JPH11103538A - Optical power generating system - Google Patents

Optical power generating system

Info

Publication number
JPH11103538A
JPH11103538A JP9279497A JP27949797A JPH11103538A JP H11103538 A JPH11103538 A JP H11103538A JP 9279497 A JP9279497 A JP 9279497A JP 27949797 A JP27949797 A JP 27949797A JP H11103538 A JPH11103538 A JP H11103538A
Authority
JP
Japan
Prior art keywords
power
photovoltaic
solar cell
power generation
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9279497A
Other languages
Japanese (ja)
Inventor
Yoichi Hayashi
洋一 林
Chiyuukei You
仲慶 楊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MY WAY GIKEN KK
Original Assignee
MY WAY GIKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MY WAY GIKEN KK filed Critical MY WAY GIKEN KK
Priority to JP9279497A priority Critical patent/JPH11103538A/en
Publication of JPH11103538A publication Critical patent/JPH11103538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical power generating system that can prevent decrease of power generating efficiency of the whole system. SOLUTION: An optical power generating system 100 comprises a plurality of solar battery modules 1a to 1n, and a plurality of power converters 2a to 2n respectively connected to the modules 1a to 1n and having maximum solar energy pursuing functions. The converters 2a to 2n are connected in series to one another. The modules 1a to 1n have their output current and output voltage controlled by the maximum solar energy pursuing functions of the converters 2a to 2n, so that the maximum power generating efficiency can be always obtained. Further, a common output current flows through the output terminals of the converters 2a to 2n, and the output voltages are automatically adjusted, so that the ratio of any two voltages becomes equal to the ratio of the maximum powers of the corresponding two of the modules 1a to 1n.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光発電体から出力
される電圧、電流を電力変換して負荷やバッテリに出力
する光発電システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photovoltaic system for converting a voltage and a current output from a photovoltaic power into electric power and outputting the converted electric power to a load or a battery.

【0002】[0002]

【従来の技術】近年、光発電体の応用技術として太陽光
発電が普及しつつある。太陽光発電においては、日射強
度や周囲温度などの自然条件や太陽電池の経年変化など
により太陽電池の出力電圧−出力電流特性が変化する。
したがって、太陽電池の出力電圧および出力電流を最大
電力が取り出せる動作点(最適動作点)に保つために
は、いわゆる最大電力追尾制御(MPPT制御)が不可
欠である。
2. Description of the Related Art In recent years, photovoltaic power generation has been spreading as an applied technology of photovoltaic power generators. In solar power generation, output voltage-output current characteristics of a solar cell change due to natural conditions such as solar radiation intensity and ambient temperature, and aging of the solar cell.
Therefore, so-called maximum power tracking control (MPPT control) is indispensable in order to keep the output voltage and output current of the solar cell at an operating point at which the maximum power can be extracted (optimal operating point).

【0003】図4は、従来の光発電システムの構成を示
す図である。同図に示すように、複数個の太陽電池モジ
ュール101a〜101nを直列に接続して太陽電池パ
ネル105が構成され、その出力がMPPT制御機能を
有する電力変換器102を介して負荷に接続されてい
る。また、それぞれの太陽電池モジュール101a〜1
01nには、太陽電池モジュール101a等の表面の汚
れや日陰などによる日光の遮断あるいは故障等によって
発電能力が低下したり発電しなくなったりしたときに、
正常に作動している他の太陽電池モジュール101a〜
101nから出力される電流を流すために、バイパス素
子としてのダイオード(バイパスダイオード)104a
〜104nが接続されている。
FIG. 4 is a diagram showing a configuration of a conventional photovoltaic system. As shown in the figure, a plurality of solar cell modules 101a to 101n are connected in series to form a solar cell panel 105, the output of which is connected to a load via a power converter 102 having an MPPT control function. I have. In addition, each of the solar cell modules 101a to 101a
01n, when the power generation capacity is reduced or the power generation is stopped due to the interruption of sunlight or failure due to dirt or shade on the surface of the solar cell module 101a or the like,
Other normally operating solar cell modules 101a-
Diode (bypass diode) 104a serving as a bypass element in order to flow the current output from 101n
To 104n are connected.

【0004】[0004]

【発明が解決しようとする課題】ところで、図4に示し
たように各太陽電池モジュール101a〜101nを直
列接続して太陽電池パネル105から電力を取り出す場
合には全ての太陽電池モジュール101a〜101nに
同じ電流が流れる。これは、MPPT制御を行った場合
も同様であり、太陽電池パネル105の全体として最大
電力が得られるように所定の出力電流値が設定される。
しかし、各太陽電池モジュール101a〜101nの最
適動作点は、光の入射条件や特性の違いなどからそれぞ
れ異なっており、同一の出力電流値で全ての太陽電池モ
ジュール101a〜101nを最適動作点で動作させる
ことはできない。すなわち、太陽電池パネル105を構
成するすべての太陽電池モジュール101a〜101n
から最大電力を取り出すことができるように最適動作点
を定めることはできないため、それぞれの太陽電池モジ
ュール101a〜101nの最大発電能力を同時に引き
出すことができなかった。
When power is taken out from the solar cell panel 105 by connecting the solar cell modules 101a to 101n in series as shown in FIG. 4, all the solar cell modules 101a to 101n are connected to the solar cell modules 101a to 101n. The same current flows. This is the same when the MPPT control is performed, and a predetermined output current value is set so that the maximum power can be obtained as a whole of the solar cell panel 105.
However, the optimum operating points of the respective solar cell modules 101a to 101n are different from each other due to differences in light incident conditions and characteristics, and all the solar cell modules 101a to 101n operate at the same operating current at the same output current value. I can't let that happen. That is, all the solar cell modules 101a to 101n constituting the solar cell panel 105
Since the optimum operating point cannot be determined so that the maximum power can be extracted from the solar cell modules, the maximum power generation capacity of each of the solar cell modules 101a to 101n cannot be simultaneously extracted.

【0005】このような発電効率の低下を防止するため
には、太陽電池モジュール101a〜101nの各出力
電圧V1〜Vnを、各太陽電池モジュール101a〜1
01nにおいて最適動作点になるように制御すればよ
い。図5は、直列接続された複数個の太陽電池モジュー
ル101a〜101nの出力電圧Va〜Vnを可変に制
御する発電制御装置の構成を示す図である。同図に示す
ように、太陽電池モジュール101a〜101nには、
スイッチング素子106a〜106nのそれぞれが接続
されている。この発電制御装置は、各スイッチング素子
106a〜106nのオフデューティ(スイッチング素
子のオンオフ周期とオフ期間の比率)Da〜Dnを変え
ることで出力電圧の比が制御可能であり、出力電圧とオ
フデューティの間には、 V1:V2:…:Vn=Da:Db:…:Dn の関係が成立する。すなわち、オフデューティDa〜D
nの比を制御して、全ての太陽電池モジュール101a
〜101nが最適動作点で動作できるようにそれぞれの
出力電圧V1〜Vnを設定することにより、各太陽電池
モジュール101a〜101nから最大電力を取り出す
ことが可能となる。
In order to prevent such a decrease in power generation efficiency, the output voltages V1 to Vn of the solar cell modules 101a to 101n are connected to the respective solar cell modules 101a to 101n.
01n may be controlled so as to be the optimum operating point. FIG. 5 is a diagram illustrating a configuration of a power generation control device that variably controls output voltages Va to Vn of a plurality of solar cell modules 101a to 101n connected in series. As shown in the figure, the solar cell modules 101a to 101n include:
Each of the switching elements 106a to 106n is connected. This power generation control device can control the ratio of the output voltage by changing the off duty (the ratio between the on / off cycle of the switching element and the off period) Da to Dn of each of the switching elements 106a to 106n. ..: Vn = Da: Db:...: Dn. That is, the off-duties Da to D
n to control all the solar cell modules 101a
By setting the respective output voltages V1 to Vn so that the power supply voltages of the solar cell modules 101a to 101n can operate at the optimum operation point, it is possible to extract the maximum power from the solar cell modules 101a to 101n.

【0006】しかし、上述した発電制御装置は、スイッ
チング素子106a〜106nのそれぞれのオフデュー
ティを異なる値に制御しなければならないため、制御方
法が複雑になる。また、各太陽電池モジュール101a
〜101nを最適動作点で動作させようとすると、予め
太陽電池モジュール101a等の数を決めておく必要が
あり、太陽電池モジュール101a等の数を変更した光
発電システムにおいては、その都度オフデューティの比
も変更しなければならず、構成の柔軟性に欠けるという
問題点があった。
However, in the above-described power generation control device, the off duty of each of the switching elements 106a to 106n must be controlled to a different value, so that the control method becomes complicated. Also, each solar cell module 101a
If the number of the photovoltaic modules 101a and the like is changed in advance, the number of the photovoltaic modules 101a and the like need to be determined in advance if the number of the photovoltaic modules 101a and the like is changed. The ratio has to be changed, and there is a problem that the configuration is inflexible.

【0007】本発明は、このような点に鑑みて創作され
たものであり、その目的は、システム全体の発電効率の
低下を防止することができる光発電システムを提供する
ことにある。
[0007] The present invention has been made in view of the above points, and an object of the present invention is to provide a photovoltaic power generation system capable of preventing a reduction in power generation efficiency of the entire system.

【0008】[0008]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の光発電システムは、光エネルギーを電
気エネルギーに変換する複数の光発電体と、この光発電
体のそれぞれに接続される最大電力追尾機能を有する複
数の電力変換器とを有しており、これらの電力変換器が
直列に接続されて構成されている。それぞれの電力変換
器は、最大電力追尾機能により、接続された光発電体か
ら最大電力を取り出すことができるように、光発電体か
ら出力される電圧や電流の制御を行っている。上述した
ように、それぞれの光発電体から最大電力を取り出すこ
とができる動作点(最適動作点)は、光発電体ごとに異
なるが、このように、光発電システムを構成するそれぞ
れの光発電体が別個に常に最大電力を発生するように制
御されるため、光発電システム全体の発電効率の低下を
防止することができる。さらに、それぞれの光発電体の
発電効率は、電力変換器の最大追尾機能によって制御さ
れており、他の光発電体の発電効率の変動によって何ら
影響を受けるものではないため、負荷容量等に応じて光
発電体の数を変更するような場合であっても常に各光発
電体を最適動作点で動作させることができ、柔軟性のあ
る光発電システムを実現することができる。
In order to solve the above-mentioned problems, a photovoltaic power generation system according to the present invention includes a plurality of photovoltaic power generators for converting light energy into electric energy, and each of the photovoltaic power supplies is connected to each of the photovoltaic power generators. And a plurality of power converters having a maximum power tracking function. These power converters are connected in series. Each power converter controls the voltage and current output from the photovoltaic power generator so that the maximum power tracking function can extract the maximum power from the connected photovoltaic power generator. As described above, the operating point (optimum operating point) at which the maximum power can be extracted from each photovoltaic power generator differs for each photovoltaic power generator. Are controlled so as to always generate the maximum power separately, so that it is possible to prevent a decrease in the power generation efficiency of the entire photovoltaic power generation system. Furthermore, the power generation efficiency of each photovoltaic unit is controlled by the maximum tracking function of the power converter, and is not affected at all by fluctuations in the power generation efficiency of other photovoltaic units. Therefore, even when the number of photovoltaic power generators is changed, each photovoltaic power generator can always be operated at the optimum operating point, and a flexible photovoltaic power generation system can be realized.

【0009】また、上述した構成を有する発電モジュー
ルを並列に接続して、より大きな発電電力を得る光発電
システムを構築することもできる。このような光発電シ
ステムにおいて各発電モジュールは別々に発電動作を行
っており、各発電モジュール内の光発電体は最適動作点
で動作するため、光発電システム全体としての発電効率
の低下を防止することができる。
In addition, a photovoltaic power generation system that can obtain more generated power can be constructed by connecting the power generation modules having the above-described configuration in parallel. In such a photovoltaic power generation system, each power generation module performs a power generation operation separately, and the photovoltaic elements in each power generation module operate at an optimum operating point, thereby preventing a decrease in power generation efficiency of the entire photovoltaic power generation system. be able to.

【0010】上述した光発電体は、具体的には太陽電池
セルを組み合わせた太陽電池モジュールであり、あるい
はこれをさらに複数個組み合わせた太陽電池パネルであ
って、これらを単位として最大電力が取り出せるように
制御が行われる。特に、太陽電池モジュールごとに最適
動作点で動作させることにより、光発電システム全体で
の発電効率の低下を最小限に抑えることができる。ま
た、それよりも大きな太陽電池パネルごとに最適動作点
で動作させることにより構成の簡略化が可能となる。
The photovoltaic element described above is, specifically, a solar cell module in which solar cells are combined, or a solar cell panel in which a plurality of solar cells are further combined so that the maximum power can be taken out in units of these. Is controlled. In particular, by operating each solar cell module at the optimum operating point, it is possible to minimize a decrease in the power generation efficiency of the entire photovoltaic power generation system. In addition, the configuration can be simplified by operating at the optimum operating point for each of the larger solar cell panels.

【0011】また、上述した電力変換器は最大電力追尾
機能を有する直流/直流変換器であり、各光発電体を最
適動作点で動作させた状態で、負荷に印加する全体の出
力電圧(各電力変換器の出力電圧の総和)を一定に保ち
ながら、最大の出力電流を流すことができる。したがっ
て、光発電システムの発電量が常に個々の光発電体の最
大発電量の総和になり、各光発電体の特性や日照状態の
相違による発電効率の低下を防止することができる。
The above-mentioned power converter is a DC / DC converter having a maximum power tracking function, and the entire output voltage (each of which is applied to a load) while each photovoltaic element is operated at an optimum operating point. The maximum output current can flow while keeping the sum of the output voltages of the power converters constant. Therefore, the power generation amount of the photovoltaic power generation system is always the sum of the maximum power generation amounts of the individual photovoltaic power generation bodies, and it is possible to prevent a reduction in power generation efficiency due to differences in the characteristics and sunshine state of each photovoltaic power generation body.

【0012】[0012]

【発明の実施の形態】本発明を適用した一実施形態の光
発電システムは、複数の太陽電池モジュールのそれぞれ
にMPPT制御機能を有する電力変換器を接続して、そ
れぞれの太陽電池モジュールが最適動作点で動作(発
電)するように制御を行うことに特徴がある。以下、本
発明を適用した一実施形態の光発電システムについて、
図面を参照しながら具体的に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In a photovoltaic power generation system according to an embodiment of the present invention, a power converter having an MPPT control function is connected to each of a plurality of solar cell modules, and each of the solar cell modules operates optimally. It is characterized in that control is performed so as to operate (generate power) at a point. Hereinafter, regarding the photovoltaic power generation system of one embodiment to which the present invention is applied,
This will be specifically described with reference to the drawings.

【0013】(1)光発電システムの全体構成 図1は、本発明を適用した一実施形態の光発電システム
の全体構成を示す図である。同図に示すように、光発電
システム100は、複数個の太陽電池モジュール1a〜
1n、複数の電力変換器2a〜2n、逆電流防止ダイオ
ード3を含んで構成されている。なお、同図に示す光発
電システム100には、バッテリ装置10とその他の電
気機器(図示せず)が電気負荷として接続されており、
これらの電気負荷が充分大きくて、MPPT制御を行っ
て発生した最大の出力電流が常にこれらの電気負荷に流
れるものとして説明を行う。
(1) Overall Configuration of Photovoltaic System FIG. 1 is a diagram showing the overall configuration of a photovoltaic system according to an embodiment to which the present invention is applied. As shown in the figure, the photovoltaic system 100 includes a plurality of solar cell modules 1a to 1a.
1n, a plurality of power converters 2a to 2n, and a reverse current prevention diode 3. The photovoltaic system 100 shown in FIG. 1 includes a battery device 10 and other electric devices (not shown) connected as electric loads.
The description will be made on the assumption that these electric loads are sufficiently large and the maximum output current generated by performing the MPPT control always flows through these electric loads.

【0014】太陽電池モジュール1a〜1nのそれぞれ
は、直列または並列に接続された複数の太陽電池セル
(PVセル)から構成されている。PVセルは、例え
ば、薄いP型シリコン半導体の層に薄いN型半導体の層
を積み上げた形をしており、光が当たると、P型層側に
プラス、N型層側にマイナスの起電力が発生する。この
電力は、層の表面・裏面に形成された電極を通して集め
られる。
Each of the solar cell modules 1a to 1n is composed of a plurality of solar cells (PV cells) connected in series or in parallel. A PV cell has, for example, a shape in which a thin N-type semiconductor layer is stacked on a thin P-type silicon semiconductor layer. When light is applied, a positive electromotive force is applied to the P-type layer and a negative electromotive force is applied to the N-type layer. Occurs. This power is collected through electrodes formed on the front and back surfaces of the layer.

【0015】また、太陽電池モジュール1a〜1nは、
それぞれ電力変換器2a〜2nと接続されている。初段
の電力変換器2aは、一方の出力端子は逆電流防止ダイ
オード3を介してバッテリ装置10のプラス端子に接続
されており、他方の出力端子は次段の電力変換器2bの
出力端子に接続されている。電力変換器2b〜2mのそ
れぞれは、一方の出力端子が前段の出力端子に接続され
ており、他方の出力端子が次段の出力端子に接続されて
いる。最終段の電力変換器2nは、一方の出力端子は前
段の電力変換器2mの出力端子に接続されており、他方
の出力端子はバッテリ装置10のマイナス端子に接続さ
れている。
The solar cell modules 1a to 1n are
Each is connected to the power converters 2a to 2n. The first-stage power converter 2a has one output terminal connected to the plus terminal of the battery device 10 via the reverse current prevention diode 3, and the other output terminal connected to the output terminal of the next-stage power converter 2b. Have been. Each of the power converters 2b to 2m has one output terminal connected to the output terminal of the preceding stage, and the other output terminal connected to the output terminal of the next stage. The final stage power converter 2n has one output terminal connected to the output terminal of the previous stage power converter 2m, and the other output terminal connected to the minus terminal of the battery device 10.

【0016】逆電流防止ダイオード3は、日光の遮断や
故障等によって光発電システム100の発電能力が低下
してその出力電圧がバッテリ装置10の端子間電圧より
も低くなったときに、逆流する電流を防止するためのも
のである。
The reverse current prevention diode 3 has a reverse current when the power generation capacity of the photovoltaic power generation system 100 is reduced due to interruption of sunlight or a failure, and the output voltage thereof becomes lower than the voltage between terminals of the battery device 10. It is for preventing.

【0017】(2)電力変換器の詳細構成および動作 次に、図1に示した電力変換器2a〜2nの詳細な構成
および動作について説明する。各電力変換器2a〜2n
は同じ構成を有しており、代表して電力変換器2aにつ
いて説明する。図2は、電力変換器2aの構成を示す図
である。同図に示すように、電力変換器2aは、電流セ
ンサ21、電圧センサ22、MPPT制御部23、降圧
型チョッパ回路部24を含んで構成されている。
(2) Detailed Configuration and Operation of Power Converter Next, a detailed configuration and operation of the power converters 2a to 2n shown in FIG. 1 will be described. Each power converter 2a to 2n
Have the same configuration, and the power converter 2a will be described as a representative. FIG. 2 is a diagram illustrating a configuration of the power converter 2a. As shown in the figure, the power converter 2a includes a current sensor 21, a voltage sensor 22, an MPPT control unit 23, and a step-down chopper circuit unit 24.

【0018】電流センサ21は、電力変換器2aに接続
された太陽電池モジュール1aから流れ込む電流値をM
PPT制御部23に出力し、電圧センサ22は、電力変
換器2aに接続された太陽電池モジュール1aから印加
される電圧値をMPPT制御部23に出力する。MPP
T制御部23は、一定時間間隔で降圧型チョッパ回路部
24内部のスイッチング素子25のオン時間とオフ時間
の比を変更する。
The current sensor 21 detects the current value flowing from the solar cell module 1a connected to the power converter 2a as M
The voltage is output to the PPT control unit 23, and the voltage sensor 22 outputs the voltage value applied from the solar cell module 1a connected to the power converter 2a to the MPPT control unit 23. MPP
The T control unit 23 changes the ratio between the on time and the off time of the switching element 25 in the step-down chopper circuit unit 24 at regular time intervals.

【0019】降圧型チョッパ回路部24は、直流/直流
コンバータであり、MPPT制御部23からの指示に応
じてスイッチング素子25のオン時間とオフ時間の比を
制御することにより、出力電圧が入力電圧以下の範囲で
設定される。また、降圧型チョッパ回路部24の入力電
流は、スイッチング素子25のオン時間とオフ時間の比
を変更することにより制御可能であり、太陽電池モジュ
ール1aが最適動作点近傍で動作している場合にはこの
入力電流を変えることにより入力電圧(太陽電池モジュ
ール1aの出力電圧)もこれに連動して変化する。これ
らの入力電流の変化は、電流センサ21によって検出さ
れてMPPT制御部23に伝えられ、また、入力電圧の
変化は、電圧センサ22によって検出されてMPPT制
御部23に伝えられる。
The step-down chopper circuit section 24 is a DC / DC converter, and controls the ratio of the on-time to the off-time of the switching element 25 in accordance with an instruction from the MPPT control section 23, so that the output voltage becomes the input voltage. It is set in the following range. Further, the input current of the step-down chopper circuit section 24 can be controlled by changing the ratio of the on-time to the off-time of the switching element 25. When the solar cell module 1a is operating near the optimum operating point, By changing this input current, the input voltage (output voltage of the solar cell module 1a) also changes in conjunction with this. These changes in the input current are detected by the current sensor 21 and transmitted to the MPPT control unit 23, and the changes in the input voltage are detected by the voltage sensor 22 and transmitted to the MPPT control unit 23.

【0020】MPPT制御部23は、これらの入力電流
および入力電圧に基づいて太陽電池モジュール1aから
電力変換器2aに入力される電力を算出し、前回(スイ
ッチング素子25のオン時間とオフ時間の比を変更する
前)の電力の算出値との比較を行い、電力が大きくなる
方向にスイッチング素子25のオン時間とオフ時間の比
を変更する。具体的には、以下のようにして、入力電力
の比較を行い、スイッチング素子25のオン時間とオフ
時間の比を変更する。
The MPPT control unit 23 calculates the power input from the solar cell module 1a to the power converter 2a based on the input current and the input voltage, and calculates the power (the ratio between the ON time and the OFF time of the switching element 25). Is compared with the calculated value of the power (before changing), and the ratio of the ON time and the OFF time of the switching element 25 is changed in the direction of increasing the power. Specifically, the input power is compared as follows, and the ratio of the on time and the off time of the switching element 25 is changed.

【0021】図3は、太陽電池モジュール1aの出力電
圧と出力電力の関係を示す特性図である。例えば、同図
に示すA点で動作しているときに、MPPT制御部23
がスイッチング素子25を制御することにより、動作点
がB点に移った場合には、出力電力は増加したのである
から、より電力値が大きなB点での動作状態を維持す
る。また、B点で動作しているときに、MPPT制御部
23がスイッチング素子25を制御することにより、動
作点がC点に移った場合は、出力電力は減少したのであ
るから、MPPT制御部23は、動作点をB点に戻すた
めに再度スイッチング素子25を制御する。
FIG. 3 is a characteristic diagram showing the relationship between the output voltage and the output power of the solar cell module 1a. For example, when operating at the point A shown in FIG.
When the operating point moves to the point B by controlling the switching element 25, since the output power has increased, the operating state at the point B having a larger power value is maintained. When the operating point shifts to the point C by controlling the switching element 25 while operating at the point B, the output power is reduced. Controls the switching element 25 again to return the operating point to the point B.

【0022】このように、MPPT制御部23は、一定
時間間隔でスイッチング素子25のオン時間とオフ時間
の比を変更して、その都度、太陽電池モジュール1aの
入力電力の増減を監視することにより、太陽電池モジュ
ール1aの出力電力が常に最大となるように、つまり、
太陽電池モジュール1aが最適動作点で動作するように
制御を行っている。また、電力変換器2aに入力される
電力が最大となるため、電力変換器2aから出力される
電力も最大となる。
As described above, the MPPT control unit 23 changes the ratio of the ON time to the OFF time of the switching element 25 at regular time intervals, and monitors the increase or decrease of the input power of the solar cell module 1a each time. , So that the output power of the solar cell module 1a is always maximum, that is,
The control is performed so that the solar cell module 1a operates at the optimum operation point. Further, since the power input to the power converter 2a is maximum, the power output from the power converter 2a is also maximum.

【0023】次に、電力変換器2a〜2nから出力され
る電圧および電流について検討する。図1において、太
陽電池モジュール1a〜1nから出力される最大電力を
それぞれP1〜Pn、電力変換器2a〜2nから出力さ
れる電力をそれぞれP1′〜Pn′、電力変換器2a〜
2nから出力される電圧をそれぞれV1〜Vn、バッテ
リ装置10の端子電圧をVB、バッテリ装置10等の電
気負荷に流れる電流をIとする。
Next, the voltage and current output from power converters 2a to 2n will be considered. In FIG. 1, the maximum power output from the solar cell modules 1a to 1n is P1 to Pn, the power output from the power converters 2a to 2n is P1 'to Pn', and the power converters 2a to 2n.
The voltages output from 2n are denoted by V1 to Vn, the terminal voltage of the battery device 10 is denoted by VB, and the current flowing through an electric load such as the battery device 10 is denoted by I.

【0024】各電力変換器2a〜2nにおける電力損失
を零とすると、 P1=P1′、P2=P2′、…、Pn=Pn′ …(1) の関係が成り立つ。また、電圧VBと電流Iは、次式で
示される。
Assuming that the power loss in each of the power converters 2a to 2n is zero, the following relationship holds: P1 = P1 ', P2 = P2',..., Pn = Pn '. The voltage VB and the current I are represented by the following equations.

【0025】 VB=V1+V2+…+Vn …(2) I=P1/V1=P2/V2=…=Pn/Vn …(3) この(3)式は、電力変換器2a〜2nを直列に接続す
ることによって、電力変換器2a〜2nの各出力電圧V
1〜Vnは、対応する太陽電池モジュール1a〜1nの
出力電力P1〜Pnに比例し、しかも各出力電圧V1〜
Vnの比が各太陽電池モジュール1a〜1nの比に等し
くなるように制御されることを示している。
VB = V1 + V2 +... + Vn (2) I = P1 / V1 = P2 / V2 =... = Pn / Vn (3) In the equation (3), the power converters 2a to 2n are connected in series. Output voltage V of each of power converters 2a-2n
1 to Vn are proportional to the output powers P1 to Pn of the corresponding solar cell modules 1a to 1n, and each output voltage V1 to Vn
This shows that the ratio of Vn is controlled to be equal to the ratio of each of the solar cell modules 1a to 1n.

【0026】例えば、太陽電池モジュール1aのみが日
陰に入って出力電力P1が低下した場合には、それまで
太陽電池モジュール1aが分担していた電圧および電流
を維持できないため、各太陽電池モジュール1a〜1n
の出力電流が一定になるという条件の下で、上述した
(1)式〜(3)式を満たすように、各電力変換器2a
〜2nの出力電圧V1〜Vnとこれらに共通の出力電流
Iが自動的に設定される。実際には、発電能力が低下し
た太陽電池モジュール1aに接続された電力変換器2a
の出力電圧V1が低下し、それ以外の電力変換器2b等
の出力電圧V2等が上昇する。また、太陽電池モジュー
ル1a以外の各出力電圧V2等が高くなることからも分
かるように、共通の出力電流Iは低下する。また、この
ようにして各電力変換器2b等の出力電圧と出力電流は
変化するが、それぞれの入力側に接続されている太陽電
池モジュール1b等は別々にMPPT制御されているた
め、常に最適動作点での動作を維持しており、その時点
における最大電力が得られる。
For example, when only the solar cell module 1a enters the shade and the output power P1 decreases, the voltage and current that have been shared by the solar cell module 1a cannot be maintained. 1n
Under the condition that the output current of the power converter 2a becomes constant, the respective power converters 2a satisfy the above-described equations (1) to (3).
2n and output currents I common to them are automatically set. Actually, the power converter 2a connected to the solar cell module 1a having reduced power generation capacity
, The output voltage V1 of the power converter 2b and the like increases. Further, as can be seen from the fact that the output voltages V2 and the like other than the solar cell module 1a increase, the common output current I decreases. Although the output voltage and the output current of each power converter 2b and the like change in this way, the solar cell modules 1b and the like connected to the respective input sides are separately subjected to the MPPT control, so that the optimum operation is always performed. The operation at the point is maintained, and the maximum power at that time is obtained.

【0027】このように、本実施形態の光発電システム
100は、太陽電池モジュール1a〜1nのそれぞれに
MPPT制御機能を有する電力変換器2a〜2nを接続
し、しかも各電力変換器2a〜2nの出力端を直列接続
して全体の出力電圧としている。したがって、各太陽電
池モジュール1a〜1nを別々にMPPT制御して最適
動作点で動作させることができ、光発電システム100
全体としての発電効率の低下を防止することができる。
As described above, in the photovoltaic power generation system 100 of the present embodiment, the power converters 2a to 2n having the MPPT control function are connected to the solar cell modules 1a to 1n, respectively. The output terminals are connected in series to obtain the entire output voltage. Therefore, each of the solar cell modules 1a to 1n can be operated at the optimum operating point by separately performing the MPPT control.
A decrease in the power generation efficiency as a whole can be prevented.

【0028】また、電力変換器2a〜2nの出力端には
共通の出力電流Iが流れ、各太陽電池モジュール1a〜
1nから出力される最大電力の比と等しくなるように各
電力変換器2a〜2nの出力電圧Va〜Vnが自動的に
調整されるため、複雑な制御を行う必要がない。また、
太陽電池モジュール1a〜1nのいずれかに影や汚れに
よる、あるいは経年変化やもともとの特性のばらつきに
よる発電能力の低下が生じても、各太陽電池モジュール
1a〜1nにおいて最大電力が得られるように、各電力
変換器2a〜2nの出力電圧や出力電流が自動的に調整
されるため、他の太陽電池モジュールへの影響がなく、
光発電システム100全体としての発電電力の低下を最
小限に抑えることができる。
A common output current I flows through the output terminals of the power converters 2a to 2n, and each of the solar cell modules 1a to 2n.
Since the output voltages Va to Vn of the power converters 2a to 2n are automatically adjusted so as to be equal to the ratio of the maximum power output from 1n, there is no need to perform complicated control. Also,
Even if the power generation capacity of any of the solar cell modules 1a to 1n is reduced due to shadow or dirt, or due to aging or variation in the original characteristics, the maximum power can be obtained in each of the solar cell modules 1a to 1n. Since the output voltage and output current of each of the power converters 2a to 2n are automatically adjusted, there is no influence on other solar cell modules,
It is possible to minimize a decrease in generated power of the entire photovoltaic power generation system 100.

【0029】これは、太陽電池モジュールおよび電力変
換器の数が増加あるいは減少した場合も同様であり、各
太陽電池モジュールを最適動作点で動作させながら、電
力変換器の各出力電圧、出力電流が自動的に調整される
ため、電気負荷の大きさに応じたシステム構成の変更が
容易であり、柔軟性のある光発電システムを実現するこ
とができる。
The same applies to the case where the number of solar cell modules and power converters increases or decreases. Each output voltage and output current of the power converter are controlled while operating each solar cell module at the optimum operating point. Since the adjustment is automatically performed, it is easy to change the system configuration according to the magnitude of the electric load, and a flexible photovoltaic system can be realized.

【0030】また、上述したように各太陽電池モジュー
ル1a〜1nは、互いに発電能力が異なるようにしても
よいため、太陽電池モジュール1a〜1nのそれぞれの
設置条件を意識的に変えて、光発電システム100全体
の発電特性の時間変化を調整することも容易である。
As described above, each of the solar cell modules 1a to 1n may have a different power generation capability. Therefore, the photovoltaic power generation is performed by intentionally changing the installation conditions of each of the solar cell modules 1a to 1n. It is also easy to adjust the time change of the power generation characteristics of the entire system 100.

【0031】また、大規模な光発電システムにおいて
は、複数の太陽電池モジュールを直列接続した太陽電池
パネルの数を増やすとともに、各太陽電池パネルごとに
電力変換器を設置し、その出力側を並列接続することに
より、本実施形態の光発電システム100と同様の効果
が得られるが、光発電システム100は太陽電池モジュ
ール1a等の数が少ない家庭用の小規模システムにも適
している。
In a large-scale photovoltaic power generation system, the number of solar cell panels in which a plurality of solar cell modules are connected in series is increased, a power converter is installed for each solar cell panel, and the output side is connected in parallel. By connecting, the same effect as the photovoltaic power generation system 100 of the present embodiment can be obtained, but the photovoltaic power generation system 100 is also suitable for a small-scale home system having a small number of solar cell modules 1a and the like.

【0032】なお、本発明は、上記実施形態に限定され
るものではなく、本発明の要旨の範囲内で種々の変形実
施が可能である。例えば、上述した実施形態では、太陽
電池モジュール1a〜1nのそれぞれごとに電力変換器
2a〜2nを接続したが、複数の太陽電池モジュールに
よって太陽電池パネルを構成し、この太陽電池パネルご
とに電力変換器を接続し、各電力変換器を直列に接続し
て電気負荷に接続するようにしてもよい。
The present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention. For example, in the above-described embodiment, the power converters 2a to 2n are connected to each of the solar cell modules 1a to 1n. However, a plurality of solar cell modules constitute a solar cell panel, and each of the solar cell panels performs power conversion. The power converters may be connected so that each power converter is connected in series and connected to an electric load.

【0033】また、図1に示した光発電システム100
を単独でバッテリ装置10等の電気負荷に接続するので
はなく、図1に示した光発電システム100と同じ構成
を有する発電モジュールを複数備え、これを並列接続し
た光発電システムを構築して電気負荷に接続するように
してもよい。この場合には、各発電モジュールは独立に
動作するため、それぞれに含まれる太陽電池モジュール
1a等を最適動作点で動作させることができるため、光
発電システム全体の発電効率の低下を防止することがで
きる。
The photovoltaic power generation system 100 shown in FIG.
Is not connected to an electric load such as the battery device 10 alone, but a plurality of power generation modules having the same configuration as the photovoltaic power generation system 100 shown in FIG. You may make it connect to a load. In this case, since each power generation module operates independently, the solar cell module 1a and the like included in each power generation module can be operated at the optimum operation point, so that a decrease in the power generation efficiency of the entire photovoltaic power generation system can be prevented. it can.

【0034】また、上述した実施形態では、太陽電池モ
ジュール1a等から出力される電圧や電流を監視してM
PPT制御を行い、太陽電池モジュール1a等が最大効
率で発電することができるように制御したが、他の方法
によって制御してもよい。例えば、電力変換器2a等か
ら出力される電圧および電流を監視してMPPT制御を
行ってもよい。この場合は、電流センサ21および電圧
センサ22を電力変換器の出力段に備えるようにすれば
よい。また、太陽電池モジュール1a等から出力される
電圧の変動が少ないことや出力される電流が周囲の温度
によって大きく変動することに着目して、あらかじめ太
陽電池モジュール1a等の出力電流−温度特性を記憶し
ておいて、太陽電池モジュール1a等の周囲の温度を監
視することによって、MPPT制御を行うようにしても
よい。また、上述した実施形態では、電力変換器2a等
に降圧型チョッパ回路部24を用いたが、昇圧型のチョ
ッパ回路を用いてもよい。
In the above-described embodiment, the voltage and current output from the solar cell module 1a and the like are monitored and
Although the PPT control is performed so that the solar cell module 1a and the like can generate power at the maximum efficiency, the control may be performed by another method. For example, MPPT control may be performed by monitoring the voltage and current output from the power converter 2a and the like. In this case, the current sensor 21 and the voltage sensor 22 may be provided in the output stage of the power converter. Focusing on the fact that the voltage output from the solar cell module 1a and the like varies little and the output current greatly varies depending on the ambient temperature, the output current-temperature characteristics of the solar cell module 1a and the like are stored in advance. The MPPT control may be performed by monitoring the temperature around the solar cell module 1a or the like. In the above-described embodiment, the step-down chopper circuit unit 24 is used for the power converter 2a and the like, but a step-up chopper circuit may be used.

【0035】また、上述した実施形態では、直列接続さ
れた複数の電力変換器2a〜2nの後段にバッテリ装置
10を接続するようにしたが、バッテリ装置10の前段
に昇圧型の電力変換器(直流/直流変換器)を接続する
ようにしてもよい。上述したように、本実施形態の光発
電システムでは、各太陽電池モジュール1a等の発電能
力が低下したときに、対応する電力変換器2a等の出力
電圧が相対的に低下するが、このようにして出力電圧が
低下する電力変換器2a等の数が増えると、バッテリ装
置10に印加する電圧が低下して電力の供給が停止する
おそれがある。ところが、昇圧型の電力変換器を挿入す
ることにより、この出力電圧の低下を補うことができる
ため、動作範囲を広げることができる。
Further, in the above-described embodiment, the battery device 10 is connected to a stage subsequent to the plurality of power converters 2a to 2n connected in series. However, a boost type power converter ( (DC / DC converter). As described above, in the photovoltaic power generation system of the present embodiment, when the power generation capacity of each solar cell module 1a or the like decreases, the output voltage of the corresponding power converter 2a or the like relatively decreases. When the number of the power converters 2a and the like whose output voltage is reduced increases, the voltage applied to the battery device 10 may decrease and supply of power may be stopped. However, by inserting a step-up type power converter, this decrease in output voltage can be compensated for, so that the operating range can be expanded.

【0036】[0036]

【発明の効果】上述したように、本発明によれば、光発
電システムを構成するそれぞれの光発電体ごとに最大電
力追尾機能を有する電力変換器が接続されており、これ
らの電力変換器は直列に接続されている。このため、電
力変換器の最大電力追尾機能によって、それぞれの光発
電体が別個に常に最大電力を出力するように制御される
ため、光発電システム全体の発電効率の低下を防止する
ことができる。さらに、それぞれの光発電体の発電効率
は、電力変換器の最大追尾機能によって制御されてお
り、他の光発電体の発電効率の変動によって何ら影響を
受けるものではないため、負荷容量等に応じて光発電体
の数を変更するような場合であっても常に各光発電体を
最適動作点で動作させることができ、柔軟性のある光発
電システムを実現することができる。
As described above, according to the present invention, a power converter having a maximum power tracking function is connected to each of the photovoltaic power generators constituting the photovoltaic power generation system. They are connected in series. For this reason, since the maximum power tracking function of the power converter is controlled so that each photovoltaic unit always always outputs the maximum power, a decrease in the power generation efficiency of the entire photovoltaic system can be prevented. Furthermore, the power generation efficiency of each photovoltaic unit is controlled by the maximum tracking function of the power converter, and is not affected at all by fluctuations in the power generation efficiency of other photovoltaic units. Therefore, even when the number of photovoltaic power generators is changed, each photovoltaic power generator can always be operated at the optimum operating point, and a flexible photovoltaic power generation system can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した一実施形態の光発電システム
の構成を示す図である。
FIG. 1 is a diagram showing a configuration of a photovoltaic power generation system according to an embodiment of the present invention.

【図2】電力変換器の構成を示す図である。FIG. 2 is a diagram illustrating a configuration of a power converter.

【図3】太陽電池モジュールの出力電圧−出力電力特性
を示す図である。
FIG. 3 is a diagram showing output voltage-output power characteristics of a solar cell module.

【図4】従来の光発電システムの構成を示す図である。FIG. 4 is a diagram showing a configuration of a conventional photovoltaic power generation system.

【図5】スイッチング素子が接続された太陽電池モジュ
ールを用いた発電制御装置の構成を示す図である。
FIG. 5 is a diagram showing a configuration of a power generation control device using a solar cell module to which switching elements are connected.

【符号の説明】[Explanation of symbols]

1a〜1n 太陽電池モジュール 2a〜2n 電力変換器 3 逆電流防止ダイオード 10 バッテリ装置 21 電流センサ 22 電圧センサ 23 MPPT制御部 24 降圧型チョッパ回路部 25 スイッチング素子 100 光発電システム 1a to 1n Solar cell module 2a to 2n Power converter 3 Reverse current prevention diode 10 Battery device 21 Current sensor 22 Voltage sensor 23 MPPT control unit 24 Step-down chopper circuit unit 25 Switching element 100 Photovoltaic power generation system

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 光エネルギーを電気エネルギーに変換す
る複数の光発電体と、 前記複数の光発電体のそれぞれに接続され、対応する前
記光発電体から最大電力を取り出す最大電力追尾機能を
有する複数の電力変換器と、 を備え、複数の前記電力変換器を直列に接続することを
特徴とする光発電システム。
1. A plurality of photovoltaic units for converting light energy into electric energy, and a plurality of photovoltaic units connected to each of the plurality of photovoltaic units and having a maximum power tracking function for extracting maximum power from the corresponding photovoltaic units. A photovoltaic power generation system comprising: a power converter; and a plurality of the power converters connected in series.
【請求項2】 複数の発電モジュールを並列接続した光
発電システムであって、前記発電モジュールのそれぞれ
は、 光エネルギーを電気エネルギーに変換する複数の光発電
体と、 入力端が前記複数の光発電体のそれぞれに接続され、出
力端が互いに直列接続され、対応する前記光発電体から
最大電力を取り出す最大電力追尾機能を有する複数の電
力変換器と、 を備えることを特徴とする光発電システム。
2. A photovoltaic power generation system in which a plurality of power generation modules are connected in parallel, wherein each of the power generation modules includes a plurality of photovoltaic elements for converting light energy into electric energy, and an input terminal connected to the plurality of photovoltaic power generation modules. A plurality of power converters connected to each of the bodies and having output terminals connected in series with each other and having a maximum power tracking function for extracting maximum power from the corresponding photovoltaic power generator.
【請求項3】 請求項1または2において、 前記光発電体は、太陽電池セルを組み合わせた太陽電池
モジュールであることを特徴とする光発電システム。
3. The photovoltaic power generation system according to claim 1, wherein the photovoltaic element is a photovoltaic module in which photovoltaic cells are combined.
【請求項4】 請求項1または2において、 前記光発電体は、太陽電池モジュールを組み合わせた太
陽電池パネルであることを特徴とする光発電システム。
4. The photovoltaic power generation system according to claim 1, wherein the photovoltaic element is a solar cell panel in which a solar cell module is combined.
【請求項5】 請求項1〜4のいずれかにおいて、 前記電力変換器は、直流/直流変換器であることを特徴
とする光発電システム。
5. The photovoltaic power generation system according to claim 1, wherein the power converter is a DC / DC converter.
JP9279497A 1997-09-27 1997-09-27 Optical power generating system Pending JPH11103538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9279497A JPH11103538A (en) 1997-09-27 1997-09-27 Optical power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9279497A JPH11103538A (en) 1997-09-27 1997-09-27 Optical power generating system

Publications (1)

Publication Number Publication Date
JPH11103538A true JPH11103538A (en) 1999-04-13

Family

ID=17611881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9279497A Pending JPH11103538A (en) 1997-09-27 1997-09-27 Optical power generating system

Country Status (1)

Country Link
JP (1) JPH11103538A (en)

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080346A1 (en) * 2000-04-12 2001-10-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Semiconductor layer, solar cell using it, and production methods and applications therefor
EP1209789A2 (en) * 2000-09-29 2002-05-29 Canon Kabushiki Kaisha Solar battery module and power generation apparatus
JP2004247325A (en) * 2002-12-19 2004-09-02 National Institute Of Advanced Industrial & Technology Evaluation device and evaluation method of integrated thin film solar cell
WO2007040086A1 (en) * 2005-10-05 2007-04-12 Sharp Kabushiki Kaisha Tracking photovoltaic power generating system, method of controlling the system, and program product for controlling the system
WO2008121266A2 (en) 2007-03-30 2008-10-09 Sunpower Corporation Localized power point optimizer for solar cell installations
WO2009064683A2 (en) 2007-11-14 2009-05-22 Tigo Energy, Inc., Method and system for connecting solar cells or slices in a panel system
WO2009059028A3 (en) * 2007-11-02 2009-08-06 Tigo Energy Inc Apparatuses and methods to reduce safety risks associated with photovoltaic systems
WO2009092110A3 (en) * 2008-01-18 2009-10-29 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
JP2010004042A (en) * 2008-06-19 2010-01-07 Macroblock Inc Photovoltaic circuit
JP2010074161A (en) * 2008-09-19 2010-04-02 General Electric Co <Ge> Quasi-ac, photovoltaic module for unfolder photovoltaic inverter
JP2010521720A (en) * 2006-12-06 2010-06-24 ソーラーエッジ テクノロジーズ Distributed power harvesting system using DC power supply
WO2008132553A3 (en) * 2006-12-06 2010-08-26 Solaredge Technologies Distributed power harvesting systems using dc power sources
WO2011084545A2 (en) * 2009-12-16 2011-07-14 Nagendra Cherukupalli Systems, circuits, and methods for reconfiguring solar cells of an adaptive solar power system
WO2011112228A1 (en) * 2010-03-09 2011-09-15 Texas Instruments Incorporated Energy harvester battery charger circuit and method
US8093757B2 (en) 2004-07-13 2012-01-10 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
US8102074B2 (en) 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
JP2012515452A (en) * 2009-01-15 2012-07-05 フィスカー オートモーティブ インク. Vehicle solar power
JP2012244845A (en) * 2011-05-23 2012-12-10 Yanmar Co Ltd Power generation system
CN103312021A (en) * 2012-03-14 2013-09-18 株式会社电装 Solar power conditioner
US8686693B2 (en) 2009-03-02 2014-04-01 Volterra Semiconductor Corporation Systems and methods for scalable configurations of intelligent energy storage packs
US8823218B2 (en) 2007-11-02 2014-09-02 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US8860246B2 (en) 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US8860241B2 (en) 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods for using a power converter for transmission of data over the power feed
US8872384B2 (en) 2010-08-18 2014-10-28 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
JP2015502621A (en) * 2011-12-19 2015-01-22 ケーディー パワー カンパニー リミテッド Solar power generation system that performs maximum power point tracking for each unit group
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US9088178B2 (en) * 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9141123B2 (en) 2012-10-16 2015-09-22 Volterra Semiconductor LLC Maximum power point tracking controllers and associated systems and methods
TWI502755B (en) * 2011-10-31 2015-10-01 Volterra Semiconductor Corp Integrated photovoltaic panel and photovoltaic cell unit
CN105140952A (en) * 2006-12-06 2015-12-09 太阳能安吉科技 Distributed Power Harvesting Systems Using DC Power Sources
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9331499B2 (en) 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9397502B2 (en) 2009-03-02 2016-07-19 Volterra Semiconductor LLC System and method for proportioned power distribution in power converter arrays
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401439B2 (en) 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543890B2 (en) 2009-01-21 2017-01-10 Tenksolar, Inc. Illumination agnostic solar panel
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9557758B2 (en) 2012-10-16 2017-01-31 Volterra Semiconductor LLC Systems and methods for controlling maximum power point tracking controllers
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
WO2017173937A1 (en) * 2016-04-08 2017-10-12 华为技术有限公司 Fast charging method, terminal, charger and system
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
TWI631813B (en) * 2017-07-03 2018-08-01 北京信邦同安電子有限公司 Solar modules and their split power optimized junction boxes
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10283974B2 (en) 2009-03-02 2019-05-07 Volterra Semiconductor LLC Systems and methods for intelligent, adaptive management of energy storage packs
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11228278B2 (en) 2007-11-02 2022-01-18 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Cited By (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001080346A1 (en) * 2000-04-12 2001-10-25 Kabushiki Kaisha Hayashibara Seibutsu Kagaku Kenkyujo Semiconductor layer, solar cell using it, and production methods and applications therefor
EP1209789A2 (en) * 2000-09-29 2002-05-29 Canon Kabushiki Kaisha Solar battery module and power generation apparatus
EP1209789A3 (en) * 2000-09-29 2006-02-08 Canon Kabushiki Kaisha Solar battery module and power generation apparatus
JP2004247325A (en) * 2002-12-19 2004-09-02 National Institute Of Advanced Industrial & Technology Evaluation device and evaluation method of integrated thin film solar cell
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US10135241B2 (en) 2003-05-28 2018-11-20 Solaredge Technologies, Ltd. Power converter for a solar panel
US9438035B2 (en) 2003-05-28 2016-09-06 Solaredge Technologies Ltd. Power converter for a solar panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US8093757B2 (en) 2004-07-13 2012-01-10 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
US8963518B2 (en) 2004-07-13 2015-02-24 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
US9594392B2 (en) 2004-07-13 2017-03-14 Tigo Energy, Inc. Device for distributed maximum power tracking for solar arrays
JP2007103713A (en) * 2005-10-05 2007-04-19 Sharp Corp Tracking solar light generation system, its control method, and its control program
WO2007040086A1 (en) * 2005-10-05 2007-04-12 Sharp Kabushiki Kaisha Tracking photovoltaic power generating system, method of controlling the system, and program product for controlling the system
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
WO2008132553A3 (en) * 2006-12-06 2010-08-26 Solaredge Technologies Distributed power harvesting systems using dc power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
JP2010521720A (en) * 2006-12-06 2010-06-24 ソーラーエッジ テクノロジーズ Distributed power harvesting system using DC power supply
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US9041339B2 (en) 2006-12-06 2015-05-26 Solaredge Technologies Ltd. Battery power delivery module
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9088178B2 (en) * 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
CN105140952A (en) * 2006-12-06 2015-12-09 太阳能安吉科技 Distributed Power Harvesting Systems Using DC Power Sources
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
EP2135296A4 (en) * 2007-03-30 2018-03-07 Sunpower Corporation Localized power point optimizer for solar cell installations
US11114862B2 (en) 2007-03-30 2021-09-07 Enphase Energy, Inc. Localized power point optimizer for solar cell installations
WO2008121266A2 (en) 2007-03-30 2008-10-09 Sunpower Corporation Localized power point optimizer for solar cell installations
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US9813021B2 (en) 2007-11-02 2017-11-07 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7807919B2 (en) 2007-11-02 2010-10-05 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US11228278B2 (en) 2007-11-02 2022-01-18 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11855578B2 (en) 2007-11-02 2023-12-26 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10256770B2 (en) 2007-11-02 2019-04-09 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US10686403B2 (en) 2007-11-02 2020-06-16 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US9397612B2 (en) 2007-11-02 2016-07-19 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US7884278B2 (en) 2007-11-02 2011-02-08 Tigo Energy, Inc. Apparatuses and methods to reduce safety risks associated with photovoltaic systems
WO2009059028A3 (en) * 2007-11-02 2009-08-06 Tigo Energy Inc Apparatuses and methods to reduce safety risks associated with photovoltaic systems
US8823218B2 (en) 2007-11-02 2014-09-02 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US11646695B2 (en) 2007-11-02 2023-05-09 Tigo Energy, Inc. System and method for enhanced watch dog in solar panel installations
US20160094181A1 (en) * 2007-11-14 2016-03-31 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
WO2009064683A3 (en) * 2007-11-14 2009-08-27 Tigo Energy, Inc., Method and system for connecting solar cells or slices in a panel system
US9218013B2 (en) 2007-11-14 2015-12-22 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
US11329599B2 (en) 2007-11-14 2022-05-10 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
EP2188844A4 (en) * 2007-11-14 2018-01-24 Tigo Energy, Inc. Method and system for connecting solar cells or slices in a panel system
WO2009064683A2 (en) 2007-11-14 2009-05-22 Tigo Energy, Inc., Method and system for connecting solar cells or slices in a panel system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
WO2009092110A3 (en) * 2008-01-18 2009-10-29 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9768725B2 (en) 2008-01-18 2017-09-19 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US8933320B2 (en) 2008-01-18 2015-01-13 Tenksolar, Inc. Redundant electrical architecture for photovoltaic modules
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US8957645B2 (en) 2008-03-24 2015-02-17 Solaredge Technologies Ltd. Zero voltage switching
US9000617B2 (en) 2008-05-05 2015-04-07 Solaredge Technologies, Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
JP2010004042A (en) * 2008-06-19 2010-01-07 Macroblock Inc Photovoltaic circuit
JP2010074161A (en) * 2008-09-19 2010-04-02 General Electric Co <Ge> Quasi-ac, photovoltaic module for unfolder photovoltaic inverter
US10110007B2 (en) 2008-11-26 2018-10-23 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US8860241B2 (en) 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods for using a power converter for transmission of data over the power feed
US8860246B2 (en) 2008-11-26 2014-10-14 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US10615603B2 (en) 2008-11-26 2020-04-07 Tigo Energy, Inc. Systems and methods to balance solar panels in a multi-panel system
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
JP2012515452A (en) * 2009-01-15 2012-07-05 フィスカー オートモーティブ インク. Vehicle solar power
US9543890B2 (en) 2009-01-21 2017-01-10 Tenksolar, Inc. Illumination agnostic solar panel
US8933321B2 (en) 2009-02-05 2015-01-13 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US10283974B2 (en) 2009-03-02 2019-05-07 Volterra Semiconductor LLC Systems and methods for intelligent, adaptive management of energy storage packs
US9397502B2 (en) 2009-03-02 2016-07-19 Volterra Semiconductor LLC System and method for proportioned power distribution in power converter arrays
US8686693B2 (en) 2009-03-02 2014-04-01 Volterra Semiconductor Corporation Systems and methods for scalable configurations of intelligent energy storage packs
US9401439B2 (en) 2009-03-25 2016-07-26 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
US9748897B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US9006569B2 (en) 2009-05-22 2015-04-14 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10686402B2 (en) 2009-05-22 2020-06-16 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11509263B2 (en) 2009-05-22 2022-11-22 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10879840B2 (en) 2009-05-22 2020-12-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US11695371B2 (en) 2009-05-22 2023-07-04 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10411644B2 (en) 2009-05-22 2019-09-10 Solaredge Technologies, Ltd. Electrically isolated heat dissipating junction box
US9748896B2 (en) 2009-05-22 2017-08-29 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8102074B2 (en) 2009-07-30 2012-01-24 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
US8274172B2 (en) 2009-07-30 2012-09-25 Tigo Energy, Inc. Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
US10756545B2 (en) 2009-08-10 2020-08-25 Tigo Energy, Inc. Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
US11967930B2 (en) 2009-09-03 2024-04-23 Tigo Energy, Inc. Systems and methods for an enhanced watchdog in solar module installations
US11056889B2 (en) 2009-12-01 2021-07-06 Solaredge Technologies Ltd. Dual use photovoltaic system
US10270255B2 (en) 2009-12-01 2019-04-23 Solaredge Technologies Ltd Dual use photovoltaic system
US9276410B2 (en) 2009-12-01 2016-03-01 Solaredge Technologies Ltd. Dual use photovoltaic system
US11735951B2 (en) 2009-12-01 2023-08-22 Solaredge Technologies Ltd. Dual use photovoltaic system
WO2011084545A3 (en) * 2009-12-16 2011-10-27 Nagendra Cherukupalli Systems, circuits, and methods for reconfiguring solar cells of an adaptive solar power system
US8872083B2 (en) 2009-12-16 2014-10-28 Saful Consulting Systems, circuits, and methods for generating a solar cell string of an adaptive solar power system
US11901860B2 (en) 2009-12-16 2024-02-13 Saful Consulting, Inc. Systems, circuits and methods for an interconnect fabric with programmable circuit routes for configuring solar cell strings
WO2011084545A2 (en) * 2009-12-16 2011-07-14 Nagendra Cherukupalli Systems, circuits, and methods for reconfiguring solar cells of an adaptive solar power system
US10063056B2 (en) 2009-12-29 2018-08-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US11081889B2 (en) 2009-12-29 2021-08-03 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US11728443B2 (en) 2009-12-29 2023-08-15 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US9377765B2 (en) 2009-12-29 2016-06-28 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US10523013B2 (en) 2009-12-29 2019-12-31 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US8854193B2 (en) 2009-12-29 2014-10-07 Tigo Energy, Inc. Systems and methods for remote or local shut-off of a photovoltaic system
US9564882B2 (en) 2010-01-27 2017-02-07 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9231570B2 (en) 2010-01-27 2016-01-05 Solaredge Technologies Ltd. Fast voltage level shifter circuit
US9917587B2 (en) 2010-01-27 2018-03-13 Solaredge Technologies Ltd. Fast voltage level shifter circuit
WO2011112228A1 (en) * 2010-03-09 2011-09-15 Texas Instruments Incorporated Energy harvester battery charger circuit and method
US9063559B2 (en) 2010-03-09 2015-06-23 Texas Instruments Incorporation Battery charger and method for collecting maximum power from energy harvester circuit
US9299861B2 (en) 2010-06-15 2016-03-29 Tenksolar, Inc. Cell-to-grid redundandt photovoltaic system
US9698599B2 (en) 2010-08-18 2017-07-04 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US8872384B2 (en) 2010-08-18 2014-10-28 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9035626B2 (en) 2010-08-18 2015-05-19 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US9331499B2 (en) 2010-08-18 2016-05-03 Volterra Semiconductor LLC System, method, module, and energy exchanger for optimizing output of series-connected photovoltaic and electrochemical devices
US9806523B2 (en) 2010-08-18 2017-10-31 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US9577426B2 (en) 2010-08-18 2017-02-21 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US9312769B2 (en) 2010-08-18 2016-04-12 Volterra Semiconductor LLC Switching circuits for extracting power from an electric power source and associated methods
US8946937B2 (en) 2010-08-18 2015-02-03 Volterra Semiconductor Corporation Switching circuits for extracting power from an electric power source and associated methods
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
JP2012244845A (en) * 2011-05-23 2012-12-10 Yanmar Co Ltd Power generation system
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
TWI502755B (en) * 2011-10-31 2015-10-01 Volterra Semiconductor Corp Integrated photovoltaic panel and photovoltaic cell unit
US9837556B2 (en) 2011-10-31 2017-12-05 Volterra Semiconductor LLC Integrated photovoltaic panel with sectional maximum power point tracking
JP2015502621A (en) * 2011-12-19 2015-01-22 ケーディー パワー カンパニー リミテッド Solar power generation system that performs maximum power point tracking for each unit group
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US8988838B2 (en) 2012-01-30 2015-03-24 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
CN103312021A (en) * 2012-03-14 2013-09-18 株式会社电装 Solar power conditioner
DE102013204257A1 (en) 2012-03-14 2013-09-19 Denso Corporation SOLAR INVERTER
US10705551B2 (en) 2012-05-25 2020-07-07 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11334104B2 (en) 2012-05-25 2022-05-17 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11740647B2 (en) 2012-05-25 2023-08-29 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US9870016B2 (en) 2012-05-25 2018-01-16 Solaredge Technologies Ltd. Circuit for interconnected direct current power sources
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP2015521460A (en) * 2012-06-11 2015-07-27 パナソニックIpマネジメント株式会社 Voltage conversion device, power generation system, and voltage conversion method
US9141123B2 (en) 2012-10-16 2015-09-22 Volterra Semiconductor LLC Maximum power point tracking controllers and associated systems and methods
US10778097B2 (en) 2012-10-16 2020-09-15 Volterra Semiconductor LLC Maximum power point tracking controllers and associated systems and methods
US9557758B2 (en) 2012-10-16 2017-01-31 Volterra Semiconductor LLC Systems and methods for controlling maximum power point tracking controllers
US9966899B2 (en) 2012-10-16 2018-05-08 Volterra Semiconductor, LLC Systems and methods for controlling maximum power point tracking controllers
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en) 2016-03-03 2023-11-21 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en) 2016-03-03 2018-08-28 Solaredge Technologies Ltd. Methods for mapping power generation installations
US10540530B2 (en) 2016-03-03 2020-01-21 Solaredge Technologies Ltd. Methods for mapping power generation installations
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en) 2016-03-03 2022-12-27 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11581745B2 (en) 2016-04-08 2023-02-14 Huawei Technologies Co., Ltd. Fast charging method and system, terminal, and charger
WO2017173937A1 (en) * 2016-04-08 2017-10-12 华为技术有限公司 Fast charging method, terminal, charger and system
US11990774B2 (en) 2016-04-08 2024-05-21 Huawei Technologies Co., Ltd. Fast charging method and system, terminal, and charger
US10734830B2 (en) 2016-04-08 2020-08-04 Huawei Technologies Co., Ltd. Fast changing method and system, terminal, and charger
TWI631813B (en) * 2017-07-03 2018-08-01 北京信邦同安電子有限公司 Solar modules and their split power optimized junction boxes

Similar Documents

Publication Publication Date Title
JPH11103538A (en) Optical power generating system
US11289917B1 (en) Optimized photovoltaic conversion system
Swiegers et al. An integrated maximum power point tracker for photovoltaic panels
US10090701B2 (en) Solar power generation system
JP2005276942A (en) Solar cell power generator and system, and control method therefor
WO2005112551A2 (en) Method for compensating for partial shade in photovoltaic power system
JP2010177554A (en) Solar power generating apparatus
Dheeban et al. Performance improvement of Photo-Voltaic panels by Super-Lift Luo converter in standalone application
JP2000089841A (en) Solar generator
CN102118122A (en) Method for realizing maximum power point tracking, generating module, control module and system
Peng et al. Integrated high-efficiency single-inductor CCM boost converter for multi-junction PV energy harvesting
KR102391722B1 (en) Self-powered string optima and method for supplying the same
EP4318911A1 (en) Power conversion apparatus having multi-level structure
JPH07225624A (en) Maximum electric power output control method of solar power generation system
JP2024513787A (en) Power conversion device with multi-level structure
JPH09294340A (en) Solar generator
KR102524154B1 (en) Dc-dc converter for converting i-v characteristic and energy conversion system including the dc-dc converter
Agarwal et al. A power flow controller for a Standalone solar PV system employing a three port Luo converter
Ramya et al. A novel multi input DC–DC converter for integrated wind, PV renewable energy generated system
Joshi et al. DESIGN OF Z-SOURCE CONVERTER DC/DC BASED PHOTOVOLTAIC SYSTEM CONNECTED TO DC MICROGRID
Gupta et al. Maximum power point tracking with PV fed switched inductor topology DC-DC converter
US20240056022A1 (en) Power conversion device having multi-level structure
KR101065786B1 (en) solar power plant system, and thereof operating method
US20240170961A1 (en) Power conversion device having multi-level structure
EP3619783B1 (en) Power conversion system and method