶シリコンなどの結晶系太陽電池や、薄膜系太陽電池などにより構成する。   According to the solar cell module 40 shown in FIG. 7, reference numeral 20 denotes a solar cell element, which is configured to obtain electric power by using a photoelectric conversion effect of a semiconductor made of, for example, silicon. A plurality of solar cell elements 20 are electrically connected in series and in parallel and covered with a weather-resistant material so as to obtain a required output voltage and output current. This solar cell element is constituted by a crystalline solar cell such as single crystal or polycrystalline silicon, or a thin film solar cell.

かかる太陽電池モジュール40においては、太陽電池素子20の受光面にはガラス板や合成樹脂板などの光透過板21を配置し、その裏面である非受光面にはテフロン(登録商標)フィルムやPVF(ポリフッ化ビニル)、PET(ポレエチレンテレフタレート)などの耐候性フィルム22を被着し、光透過板21と耐候性フィルム22との間には、たとえばEVA(エチレン−酢酸ビニル共重合樹脂)などから成る透明な合成樹脂を介在し、充填材26と成している。そして、これら光透過板21、太陽電池素子20および耐候性フィルム22の重ね構造の矩形状の本体に対し、その各辺周囲をアルミニウム金属やSUS等から成る枠体25を挟み込むように装着し、太陽電池モジュール40全体の強度を高めている。また、太陽電池モジュール40の裏面には、すなわち耐候性フィルム22の上にはABS樹脂などの合成樹脂やアルミニウム金属などで構成したジャンクションボックス23を接着し、太陽電池モジュール40の出力電力を取り出すターミナルと成している。   In such a solar cell module 40, a light transmission plate 21 such as a glass plate or a synthetic resin plate is disposed on the light receiving surface of the solar cell element 20, and a Teflon (registered trademark) film or PVF is disposed on the non-light receiving surface as the back surface. (Polyvinyl fluoride), PET (Polyethylene terephthalate) or other weather-resistant film 22 is attached, and between the light transmission plate 21 and the weather-resistant film 22, for example, EVA (ethylene-vinyl acetate copolymer resin) A transparent synthetic resin made of is used to form a filler 26. Then, the light transmitting plate 21, the solar cell element 20, and the weather resistant film 22 are attached to the rectangular main body so as to sandwich the frame 25 made of aluminum metal, SUS or the like around each side, The strength of the entire solar cell module 40 is increased. Further, a junction box 23 made of synthetic resin such as ABS resin or aluminum metal is bonded to the back surface of the solar cell module 40, that is, on the weather resistant film 22, and a terminal for taking out the output power of the solar cell module 40. It is made.

図8は従来の住宅の屋根上に太陽電池モジュールを複数載置し、太陽光発電装置とした様子を示す斜視図である。   FIG. 8 is a perspective view showing a state in which a plurality of solar cell modules are placed on the roof of a conventional house to obtain a solar power generation device.

図8に示す住宅の屋根上に複数の太陽電池モジュール40を載置した太陽光発電装置Jによれば、太陽電池モジュール40を複数配設して太陽電池アレイと成し、この太陽電池アレイで発電された電力を送電ケーブル38および接続37を通して電力変換装置36へ送電する。さらに詳しく述べると、通常送電ケーブル38の電線は複数本であることが多く、送電ケーブル38の電線を接続箱37で並列接続している。そして、太陽電池アレイで発電された直流電力を交流電力に変換する電力変換装置36に入力し、一般の交流負荷に供給したり、もしくは系統連系により電力会社へ売電することができるようにしている。   According to the solar power generation device J in which a plurality of solar cell modules 40 are mounted on the roof of a house shown in FIG. 8, a plurality of solar cell modules 40 are arranged to form a solar cell array. The generated power is transmitted to the power converter 36 through the power transmission cable 38 and the connection 37. More specifically, the electric power transmission cable 38 usually has a plurality of electric wires, and the electric wires of the electric power transmission cable 38 are connected in parallel by the connection box 37. Then, the DC power generated by the solar cell array is input to the power converter 36 that converts AC power into AC power, and supplied to a general AC load, or can be sold to a power company through grid connection. ing.

また、太陽光発電システムの電力変換装置は、太陽電池の直流電力を商用電力系統或いは交流負荷に供給する為に直流−交流の電力変換を行うが、このような電力変換制御だけでなく、日照状況や天候や気温など様々な情報を統括して判断し、利用者に付加価値の高い情報を提供するとともに電力変換制御をより最適な状態にしたものもある。   In addition, the power conversion device of the solar power generation system performs DC-AC power conversion in order to supply the DC power of the solar cell to the commercial power system or the AC load. There are some which judge various information such as the situation, weather, and temperature in an integrated manner, provide high value-added information to users and make power conversion control more optimal.

一方、太陽光発電システムでは、太陽電池モジュールの温度が上昇すると発電効率が低下し、温度が下がると発電効率が向上する。そのため、特に夏場等の太陽電池モジュールの温度上昇を抑えることが求められており、発電効率を高める為に太陽電池モジュールの裏側に通気のための通路を設けたり、冷却水による強制水冷機構を設けて太陽電池モジュールの温度を下げる工夫がされている。   On the other hand, in the solar power generation system, the power generation efficiency decreases when the temperature of the solar cell module increases, and the power generation efficiency improves when the temperature decreases. Therefore, it is required to suppress the temperature rise of the solar cell module especially in summer, etc. In order to improve power generation efficiency, a passage for ventilation is provided on the back side of the solar cell module, or a forced water cooling mechanism using cooling water is provided. In order to reduce the temperature of the solar cell module.

また、太陽電池モジュールの冷却に関して、太陽電池モジュールの裏面に通気層を設け、室内の空気を送風し、太陽電池モジュールの温度を下げて、発電効率を上げる太陽光発電システムが提案されている(特許文献1参照)。
特開平9−235845号公報
Moreover, regarding the cooling of the solar cell module, a solar power generation system has been proposed in which a ventilation layer is provided on the back surface of the solar cell module, air is blown indoors, the temperature of the solar cell module is lowered, and the power generation efficiency is increased ( Patent Document 1).
Japanese Patent Laid-Open No. 9-235845

しかしながら、太陽電池モジュールの裏側の通気を良好にするためには太陽電池モジュールを住宅の屋根面から離して設置する必要があり、家屋の外観を損なう。また、風の影響を受けやすくなり、台風等の風荷重に対抗できる強固な固定方法が必要になり、屋根面への負担も大きい。   However, in order to improve the ventilation of the back side of the solar cell module, it is necessary to install the solar cell module away from the roof surface of the house, which impairs the appearance of the house. In addition, it is easily affected by wind, and a strong fixing method that can resist wind loads such as typhoons is required, and the load on the roof surface is large.

また、強制水冷方式のような複雑な機構を用いる場合には、太陽光発電システムとは別に冷却機器が必要であり、そのための施工も必要である。   In addition, when a complicated mechanism such as a forced water cooling method is used, a cooling device is required separately from the solar power generation system, and construction for that is also required.

ところで、一般に電力変換装置は、太陽電池モジュールが発電を行えば自動的に運転を行うものであり、電力会社の商用電力系統の停電などが発生した時には発電電力の逆潮流(太陽電池を設置した家屋から電流を逆流させ、電気を電力会社に売電すること)を停止させる機能を有しているが、その場合にも太陽電池モジュールで発電された電力は家屋内外を伝って電力変換装置に入力されたままである。よって、例えば、家屋に火災が生じて、天井などを通していた太陽電池モジュールから電力変換装置への送電線を燃やし、炭化した建築材などが送電線を流れる太陽電池モジュールの発電電力をショートさせた場合、発電電力による火花や発熱によってさらに延焼を拡大させる。また、被覆が溶けて露出した芯線による感電等の二次災害が発生する危険がある。   By the way, in general, a power conversion device automatically operates when a solar cell module generates power. When a power failure occurs in a commercial power system of an electric power company, a reverse flow of generated power (a solar cell is installed). It has a function to stop the current from flowing back from the house and selling electricity to the power company). In this case, too, the power generated by the solar cell module travels inside and outside the house to the power converter. It remains entered. Therefore, for example, when a fire occurs in a house, the transmission line from the solar cell module that passed through the ceiling to the power conversion device is burned, and the generated power of the solar cell module in which carbonized building materials flow through the transmission line is short-circuited The fire spread is further expanded by sparks and heat generated by the generated power. In addition, there is a risk of secondary disasters such as electric shock due to the exposed core wire after the coating melts.

また、通常の太陽光発電システムでは、太陽光発電システム自体に延焼が及び、発煙した場合や、家屋で火災が発生している最中でも、太陽光発電システム自身が故障停止もしくは手動停止が行われるまでは発電を継続する。その為、太陽光発電システムの電力変換装置が焼損し、異常を発生させた場合でも、外部から電力が供給され続け、電力ラインに使用されている半導体素子等の電子部品やその他の部分から新たに発火する恐れや、電力ラインに触れて感電する等の二次災害を助長する可能性がある。   In addition, in a normal solar power generation system, the solar power generation system itself is stopped by failure or manual stop even when the solar power generation system itself spreads fire and emits smoke or a fire is occurring in the house. Until then, power generation continues. Therefore, even if the power conversion device of the solar power generation system burns out and generates an abnormality, power is continuously supplied from the outside and new from electronic components such as semiconductor elements used in the power line and other parts. There is a possibility of igniting a secondary accident such as a fire or touching the power line to cause a secondary disaster.

そこで本発明の太陽電池モジュールの目的は、太陽電池素子の温度上昇を効果的に抑えて、発電効率をより高めることにある。   Then, the objective of the solar cell module of this invention is to suppress the temperature rise of a solar cell element effectively, and to raise electric power generation efficiency more.

また、本発明の他の太陽電池モジュールの目的は、家屋で火災が発生した場合にそれを検知することにある。   Another object of the solar cell module of the present invention is to detect when a fire occurs in a house.

また、本発明の太陽光発電システムは、太陽電池素子の温度上昇を効果的に抑えて、発電効率をより高めることにある。   Moreover, the solar power generation system of this invention exists in suppressing the temperature rise of a solar cell element effectively, and improving a power generation efficiency more.

さらに、本発明の太陽光発電システムは、家屋で火災が発生した場合に、太陽電池の発電を停止し、家屋の延焼の助長や感電等の二次災害を抑えることが出来る太陽光発電システムを提供することにある。   Furthermore, the solar power generation system of the present invention is a solar power generation system that can stop the power generation of solar cells when a fire occurs in a house and suppress secondary disasters such as the promotion of fire spread of houses and electric shocks. It is to provide.

本発明の太陽電池モジュールは、透光性基板と太陽電池素子と裏面保護材とを重ねるように配設して成る太陽電池モジュールであって、前記透光性基板と前記太陽電池素子との間に外部と繋がる間隙を設けたことを特徴とする。   The solar cell module of the present invention is a solar cell module formed by arranging a translucent substrate, a solar cell element, and a back surface protective material so as to overlap each other, and is between the translucent substrate and the solar cell element. It is characterized in that a gap connecting to the outside is provided.

また、本発明の太陽光発電システムは、請求項1に記載の太陽電池モジュールを屋根に設置し、前記太陽電池モジュールの発電電力を負荷に供給し、もしくは商用電力系統に逆潮流する電力変換装置を備えた太陽光発電システムであって、前記太陽電池モジュールの間隙に室内換気用の排気ダクトを接続したことを特徴とする。   Moreover, the solar power generation system of this invention installs the solar cell module of Claim 1 in a roof, supplies the generated electric power of the said solar cell module to a load, or reversely flows into a commercial power system. An exhaust duct for room ventilation is connected to the gap between the solar cell modules.

さらに、本発明の他の太陽光発電システムは、前記太陽電池モジュールと前記電力変換装置との間に前記太陽電池モジュールの発電状態を検出できる検出部、前記太陽電池モジュールと前記電力変換装置との電気的接続を遮断できる遮断部及び前記遮断部を制御する制御部を備えた発電出力制御装置を設けたことを特徴とする。   Furthermore, another solar power generation system of the present invention includes a detection unit capable of detecting a power generation state of the solar cell module between the solar cell module and the power conversion device, and the solar cell module and the power conversion device. A power generation output control device including a shut-off unit that can cut off the electrical connection and a control unit that controls the shut-off unit is provided.

本発明の太陽電池モジュールによれば、透光性基板と太陽電池素子と裏面保護材とを重ねるように配設して成る太陽電池モジュールであって、前記透光性基板と前記太陽電池素子との間に外部と繋がる間隙を設けたことで、家屋内の低い温度の空気を太陽電池モジュールの冷却に用いることにより、太陽電池の発電効率を向上させ、かつ、住宅等で火災が発生した場合に、それを検知することが可能である。   According to the solar cell module of the present invention, the solar cell module is formed by stacking the translucent substrate, the solar cell element, and the back surface protective material, the translucent substrate, the solar cell element, When the gap between the outside and the outside is provided, the low temperature air in the house is used for cooling the solar cell module, so that the power generation efficiency of the solar cell is improved and a fire occurs in a house etc. It is possible to detect this.

また、本発明の太陽電池システムによれば、請求項1に記載の太陽電池モジュールを屋根に設置し、前記太陽電池モジュールの発電電力を負荷に供給し、もしくは商用電力系統に逆潮流する電力変換装置を備えた太陽光発電システムであって、前記太陽電池モジュールの間隙に室内換気用の排気ダクトを接続したことで、上記の効果が得られる。   Moreover, according to the solar cell system of the present invention, the solar cell module according to claim 1 is installed on the roof, and the power generated by the solar cell module is supplied to the load or is reversely flowed to the commercial power system. In the photovoltaic power generation system including the device, the above effect can be obtained by connecting an exhaust duct for indoor ventilation to the gap between the solar cell modules.

さらに、本発明の他の太陽電池システムによれば、前記太陽電池モジュールと前記電力変換装置との間に前記太陽電池モジュールの発電状態を検出できる検出部、前記太陽電池モジュールと前記電力変換装置との電気的接続を遮断できる遮断部及び前記遮断部を制御する制御部を備えた発電出力制御装置を設けたことで、住宅等で火災が発生した場合に、それを検知し、発電電力による延焼の助長や、感電などの二次災害を未然に防止することが可能である。   Furthermore, according to another solar cell system of the present invention, a detection unit capable of detecting a power generation state of the solar cell module between the solar cell module and the power conversion device, the solar cell module and the power conversion device, By providing a power generation output control device equipped with a shut-off unit that can cut off the electrical connection of the unit and a control unit that controls the shut-off unit, when a fire occurs in a house, etc., it is detected and the fire spread by the generated power And secondary disasters such as electric shock can be prevented.

また、火災により電力変換装置側に異常が発生した場合でも、火災発生を早急に検出して太陽電池からの送電を逸早く止めることにより、発電電力の入力によって電力変換装置の内部部品を破損・焼損させることを防止することができる。   In addition, even if an abnormality occurs on the power converter side due to a fire, the internal components of the power converter unit are damaged or burned out by the input of generated power by detecting the occurrence of a fire immediately and stopping the power transmission from the solar cell quickly. Can be prevented.

また、火災において屋根材上の太陽電池モジュールは最後まで火災の影響を受けにくいため、発電を継続させて消化活動中の作業者が発電電力で感電するのを防止し、消化活動による二次災害を防げる。   In addition, since the solar cell module on the roofing material is less susceptible to fire in the event of a fire, the power generation is continued to prevent workers during digestion activities from receiving electric shock from the generated power, and secondary disasters caused by digestion activities Can be prevented.

以下に、本発明の実施形態の一例を、模式的に示した図に基づいて詳細に説明する。図1は本発明に係る太陽電池モジュールの構造を示す断面図であり、図2は前記太陽電池モジュール1を住宅の屋根上に配置し、太陽電池モジュール1の冷却が行なわれる様子を示す断面図である。   Hereinafter, an example of an embodiment of the present invention will be described in detail based on the drawings schematically shown. FIG. 1 is a cross-sectional view showing a structure of a solar cell module according to the present invention, and FIG. 2 is a cross-sectional view showing a state in which the solar cell module 1 is arranged on a roof of a house and the solar cell module 1 is cooled. It is.

図1に示すように、太陽電池モジュール1は、シリコン等から成る単結晶や多結晶シリコンなどの結晶系太陽電池や、薄膜系太陽電池である太陽電池素子20を複数個直列および並列に電気的に接続し、そして、耐候性のある素材で覆うように成し、所要の出力電圧や出力電流を得るように構成したものであって、太陽電池素子20の受光面にはガラス板や合成樹脂板や耐候性フィルム22などの透光性のある素材を配置し、その裏面である非受光面にはテフロン(登録商標)フィルムやPVF(ポリフッ化ビニル)、PET(ポレエチレンテレフタレート)などの耐候性フィルム22を被着し、耐候性フィルム22間には、たとえばEVA(エチレン−酢酸ビニル共重合樹脂)などから成る透明な合成樹脂を介在し、充填材26と成している。なお、本例では太陽電池素子20の両面に透光性のある耐候性フィルム22を配した構造を用いて説明するが、受光面側をガラス等にしても同様である。太陽電池素子20の裏面側の耐候性フィルム22にはABS樹脂などの合成樹脂やアルミニウム金属などで構成したジャンクションボックス23を接着し、太陽電池素子20の出力電力を取り出すターミナルと成している。これをもって発電部27としている。   As shown in FIG. 1, a solar cell module 1 includes a plurality of solar cell elements 20 which are crystalline solar cells such as single crystal and polycrystalline silicon made of silicon or the like, or thin film solar cells, in series and in parallel. And is covered with a weather-resistant material so as to obtain a required output voltage or output current, and a glass plate or a synthetic resin is formed on the light receiving surface of the solar cell element 20. A light-transmitting material such as a plate or weather-resistant film 22 is arranged, and the non-light-receiving surface, which is the back surface thereof, is weather-resistant such as Teflon (registered trademark) film, PVF (polyvinyl fluoride), PET (polyethylene terephthalate), etc. A transparent synthetic resin made of, for example, EVA (ethylene-vinyl acetate copolymer resin) or the like is interposed between the weather resistant films 22 to form a filler 26. . In addition, although this example demonstrates using the structure which has arrange | positioned the weather-resistant film 22 with translucency on both surfaces of the solar cell element 20, it is the same even if the light-receiving surface side is glass. A junction box 23 made of synthetic resin such as ABS resin or aluminum metal is bonded to the weather-resistant film 22 on the back surface side of the solar cell element 20 to form a terminal for taking out the output power of the solar cell element 20. This is the power generation unit 27.

また、発電部27の受光面側耐候性フィルム22は省いてもよい。   Further, the light-receiving surface side weather-resistant film 22 of the power generation unit 27 may be omitted.

前記発電部27の受光面側には空隙である通風路30を設けて光透過板21が配され、光透過板21と通風路30と発電部27との重ね構造の矩形状の本体に対し、その各辺周囲をアルミニウム金属やSUS等から成る枠体25を挟み込むように装着し、太陽電池モジュール1全体の強度を高めている。また、枠体25の側面には通風路30に空気を流す為の通風口10(10a、10b)が開けられており、通風路30内の空気が外気と入れ換わることが出来るようにしている。なお、前記通風口10(10a、10b)は複数の孔を開けたものとしてもよい。   A light passage plate 30 is provided on the light receiving surface side of the power generation unit 27 and a light transmission plate 21 is provided. The light transmission plate 21, the ventilation path 30, and the power generation unit 27 are stacked on a rectangular main body. The periphery of each side is mounted so as to sandwich a frame 25 made of aluminum metal, SUS, or the like, thereby increasing the strength of the entire solar cell module 1. Further, ventilation holes 10 (10a, 10b) for flowing air to the ventilation path 30 are opened on the side surface of the frame body 25 so that the air in the ventilation path 30 can be exchanged with the outside air. . The vent hole 10 (10a, 10b) may have a plurality of holes.

図2に示すように、住宅の屋根である屋根材41上に固定架台12(12a、12b)を取り付け、前記固定架台12間に太陽電池モジュール1を載置する。固定架台12(12a、12b)には太陽電池モジュール1の通風口10(10a、10b)と繋げられる通風穴9(9a〜9c)が設けられており、太陽電池モジュール1の通風路30内の空気の流入・流出が出来るようにしている。太陽電池モジュール1は固定カバー43を用いてネジ44や釘で固定架台12に固定される。   As shown in FIG. 2, a fixed base 12 (12 a, 12 b) is attached on a roof material 41 that is a roof of a house, and the solar cell module 1 is placed between the fixed bases 12. The fixed frame 12 (12a, 12b) is provided with ventilation holes 9 (9a to 9c) connected to the ventilation openings 10 (10a, 10b) of the solar cell module 1, and the inside of the ventilation path 30 of the solar cell module 1 is provided. Air inflow and outflow are made possible. The solar cell module 1 is fixed to the fixed base 12 with screws 44 and nails using a fixed cover 43.

一方、住宅の屋根には室内45の空気を屋外へ排出する排気ダクト11が設けられており、夏場などに熱せられた室内の空気を屋外に排出することで室内の温度を低下させることが出来る。前記排気ダクト11は天井46から屋根材41を抜けて固定架台12(12a、12b)に接続され、固定架台12内を通って通風穴9(9a、9b)に室内の空気が流れるようにしている。なお、本例では前記排気ダクト11には室内45の空気を強制的に排出する為の換気ファン8が設けられており、自然対流による換気よりも短時間で室内の換気を行なうことが出来るようにしているが、換気ファンを用いずに自然対流のみとして騒音の少ないシステムとしてもよい。   On the other hand, an exhaust duct 11 for discharging the air in the room 45 to the outside is provided on the roof of the house, and the room temperature can be lowered by discharging the room air heated in the summer to the outdoors. . The exhaust duct 11 passes through the roof material 41 from the ceiling 46 and is connected to the fixed mount 12 (12a, 12b) so that indoor air flows through the fixed mount 12 to the ventilation holes 9 (9a, 9b). Yes. In this example, the exhaust duct 11 is provided with a ventilation fan 8 for forcibly exhausting the air in the room 45 so that the room can be ventilated in a shorter time than ventilation by natural convection. However, it is possible to use a system with low noise by using only natural convection without using a ventilation fan.

上述のような構成とすることにより、太陽電池モジュールの冷却と火災の発生を知らしめることが可能となる。具体的には、図中矢印のように室内45で熱せられた空気は換気ファン8によって排気ダクト11を通じて屋外に排出され、屋外に設置された固定架台12a内を通って通風穴9aから太陽電池モジュール1bの通風口10aに送り込まれ、通風路30内を通過する際に太陽電池素子を冷却し、太陽電池モジュール1bの対向する辺にある通風口10bから固定架台12bの通風穴9bを通って排出される。一旦固定架台12b内に出た空気は、同様にして通風穴9cから太陽電池モジュール1cの通風口10cに送られ、太陽電池モジュール1cの冷却を行なう。   By setting it as the above structures, it becomes possible to notify the cooling of a solar cell module and generation | occurrence | production of a fire. Specifically, the air heated in the room 45 as indicated by an arrow in the figure is exhausted to the outside through the exhaust duct 11 by the ventilation fan 8, passes through the fixed frame 12a installed outdoors, and enters the solar cell from the ventilation hole 9a. When the solar cell element is sent to the ventilation port 10a of the module 1b and passes through the ventilation channel 30, the solar cell element is cooled, and the ventilation cell 10b on the opposite side of the solar cell module 1b passes through the ventilation hole 9b of the fixed base 12b. Discharged. Air that has once exited into the fixed base 12b is similarly sent from the vent hole 9c to the vent hole 10c of the solar cell module 1c to cool the solar cell module 1c.

なお、本例では固定架台12を筒状のパイプとしてダクトの役割を兼用させているが、各部に連結用のダクトを用いるようにしてもよく、また、固定架台上へ複数の太陽電池モジュールを密接して配置し、太陽電池モジュール間の通風口を直接連結してもよい。   In this example, the fixed mount 12 is used as a tubular pipe and also serves as a duct. However, a duct for connection may be used for each part, and a plurality of solar cell modules are mounted on the fixed mount. They may be arranged closely and the vents between the solar cell modules may be directly connected.

図6に前述した太陽電池モジュールを複数用いて住宅の屋根に配した太陽光発電システムを示す。図中矢印のように室内45から換気ファン8で排出された空気は排気ダクト11を通って複数の太陽電池モジュール1に送り込まれる。   FIG. 6 shows a solar power generation system using a plurality of the solar cell modules described above and arranged on the roof of a house. The air exhausted from the room 45 by the ventilation fan 8 as shown by the arrows in the drawing is sent to the plurality of solar cell modules 1 through the exhaust duct 11.

このとき、例えば室内45で小規模な火災が生じて煙50が発生したとする。煙50は空気よりも軽いので換気ファン8の動作・停止に関係なく排気ダクト11を通って各太陽電池モジュール1に流入し、太陽電池モジュール1内に侵入する。これにより、図のように外部から煙50が視認できるようになり、火災の発生が逸早く判明する。このときの太陽電池モジュール1の状態を示したのが図3である。   At this time, for example, it is assumed that a small fire is generated in the room 45 and smoke 50 is generated. Since the smoke 50 is lighter than air, the smoke 50 flows into the solar cell modules 1 through the exhaust duct 11 and enters the solar cell modules 1 regardless of the operation / stop of the ventilation fan 8. As a result, the smoke 50 can be visually recognized from the outside as shown in the figure, and the occurrence of the fire is quickly identified. FIG. 3 shows the state of the solar cell module 1 at this time.

図3によれば、太陽電池モジュール1の通風口10aから侵入した煙50が通風路30内に充満すると、光透過板21の外から視認されるのが太陽電池素子20から煙50になるので、外部から煙の発生を確認し易い。一般に太陽電池素子20は青色や黒色系のものが多いのでこのとき発生する煙50が木材などの燃える際の白色系であればより遠くからでも確認し易いが、石油等の化学合成材料が燃える際に生じる黒色の煙では視認しにくい。そこで、太陽電池素子20の非受光面側の耐候性フィルム22を白色系の明るい色にすれば、白色系の煙の際には太陽電池素子20とのコントラストによって、黒色系の煙の際には太陽電池素子20間の隙間から見える耐候性フィルム22とのコントラストによって煙50の発生をより遠方からでも確実に確認できるようにすると好適である。   According to FIG. 3, when the smoke 50 that has entered from the ventilation opening 10 a of the solar cell module 1 fills the ventilation path 30, it is visible from the outside of the light transmission plate 21 to become the smoke 50 from the solar cell element 20. It is easy to confirm the generation of smoke from the outside. In general, since the solar cell element 20 is mostly blue or black, if the smoke 50 generated at this time is white when burning wood or the like, it can be easily confirmed from a distance, but a chemical synthetic material such as petroleum burns. It is difficult to see with the black smoke that occurs. Therefore, if the weather-resistant film 22 on the non-light-receiving surface side of the solar cell element 20 is made a white bright color, when the white smoke is generated, the contrast with the solar cell element 20 causes the black smoke. It is preferable that the generation of smoke 50 can be reliably confirmed even from a distance by the contrast with the weather-resistant film 22 visible from the gap between the solar cell elements 20.

以上のように、太陽光発電システムに屋内の空気による冷却構造を用いることによって、屋内の火災の発生を逸早く知らしめることが可能となるのである。   As described above, the use of the indoor air cooling structure in the photovoltaic power generation system makes it possible to quickly notify the occurrence of an indoor fire.

ところで、前述した図6の住宅用太陽光発電システムなどでは太陽電池モジュール1からの発電電力を送電線38で電力変換装置7に送電している。一般に電力変換装置7は屋内に設置される事が多いため、送電線38は屋根裏や壁内を通した配線として家屋の外観を損ねないようにしている。このような屋内配線を行なっている場合、例えば室内45で火災が発生し天井の送電線38を焼いてショートさせたとすると、太陽電池モジュール1で発電された電力はショートした地点で火花や熱として消費され、火災による延焼をさらに助長することになる。また、火災が電力変換装置7の電子部品等を焼損させたとすると、電力変換装置7は出力側である家庭内負荷への送電を停止するが、入力側である太陽電池モジュール1からの電力を停止させることはできず、正常可動できなくなった入力側の回路部品を太陽電池モジュール1の発電電力が焼損させるといった事態が生じることにもなる。   By the way, in the above-described residential solar power generation system of FIG. 6 or the like, the generated power from the solar cell module 1 is transmitted to the power conversion device 7 through the transmission line 38. In general, since the power conversion device 7 is often installed indoors, the power transmission line 38 is wired as an attic or a wall so as not to impair the appearance of the house. When such indoor wiring is performed, for example, if a fire occurs in the room 45 and the power transmission line 38 on the ceiling is burnt and short-circuited, the power generated by the solar cell module 1 is generated as a spark or heat at the short-circuited point. Consumed and further promotes the spread of fire. Further, if the fire burns down the electronic components of the power conversion device 7, the power conversion device 7 stops power transmission to the household load on the output side, but uses the power from the solar cell module 1 on the input side. It cannot be stopped, and a situation may occur in which the power generated by the solar cell module 1 burns out the circuit components on the input side that cannot move normally.

そこで、本発明の住宅用太陽光発電システムは図4に示すように、上述した太陽電池モジュール1を用い、前記太陽電池モジュール1と、発電電力を商用電力系統3に逆潮流または商用交流負荷に供給する電力変換装置7との間に発電出力制御装置2を設け、前記発電出力制御装置2は、出力検出部6と遮断部4と制御部5とから構成され、前記出力検出部で検知された太陽電池出力が定められた条件にあるとき、制御部が遮断部を駆動して太陽電池モジュール1からの発電電力を遮断する太陽光発電システムSとする。   Therefore, as shown in FIG. 4, the residential solar power generation system of the present invention uses the solar cell module 1 described above, and converts the solar cell module 1 and the generated power into a commercial power system 3 to a reverse power flow or a commercial AC load. A power generation output control device 2 is provided between the power conversion device 7 to be supplied, and the power generation output control device 2 includes an output detection unit 6, a blocking unit 4, and a control unit 5, and is detected by the output detection unit. When the solar cell output is in a predetermined condition, the control unit drives the blocking unit to cut off the generated power from the solar cell module 1.

以下に具体的な制御方法について模式的な図を用いて詳細に説明する。   A specific control method will be described below in detail with reference to schematic diagrams.

太陽光発電システムSは図2で説明した構成による太陽電池モジュールの冷却構造であって、図4で示すように、前記太陽電池モジュール1(1a〜1c)の発電電力を交流電力に変換して商用電力系統3に逆潮流したりテレビや冷蔵庫のような商用交流負荷に電力供給する電力変換装置7と、前記太陽電池モジュール1(1a〜1c)と電力変換装置7の間に配して火災発生時に太陽電池モジュール1(1a〜1c)の発電電力を送電線38側に送電しないように電路を遮断する発電出力制御装置2によって構成される。発電出力制御装置2は各太陽電池モジュール1の発電状態を検出する出力検出部6(6a〜6c)と、前記出力検出部6で得られた情報を基に火災の発生を検出する制御部5と、前記制御部5の信号によって太陽電池モジュール1の発電出力が送電線38に送電されないよう電路を遮断する遮断部4とから成る。   The solar power generation system S is a solar cell module cooling structure having the configuration described in FIG. 2, and converts the generated power of the solar cell module 1 (1a to 1c) into AC power as shown in FIG. A power converter 7 that reversely flows into the commercial power system 3 or supplies power to a commercial AC load such as a television or a refrigerator, and a fire placed between the solar cell module 1 (1a to 1c) and the power converter 7 It is comprised by the power generation output control apparatus 2 which interrupts | blocks an electric circuit so that the generated electric power of the solar cell module 1 (1a-1c) may not be transmitted to the transmission line 38 side at the time of generation | occurrence | production. The power generation output control device 2 includes an output detection unit 6 (6a to 6c) that detects a power generation state of each solar cell module 1, and a control unit 5 that detects the occurrence of a fire based on information obtained by the output detection unit 6. And a blocking unit 4 that blocks the electric circuit so that the power generation output of the solar cell module 1 is not transmitted to the power transmission line 38 by the signal of the control unit 5.

火災発生時に電路の遮断が行われる制御を説明する。例えば図6のように家屋内で火災が発生して煙50が太陽電池モジュール1に侵入した場合、図3のように太陽電池モジュール1の太陽光の受光面は煙50で覆われてしまい、太陽電池素子20へ太陽光が届かなくなることで発電電力は著しく低下する。これを利用し、図4の回路構成において太陽電池モジュール1(1a〜1c)の発電電力が低下していないかを出力検出部6(6a〜6c)で検出し、低下が検出されたらその低下状況がどうであったかの情報を制御部5で解析処理させる。例えば、図6の太陽電池モジュールの構成であれば煙50は必ず一番下の太陽電池モジュールから順番に出力低下を生じさせるのであり、一般に太陽光の陰りによって発電出力が低下する場合には全体的に発電出力が低下するので、最初に出力電流が著しく低下して次に電圧の低下が生じるものであるが、煙による発電の低下の場合は他の太陽電池モジュールは発電電流が低下しないままなので、まず発電電圧が著しく低下し、次に徐々に発電電圧が低下する現象が生じ、最後に出力電流が低下する。よって、制御部5での解析によってこのような変化による低下であると判定されれば、火災である可能性が高いと判断できる。そして、制御部5は火災が生じていると判断すると、リレーやブレイカーのような接点機器やトランジスタやFET(電界効果トランジスタ)などの半導体素子である遮断部4に信号を送出し、送電線38への電路を遮断させる。このようにすることで火災によって送電線や電力変換装置が焼損しても、発電電力によって火災を助長することがなく、感電の危険を未然に防止する安全性の高い太陽光発電システムとすることができる。   A description will be given of control in which an electric circuit is cut off in the event of a fire. For example, when a fire occurs in the house as shown in FIG. 6 and the smoke 50 enters the solar cell module 1, the sunlight receiving surface of the solar cell module 1 is covered with the smoke 50 as shown in FIG. The generated power is significantly reduced by the fact that sunlight does not reach the solar cell element 20. Using this, the output detector 6 (6a to 6c) detects whether or not the generated power of the solar cell module 1 (1a to 1c) has decreased in the circuit configuration of FIG. Information about the situation is analyzed by the control unit 5. For example, in the configuration of the solar cell module of FIG. 6, the smoke 50 always causes an output decrease in order from the lowest solar cell module. Generally, when the power generation output decreases due to the shade of sunlight, As the power generation output decreases, the output current first decreases significantly and then the voltage decreases. However, in the case of power generation decrease due to smoke, the other solar cell modules will not decrease the power generation current. Therefore, a phenomenon occurs in which the generated voltage first decreases significantly, then the generated voltage gradually decreases, and finally the output current decreases. Therefore, if it is determined by the analysis in the control unit 5 that the change is caused by such a change, it can be determined that there is a high possibility of a fire. When the control unit 5 determines that a fire has occurred, the control unit 5 sends a signal to the contact unit such as a relay or breaker, or to the blocking unit 4 that is a semiconductor element such as a transistor or FET (field effect transistor), and the power transmission line 38. Break the electrical circuit to. In this way, even if a power transmission line or power converter is burned out by a fire, a highly safe photovoltaic power generation system that prevents the risk of electric shock without encouraging the fire with generated power Can do.

なお、上述の例では特に図示しないが一般に太陽電池モジュールの一部が影等での出力が低下した際に直列接続された他の太陽電池モジュールの出力電流が低下しないようバイパスダイオードが用いられており、このバイパスダイオードが出力低下の太陽電池モジュールが抵抗成分になるのを防止することを前提にしたものである。よってバイパスダイオードを用いない場合は太陽電池出力特性カーブ(出力電圧−電流特性)を基により高度な算出を行わせればよい。   Although not specifically shown in the above example, a bypass diode is generally used so that the output current of other solar cell modules connected in series does not decrease when the output of a part of the solar cell module decreases due to a shadow or the like. The bypass diode is based on the premise that the reduced output solar cell module is prevented from becoming a resistance component. Therefore, when the bypass diode is not used, advanced calculation may be performed based on the solar cell output characteristic curve (output voltage-current characteristic).

また、制御部5で算出される解析結果を利用し、遮断部4を駆動させると同時に火災警報を発するようにすれば、火災報知器のない部屋の火災発生を知らしめることができる。   If the analysis result calculated by the control unit 5 is used to drive the shut-off unit 4 and simultaneously issue a fire alarm, the occurrence of a fire in a room without a fire alarm can be notified.

また、制御部5で遮断部4だけでなく、屋内の商用電力系統側の送電ライン(ブレーカー等)を遮断できるようにしておけば、太陽光発電による発電電力と商用電力系統による電力供給の両方を停止させて、ショートや感電のないより安全な防災機構とすることも可能である。   Further, if the control unit 5 can block not only the blocking unit 4 but also the transmission line (breaker etc.) on the indoor commercial power system side, both the generated power by the solar power generation and the power supply by the commercial power system are provided. It is also possible to make a safer disaster prevention mechanism without short circuit or electric shock.

次に、本発明の他の実施の形態について説明する。   Next, another embodiment of the present invention will be described.

図5に示すように、太陽電池モジュール1(1a〜1b)の発電出力線35を1本にまとめ、その出力を出力検出部6で検出するようにすれば、検出個所を少なくして部品点数を削減することができる。   As shown in FIG. 5, if the power generation output lines 35 of the solar cell modules 1 (1 a to 1 b) are combined into one and the output is detected by the output detection unit 6, the number of detection points is reduced and the number of parts is reduced. Can be reduced.

また、太陽電池モジュール1以外に照度センサ13を設け、制御部5に照度情報を送出することにより、太陽電池モジュール1(1a〜1c)に煙が侵入して出力低下を生じた際に、太陽光の照度が低下したのか、火災の発生かを、より確度を高く判定することができる。この場合、制御部5で太陽電池モジュール1の発電電力の変化を解析するといった高度な演算を行わなくて良いので、CPUなどに高速・大記憶容量なものを用いなくてもよく、回路構成や制御プログラムを簡素化できる。   Moreover, when the illuminance sensor 13 is provided in addition to the solar cell module 1 and the illuminance information is sent to the control unit 5, when the smoke enters the solar cell module 1 (1a to 1c) and the output is reduced, Whether the illuminance of light has decreased or a fire has occurred can be determined with higher accuracy. In this case, since it is not necessary to perform advanced calculations such as analyzing changes in the generated power of the solar cell module 1 by the control unit 5, it is not necessary to use a high-speed, large storage capacity CPU or the like. The control program can be simplified.

また、特に図示しないが、電力変換装置7が屋根置き型や屋根裏設置型である場合には送電ケーブル38と電力変換装置7との間が短く、火災等の影響を受けにくいので、発電出力制御装置2を電力変換装置7に内蔵するようにして、相対的に引き回し距離の長くなる屋内配線39側の出力を遮断するようにすると好適である。   Although not particularly illustrated, when the power conversion device 7 is a roof type or an attic installation type, the distance between the power transmission cable 38 and the power conversion device 7 is short and is not easily affected by a fire or the like. It is preferable that the device 2 is built in the power conversion device 7 so as to cut off the output on the indoor wiring 39 side where the wiring distance is relatively long.

また、特に図示しないが、雲や物体の影による出力低下と区別する為に、太陽電池モジュール1を使用する太陽電池ストリングを全体のうちの何割かとし、太陽電池モジュール1を用いた太陽電池ストリングの発電電力と、煙を流入させる機構をもたない通常の太陽電池モジュールを用いた太陽電池ストリングの発電電力を比較して、前記太陽電池モジュール1を使用した太陽電池ストリングの発電電力だけが低下していた場合は、太陽電池素子の表面に火災による煙が回り込んで出力が低下したと判断し、双方の発電電力が低下していた場合は照度の低下や雲や物体の影による発電電力の低下と判断するようにしてもよい。   Although not shown in particular, in order to distinguish from the output drop due to the shadow of clouds or objects, the solar cell string using the solar cell module 1 is divided into some percent of the whole, and the solar cell using the solar cell module 1 is used. The generated power of the string is compared with the generated power of the solar cell string using a normal solar cell module that does not have a mechanism for allowing smoke to flow, and only the generated power of the solar cell string using the solar cell module 1 is compared. If it has decreased, it is judged that the output of the solar cell element has been reduced due to fire smoke, and if the power generated by both has decreased, power generation due to a decrease in illuminance or shadows of clouds or objects You may make it judge that electric power falls.

同様にして、寄棟屋根のように屋根上の方位の違う棟面に跨って太陽電池モジュールを設置する場合には、排気ダクトの引き回しが複雑になるので、いずれかの棟面の太陽電池モジュールにのみ煙を流入させる機構をもつ太陽電池モジュール1を用いるようにして、火災検知の機能を有したまま、太陽光発電システムを簡素化するようにしてもよい。   Similarly, when installing a solar cell module across a building surface with a different orientation on the roof, such as a dormitory roof, the routing of the exhaust duct becomes complicated, so the solar cell module on any one of the building surfaces It is also possible to use the solar cell module 1 having a mechanism for allowing smoke to flow only into the solar power generation system and simplify the photovoltaic power generation system while maintaining the fire detection function.

尚、本発明では、火災検出時に太陽光発電システムの発電を停止するだけでなく、火災発生時に屋外からでも太陽電池モジュールの表面に煙が回り込んでいる様子が見える為、屋外の通行人等の第三者が火災を発見しやすくなり、火災の早期発見・対処に貢献する。   In addition, in the present invention, not only the power generation of the solar power generation system is stopped when a fire is detected, but also smoke can be seen around the surface of the solar cell module even from the outside at the time of the fire occurrence. Makes it easier for third parties to detect fires and contributes to early detection and handling of fires.

なお、本発明は、住宅用太陽光発電システムを例にとり説明したがこれに限られるものではなく、室内換気を行う構造を有するものであれば適用が可能で、公衆トイレや産業用の太陽光発電システム等にも利用することができる。 The present invention has been described by taking a residential solar power generation system as an example. However, the present invention is not limited to this, and any structure having indoor ventilation can be applied. It can also be used for power generation systems.

本発明に係る太陽電池モジュールの構造を模式的に説明する断面図である。It is sectional drawing which illustrates the structure of the solar cell module which concerns on this invention typically. 本発明に係る太陽光発電システムが屋根上に設置された様子を示す概略断面図である。It is a schematic sectional drawing which shows a mode that the solar energy power generation system which concerns on this invention was installed on the roof. 本発明に係る太陽電池モジュールに煙が入り込む様子を説明する断面図である。It is sectional drawing explaining a mode that smoke penetrates into the solar cell module which concerns on this invention. 本発明に係る太陽光発電システムの実施形態を示す概略制御ブロック図である。It is a schematic control block diagram which shows embodiment of the solar energy power generation system which concerns on this invention. 本発明に係る他の太陽光発電システムの実施形態を示す概略制御ブロック図である。It is a general | schematic control block diagram which shows embodiment of the other solar power generation system which concerns on this invention. 本発明に係る太陽光発電システムを住宅の屋根上に配置し、空気や煙の流れを模式的に説明する正面図である。It is a front view which arrange | positions the solar energy power generation system which concerns on this invention on the roof of a house, and demonstrates typically the flow of air or smoke. 従来の太陽電池モジュールの構造を模式的に説明する断面図である。It is sectional drawing which illustrates the structure of the conventional solar cell module typically. 従来の住宅用太陽光発電システムの構成を模式的に説明する斜視図である。It is a perspective view explaining the composition of the conventional residential photovoltaic power generation system typically.

符号の説明Explanation of symbols

1a、1b、1c:太陽電池
2:発電出力制御装置
3:商用電力系統
4:遮断部
5:制御部
6a、6b、6c:出力検出部
7:電力変換装置
8:換気ファン
9:通風穴
10、10a〜10c:通風口
11:排気ダクト
12:固定架台
13:照度センサ
20:太陽電池素子
21:光透過板
22:耐候性フィルム
23:ジャンクションボックス
25:枠材
26:充填材
27:発電部
30:通風路
35:発電出力線
36:電力変換装置
37:接続箱
38:送電ケーブル
39:屋内配線
40:太陽電池モジュール
41:屋根材
43:固定カバー
44:ネジ
45:室内
46:天井
50:煙
J:太陽光発電システム
S:太陽光発電システム
DESCRIPTION OF SYMBOLS 1a, 1b, 1c: Solar cell 2: Electric power generation output control device 3: Commercial power system 4: Blocking part 5: Control part 6a, 6b, 6c: Output detection part
7: Power conversion device 8: Ventilation fan 9: Ventilation holes 10, 10a to 10c: Ventilation port 11: Exhaust duct 12: Fixed mount 13: Illuminance sensor 20: Solar cell element 21: Light transmission plate 22: Weather resistant film 23: Junction box 25: Frame material 26: Filler material 27: Power generation unit 30: Ventilation path 35: Power generation output line 36: Power conversion device 37: Connection box 38: Power transmission cable 39: Indoor wiring 40: Solar cell module 41: Roof material 43 : Fixed cover 44: Screw 45: Indoor 46: Ceiling 50: Smoke J: Solar power generation system S: Solar power generation system

Claims (3)

透光性基板と太陽電池素子と裏面保護材とを重ねるように配設して成る太陽電池モジュールであって、前記透光性基板と前記太陽電池素子との間に外部と繋がる間隙を設けたことを特徴とする太陽電池モジュール。 A solar cell module comprising a light-transmitting substrate, a solar cell element, and a back surface protective material disposed so as to overlap each other, wherein a gap connected to the outside is provided between the light-transmitting substrate and the solar cell element. A solar cell module characterized by that. 請求項1に記載の太陽電池モジュールを屋根に設置し、前記太陽電池モジュールの発電電力を負荷に供給し、もしくは商用電力系統に逆潮流する電力変換装置を備えた太陽光発電システムであって、前記太陽電池モジュールの間隙に室内換気用の排気ダクトを接続したことを特徴とする太陽光発電システム。 A solar power generation system comprising a power conversion device that is installed on the roof of the solar cell module according to claim 1 and supplies power generated by the solar cell module to a load or reversely flows to a commercial power system, A solar power generation system, wherein an exhaust duct for indoor ventilation is connected to a gap between the solar cell modules. 前記太陽電池モジュールと前記電力変換装置との間に前記太陽電池モジュールの発電状態を検出できる検出部、前記太陽電池モジュールと前記電力変換装置との電気的接続を遮断できる遮断部及び前記遮断部を制御する制御部を備えた発電出力制御装置を設けたことを特徴とする請求項2に記載の太陽光発電システム。 A detecting unit capable of detecting a power generation state of the solar cell module between the solar cell module and the power converter, a blocking unit capable of blocking an electrical connection between the solar cell module and the power converter, and the blocking unit; The photovoltaic power generation system according to claim 2, further comprising a power generation output control device including a control unit for controlling.
JP2005096097A 2005-03-29 2005-03-29 Solar battery module and solar power generation system using same Pending JP2006278755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005096097A JP2006278755A (en) 2005-03-29 2005-03-29 Solar battery module and solar power generation system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005096097A JP2006278755A (en) 2005-03-29 2005-03-29 Solar battery module and solar power generation system using same

Publications (1)

Publication Number Publication Date
JP2006278755A true JP2006278755A (en) 2006-10-12

Family

ID=37213192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005096097A Pending JP2006278755A (en) 2005-03-29 2005-03-29 Solar battery module and solar power generation system using same

Country Status (1)

Country Link
JP (1) JP2006278755A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009272566A (en) * 2008-05-09 2009-11-19 Sharp Corp Concentrator photovoltaic unit and concentrator photovoltaic system
JP2011246915A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Building Techno Service Co Ltd Roof structure using solar panels
KR101313901B1 (en) 2013-06-25 2013-09-30 주식회사 광명에스지 Apparatus having extinguisher for monitering solar cell pannel
JP2014068509A (en) * 2012-09-27 2014-04-17 Hochiki Corp Photovoltaic system
JP2015102882A (en) * 2013-11-21 2015-06-04 能美防災株式会社 Fire detection system
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9620956B2 (en) 2011-08-19 2017-04-11 Phoenix Contact Gmbh & Co. Kg Socket for a solar panel with a protective circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960732B2 (en) 2013-02-11 2018-05-01 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US10355639B2 (en) 2015-09-03 2019-07-16 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (108)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
JP2009272566A (en) * 2008-05-09 2009-11-19 Sharp Corp Concentrator photovoltaic unit and concentrator photovoltaic system
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10879840B2 (en) 2009-05-22 2020-12-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11509263B2 (en) 2009-05-22 2022-11-22 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US10686402B2 (en) 2009-05-22 2020-06-16 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11695371B2 (en) 2009-05-22 2023-07-04 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
JP2011246915A (en) * 2010-05-25 2011-12-08 Mitsubishi Electric Building Techno Service Co Ltd Roof structure using solar panels
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US9620956B2 (en) 2011-08-19 2017-04-11 Phoenix Contact Gmbh & Co. Kg Socket for a solar panel with a protective circuit
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP2014068509A (en) * 2012-09-27 2014-04-17 Hochiki Corp Photovoltaic system
US10389299B2 (en) 2013-02-11 2019-08-20 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
US9960732B2 (en) 2013-02-11 2018-05-01 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
KR101313901B1 (en) 2013-06-25 2013-09-30 주식회사 광명에스지 Apparatus having extinguisher for monitering solar cell pannel
JP2015102882A (en) * 2013-11-21 2015-06-04 能美防災株式会社 Fire detection system
US10355639B2 (en) 2015-09-03 2019-07-16 Phoenix Contact Gmbh & Co. Kg Safe photovoltaic system
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
JP2006278755A (en) Solar battery module and solar power generation system using same
US8536741B2 (en) Thermostatically controlled terminal box and photovoltaic power generation system utilizing the same
KR101777195B1 (en) Remote monitoring system for solar cell problem
US6515215B1 (en) Photovoltaic module, photovoltaic module array, photovoltaic system, and method of detecting failure of photovoltaic module
KR101822820B1 (en) Solar power generation system that can prevent fire spread by using smart sensor
US20100078492A1 (en) Solar Powered Smart Ventilation System
JP6199163B2 (en) Fire detection system
JP2000312019A (en) Solar cell module array, installation structure therefor, installation method for solar cell module, and solar power generating system
JP2000345675A (en) Solar battery module, roof with solar battery and solar battery power generating system
KR101905498B1 (en) Automatic Ventilation apparatus and method of Building Integrated Photovoltaic and smart monitorring control system
JP2006216660A (en) Solar power generation apparatus and connection controller
KR102262547B1 (en) Accident Management System of Solar Combiner Box
TWM410338U (en) Junction box for photovoltaic power generation system
WO2011062228A1 (en) Natural light tracking led lighting device
US9273840B1 (en) Integrated illumination system
JP2000022193A (en) Solar cell module
JP2013126305A (en) Power conversion unit
KR101740711B1 (en) Power converter of building integrated photovoltaic
CN101105069A (en) Solar energy photovoltaic roof system
JP6196977B2 (en) Automatic switching dual power supply light
JP2006278703A (en) Output power control method of solar power generation system
JP2016111861A (en) Photovoltaic power generation device
JP2004221209A (en) Solar cell module
CN220456982U (en) Photovoltaic combiner box
JPH06244445A (en) Solar battery module panel and operating method thereof