JP3015512B2 - DC / AC power supply - Google Patents

DC / AC power supply

Info

Publication number
JP3015512B2
JP3015512B2 JP3152938A JP15293891A JP3015512B2 JP 3015512 B2 JP3015512 B2 JP 3015512B2 JP 3152938 A JP3152938 A JP 3152938A JP 15293891 A JP15293891 A JP 15293891A JP 3015512 B2 JP3015512 B2 JP 3015512B2
Authority
JP
Japan
Prior art keywords
voltage
current
deviation
power supply
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3152938A
Other languages
Japanese (ja)
Other versions
JPH053678A (en
Inventor
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3152938A priority Critical patent/JP3015512B2/en
Publication of JPH053678A publication Critical patent/JPH053678A/en
Application granted granted Critical
Publication of JP3015512B2 publication Critical patent/JP3015512B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

[発明の目的] [Object of the invention]

【0001】[0001]

【産業上の利用分野】本発明は、直流電源から効率良く
交流電源を得るように改良したDC/AC電源装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a DC / AC power supply improved to efficiently obtain an AC power from a DC power supply.

【0002】[0002]

【従来の技術】バッテリー等の直流電源から交流電源を
得る装置は計算機の無停電電源装置(UPS)として用
いられているが、近年、自動車のバッテリー(一般にD
C12V又は24V)から交流100Vを得て一般の家
電製品を使用する要求が増加している。この種の従来の
DC/AC電源装置の構成を図5に示し、その動作を説
明する。
2. Description of the Related Art An apparatus for obtaining an AC power supply from a DC power supply such as a battery is used as an uninterruptible power supply (UPS) for a computer.
There is an increasing demand to obtain 100V AC from C12V or 24V) and use general home appliances. FIG. 5 shows the configuration of a conventional DC / AC power supply of this type, and its operation will be described.

【0003】図5において、直流電源1は変圧器2のセ
ンタータップとMOSFET3,4の一端に加えられ、
MOSFET3,4を交互にスイッチすることにより変
圧器2の一次側に交流の高周波電力が供給される。
In FIG. 5, a DC power supply 1 is applied to a center tap of a transformer 2 and one ends of MOSFETs 3 and 4.
By switching the MOSFETs 3 and 4 alternately, AC high frequency power is supplied to the primary side of the transformer 2.

【0004】変圧器2の二次側電圧はダイオードブリッ
ジ5により整流され、リアクトル6、コンデンサ7によ
り平滑化された第2の直流電圧が得られる。この第2の
直流電圧はインバータブリッジ8によりPWM制御さ
れ、正弦波に近い波形で出力され、リアクトル9、コン
デンサ10により高調波を除去した交流出力を得る。な
お、インバータ制御部22はインバータブリッジ8のP
WM制御を行うものであるが本発明に直接関係しないの
で詳細説明は省略する。
The secondary voltage of the transformer 2 is rectified by the diode bridge 5 and a second DC voltage smoothed by the reactor 6 and the capacitor 7 is obtained. This second DC voltage is PWM-controlled by the inverter bridge 8 and is output in a waveform close to a sine wave, and an AC output from which harmonics have been removed by the reactor 9 and the capacitor 10 is obtained. Note that the inverter control unit 22 determines the P of the inverter bridge 8.
Although the WM control is performed, since it is not directly related to the present invention, the detailed description is omitted.

【0005】電圧制御部12は、電圧検出部16で検出
されたコンデンサ7の電圧Vd と一定の基準電圧VR
を比較しPWM制御部15を介して電圧偏差が減少する
ようにMOSFET3,4を制御する。
[0005] Voltage controller 12, voltage detector 16 as a voltage difference over the voltage V d is compared with a constant reference voltage V R PWM controller 15 of the capacitor 7 detected decreases in MOSFET 3, 4 is controlled.

【0006】電流制限部20は、変流器18、ダイオー
ド19を介して検出された変圧器2の出力電流Iaxと電
流制限値IL を比較して所定電流以上のときPWM制御
部15の入力信号を制限して出力電流Iaxを制限する。
[0006] Current limiting unit 20, current transformer 18, when more than a predetermined current by comparing the output current I ax and the current limit value I L of the transformer 2 detected via the diode 19 of the PWM control unit 15 The input signal is limited to limit the output current Iax .

【0007】この従来装置が力率100%の負荷に電力
を供給しているときの各部の波形を図6に示す。この場
合、交流の出力電圧Va と出力電流Ia は同相で単相交
流出力のとき、瞬時電力P(t)は sin2 (wt)の関
数となり図2のPa に示すように(1−cos2wt)/2
の波形となる。図5の制御は一般にDC/DCコンバー
タに採用されている方式でダイオードブリッジ5の左側
は電圧源とみなされるような制御となっている。
FIG. 6 shows waveforms at various points when the conventional device supplies power to a load having a power factor of 100%. In this case, when the output voltage V a and the output current I a of the single-phase AC output in-phase AC, the instantaneous power P (t) is sin 2 As shown in P a function and becomes Figure 2 (wt) (1-cos2wt) / 2
Waveform. The control shown in FIG. 5 is a method generally employed in a DC / DC converter, and is such that the left side of the diode bridge 5 is regarded as a voltage source.

【0008】このような制御では負荷の瞬時電力が図6
のPa の波形のように発生すると直流電源1からiDC
ような類似波形の電流を流し直流電圧Vd はほとんど変
化しないように制御される。一般のDC/DCコンバー
タの負荷は直流であるので瞬時電力の変動は少なく従来
の方式に問題はなかった。
In such a control, the instantaneous power of the load is reduced as shown in FIG.
The DC voltage V d to flow a current of similar waveform as the P a of i DC and generated from the DC power source 1 as shown in a waveform is controlled not substantially change. Since the load of a general DC / DC converter is direct current, the instantaneous power fluctuates little and there is no problem in the conventional method.

【0009】[0009]

【発明が解決しようとする課題】ところがDC/AC電
源装置では交流出力なので負荷の瞬時電力は変化し、力
率100%において変動電力は最大となる。
However, since the DC / AC power supply has an AC output, the instantaneous power of the load changes, and the fluctuation power becomes maximum at a power factor of 100%.

【0010】この変動電力を直流電源1から供給するた
めにiDCが変動して流れるとその平均値に対する実効
値、すなわち波形率が大きくなり電力損失が増大すると
いう問題である。iDCの実効電流をirms とすると損失
(主に銅損)はi2 rms に比例し平滑直流時の損失に対
して波形率の2乗倍となる。
If i DC fluctuates and flows in order to supply the fluctuating power from the DC power supply 1, there is a problem that the effective value with respect to the average value, that is, the waveform ratio increases and the power loss increases. Assuming that the effective current of i DC is i rms , the loss (mainly copper loss) is proportional to i 2 rms and becomes the square of the waveform rate with respect to the loss at the time of smooth DC.

【0011】例えば全波整流波形では波形率は1.1で
あるので平滑直流に対して損失は20%程度増加する。
また、半波整流波形では波形率は2.2であり、損失は
約5倍となる。図6のiDCの波形は半波整流波形に近い
ので損失は約5倍となる。このため、DC/DCコンバ
ータの制御方式をDC/AC電源装置に用いた図5の従
来装置は効率が4〜5%低下する欠点がある。
For example, since the waveform ratio of a full-wave rectified waveform is 1.1, the loss increases by about 20% with respect to a smooth DC.
In the case of a half-wave rectified waveform, the waveform ratio is 2.2, and the loss is about five times. Since the waveform of iDC in FIG. 6 is close to a half-wave rectified waveform, the loss is about five times. For this reason, the conventional device of FIG. 5 using the DC / DC converter control method for the DC / AC power supply has a disadvantage that the efficiency is reduced by 4 to 5%.

【0012】本発明は、上述の問題に鑑みてなされたも
ので、その目的とするところは、交流負荷の瞬時電力が
変動する場合でも、直流電源から供給する電流の波高率
が大きくならないように制御して損失を減少させ効率の
高いDC/AC電源装置を提供することにある。 [発明の構成]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to prevent the crest factor of a current supplied from a DC power supply from increasing even when the instantaneous power of an AC load fluctuates. It is an object of the present invention to provide a DC / AC power supply having high efficiency by controlling loss. [Configuration of the Invention]

【0013】[0013]

【課題を解決するための手段】上記の目的を達成するた
めに、請求項1に係る発明は、直流電源の電圧を高周波
電圧に変換して変圧器の一次側に供給するチョッパ手段
と、該変圧器の二次側の高周波電圧を整流する整流手段
とを有し、この整流手段を介して整流された第2の直流
電圧から単相交流電圧を得るようにした装置において、
前記第2の直流電圧と基準電圧を比較して電圧偏差に応
じて電流基準を出力すると共に、前記電圧偏差に応じて
前記電流基準の制限値が変化する電圧制御手段と、この
電圧制御手段からの電流基準と前記整流手段の出力電流
とを比較して電流偏差に応じて制御信号を出力する電流
制御手段と、この電流制御手段からの制御信号に基づい
て、前記電流偏差が減少する方向に前記チョッパ手段を
制御するチョッパ制御手段とを備えたことを特徴とす
また、請求項2に係る発明は、直流電源の電圧を高
周波電圧に変換して変圧器の一次側に供給するチョッパ
手段と、該変圧器の二次側の高周波電圧を整流する整流
手段とを有し、この整流手段を介して整流された第2の
直流電圧から単相交流電圧を得るようにした装置におい
て、前記第2の直流電圧と基準電圧を比較して電圧偏差
に応じて電流基準を出力すると共に、前記電圧偏差に応
じて前記電流基準の制限値が変化する電圧制御手段と、
この電圧制御手段からの電流基準と前記変圧器の二次側
の電流とを比較して電流偏差に応じて制御信号を出力す
る電流制御手段と、この電流制御手段からの制御信号に
基づいて、前記電流偏差が減少する方向に前記チョッパ
手段を制御するチョッパ制御手段とを備えたことを特徴
とする。 更に、請求項3に係る発明は、直流電源の電圧
を高周波電圧に変換して変圧器の一次側に供給するチョ
ッパ手段と、該変圧器の二次側の高周波電圧を整流する
整流手段とを有し、この整流手段を介して整流された第
2の直流電圧から単相交流電圧を得るようにした装置に
おいて、前記第2の直流電圧と基準電圧を比較して電圧
偏差に応じて電流基準を出力すると共に、前記電圧偏差
に応じて前記電流基準の制限値が変化する電圧制御手段
と、この電圧制御手段からの電流基準と前記変圧器の一
次側の電流とを比較して電流偏差に応じて制御信号を出
力する電流 制御手段と、この電流制御手段からの制御信
号に基づいて、前記電流偏差が減少する方向に前記チョ
ッパ手段を制御するチョッパ制御手段とを備えたことを
特徴とする。
To achieve the above object of the Invention The invention according to claim 1, chopper means for supplying to the primary side of the transformer converts the voltage of the DC power supply to the high frequency voltage
Rectifying means for rectifying a high-frequency voltage on the secondary side of the transformer
And a device configured to obtain a single-phase AC voltage from the second DC voltage rectified through the rectifier .
Outputs a current reference in accordance with the voltage deviation by comparing the second DC voltage and the reference voltage, depending on the voltage deviation
And voltage control means for limiting values of the current reference is changed, the
Current reference from voltage control means and output current of said rectification means
Current that outputs a control signal according to the current deviation
Control means and a control signal from the current control means.
The chopper means in a direction in which the current deviation decreases.
Chopper control means for controlling
You . Further, the invention according to claim 2 increases the voltage of the DC power supply.
Chopper that converts to frequency voltage and supplies it to the primary side of the transformer
Means for rectifying the high frequency voltage on the secondary side of the transformer
And a second rectified through the rectifying means.
In a device that obtains a single-phase AC voltage from a DC voltage
And comparing the second DC voltage with a reference voltage to determine a voltage deviation.
Outputs a current reference according to the voltage deviation, and responds to the voltage deviation.
Voltage control means in which the current reference limit value changes,
The current reference from this voltage control means and the secondary side of the transformer
And outputs a control signal according to the current deviation.
Current control means and a control signal from the current control means.
The chopper in a direction in which the current deviation decreases.
Chopper control means for controlling the means.
And Further, the invention according to claim 3 is characterized in that the voltage of the DC power supply
Is converted to a high-frequency voltage and supplied to the primary side of the transformer.
Rectifier means and a high frequency voltage on the secondary side of the transformer.
Rectifying means, and the rectifying means rectified through the rectifying means.
2 to obtain a single-phase AC voltage from the DC voltage
And comparing the second DC voltage with a reference voltage.
The current reference is output according to the deviation, and the voltage deviation is output.
Voltage control means for changing the limit value of the current reference according to
And the current reference from the voltage control means and one of the transformers.
Outputs a control signal according to the current deviation by comparing the
A current control means for force control signal from the current control means
Signal to reduce the current deviation.
Chopper control means for controlling the chopper means.
Features.

【0014】[0014]

【作用】上記構成により、電圧偏差が小さいときは電流
制限値が小さく、電圧偏差が大きいときは電流制限値を
大きくするように動作させ、上記電流基準に応じて直流
電源から電流が供給され、該電流のピーク付近が電流制
限値に制限される。この作用により該電流の波形率が小
さく制御され損失が減少する。
According to the above construction, when the voltage deviation is small, the current limit value is small, and when the voltage deviation is large, the current limit value is increased. Current is supplied from the DC power supply according to the current reference. The vicinity of the peak of the current is limited to the current limit value. By this effect, the waveform ratio of the current is controlled to be small, and the loss is reduced.

【0015】[0015]

【実施例】本発明の一実施例を図1に示す。図5と重複
する部分には同一番号を付して説明を省略する。図1に
おいて、電圧制御部12は電圧検出部16で検出したコ
ンデンサ7の電圧Vd と基準電圧VR を比較し電流基準
d * を出力する。
FIG. 1 shows an embodiment of the present invention. The same parts as those in FIG. 5 are denoted by the same reference numerals, and description thereof is omitted. In Figure 1, the current reference voltage control unit 12 compares the voltage V d and the reference voltage V R of the capacitor 7 detected by the voltage detector 16 I d * Is output.

【0016】電流制御部25は電流検出器29で検出し
たダイオードブリッジ5の出力電流id と電流基準Id
* を比較し電流偏差が減少する方向にPWM制御部15
を介してMOSFET3,4をPWM制御する。
The output current of the current control unit 25 is a diode bridge 5 which is detected by the current detector 29 i d and the current reference I d
* And the PWM control unit 15 in the direction in which the current deviation decreases.
Control the MOSFETs 3 and 4 via the PWM.

【0017】リミッタ24は電圧制御部12の出力値を
制限するもので、電流基準Id * がリミッタ24に入力
される信号fを越えると電圧制御部12の入力を相殺し
d * を信号fの値に制限する。関数器23は基準電圧
R と電圧検出部16による検出電圧Vdxの偏差値に応
じて図2に示すような電流制限信号fを出力しリミッタ
24に入力する。
The limiter 24 limits the output value of the voltage controller 12, and the current reference I d * Exceeds the signal f input to the limiter 24, the input of the voltage controller 12 is canceled, and I d * To the value of the signal f. The function unit 23 outputs a current limiting signal f as shown in FIG. 2 according to a deviation value between the reference voltage V R and the detection voltage V dx detected by the voltage detection unit 16 and inputs the current limiting signal f to the limiter 24.

【0018】上記構成とすることにより、VR −Vdx
偏差値に応じて電流基準Id * の最大値が制限され、軽
負荷で偏差値が小さいときは電流制限値も小さく、ま
た、重負荷で偏差値が大きいときは電流制限値も大きく
なる。これによりIdcの通電幅は図3に示すように全体
的に広がるように作用する。
With the above configuration, the current reference I d * is determined according to the deviation value of V R -V dx . Is limited, the current limit value is small when the deviation value is small under a light load, and the current limit value is large when the deviation value is large under a heavy load. As a result, the width of the current flowing through Idc acts to widen as shown in FIG.

【0019】すなわち、交流出力の瞬時電力Pa は図3
に示すように大きく変動しているが電力のピーク付近は
主としてコンデンサ7から電力が供給され、直流電源1
から供給する電流iDCは電力のピーク付近(太線の部
分)が制限される。この作用により、負荷の軽重に無関
係にiDCの波形率を小さく(1.1以下)にすることが
できる。
[0019] That is, the instantaneous power P a of the AC output 3
As shown in FIG. 5, the power is mainly supplied from the capacitor 7 near the peak of the power,
Current i DC supplied from the vicinity of the power peak of the (thick line portion) is restricted. With this operation, the waveform ratio of i DC can be reduced (1.1 or less) regardless of the load.

【0020】本実施例によれば、電圧制御の応答を早く
しても電流iDCのピーク値が制限され波形率が小さく制
御され、抵抗損が1/4〜1/5に減少し、高効率化し
たDC/AC電源装置を提供することができる。本発明
は、図4に示す第2実施例の構成に変形することができ
る。
According to this embodiment, even if the response of the voltage control is accelerated, the peak value of the current i DC is limited, the waveform ratio is controlled to be small, the resistance loss is reduced to 4 to 5, and An efficient DC / AC power supply can be provided. The present invention can be modified to the structure of the second embodiment shown in FIG.

【0021】図4において、比例増幅器30は基準電圧
R とコンデンサ7の検出電圧Vdxの偏差値を比例増幅
して誤差電圧ΔVを出力する。制御増幅器12は比例積
分の増幅機能を有しその出力Id * はリミッタ24によ
り電流制限値fの値に制限される。関数器23は誤差電
圧ΔVを入力偏差値として図2のような関数値fを出力
しこれを電流制限値として動作する。これにより図1の
場合と同様の効果が得られる。なお、以上の説明では、
ダイオードブリッジ5の出力電流を検出する例で示した
が、変圧器2の二次側あるいは一次側の電流を検出する
ようにしてもよい。
In FIG. 4, a proportional amplifier 30 proportionally amplifies a deviation value between a reference voltage V R and a detection voltage V dx of a capacitor 7, and outputs an error voltage ΔV. The control amplifier 12 has an amplifying function of proportional integration, and its output I d * Is limited by the limiter 24 to the value of the current limit value f. The function unit 23 outputs a function value f as shown in FIG. 2 using the error voltage ΔV as an input deviation value, and operates using this as a current limit value. Thereby, the same effect as in the case of FIG. 1 can be obtained. In the above explanation,
Although the example in which the output current of the diode bridge 5 is detected has been described, the current on the secondary side or the primary side of the transformer 2 may be detected.

【0022】[0022]

【発明の効果】本発明によれば、負荷に供給する瞬時電
力が変動するDC/AC電源装置において、直流電源側
から供給する電流の波形率を小さく抑えることができ、
損失が少ない効率の向上したDC/AC電源装置を提供
することができる。
According to the present invention, in a DC / AC power supply in which the instantaneous power supplied to a load fluctuates, the waveform ratio of the current supplied from the DC power supply can be reduced.
It is possible to provide a DC / AC power supply with reduced loss and improved efficiency.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による第1実施例の構成図。FIG. 1 is a configuration diagram of a first embodiment according to the present invention.

【図2】第1実施例の関数器23の特性図。FIG. 2 is a characteristic diagram of a function unit 23 according to the first embodiment.

【図3】第1実施例の動作を説明するための波形図。FIG. 3 is a waveform chart for explaining the operation of the first embodiment.

【図4】本発明による第2実施例の要部構成図。FIG. 4 is a configuration diagram of a main part of a second embodiment according to the present invention.

【図5】従来装置の構成図。FIG. 5 is a configuration diagram of a conventional device.

【図6】従来装置の問題点を説明するための波形図。FIG. 6 is a waveform chart for explaining a problem of the conventional device.

【符号の説明】[Explanation of symbols]

1…直流電源、2…変圧器、3,4…MOSFET、5
…ダイオードブリッジ、6…リアクトル、7…コンデン
サ、8…インバータブリッジ、12…電圧制御部、15
…PWM制御部、16…電圧検出部、22…インバータ
制御部、23…関数器、24…リミッタ、25…電流制
御部、27…電流検出器、30…比例増幅器。
1: DC power supply, 2: Transformer, 3, 4: MOSFET, 5
... Diode bridge, 6 ... Reactor, 7 ... Capacitor, 8 ... Inverter bridge, 12 ... Voltage controller, 15
... PWM controller, 16 voltage detector, 22 inverter controller, 23 function unit, 24 limiter, 25 current controller, 27 current detector, 30 proportional amplifier.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−285473(JP,A) 特開 平3−218266(JP,A) 特開 平2−51360(JP,A) 特開 昭62−210866(JP,A) 特開 昭62−217859(JP,A) (58)調査した分野(Int.Cl.7,DB名) H02M 7/42 - 7/98 H02M 3/00 - 3/44 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-4-285473 (JP, A) JP-A-3-218266 (JP, A) JP-A-2-51360 (JP, A) JP-A-62-162 210866 (JP, A) JP-A-62-217859 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H02M 7 /42-7/98 H02M 3/00-3/44

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 直流電源の電圧を高周波電圧に変換して
変圧器の一次側に供給するチョッパ手段と、該変圧器の
二次側の高周波電圧を整流する整流手段とを有し、この
整流手段を介して整流された第2の直流電圧から単相交
流電圧を得るようにした装置において、前記第2の直流
電圧と基準電圧を比較して電圧偏差に応じて電流基準を
出力すると共に、前記電圧偏差に応じて前記電流基準の
制限値が変化する電圧制御手段と、この電圧制御手段か
らの電流基準と前記整流手段の出力電流とを比較して電
流偏差に応じて制御信号を出力する電流制御手段と、こ
の電流制御手段からの制御信号に基づいて、前記電流偏
差が減少する方向に前記チョッパ手段を制御するチョッ
パ制御手段とを具備したことを特徴とするDC/AC電
源装置。
Chopper means for converting a voltage of a DC power supply into a high-frequency voltage and supplying the high-frequency voltage to a primary side of a transformer;
Rectifying means for rectifying the high frequency voltage on the secondary side,
In the apparatus so as to obtain a single-phase AC voltage from the second DC voltage rectified through the rectifying means, and outputs a current reference in accordance with the voltage deviation by comparing the second DC voltage and the reference voltage and voltage control means for limiting values of the current reference is changed depending on the voltage deviation, or the voltage control unit
These current references are compared with the output current of the
Current control means for outputting a control signal in accordance with the flow deviation;
The current bias based on a control signal from the current control means.
A chop for controlling the chopper means in a direction in which the difference decreases.
DC / AC power supply, characterized by comprising a path control unit.
【請求項2】 直流電源の電圧を高周波電圧に変換して
変圧器の一次側に供給するチョッパ手段と、該変圧器の
二次側の高周波電圧を整流する整流手段とを有し、この
整流手段を介して整流された第2の直流電圧から単相交
流電圧を得るようにした装置において、前記第2の直流
電圧と基準電圧を比較して電圧偏差に応じて電流基準を
出力すると共に、前記電圧偏差に応じて前記電流基準の
制限値が変化する電圧制御手段と、この電圧制御手段か
らの電流基準と前記変圧器の二次側の電流とを比較して
電流偏差に応じて制御信号を出力する電流制御手段と、
この電流制御手段からの制御信号に基づいて、前記電流
偏差が減少する方向に前記チョッパ手段を制御するチョ
ッパ制御手段とを具備したことを特徴とするDC/AC
電源装置。
2. The method according to claim 1, wherein the voltage of the DC power supply is converted into a high-frequency voltage.
Chopper means for supplying to the primary side of the transformer;
Rectifying means for rectifying the high frequency voltage on the secondary side,
A single-phase alternating current from the rectified second DC voltage via the rectifying means.
An apparatus for obtaining a current voltage.
Compare the voltage with the reference voltage and set the current reference according to the voltage deviation.
And output the current reference according to the voltage deviation.
Voltage control means for which the limit value changes, and whether the voltage control means
Comparing these current references with the current on the secondary side of the transformer
Current control means for outputting a control signal according to the current deviation,
Based on the control signal from the current control means, the current
A chop for controlling the chopper means in a direction in which the deviation decreases.
DC / AC, comprising:
Power supply.
【請求項3】 直流電源の電圧を高周波電圧に変換して
変圧器の一次側に供給するチョッパ手段と、該変圧器の
二次側の高周波電圧を整流する整流手段とを有し、この
整流手段を介して整流された第2の直流電圧から単相交
流電圧を得るようにした装置において、前記第2の直流
電圧と基準電圧を比較して電圧偏差に応じて電流基準を
出力すると共に、前記電圧偏差に応じて前記電流基準の
制限値が変化する電圧制御手段と、この電圧制御手段か
らの電流基準と前記変圧器の一次側の電流とを比較して
電流偏差に応じて制御信号を出力する電流制御手段と、
この電流制御手段からの制御信号に基づいて、前記電流
偏差が減少する方向に前 記チョッパ手段を制御するチョ
ッパ制御手段とを具備したことを特徴とするDC/AC
電源装置。
3. A method of converting a voltage of a DC power supply into a high-frequency voltage.
Chopper means for supplying to the primary side of the transformer;
Rectifying means for rectifying the high frequency voltage on the secondary side,
A single-phase alternating current from the rectified second DC voltage via the rectifying means.
An apparatus for obtaining a current voltage.
Compare the voltage with the reference voltage and set the current reference according to the voltage deviation.
And output the current reference according to the voltage deviation.
Voltage control means for which the limit value changes, and whether the voltage control means
Comparing these current references with the current on the primary side of the transformer
Current control means for outputting a control signal according to the current deviation,
Based on the control signal from the current control means, the current
Cho for controlling the pre-Symbol chopper means in the direction in which the deviation is reduced
DC / AC, comprising:
Power supply.
JP3152938A 1991-06-25 1991-06-25 DC / AC power supply Expired - Lifetime JP3015512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152938A JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152938A JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Publications (2)

Publication Number Publication Date
JPH053678A JPH053678A (en) 1993-01-08
JP3015512B2 true JP3015512B2 (en) 2000-03-06

Family

ID=15551435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152938A Expired - Lifetime JP3015512B2 (en) 1991-06-25 1991-06-25 DC / AC power supply

Country Status (1)

Country Link
JP (1) JP3015512B2 (en)

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963794B2 (en) * 2002-07-09 2007-08-22 ローム株式会社 DC / DC converter
GB2415841B (en) 2004-11-08 2006-05-10 Enecsys Ltd Power conditioning unit
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
GB2434490B (en) 2006-01-13 2009-04-01 Enecsys Ltd Power conditioning unit
WO2011049985A1 (en) 2009-10-19 2011-04-28 Ampt, Llc Novel solar panel string converter topology
GB2482653B (en) 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
CN102386780A (en) * 2011-09-14 2012-03-21 深圳航天科技创新研究院 Push-pull circuit of DC/DC (Direct Current/Direct Current) part

Cited By (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9368964B2 (en) 2006-12-06 2016-06-14 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9543889B2 (en) 2006-12-06 2017-01-10 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9590526B2 (en) 2006-12-06 2017-03-07 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US9644993B2 (en) 2006-12-06 2017-05-09 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US9680304B2 (en) 2006-12-06 2017-06-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9853490B2 (en) 2006-12-06 2017-12-26 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9948233B2 (en) 2006-12-06 2018-04-17 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9960731B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9960667B2 (en) 2006-12-06 2018-05-01 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US9966766B2 (en) 2006-12-06 2018-05-08 Solaredge Technologies Ltd. Battery power delivery module
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US10097007B2 (en) 2006-12-06 2018-10-09 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US10184965B2 (en) 2006-12-06 2019-01-22 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US10230245B2 (en) 2006-12-06 2019-03-12 Solaredge Technologies Ltd Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10447150B2 (en) 2006-12-06 2019-10-15 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10637393B2 (en) 2006-12-06 2020-04-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US10116217B2 (en) 2007-08-06 2018-10-30 Solaredge Technologies Ltd. Digital average input current control in power converter
US10516336B2 (en) 2007-08-06 2019-12-24 Solaredge Technologies Ltd. Digital average input current control in power converter
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US9673711B2 (en) 2007-08-06 2017-06-06 Solaredge Technologies Ltd. Digital average input current control in power converter
US9853538B2 (en) 2007-12-04 2017-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US9831824B2 (en) 2007-12-05 2017-11-28 SolareEdge Technologies Ltd. Current sensing on a MOSFET
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US9979280B2 (en) 2007-12-05 2018-05-22 Solaredge Technologies Ltd. Parallel connected inverters
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9291696B2 (en) 2007-12-05 2016-03-22 Solaredge Technologies Ltd. Photovoltaic system power tracking method
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9407161B2 (en) 2007-12-05 2016-08-02 Solaredge Technologies Ltd. Parallel connected inverters
US10644589B2 (en) 2007-12-05 2020-05-05 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US9876430B2 (en) 2008-03-24 2018-01-23 Solaredge Technologies Ltd. Zero voltage switching
US10468878B2 (en) 2008-05-05 2019-11-05 Solaredge Technologies Ltd. Direct current power combiner
US9362743B2 (en) 2008-05-05 2016-06-07 Solaredge Technologies Ltd. Direct current power combiner
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US9537445B2 (en) 2008-12-04 2017-01-03 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10461687B2 (en) 2008-12-04 2019-10-29 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9869701B2 (en) 2009-05-26 2018-01-16 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US9647442B2 (en) 2010-11-09 2017-05-09 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US9935458B2 (en) 2010-12-09 2018-04-03 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11271394B2 (en) 2010-12-09 2022-03-08 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11996488B2 (en) 2010-12-09 2024-05-28 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US9401599B2 (en) 2010-12-09 2016-07-26 Solaredge Technologies Ltd. Disconnection of a string carrying direct current power
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US9866098B2 (en) 2011-01-12 2018-01-09 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10396662B2 (en) 2011-09-12 2019-08-27 Solaredge Technologies Ltd Direct current link circuit
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10381977B2 (en) 2012-01-30 2019-08-13 Solaredge Technologies Ltd Photovoltaic panel circuitry
US9923516B2 (en) 2012-01-30 2018-03-20 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10608553B2 (en) 2012-01-30 2020-03-31 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11929620B2 (en) 2012-01-30 2024-03-12 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US9812984B2 (en) 2012-01-30 2017-11-07 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US10007288B2 (en) 2012-03-05 2018-06-26 Solaredge Technologies Ltd. Direct current link circuit
US9235228B2 (en) 2012-03-05 2016-01-12 Solaredge Technologies Ltd. Direct current link circuit
US9639106B2 (en) 2012-03-05 2017-05-02 Solaredge Technologies Ltd. Direct current link circuit
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US11177768B2 (en) 2012-06-04 2021-11-16 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
US9941813B2 (en) 2013-03-14 2018-04-10 Solaredge Technologies Ltd. High frequency multi-level inverter
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US10778025B2 (en) 2013-03-14 2020-09-15 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11545912B2 (en) 2013-03-14 2023-01-03 Solaredge Technologies Ltd. High frequency multi-level inverter
US11742777B2 (en) 2013-03-14 2023-08-29 Solaredge Technologies Ltd. High frequency multi-level inverter
US10651647B2 (en) 2013-03-15 2020-05-12 Solaredge Technologies Ltd. Bypass mechanism
US11424617B2 (en) 2013-03-15 2022-08-23 Solaredge Technologies Ltd. Bypass mechanism
US9819178B2 (en) 2013-03-15 2017-11-14 Solaredge Technologies Ltd. Bypass mechanism
US9318974B2 (en) 2014-03-26 2016-04-19 Solaredge Technologies Ltd. Multi-level inverter with flying capacitor topology
US11855552B2 (en) 2014-03-26 2023-12-26 Solaredge Technologies Ltd. Multi-level inverter
US10886831B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US10886832B2 (en) 2014-03-26 2021-01-05 Solaredge Technologies Ltd. Multi-level inverter
US11296590B2 (en) 2014-03-26 2022-04-05 Solaredge Technologies Ltd. Multi-level inverter
US11632058B2 (en) 2014-03-26 2023-04-18 Solaredge Technologies Ltd. Multi-level inverter
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices

Also Published As

Publication number Publication date
JPH053678A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
JP3015512B2 (en) DC / AC power supply
JP3987949B2 (en) AC / DC converter circuit
US6023416A (en) DC power supply apparatus including boosting/lowering converter unit and control
JPH11235040A (en) Power supply with three-phase high power factor converter
JPH0759342A (en) Switching power supply
JP2990867B2 (en) Forward converter
JPH0371218B2 (en)
JPH10174477A (en) Motor drive and air-conditioner employing it
JP3341832B2 (en) Power supply circuit and smoothing method
JP3070314B2 (en) Inverter output voltage compensation circuit
JP2572433B2 (en) Power supply for arc welding and cutting
JP2646824B2 (en) Power supply
JPS5819169A (en) Controlling method for pwm control converter
JPH0715971A (en) Power conversion device
JP2628059B2 (en) DC power supply
KR102076588B1 (en) Multi-channel inverter type power conversion device for heater temperature control
JPH0789742B2 (en) Power converter
JP2726355B2 (en) Switching regulator
JPH0783605B2 (en) Rectifier circuit controller
JPH07337019A (en) Control method for self-excited rectifier
JPH062477Y2 (en) Power converter controller
JP3225534B2 (en) Switching power supply
JPH0679258B2 (en) Power supply
WO2021130812A1 (en) Power conversion apparatus
KR100313992B1 (en) Circuit for controlling driving of inverter

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071217

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111217

Year of fee payment: 12