CN101654555B - 碳纳米管/导电聚合物复合材料的制备方法 - Google Patents

碳纳米管/导电聚合物复合材料的制备方法 Download PDF

Info

Publication number
CN101654555B
CN101654555B CN2008101420226A CN200810142022A CN101654555B CN 101654555 B CN101654555 B CN 101654555B CN 2008101420226 A CN2008101420226 A CN 2008101420226A CN 200810142022 A CN200810142022 A CN 200810142022A CN 101654555 B CN101654555 B CN 101654555B
Authority
CN
China
Prior art keywords
carbon nano
acid solution
conducting polymer
tube
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2008101420226A
Other languages
English (en)
Other versions
CN101654555A (zh
Inventor
孟垂舟
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN2008101420226A priority Critical patent/CN101654555B/zh
Priority to US12/487,291 priority patent/US8192650B2/en
Priority to JP2009193180A priority patent/JP5313811B2/ja
Publication of CN101654555A publication Critical patent/CN101654555A/zh
Application granted granted Critical
Publication of CN101654555B publication Critical patent/CN101654555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3221Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more nitrogen atoms as the only heteroatom, e.g. pyrrole, pyridine or triazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3327Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms alkene-based
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L49/00Compositions of homopolymers or copolymers of compounds having one or more carbon-to-carbon triple bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • C08L65/02Polyphenylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:提供一碳纳米管薄膜;采用化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上。

Description

碳纳米管/导电聚合物复合材料的制备方法
技术领域
本发明涉及一种碳纳米管/聚合物复合材料的制备方法,尤其涉及一种碳纳米管/导电聚合物复合材料的制备方法。
背景技术
自1991年日本NEC公司的Iijima发现碳纳米管(Carbon Nanotube,CNT)以来(Iilima S.,Nature,1991,354,56-58),立即引起科学界及产业界的极大重视。碳纳米管具有优良的机械和光电性能,被认为是复合材料的理想添加物。碳纳米管/聚合物复合材料已成为世界科学研究的热点(Ajjayan P.M.,StephanO.,Colliex C.,Tranth D.Science.1994,265,1212-1215:Calvert P.,Nature,1999,399,210-211)。碳纳米管作为增强体和导电体,形成的复合材料具有抗静电,微波吸收和电磁屏蔽等性能,具有广泛的应用前景。
现有技术中的碳纳米管/导电聚合物复合材料中的碳纳米管多为棒状物,而导电聚合物以颗粒的形式分布在碳纳米管的间隙中。当所述碳纳米管/导电聚合物复合材料应用于超级电容器、太阳能电池的电极时,其中的导电聚合物充放电时会引起体积收缩和膨胀,而碳纳米管的中空结构可缓解由上述导电聚合物的体积收缩和膨胀引起的碳纳米管/导电聚合物复合材料的体积收缩和膨胀,而且碳纳米管的高导电性可降低导电聚合物的电阻。因此,现有技术中的碳纳米管/导电聚合物复合材料具有较好的导电性和较高的比电容量(大于200法拉/克)。然而,现有技术中的碳纳米管/导电聚合物复合材料通常采用将碳纳米管分散于硫酸及硝酸等强氧化性酸或表面活性剂中,之后再与导电聚合物的单体进行电化学反应,并最终在工作电极上得到一碳纳米管/导电聚合物复合材料的薄膜。通过强酸处理,会使得所述碳纳米管受到一定程度的破坏,而使用表面活性剂处理会使得表面活性剂在最终的碳纳米管/导电聚合物复合材料中不易除去。因而,经强氧化性酸或表面活性剂处理后得到的碳纳米管/导电聚合物复合材料的性能会受到影响。另外,由于碳纳米管易团聚,目前一直不能很好的分散,故,现有技术所制备得到的碳纳米管/导电聚合物复合材料中的碳纳米管间通常没有形成良好的导电网络,且有些相邻碳纳米管之间间距较大,相互间接触性较差,因而不能充分发挥碳纳米管的优良导电性及导热性能,造成所述碳纳米管/导电聚合物复合材料的内阻较大、比电容量较低。
有鉴于此,确有必要提供一种能够使碳纳米管均匀分散、并且不破坏碳纳米管结构的碳纳米管/导电聚合物复合材料的制备方法。
发明内容
一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:制备一碳纳米管薄膜;采用化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料。
与现有技术相比较,本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法具有以下优点:其一,由于采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,碳纳米管薄膜中多个碳纳米管均匀分散且相互连接形成导电网络,使得制得的碳纳米管/导电聚合物复合材料中碳纳米管均匀分散。其二,由于采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,无需添加表面活性剂,使得碳纳米管/导电聚合物复合材料中不包含表面活性剂。其三,本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法,不需要用强酸氧化碳纳米管,碳纳米管的结构完整,在制备过程中不会破坏碳纳米管的结构。其四,采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,制备工艺简单,可实现连续、规模化生产,且成本较低。
附图说明
图1是本技术方案实施例的碳纳米管/导电聚合物复合材料制备方法的流程图。
图2是本技术方案实施例的包含无序碳纳米管的碳纳米管/导电聚合物复合材料的结构示意图。
具体实施方式
以下将结合附图详细说明本技术方案提供的碳纳米管/导电聚合物复合材料的制备方法。
请参阅图1,本技术方案实施例提供一种碳纳米管/导电聚合物复合材料的制备方法,具体包括以下步骤:
步骤一,制备一碳纳米管薄膜。
所述制备碳纳米管薄膜的方法包括直接生长法、絮化法、碾压法或拉膜法等其它方法。所述碳纳米管薄膜包括多个均匀分布的碳纳米管,且该多个碳纳米管相互连接形成导电网络结构。
本实施例采用絮化法制备所述碳纳米管薄膜,该方法具体包括以下步骤:
(一)提供一碳纳米管原料。
本实施例中,所述碳纳米管原料的制备方法具体包括以下步骤:(a)提供一平整基底,该基底可选用P型或N型硅基底,或选用形成有氧化层的硅基底,本实施例优选为采用4英寸的硅基底;(b)在基底表面均匀形成一催化剂层,该催化剂层材料可选用铁(Fe)、钴(Co)、镍(Ni)或其任意组合的合金之一;(c)将上述形成有催化剂层的基底在700~900℃的空气中退火约30分钟~90分钟;(d)将处理过的基底置于反应炉中,在保护气体环境下加热到500~740℃,然后通入碳源气体反应约5~30分钟,生长得到碳纳米管阵列,其高度大于100纳米,优选为100纳米~10毫米;(e)使碳纳米管阵列脱离基底,获得碳纳米管原料。
该碳纳米管阵列为多个彼此平行且垂直于基底生长的碳纳米管形成的纯碳纳米管阵列,由于生成的碳纳米管长度较长,部分碳纳米管会相互缠绕。通过上述控制生长条件,该超顺排碳纳米管阵列中基本不含有杂质,如无定型碳或残留的催化剂金属颗粒等。本实施例中碳源气可选用乙炔等化学性质较活泼的碳氢化合物,保护气体可选用氮气、氨气或惰性气体。可以理解的是,本实施例提供的碳纳米管阵列不限于上述制备方法。本实施例优选采用刀片或其他工具将碳纳米管从基底刮落,获得碳纳米管原料,其中碳纳米管一定程度上保持相互缠绕的状态。
所述碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或几种。该单壁碳纳米管的直径为0.5纳米~50纳米,该双壁碳纳米管的直径为1.0纳米~50纳米,该多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管的长度在100纳米到10毫米之间。
(二)将上述碳纳米管原料添加到溶剂中并进行絮化处理获得碳纳米管絮状结构。
本实施例中,溶剂可选用水、易挥发的有机溶剂等。絮化处理可通过采用超声波分散处理或高强度搅拌等方法。优选地,本实施例采用超声波将碳纳米管在溶剂中分散10~30分钟。由于碳纳米管具有极大的比表面积,相互缠绕的碳纳米管之间具有较大的范德华力。上述絮化处理并不会将碳纳米管原料中的碳纳米管完全分散在溶剂中,碳纳米管之间通过范德华力相互吸引、缠绕,形成网络状结构。
(三)将上述碳纳米管絮状结构从溶剂中分离,并对该碳纳米管絮状结构定型处理以获得碳纳米管薄膜。
本实施例中,分离碳纳米管絮状结构的方法具体包括以下步骤:将上述含有碳纳米管絮状结构的溶剂倒入放有滤纸的漏斗中;静置干燥一段时间从而获得分离的碳纳米管絮状结构。
所述定型处理具体包括以下步骤:将上述碳纳米管絮状结构置于一容器中;将碳纳米管絮状结构按照预定形状摊开;施加一定压力于摊开的碳纳米管絮状结构;以及,将碳纳米管絮状结构中残留的溶剂烘干或等溶剂自然挥发后获得碳纳米管薄膜。可以理解,本实施例可通过控制碳纳米管絮状结构摊片的面积来控制碳纳米管薄膜的厚度和面密度。摊片的面积越大,则碳纳米管薄膜的厚度和面密度就越小。本实施例中获得的碳纳米管薄膜的厚度为1微米至2毫米。
另外,上述分离与定型处理步骤也可直接通过抽滤的方式获得碳纳米管薄膜,具体包括以下步骤:提供一微孔滤膜及一抽气漏斗;将上述含有碳纳米管絮状结构的溶剂经过微孔滤膜倒入抽气漏斗中;抽滤并干燥后获得碳纳米管薄膜。该微孔滤膜为一表面光滑、孔径为0.22微米的滤膜。由于抽滤方式本身将提供一较大的气压作用于碳纳米管絮状结构,该碳纳米管絮状结构经过抽滤会直接形成一均匀的碳纳米管薄膜。且,由于微孔滤膜表面光滑,该碳纳米管薄膜容易剥离。
采用所述絮化法制备的碳纳米管薄膜,其包括多个均匀分布的碳纳米管,该多个均匀分布的碳纳米管通过范德华力相互连接形成网络结构,从而形成一具有自支撑结构的碳纳米管薄膜,该碳纳米管薄膜具有较好的柔韧性。
可以理解,所述碳纳米管薄膜的制备方法还可以为直接生长法、碾压法或拉膜法等其它方法。所述直接生长法为用化学气相沉积法于一基板上生长碳纳米管薄膜。该碳纳米管薄膜为无序碳纳米管薄膜,该碳纳米管薄膜包括多个无序排列的碳纳米管。所述采用碾压法制备碳纳米管薄膜的方法包括以下步骤:提供一碳纳米管阵列形成于一基底;以及提供一施压装置挤压上述碳纳米管阵列,从而得到碳纳米管薄膜。该碳纳米管薄膜为无序碳纳米管薄膜,且包括多个沿一个或多个方向择优取向排列的碳纳米管。所述采用拉膜法制备碳纳米管薄膜的方法包括以下步骤:制备一碳纳米管阵列;从上述碳纳米管阵列中选定一定宽度的多个碳纳米管束片断,优选为采用具有一定宽度的胶带接触碳纳米管阵列以选定一定宽度的多个碳纳米管束片断;以及以一定速度沿基本垂直于碳纳米管阵列生长方向拉伸该多个碳纳米管束片断,以形成一连续的碳纳米管薄膜。
步骤二,采用化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料。
本技术方案采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合的方法具体包括以下步骤:
首先,制备一导电聚合物单体的酸溶液,将所述碳纳米管薄膜浸入所述导电聚合物单体的酸溶液中,形成一包含碳纳米管薄膜与导电聚合物单体的酸溶液。
所述形成一包含碳纳米管薄膜与导电聚合物单体的酸溶液的方法具体包括以下步骤:提供20~40质量份导电聚合物单体,配制摩尔浓度为0.1~5摩尔/升的酸溶液,将所述导电聚合物单体溶于酸溶液中,得到摩尔浓度为0.1~5摩尔/升的导电聚合物单体的酸溶液,该酸溶液中酸的摩尔浓度为0.1~5摩尔/升;取50~90质量份的碳纳米管薄膜,将其浸入所述导电聚合物的酸溶液中,形成一包含碳纳米管薄膜与导电聚合物单体的酸溶液;以及将含有碳纳米管薄膜及导电聚合物单体的酸溶液在0摄氏度~5摄氏度冷藏3~10小时,以使得导电聚合物单体在碳纳米管薄膜的碳纳米管形成的网络结构中均匀分散。
所述酸溶液的浓度较低,因此不会氧化浸入其中的碳纳米管薄膜,从而避免了对碳纳米管结构的破坏。所述导电聚合物单体包括苯胺、吡咯、噻吩、乙炔、对苯及对苯撑乙烯中的一种或几种。所述酸溶液为盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或乙酸溶液中的一种或几种的混合。本实施例中,所述导电聚合物单体为苯胺,所述溶液为盐酸溶液。
本实施例中,所述制备一导电聚合物单体的酸溶液,将所述碳纳米管薄膜浸入所述导电聚合物单体的酸溶液中的方法具体包括以下步骤:取一容器,于该容器中配制40毫升1摩尔/升的盐酸溶液;用称量天平称量0.74504克的苯胺单体油状物(0.74504克苯胺单体油状物的物质的量为0.008摩尔),并放入一容器内,向该容器内注入40毫升1摩尔/升的盐酸溶液,使所述苯胺单体油状物溶于所述盐酸溶液中,制备成0.2摩尔/升的苯胺的盐酸溶液;用称量天平称量称取质量为40.1毫克的碳纳米管薄膜,将其浸入所述0.2摩尔/升的苯胺的盐酸溶液当中,将浸有碳纳米管薄膜16的苯胺盐酸溶液在0摄氏度~5摄氏度冷藏3小时,使得苯胺单体在碳纳米管薄膜的碳纳米管形成的网络结构中均匀分散。
其次,制备氧化剂的酸溶液。
所述氧化剂的酸溶液的作用为将导电聚合物单体氧化,从而使导电聚合物单体发生氧化聚合,生成导电聚合物。制备氧化剂的酸溶液的方法具体包括以下步骤:称量20~40质量份的氧化剂于一容器中;倒入0.1~5摩尔/升的酸溶液,配制成0.1~5摩尔/升摩尔浓度的氧化剂的酸溶液;以及将所述氧化剂的酸溶液在0摄氏度~5摄氏度冷藏3~10小时。
所述氧化剂包括过硫酸胺、高锰酸钾、双氧水。所述酸溶液为盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液或乙酸溶液中的一种或几种的混合。所述导电聚合物单体的酸溶液的摩尔浓度与所述氧化剂的酸溶液的摩尔浓度之比为0.5~2。本实施例中,所述氧化剂为过硫酸胺,所述酸溶液为盐酸溶液,所述导电聚合物单体的酸溶液的摩尔浓度与所述氧化剂的酸溶液的摩尔浓度之比为1。
本实施例中,所述制备氧化剂的酸溶液的方法具体包括以下步骤:用称量天平称量1.8256克过硫酸铵粉末,并将其放置于一80毫升的容器内;向盛有过硫酸铵粉末的容器内注入40毫升1摩尔/升的盐酸溶液,将过硫酸铵粉末溶解在盐酸溶液中,制备成0.2摩尔/升的过硫酸铵的盐酸(1摩尔/升)溶液;以及将所述过硫酸铵的盐酸溶液在0摄氏度~5摄氏度冷藏3小时,使得过硫酸铵更充分的溶解于盐酸溶液中。
最后,将所述氧化剂的酸溶液与浸有碳纳米管薄膜的导电聚合物单体的酸溶液混合,使导电聚合物单体聚合,获得碳纳米管/导电聚合物复合材料。
上述导电聚合物单体聚合的方法具体包括以下步骤:将所述浸有碳纳米管薄膜的导电聚合物单体的酸溶液置于冰水混合物中;缓慢逐滴加入氧化剂的酸溶液,使得导电聚合物单体发生聚合反应,形成导电聚合物纤维;以及待所述氧化剂的酸溶液全部滴加完毕,将所述碳纳米管薄膜的导电聚合物单体的酸溶液与氧化剂的酸溶液的混合液在0摄氏度~5摄氏度冷藏5~20小时。
所述冷藏含有碳纳米管薄膜的导电聚合物单体的酸溶液与氧化剂的酸溶液的混合液5~20小时,作用是使得导电聚合物单体被氧化剂充分地氧化,从而使得导电聚合物单体能够充分均匀聚合形成导电聚合物纤维,导电聚合物纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上,所述导电聚合物纤维还可以彼此相互联接后再复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。上述冷藏为可选择条件,也可以直接在室温下将含有碳纳米管薄膜的导电聚合物单体的酸溶液与氧化剂的酸溶液的混合液放置5~20小时,若聚合反应为放热反应,冷藏条件得到的碳纳米管/导电聚合物复合材料要比室温所得到的碳纳米管/导电聚合物复合材料的导电性能好,因此本技术领域的技术人员可以根据实际情况选择是否冷藏。所述导电聚合物纤维的长度为100纳米~10毫米,直径为30纳米~120纳米。
本实施例中,可将所述含有碳纳米管薄膜的导电聚合物单体的酸溶液与氧化剂的酸溶液的混合液放置于0摄氏度~5摄氏度的环境中,冷藏10小时,使得聚苯胺纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上,或者所述聚本案纤维还可以彼此相互联接后再复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
本技术方案碳纳米管/导电聚合物复合材料的制备方法中,采用将50~90质量份的碳纳米管薄膜与20~40质量份导电聚合物单体配置的酸溶液混合,再加入由20~40质量份的氧化剂配置的氧化剂的酸溶液,使导电聚合物单体氧化聚合成导电聚合物,从而与碳纳米管薄膜复合形成碳纳米管/导电聚合物复合材料。上述碳纳米管薄膜、导电聚合物单体以及氧化剂的质量比例关系有利于确保本技术方案制备的碳纳米管/导电聚合物复合材料中聚苯胺纤维复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上,或者所述聚本案纤维还可以彼此相互联接后再复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上。
所述制备碳纳米管/导电聚合物复合材料的制备方法还可以进一步包括一采用清洗溶液清洗并烘干所述碳纳米管/导电聚合物复合材料的步骤。具体地,该步骤可以通过以下方法实现:首先,将碳纳米管/导电聚合物复合材料从混合液中取出,将其放入盛有去离子水的容器内清洗多次,以除去碳纳米管/导电聚合物复合材料中的离子杂质;其次,再将其放入盛有乙醇的容器中清洗多次以去除碳纳米管/导电聚合物复合材料中残留的其它有机杂质;最后,将碳纳米管/导电聚合物复合材料取出,放入烘箱内,在80摄氏度下烘干4小时,将碳纳米管/导电聚合物复合材料中的乙醇蒸发出来。通过清洗碳纳米管/导电聚合物复合材料可有效去除碳纳米管/导电聚合物复合材料中存在的其他离子杂质,以及残留其它有机杂质,从而进一步提高碳纳米管/导电聚合物复合材料的纯度。
请参阅图2,本技术方案所制备的碳纳米管/导电聚合物复合材料10包括多个碳纳米管12及多个导电聚合物纤维14。所述多个碳纳米管12相互连接形成一碳纳米管薄膜16,多个导电聚合物纤维14复合在所述碳纳米管12的表面或/和附着在所述碳纳米管12的管壁上,所述导电聚合物纤维14还可以彼此相互联接后再复合在所述碳纳米管12的表面或/和附着在所述碳纳米管12的管壁上。在上述的碳纳米管/导电聚合物复合材料10中,碳纳米管12形成的碳纳米管薄膜16起到了骨架作用,导电聚合物纤维14依附在所述的碳纳米管薄膜16骨架上。进一步地,所述碳纳米管12和导电聚合物纤维14均匀分布于所述碳纳米管/导电聚合物复合材料中。
本技术方案所提供的碳纳米管/导电聚合物复合材料的制备方法具有以下优点:其一,由于采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,碳纳米管薄膜中多个碳纳米管均匀分散且相互连接形成导电网络,使得制得的碳纳米管/导电聚合物复合材料中碳纳米管均匀分散。其二,由于采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,无需添加表面活性剂,使得碳纳米管/导电聚合物复合材料中不包含表面活性剂。其三,本发明提供的碳纳米管/导电聚合物复合材料的制备方法,不需要用强酸氧化碳纳米管,碳纳米管的结构完整,在制备过程中不会破坏碳纳米管的结构。其四,采用化学原位聚合法将所述碳纳米管薄膜与导电聚合物复合,制备工艺简单,可实现连续、规模化生产,且成本较低。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (11)

1.一种碳纳米管/导电聚合物复合材料的制备方法,其包括以下步骤:
制备一碳纳米管薄膜;以及
采用化学原位聚合法将导电聚合物复合在所述碳纳米管薄膜上,获得一碳纳米管/导电聚合物复合材料,其特征在于,所述采用化学原位聚合法制备碳纳米管/导电聚合物复合材料的方法具体包括以下步骤:
制备一导电聚合物单体的酸溶液,将所述碳纳米管薄膜浸入所述导电聚合物单体的酸溶液中,形成一包含碳纳米管薄膜与导电聚合物单体的酸溶液;
制备一氧化剂的酸溶液;以及
将所述氧化剂的酸溶液与浸有碳纳米管薄膜的导电聚合物单体的酸溶液混合,使导电聚合物单体聚合。
2.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述碳纳米管薄膜的制备方法包括直接生长法、絮化法、碾压法或拉膜法。
3.如权利要求2所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述絮化法制备碳纳米管薄膜包括以下步骤:
提供一碳纳米管原料;
将上述碳纳米管原料添加到溶剂中并进行絮化处理获得碳纳米管絮状结构;
以及将上述碳纳米管絮状结构从溶剂中分离,并对该碳纳米管絮状结构定型处理。
4.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述酸溶液为盐酸溶液、硫酸溶液、硝酸溶液、磷酸溶液及乙酸溶液中的一种或几种的混合。
5.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于所述制备包含碳纳米管薄膜与导电聚合物单体的酸溶液的方法具体包括以下步骤:
提供20~40质量份导电聚合物单体,配制摩尔浓度为0.1~5摩尔/升的酸溶液,将所述导电聚合物单体溶于酸溶液中,得到摩尔浓度为0.1~5摩尔/升的导电聚合物单体的酸溶液;以及
取50~90质量份的碳纳米管薄膜,将其浸入所述导电聚合物单体的酸溶液中,形成一包含碳纳米管薄膜与导电聚合物单体的酸溶液,将含有碳纳米管薄膜的导电聚合物单体的酸溶液在0摄氏度~5摄氏度冷藏3~10小时。
6.如权利要求5所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述导电聚合物单体为苯胺、吡咯、噻吩、乙炔、对苯及对苯撑乙烯中的一种或几种。
7.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,
所述制备一氧化剂的酸溶液的方法具体包括以下步骤:
称量20~40质量份的氧化剂于一容器中;
倒入摩尔浓度为0.1~5摩尔/升的酸溶液,配制成摩尔浓度为0.1~5摩尔/升的氧化剂的酸溶液;将所述氧化剂的酸溶液在0摄氏度~5摄氏度冷藏3~10小时。
8.如权利要求7所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述氧化剂包括过硫酸胺、高锰酸钾或双氧水。
9.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述导电聚合物单体的酸溶液的摩尔浓度与所述氧化剂的酸溶液的摩尔浓度之比为1∶2~2∶1。
10.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述使导电聚合物单体聚合,制备碳纳米管/导电聚合物复合材料的方法具体包括以下步骤:
将所述浸有碳纳米管薄膜的导电聚合物单体的酸溶液置于冰水混合物中;
逐滴加入氧化剂的酸溶液,使得导电聚合物单体发生聚合反应,形成导电聚合物纤维,导电聚合物纤维直接或相互联接后复合在所述碳纳米管的表面或/和附着在所述碳纳米管的管壁上;以及
待所述氧化剂的酸溶液滴加完毕,将所述含有碳纳米管薄膜的导电聚合物单体的酸溶液与氧化剂的酸溶液的混合液在0摄氏度~5摄氏度冷藏5~20小时。
11.如权利要求1所述的碳纳米管/导电聚合物复合材料的制备方法,其特征在于,所述制备碳纳米管/导电聚合物复合材料的方法进一步包括用清洗溶剂清洗所述碳纳米管/导电聚合物复合材料并烘干,其具体包括以下步骤:
将碳纳米管/导电聚合物复合材料从混合液中取出,将其放入盛有去离子水的容器内清洗多次,以除去碳纳米管/导电聚合物复合材料中的离子杂质;
再将其放入盛有乙醇的容器中清洗多次以去除碳纳米管/导电聚合物复合材料中残留的其它有机杂质;以及
取出碳纳米管/导电聚合物复合材料,放入烘箱内,在80摄氏度下烘干2~6小时,将碳纳米管/导电聚合物复合材料中的乙醇蒸发出来。
CN2008101420226A 2008-08-22 2008-08-22 碳纳米管/导电聚合物复合材料的制备方法 Active CN101654555B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2008101420226A CN101654555B (zh) 2008-08-22 2008-08-22 碳纳米管/导电聚合物复合材料的制备方法
US12/487,291 US8192650B2 (en) 2008-08-22 2009-06-18 Method for manufacturing carbon nanotube-conducting polymer composite
JP2009193180A JP5313811B2 (ja) 2008-08-22 2009-08-24 カーボンナノチューブ/ポリマー複合材料の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101420226A CN101654555B (zh) 2008-08-22 2008-08-22 碳纳米管/导电聚合物复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN101654555A CN101654555A (zh) 2010-02-24
CN101654555B true CN101654555B (zh) 2013-01-09

Family

ID=41695500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101420226A Active CN101654555B (zh) 2008-08-22 2008-08-22 碳纳米管/导电聚合物复合材料的制备方法

Country Status (3)

Country Link
US (1) US8192650B2 (zh)
JP (1) JP5313811B2 (zh)
CN (1) CN101654555B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9111658B2 (en) 2009-04-24 2015-08-18 Applied Nanostructured Solutions, Llc CNS-shielded wires
CN102458825A (zh) 2009-04-24 2012-05-16 应用纳米结构方案公司 基于cnt的信号控制材料
US9167736B2 (en) 2010-01-15 2015-10-20 Applied Nanostructured Solutions, Llc CNT-infused fiber as a self shielding wire for enhanced power transmission line
CN102222565B (zh) * 2010-04-15 2014-06-18 国家纳米科学中心 碳基复合电极材料及其制备方法和在超级电容器中的应用
US8780526B2 (en) * 2010-06-15 2014-07-15 Applied Nanostructured Solutions, Llc Electrical devices containing carbon nanotube-infused fibers and methods for production thereof
CN101880035A (zh) 2010-06-29 2010-11-10 清华大学 碳纳米管结构
GB201013939D0 (en) 2010-08-20 2010-10-06 Airbus Operations Ltd Bonding lead
JP2014508370A (ja) 2010-09-23 2014-04-03 アプライド ナノストラクチャード ソリューションズ リミテッド ライアビリティー カンパニー 強化送電線のセルフシールドワイヤとしてのcnt浸出繊維
CN102737851B (zh) * 2011-04-15 2015-08-26 国家纳米科学中心 一种柔性超级电容器及其制备方法
CN102856495B (zh) * 2011-06-30 2014-12-31 清华大学 压力调控薄膜晶体管及其应用
CN102443274B (zh) * 2011-09-21 2014-01-01 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管/高分子复合膜的制备方法
US9085464B2 (en) 2012-03-07 2015-07-21 Applied Nanostructured Solutions, Llc Resistance measurement system and method of using the same
KR101328236B1 (ko) 2012-07-23 2013-11-14 경희대학교 산학협력단 탄소나노튜브 복합체 및 이를 이용한 투명전극박막 및 그 제조방법
WO2014065842A1 (en) * 2012-08-27 2014-05-01 National Institute Of Aerospace Associates Polyaniline/carbon nanotube sheet nancomposites
CN102826538A (zh) * 2012-09-17 2012-12-19 辽宁科技大学 一种聚合物改性制备氮掺杂碳质材料的方法
CN104140089B (zh) * 2013-05-07 2016-08-31 中国科学院物理研究所 一种超薄碳纳米管薄膜及其制备方法和装置
CN104788952B (zh) * 2014-01-22 2017-04-26 清华大学 碳纳米管复合结构的制备方法
CN103903819A (zh) * 2014-04-14 2014-07-02 黄河科技学院 一种柔性透明导电膜的制备方法
CN104311852B (zh) * 2014-10-27 2017-06-16 上海理工大学 一种制备垂直有序碳纳米管/聚苯胺复合膜的方法和装置
CN104592778B (zh) * 2015-02-11 2017-04-05 苏州捷迪纳米科技有限公司 碳纳米管网络/聚合物复合材料及其制备方法
CN106883606A (zh) * 2017-03-03 2017-06-23 深圳市佩成科技有限责任公司 PANI/MWCNTs复合材料的制备方法
CN108666532B (zh) * 2017-04-01 2021-12-03 清华大学 锂离子电池阳极的制备方法
WO2020124362A1 (zh) * 2018-12-18 2020-06-25 大连理工大学 一种导电聚合物/碳纳米管复合纳滤膜的制备方法及应用
CN110690473A (zh) * 2019-11-14 2020-01-14 上海电气集团股份有限公司 金属双极板的碳纳米管阵列-导电聚合物涂层的制备方法
CN112410924B (zh) * 2020-10-27 2023-06-30 江西省纳米技术研究院 碳纳米管/导电聚合物复合纤维、其连续制备方法及系统
CN112898739A (zh) * 2021-01-26 2021-06-04 武汉工程大学 一种高导电聚合物碳纳米管复合材料及其制备方法
CN115518524A (zh) * 2022-11-07 2022-12-27 中国科学院生态环境研究中心 电响应膜及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121791B (zh) * 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11241021A (ja) * 1998-02-25 1999-09-07 Toyobo Co Ltd 導電性高分子複合微粒子およびその製造方法
US6800155B2 (en) * 2000-02-24 2004-10-05 The United States Of America As Represented By The Secretary Of The Army Conductive (electrical, ionic and photoelectric) membrane articlers, and method for producing same
JP4065400B2 (ja) * 2000-06-14 2008-03-26 ハイピリオン カタリシス インターナショナル インコーポレイテッド 多層高分子構造物
US7264876B2 (en) * 2000-08-24 2007-09-04 William Marsh Rice University Polymer-wrapped single wall carbon nanotubes
US6599446B1 (en) * 2000-11-03 2003-07-29 General Electric Company Electrically conductive polymer composite compositions, method for making, and method for electrical conductivity enhancement
US7118693B2 (en) * 2001-07-27 2006-10-10 Eikos, Inc. Conformal coatings comprising carbon nanotubes
US7001556B1 (en) * 2001-08-16 2006-02-21 The Board Of Regents University Of Oklahoma Nanotube/matrix composites and methods of production and use
US7022776B2 (en) * 2001-11-07 2006-04-04 General Electric Conductive polyphenylene ether-polyamide composition, method of manufacture thereof, and article derived therefrom
US6811724B2 (en) * 2001-12-26 2004-11-02 Eastman Kodak Company Composition for antistat layer
JP3962376B2 (ja) * 2002-03-14 2007-08-22 カーボン ナノテクノロジーズ インコーポレーテッド 極性重合体及び単層壁炭素ナノチューブを含有する複合体材料
US8294025B2 (en) * 2002-06-08 2012-10-23 Solarity, Llc Lateral collection photovoltaics
US7153903B1 (en) * 2002-06-19 2006-12-26 The Board Of Regents Of The University Of Oklahoma Carbon nanotube-filled composites prepared by in-situ polymerization
JP2007516314A (ja) * 2003-05-22 2007-06-21 ザイベックス コーポレーション ナノコンポジットおよびナノコンポジットに関する方法
JP3896350B2 (ja) * 2003-06-20 2007-03-22 信越ポリマー株式会社 導電性組成物
US7455793B2 (en) * 2004-03-31 2008-11-25 E.I. Du Pont De Nemours And Company Non-aqueous dispersions comprising electrically doped conductive polymers and colloid-forming polymeric acids
US7960037B2 (en) * 2004-12-03 2011-06-14 The Regents Of The University Of California Carbon nanotube polymer composition and devices
US7462656B2 (en) * 2005-02-15 2008-12-09 Sabic Innovative Plastics Ip B.V. Electrically conductive compositions and method of manufacture thereof
US20100127241A1 (en) * 2005-02-25 2010-05-27 The Regents Of The University Of California Electronic Devices with Carbon Nanotube Components
US20090053512A1 (en) * 2006-03-10 2009-02-26 The Arizona Bd Of Reg On Behalf Of The Univ Of Az Multifunctional polymer coated magnetic nanocomposite materials
CN101003909A (zh) 2006-12-21 2007-07-25 上海交通大学 电化学组合沉积制备碳纳米管-金属复合膜结构的方法
CN101009222A (zh) 2007-01-26 2007-08-01 北京大学 一种制备碳纳米管电子器件的方法
US20110023955A1 (en) * 2007-06-26 2011-02-03 Fonash Stephen J Lateral collection photovoltaics
CN101480858B (zh) * 2008-01-11 2014-12-10 清华大学 碳纳米管复合材料及其制备方法
CN101582302B (zh) * 2008-05-14 2011-12-21 清华大学 碳纳米管/导电聚合物复合材料
CN101659789B (zh) * 2008-08-29 2012-07-18 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN101712468B (zh) * 2008-09-30 2014-08-20 清华大学 碳纳米管复合材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101121791B (zh) * 2006-08-09 2010-12-08 清华大学 碳纳米管/聚合物复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
郭红范等.聚噻吩/ 碳纳米管复合材料的制备与性能研究.《功能材料》.2007,第38卷(第9期),1496-1498,1506. *
陈忠平等.碳纳米管/纳米TiO2 - 聚苯胺复合膜电极的电化学制备.《安徽科技学院学报》.2007,第21卷(第3期),18-21.
陈忠平等.碳纳米管/纳米TiO2- 聚苯胺复合膜电极的电化学制备.《安徽科技学院学报》.2007,第21卷(第3期),18-21. *

Also Published As

Publication number Publication date
JP5313811B2 (ja) 2013-10-09
CN101654555A (zh) 2010-02-24
US8192650B2 (en) 2012-06-05
JP2010047761A (ja) 2010-03-04
US20100044647A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
CN101654555B (zh) 碳纳米管/导电聚合物复合材料的制备方法
CN101659789B (zh) 碳纳米管/导电聚合物复合材料的制备方法
Zhao et al. Graphene quantum dot reinforced electrospun carbon nanofiber fabrics with high surface area for ultrahigh rate supercapacitors
Simotwo et al. Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers
Wang et al. Polymorphous supercapacitors constructed from flexible three-dimensional carbon network/polyaniline/MnO2 composite textiles
Ma et al. Bottom-up fabrication of activated carbon fiber for all-solid-state supercapacitor with excellent electrochemical performance
Li et al. Superstructured assembly of nanocarbons: fullerenes, nanotubes, and graphene
Niu et al. A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes
Raffaelle et al. Carbon nanotubes for power applications
Yu et al. Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors
Di et al. Ultrastrong, foldable, and highly conductive carbon nanotube film
CN101425381B (zh) 超级电容器及其制备方法
CN101712468B (zh) 碳纳米管复合材料及其制备方法
Carter et al. Solution assembled single-walled carbon nanotube foams: superior performance in supercapacitors, lithium-ion, and lithium–air batteries
Jiang et al. Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers
Liu et al. Large areal mass and high scalable and flexible cobalt oxide/graphene/bacterial cellulose electrode for supercapacitors
Gao et al. Preparation and electrochemical properties of polyaniline doped with benzenesulfonic functionalized multi-walled carbon nanotubes
Dhibar et al. Morphological modulation of conducting polymer nanocomposites with nickel cobaltite/reduced graphene oxide and their subtle effects on the capacitive behaviors
Hyder et al. Vacuum-assisted layer-by-layer nanocomposites for self-standing 3D mesoporous electrodes
Fan et al. Graphene–carbon nanotube aerogel with a scroll-interconnected-sheet structure as an advanced framework for a high-performance asymmetric supercapacitor electrode
Le et al. Strategies for fabricating versatile carbon nanomaterials from polymer precursors
Zhao et al. Carbon nanotubes boosts the toughness and conductivity of wet-spun MXene fibers for fiber-shaped super capacitors
Kim et al. Hybrid polyaniline/liquid crystalline CNT fiber composite for ultimate flexible supercapacitors
Wang et al. Graphene quantum dot-assisted preparation of water-borne reduced graphene oxide/polyaniline: from composite powder to layer-by-layer self-assembly film and performance enhancement
Chen et al. Characterisations of carbon-fenced conductive silver nanowires-supported hierarchical polyaniline nanowires

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant