CN104788952B - 碳纳米管复合结构的制备方法 - Google Patents

碳纳米管复合结构的制备方法 Download PDF

Info

Publication number
CN104788952B
CN104788952B CN201410027788.5A CN201410027788A CN104788952B CN 104788952 B CN104788952 B CN 104788952B CN 201410027788 A CN201410027788 A CN 201410027788A CN 104788952 B CN104788952 B CN 104788952B
Authority
CN
China
Prior art keywords
container
composite structure
carbon nano
cnt
nano tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410027788.5A
Other languages
English (en)
Other versions
CN104788952A (zh
Inventor
尹燕利
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CN201410027788.5A priority Critical patent/CN104788952B/zh
Priority to TW103104357A priority patent/TWI538876B/zh
Priority to US14/261,562 priority patent/US9434815B2/en
Publication of CN104788952A publication Critical patent/CN104788952A/zh
Application granted granted Critical
Publication of CN104788952B publication Critical patent/CN104788952B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/02Monomers containing only one unsaturated aliphatic radical
    • C08F112/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F112/06Hydrocarbons
    • C08F112/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/02Monomers containing chlorine
    • C08F114/04Monomers containing two carbon atoms
    • C08F114/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/02Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F116/04Acyclic compounds
    • C08F116/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/42Nitriles
    • C08F120/44Acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0627Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/18Homopolymers or copolymers of nitriles
    • C08L33/20Homopolymers or copolymers of acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Abstract

一种碳纳米管复合结构的制备方法,包括以下步骤:提供一悬空设置的碳纳米管层;提供一聚合物单体溶液和一氧化剂溶液;利用压力使所述聚合物单体溶液形成气态聚合物单体物质,使所述氧化剂溶液形成气态氧化剂物质;以及使该气态聚合物单体物质和气态氧化剂物质在所述碳纳米管层表面发生反应,形成碳纳米管复合结构。

Description

碳纳米管复合结构的制备方法
技术领域
本发明涉及一种碳纳米管复合结构的制备方法。
背景技术
碳纳米管(Carbon Nanotube, CNT)是一种由石墨烯片卷成的中空管状物,具有优异的力学、热学及电学性质,因此具有广阔的应用领域。由于单根碳纳米管的直径只有零点几个纳米至几十纳米,难于进行加工。为便于实际应用,人们尝试将大量碳纳米管作为原材料,制成具有较大尺寸的宏观结构。碳纳米管膜(Carbon Nanotube Film, CNT Film)就是这种宏观结构的具体形式之一。
进一步,碳纳米管与其它材料例如聚合物等复合形成碳纳米管复合结构可以实现材料的优势互补或加强。现有技术中,碳纳米管膜与其它材料例如聚合物等复合时,一般会将碳纳米管膜浸入聚合物溶液里。然而,由于所述碳纳米管膜的厚度很薄,仅十几纳米,当将该碳纳米管膜浸入聚合物溶液中以制备碳纳米管复合结构时,很容易将碳纳米管膜破坏。
发明内容
有鉴于此,确有必要提供一种碳纳米管复合结构的制备方法,该方法无需将碳纳米管层浸入溶液中,不会破坏碳纳米管层的结构。
一种碳纳米管复合结构的制备方法,包括以下步骤:提供一悬空设置的碳纳米管层;提供一聚合物单体溶液和一氧化剂溶液;利用压力使所述聚合物单体溶液形成气态聚合物单体物质,使所述氧化剂溶液形成气态氧化剂物质;以及使该气态聚合物单体物质和气态氧化剂物质在所述碳纳米管层表面发生反应,形成碳纳米管复合结构。
一种碳纳米管复合结构的制备方法,包括以下步骤:提供一悬空设置的碳纳米管层;提供一聚合物溶液;以及利用压力使所述聚合物溶液形成气态聚合物物质,该气态聚合物物质与所述碳纳米管层产生反应,形成碳纳米管复合结构。
与现有技术相比,本发明提供的碳纳米管复合结构的制备方法中,将碳纳米管层置于气态物质中以便碳纳米管层与该气态物质复合,无需将碳纳米管层浸入溶液中,不会破坏碳纳米管层的结构,所述气态物质包括气态聚合物物质,或者同时包括气态聚合物单体物质和气态氧化剂物质。
附图说明
图1为本发明第一实施例提供的碳纳米管复合结构的制备方法的装置的结构示意图。
图2为本发明第一实施例提供的碳纳米管复合结构的制备方法的流程图。
图3为本发明第一实施例提供的碳纳米管拉膜的扫描电镜照片。
图4为本发明第一实施例提供的碳纳米管絮化膜的扫描电镜照片。
图5为本发明第一实施例提供的包括多个沿同一方向择优取向排列的碳纳米管的碳纳米管碾压膜的扫描电镜照片。
图6为本发明第一实施例提供的包括多个沿不同方向择优取向排列的碳纳米管的碳纳米管碾压膜的扫描电镜照片。
图7为本发明第一实施例提供的喷雾时间为1分钟的碳纳米管/聚苯胺复合结构的扫描电镜照片。
图8为本发明第一实施例提供的喷雾时间为2分钟的碳纳米管/聚苯胺复合结构的扫描电镜照片。
图9为本发明第一实施例提供的喷雾时间为3分钟的碳纳米管/聚苯胺复合结构的扫描电镜照片。
图10为本发明第一实施例提供的喷雾时间为4分钟的碳纳米管/聚苯胺复合结构的扫描电镜照片。
图11为本发明第二实施例提供的碳纳米管复合结构的制备方法的装置的结构示意图。
图12为本发明第二实施例提供的碳纳米管复合结构的制备方法的流程图。
主要元件符号说明
反应室 10
上侧壁 101
下侧壁 103
左侧壁 105
右侧壁 107
排液孔 102
进气口 104
碳纳米管层 106
第一容器 20
第一端 202
第二端 204
第二容器 22
第三端 222
第四端 224
第一样品放置容器 30
第二样品放置容器 32
压力提供装置 40
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
下面将结合附图及具体实施例对本发明提供的碳纳米管复合结构的制备方法作进一步的详细说明。
请一并参见图1及图2,本发明第一实施例提供一种碳纳米管复合结构的制备方法,包括以下步骤:
S10,提供一碳纳米管层106,该碳纳米管层106悬空设置于一反应室10内;
S11,提供一聚合物单体溶液和一氧化剂溶液;
S12,利用压力使所述聚合物单体溶液形成气态聚合物单体物质,使所述氧化剂溶液形成气态氧化剂物质,该气态聚合物单体物质和气态氧化剂物质与所述碳纳米管层106产生反应,形成碳纳米管复合结构。
步骤S10中,所述碳纳米管层106包括多个均匀分布的碳纳米管,碳纳米管之间通过范德华力紧密结合。所述碳纳米管的延伸方向平行于碳纳米管层106的表面。相邻碳纳米管之间具有间隙。所述碳纳米管包括单壁碳纳米管、双壁碳纳米管及多壁碳纳米管中的一种或多种。所述单壁碳纳米管的直径为0.5 纳米~50纳米,所述双壁碳纳米管的直径为1.0纳米~50纳米,所述多壁碳纳米管的直径为1.5纳米~50纳米。所述碳纳米管层106还可以为由碳纳米管组成的纯结构。所述碳纳米管为无序或有序排列。这里的无序排列指碳纳米管的排列方向无规律,这里的有序排列指至少多数碳纳米管的排列方向具有一定规律。具体地,当碳纳米管层106包括无序排列的碳纳米管时,碳纳米管相互缠绕或者各向同性排列;当碳纳米管层106包括有序排列的碳纳米管时,碳纳米管沿一个方向或者多个方向择优取向排列。
所述碳纳米管层106包括至少一碳纳米管拉膜、至少一碳纳米管絮化膜或至少一碳纳米管碾压膜。
请参见图3,该碳纳米管拉膜包括多个首尾相连且沿拉伸方向择优取向排列的碳纳米管。所述碳纳米管均匀分布,且平行于碳纳米管拉膜表面。所述碳纳米管拉膜中的碳纳米管之间通过范德华力连接。一方面,首尾相连的碳纳米管之间通过范德华力连接,另一方面,平行的碳纳米管之间部分亦通过范德华力结合,故,该碳纳米管拉膜具有一定的柔韧性,可以弯曲折叠成任意形状而不破裂,且具有良好的自支撑性能。所述碳纳米管拉膜可通过直接拉伸一碳纳米管阵列获得。
当所述碳纳米管层106包括至少两层重叠设置的碳纳米管拉膜时,相邻的碳纳米管拉膜之间通过范德华力紧密结合。进一步,相邻两层碳纳米管拉膜中的碳纳米管的排列方向之间形成一夹角α,0≤α≤90度,具体可依据实际需求而进行调整。所述至少两层碳纳米管拉膜交叉重叠设置时,可以提高碳纳米管复合结构的强度。本实施例中,所述碳纳米管层106为两层碳纳米管拉膜交叉设置,且相邻两层碳纳米管拉膜之间交叉的角度为90度。
请参见图4,所述碳纳米管絮化膜为各向同性,其包括多个无序排列且均匀分布的碳纳米管。碳纳米管之间通过范德华力相互吸引、相互缠绕。因此,碳纳米管絮化膜具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂,且具有良好的自支撑性能。
请参见图5和图6,所述碳纳米管碾压膜包括均匀分布的碳纳米管,碳纳米管沿同一方向或不同方向择优取向排列。所述碳纳米管碾压膜中的碳纳米管与碳纳米管碾压膜的表面成一夹角α,其中,α大于等于零度且小于等于15度(0≤α≤15°)。优选地,所述碳纳米管碾压膜中的碳纳米管平行于碳纳米管碾压膜的表面。依据碾压的方式不同,该碳纳米管碾压膜中的碳纳米管具有不同的排列形式。请参见图5,碳纳米管在碳纳米管碾压膜中可沿一固定方向择优取向排列;请参见图6,碳纳米管碾压膜中的碳纳米管可沿不同方向择优取向排列。所述碳纳米管碾压膜中的碳纳米管部分交叠。所述碳纳米管碾压膜中碳纳米管之间通过范德华力相互吸引,紧密结合,使得该碳纳米管碾压膜具有很好的柔韧性,可以弯曲折叠成任意形状而不破裂。且由于碳纳米管碾压膜中的碳纳米管之间通过范德华力相互吸引,紧密结合,使碳纳米管碾压膜具有良好的自支撑性能。所述碳纳米管碾压膜可通过沿一定方向或不同方向碾压一碳纳米管阵列获得。
所述自支撑为碳纳米管拉膜、碳纳米管絮化膜或碳纳米管碾压膜均不需要大面积的载体支撑,而只要相对两边提供支撑力即能整体上悬空而保持自身层状状态,即将所述碳纳米管拉膜、碳纳米管絮化膜或碳纳米管碾压膜置于(或固定于)间隔一固定距离设置的两个支撑体上时,位于两个支撑体之间的碳纳米管拉膜、碳纳米管絮化膜或碳纳米管碾压膜能够保持自身层状状态。
所述反应室10包括相对设置的一上侧壁101和一下侧壁103,相对设置的一左侧壁105和一右侧壁107,所述上侧壁101、下侧壁103、左侧壁105和右侧壁107形成一空间。所述反应室10的左侧壁105和右侧壁107分别设置一进气口104。所述反应室10的下侧壁103可以设置一排液孔102,以利于反应过程中废液的排出。当然,为了使反应室10内尽快充满气态聚合物单体物质和气态氧化剂物质,该反应室10的下侧壁103也可以不设置排液孔102。该反应室10的材料选用不易被所述聚合物单体溶液和氧化剂溶液腐蚀的材料,可以为金属、陶瓷或聚合物等。本实施例中,所述反应室10的材料为聚四氟乙烯。
所述碳纳米管层106悬空设置于所述反应室10内的方式不限,例如,将碳纳米管层106设置于间隔一定距离的两个支撑体上,或者将碳纳米管层106设置于一环状载体上。本实施例中,所述碳纳米管层106固定于一方型金属框上。为了使碳纳米层与所述气态聚合物单体物质及气态氧化剂物质充分反应,该方型金属框垂直固定于所述反应室10内,即固定于方型金属框上的碳纳米管层106垂直于反应室10的下侧壁103且碳纳米管层106相对的两个表面分别正对着左侧壁105和右侧壁107上的进气孔,如图1所示。
步骤S11中,所述聚合物单体溶液是可以形成聚合物的单体溶解于溶剂中形成的。所述氧化剂溶液是氧化剂溶于溶剂中形成的,该氧化剂可以使所述聚合物单体产生聚合反应后成为聚合物与所述碳纳米管层106复合。所述聚合物单体可包括苯胺、噻吩、吡咯、丙烯腈、乙烯醇、丙烯、苯乙烯、氯乙烯或对苯二甲酸乙二酯等。所述聚合物单体经过聚合后生成聚苯胺、聚噻吩、聚吡咯、聚丙烯腈、聚乙烯醇、聚丙烯、聚苯乙烯、聚氯乙烯或聚对苯二甲酸乙二酯等。所述氧化剂的种类根据聚合物单体的种类进行调整。例如硝酸、硫酸、过硫酸铵等。所述溶剂的种类不限,只要可以溶解所述聚合物单体或氧化剂即可,例如乙醇、甲醇、丙酮等。本实施例中,所述聚合物单体溶液为苯胺溶于盐酸或乙醇中形成的苯胺溶液,所述氧化剂溶液为过硫酸铵溶于水中形成的过硫酸铵水溶液。
所述聚合物单体溶液和氧化剂溶液的浓度可以根据实际情况适当调整,一般聚合物单体溶液的浓度为0.01摩尔每升至2摩尔每升,氧化剂溶液的浓度为0.01摩尔每升至2摩尔每升。本实施例中,苯胺溶液的浓度为0.05摩尔每升至0.2摩尔每升,优选地,苯胺溶液的浓度为0.05摩尔每升,且过硫酸铵水溶液的浓度与苯胺溶液的浓度相同。
请参见图1,所述聚合物单体溶液放置于一第一样品放置容器30中,该第一样品放置容器30位于一第一容器20的上方并与该第一容器20连接,所述聚合物单体溶液可以由第一样品放置容器30滴入或流入第一容器20内。所述第一容器20具有一第一端202和与该第一端202相对的第二端204。第一容器20的第一端202与反应室10位于左侧壁105的进气口104紧密连接,使第一容器20连接于反应室10。
所述氧化剂溶液放置于一第二样品放置容器32中,该第二样品放置容器32位于一第二容器22的上方并与该第二容器22连接,所述氧化剂溶液可以由第二样品放置容器32滴入或流入第二容器22内。所述第二容器22具有一第三端222和与该第三端222相对的第四端224。第二容器22的第三端222与反应室10位于右侧壁107的进气口104紧密连接,使第二容器22连接于反应室10。
所述第一样品放置容器30、第二样品放置容器32、第一容器20及第二容器22的材料选用不易被所述聚合物单体溶液和氧化剂溶液腐蚀的材料,可以为金属、陶瓷或聚合物等。本实施例中,所述第一样品放置容器30和第二样品放置容器32的材料为聚四氟乙烯,第一容器20和第二容器22为美工喷笔。
步骤S12中,所述压力由一压力提供装置40产生,该压力提供装置40分别设置在第一容器20的第二端204和第二容器22的第四端224。该压力提供装置40的种类不限,例如压缩空气源或超声波振荡器。
具体地,所述第一容器20的第二端204设置一压缩空气源,该压缩空气源的开关打开后,压缩空气源里的压缩空气在内部压强的作用下,恢复原来的体积时会产生压力,该压力使得从第一样品放置容器30进入第一容器20内的聚合物单体溶液形成气态聚合物单体物质,并使该气态聚合物单体物质通过反应室10左侧壁105的进气口104进入反应室10。
所述第二容器22的第四端224设置一压缩空气源,该压缩空气源的开关打开后,压缩空气源里的压缩空气在内部压强的作用下,恢复原来的体积时会产生压力,该压力使得从第二样品放置容器32进入第二容器22内的氧化剂溶液形成气态氧化剂物质,并使该气态氧化剂物质通过反应室10右侧壁107的进气口104进入反应室10。
调节压缩空气源所产生的压力的大小,使气态聚合物单体物质和气态氧化剂物质充满反应室10。所述压力为1PSI(磅每平方英寸)至20PSI。本实施例中,所述压力为5PSI。即反应室10内充满聚合物单体溶液的气体和氧化剂溶液的气体,或者说,反应室10内充满雾状的聚合物单体物质和雾状的氧化剂物质。
当在第一容器20的第二端204设置一超声波振荡器时,该超声波振荡器利用超声波的高频声波振荡产生压力,使从第一样品放置容器30进入第一容器20内的聚合物单体溶液形成气态聚合物单体物质,并使该气态聚合物单体物质通过反应室10左侧壁105的进气口104进入反应室10,所述气态聚合物单体物质由大量的均匀的微小气泡组成。
同样的,在所述第二容器22的第四端224设置一超声波振荡器时,该超声波振荡器利用超声波的高频声波振荡产生压力,使得从第二样品放置容器32进入第二容器22内的氧化剂溶液形成气态氧化剂物质,并使该气态氧化剂物质通过反应室10右侧壁107的进气口104进入反应室10,所述气态氧化剂物质由大量的均匀的微小气泡组成。所述超声波振荡器的功率为10瓦至100瓦,超声振荡的时间为1分钟至15分钟。
该气态聚合物单体物质和气态氧化剂物质与所述碳纳米管层106产生反应,形成碳纳米管复合结构,具体是指,该气态聚合物单体物质和气态氧化剂物质在所述碳纳米管层106表面发生反应,形成碳纳米管复合结构。具体地,由于碳纳米管层106悬空设置于反应室10内,聚合物单体溶液的气体和氧化剂溶液的气体浸入碳纳米管层106,在碳纳米管层106中的碳纳米管表面发生聚合反应,并与所述碳纳米管发生化学反应。更具体地,聚合物单体在氧化剂的氧化催化作用下在每一根碳纳米管表面发生聚合反应,并与该碳纳米管产生共价键,以形成碳纳米管复合结构。即,聚合物单体发生聚合反应所产生的聚合物通过共价键与碳纳米管层106中的碳纳米管连接。所述聚合物与碳纳米管层106中的碳纳米管连接的方式不限,可以是聚合物通过共价键包覆每一根碳纳米管,也可以是聚合物通过共价键环形缠绕或螺旋缠绕每一根碳纳米管,或者是聚合物通过共价键无序地没有规律地连接于每一根碳纳米管。本实施例中,所述碳纳米管复合结构是两层交叉层叠的碳纳米管拉膜与聚苯胺的复合,且聚苯胺包覆碳纳米管拉膜中的每一根碳纳米管,如图7至图10所示。
调节压缩空气源或者超声波振荡器所产生的压力,使气态聚合物单体物质和气态氧化剂物质进入反应室10,可以理解为,调节压缩空气源或者超声波振荡器所产生的压力,使雾状的聚合物单体物质和雾状的氧化剂物质喷向反应室10。使气态聚合物单体物质和气态氧化剂物质进入反应室10的时间,可以理解为,气态聚合物单体物质的喷雾时间和气态氧化剂物质的喷雾时间。气态聚合物单体物质的气体流量乘以气态聚合物单体物质的喷雾时间,就是反应室10内气态聚合物单体物质的容量。气态氧化剂物质的气体流量乘以气态氧化剂物质的喷雾时间,就是反应室10内气态氧化剂物质的容量。气态聚合物单体物质的气体流量为25sccm(标况毫升每分)至50sccm,气态聚合物单体物质的喷雾时间为0.5分钟至15分钟,气态氧化剂物质的气体流量为25sccm至50sccm,气态氧化剂物质的喷雾时间为0.5分钟至15分钟。优选地,气态聚合物单体物质的气体流量与气态氧化剂物质的气体流量相同,气态聚合物单体物质的喷雾时间与气态氧化剂物质的喷雾时间相同。本实施例中,气态苯胺的气体流量为30sccm至40sccm,气态苯胺的喷雾时间为1分钟至4分钟。气态苯胺的气体流量及喷雾时间分别与气态过硫酸铵的气体流量及喷雾时间相同。图7至图10分别为气态苯胺与气态过硫酸铵的浓度均为0.05摩尔每升,气体流量均为30sccm的情况下,气态苯胺与气态过硫酸铵的喷雾时间分别为1分钟、2分钟、3分钟、4分钟所形成的碳纳米管复合结构的扫描电镜照片。
请一并参见图11及图12,本发明第二实施例提供一种碳纳米管复合结构的制备方法,包括以下步骤:
S20,提供一碳纳米管层106,该碳纳米管层106悬空设置于一反应室10内;
S21,提供一聚合物溶液;
S22,利用压力使所述聚合物溶液形成气态聚合物物质,该气态聚合物物质与所述碳纳米管层106产生反应,形成碳纳米管复合结构。
本发明第二实施例中的步骤S20与第一实施例中的步骤S10的区别是:第一实施例中,反应室10的右侧壁107设置一进气口104;第二实施例中,反应室10的右侧壁107是连续的,没有一开口。除此之外,本发明第二实施例中的步骤S20与第一实施例中的步骤S10相同。
步骤S21中,所述聚合物溶液可通过将聚合物直接熔融或将聚合物溶解于一溶剂而得到。在本实施例中,所述聚合物溶液通过将该聚合物溶解于一有机溶剂而得到。所述聚合物的种类与性质不限,可根据实际需求而选择。所述聚合物可包括聚苯胺、聚噻吩、聚吡咯、聚丙烯腈(Polyacrylonitrile, PAN)、聚乙烯醇(polyvinyl alcohol, PVA)、聚丙烯(Polypropylene, PP)、聚苯乙烯(Polystyrene, PS)、聚氯乙烯(Polyvinylchlorid, PVC)及聚对苯二甲酸乙二酯(Polyethylene terephthalate, PET)中的任意一种或任意组合。所述溶剂的种类不限,只要可以溶解所述聚合物即可,例如乙醇、甲醇、丙酮等。本实施例中,所述聚合物为聚苯胺,所述溶剂为乙醇。
请参见图11,所述聚合物溶液放置于所述第一样品放置容器30中,该第一样品放置容器30位于所述第一容器20的上方并与该第一容器20连接,所述聚合物溶液可以由第一样品放置容器30滴入或流入第一容器20内。所述第一容器20具有一第一端202和与该第一端202相对的第二端204。第一容器20的第一端202与反应室10位于左侧壁105的进气口104紧密连接,使第一容器20连接于反应室10。
所述第一样品放置容器30和第一容器20的材料选用不易被所述聚合物溶液腐蚀的材料,可以为金属、陶瓷或聚合物等。本实施例中,所述第一样品放置容器30的材料为聚四氟乙烯,第一容器20为美工喷笔。
本发明第二实施例中的步骤S22与第一实施例中的步骤S12的区别是:第一实施例中,气态聚合物单体物质、气态氧化剂物质与碳纳米管层106反应产生碳纳米管复合结构;第二实施例中,气态聚合物物质与碳纳米管层106反应产生碳纳米管复合结构。除此之外,本发明第二实施例中的步骤S22与第一实施例中的步骤S12相同。
步骤S22中,所述气态聚合物物质浸入所述碳纳米管层106后,气态聚合物物质将渗透到所述碳纳米管层106的微孔中与所述碳纳米管层106中的碳纳米管紧密接触,并形成共价键。即,气态聚合物物质通过共价键与碳纳米管层106连接以形成碳纳米管复合结构。可以理解,气态聚合物物质与所述聚合物溶液中聚合物的分子式相同,所述聚合物溶液以气态的方式通过共价键与碳纳米管层106中的每一根碳纳米管连接,最终形成固态的碳纳米管复合结构。
本发明提供的碳纳米管复合结构具有以下优点:将碳纳米管层置于气态物质中以便碳纳米管层与该气态物质复合,无需将碳纳米管层浸入溶液中,不会破坏碳纳米管层的结构,所述气态物质包括气态聚合物物质,或者同时包括气态聚合物单体物质和气态氧化剂物质。
另外,本领域技术人员还可在本发明精神内做其他变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (14)

1.一种碳纳米管复合结构的制备方法,包括以下步骤:
提供一悬空设置的碳纳米管层;
提供一聚合物单体溶液和一氧化剂溶液;
利用压力使所述聚合物单体溶液形成气态聚合物单体物质,使所述氧化剂溶液形成气态氧化剂物质;以及
使该气态聚合物单体物质和气态氧化剂物质在所述碳纳米管层表面发生反应,形成碳纳米管复合结构。
2.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述碳纳米管层通过间隔的两个支撑体或一环状载体悬空设置于一反应室内。
3.如权利要求2所述的碳纳米管复合结构的制备方法,其特征在于,所述反应室包括相对的两个侧壁及一下侧壁,所述碳纳米管层具有相对的两个表面,所述碳纳米管层固定于一方型金属框上,该方型金属框垂直于反应室的下侧壁且碳纳米管层的两个表面分别正对着反应室的两个侧壁。
4.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述碳纳米管层包括至少一碳纳米管拉膜、至少一碳纳米管絮化膜或至少一碳纳米管碾压膜。
5.如权利要求4所述的碳纳米管复合结构的制备方法,其特征在于,所述碳纳米管层包括至少两层重叠设置的碳纳米管拉膜时,相邻两层碳纳米管拉膜中的碳纳米管的排列方向之间形成一夹角α,0≤α≤90度。
6.如权利要求5所述的碳纳米管复合结构的制备方法,其特征在于,所述碳纳米管层为两层碳纳米管拉膜交叉设置,且相邻两层碳纳米管拉膜之间交叉的角度为90度。
7.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述聚合物单体溶液放置于一第一样品放置容器中,该第一样品放置容器位于一第一容器的上方并与该第一容器连接,所述第一聚合物单体溶液由第一样品放置容器进入第一容器内。
8.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述氧化剂溶液放置于一第二样品放置容器中,该第二样品放置容器位于一第二容器的上方并与该第二容器连接,所述氧化剂溶液由第二样品放置容器进入第二容器内。
9.如权利要求7或8所述的碳纳米管复合结构的制备方法,其特征在于,所述第一容器和第二容器分别与所述反应室连接,所述压力使第一容器内的聚合物单体溶液形成气态聚合物单体物质,使第二容器内的氧化剂溶液形成气态氧化剂物质,并使该气态聚合物单体物质和该气态氧化剂物质进入反应室内。
10.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述压力是由一压缩空气源或一超声波振荡产生。
11.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,气态聚合物单体物质的气体流量为25sccm至50sccm,气态聚合物单体物质的喷雾时间为0.5分钟至15分钟,气态氧化剂物质的气体流量为25sccm至50sccm,气态氧化剂物质的喷雾时间为0.5分钟至15分钟。
12.如权利要求1所述的碳纳米管复合结构的制备方法,其特征在于,所述气态聚合物单体物质在气态氧化剂物质的氧化催化作用下在每一根碳纳米管表面发生聚合反应,并与该碳纳米管产生共价键。
13.一种碳纳米管复合结构的制备方法,包括以下步骤:
提供一悬空设置的碳纳米管层;
提供一聚合物溶液;以及
利用压力使所述聚合物溶液形成气态聚合物物质;以及
该气态聚合物物质与所述碳纳米管层产生反应,形成碳纳米管复合结构。
14.如权利要求13所述的碳纳米管复合结构的制备方法,其特征在于,所述聚合物溶液以气态的方式通过共价键与碳纳米管层连接,形成碳纳米管复合结构。
CN201410027788.5A 2014-01-22 2014-01-22 碳纳米管复合结构的制备方法 Active CN104788952B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201410027788.5A CN104788952B (zh) 2014-01-22 2014-01-22 碳纳米管复合结构的制备方法
TW103104357A TWI538876B (zh) 2014-01-22 2014-02-11 奈米碳管複合結構的製備方法
US14/261,562 US9434815B2 (en) 2014-01-22 2014-04-25 Method for making carbon nanotube composite structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410027788.5A CN104788952B (zh) 2014-01-22 2014-01-22 碳纳米管复合结构的制备方法

Publications (2)

Publication Number Publication Date
CN104788952A CN104788952A (zh) 2015-07-22
CN104788952B true CN104788952B (zh) 2017-04-26

Family

ID=53544214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410027788.5A Active CN104788952B (zh) 2014-01-22 2014-01-22 碳纳米管复合结构的制备方法

Country Status (3)

Country Link
US (1) US9434815B2 (zh)
CN (1) CN104788952B (zh)
TW (1) TWI538876B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (zh) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 奈米碳管複合結構及其製備方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931715A (zh) * 2005-09-15 2007-03-21 清华大学 碳纳米管制备装置及方法
CN101121497A (zh) * 2006-08-11 2008-02-13 清华大学 碳纳米管复合材料及其制造方法
CN101654555A (zh) * 2008-08-22 2010-02-24 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN101659789A (zh) * 2008-08-29 2010-03-03 清华大学 碳纳米管/导电聚合物复合材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145657A2 (en) * 2005-11-01 2007-12-21 Massachusetts Institute Of Technology Initiated chemical vapor deposition of vinyl polymers for the encapsulation of particles
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
CN101880041B (zh) * 2010-06-29 2013-03-20 清华大学 碳纳米管复合结构的制备方法
US9251968B2 (en) * 2012-12-11 2016-02-02 Iucf-Hyu (Industry-University Cooperation Foundation Hanyang University) Free-standing hybrid nanomembrane as energy storage electrode and the fabrication method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1931715A (zh) * 2005-09-15 2007-03-21 清华大学 碳纳米管制备装置及方法
CN101121497A (zh) * 2006-08-11 2008-02-13 清华大学 碳纳米管复合材料及其制造方法
CN101654555A (zh) * 2008-08-22 2010-02-24 清华大学 碳纳米管/导电聚合物复合材料的制备方法
CN101659789A (zh) * 2008-08-29 2010-03-03 清华大学 碳纳米管/导电聚合物复合材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI626212B (zh) * 2017-05-22 2018-06-11 鴻海精密工業股份有限公司 奈米碳管複合結構及其製備方法

Also Published As

Publication number Publication date
TW201534559A (zh) 2015-09-16
CN104788952A (zh) 2015-07-22
US20150203632A1 (en) 2015-07-23
TWI538876B (zh) 2016-06-21
US9434815B2 (en) 2016-09-06

Similar Documents

Publication Publication Date Title
Qi et al. Mulberry paper-based graphene strain sensor for wearable electronics with high mechanical strength
Tang et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels
Lee et al. Layer-by-layer assembly for graphene-based multilayer nanocomposites: synthesis and applications
Xu et al. Self-assembled three-dimensional graphene macrostructures: synthesis and applications in supercapacitors
Omi et al. Highly conductive ultrafiltration membrane via vacuum filtration assisted layer-by-layer deposition of functionalized carbon nanotubes
Cooper et al. Gas permeability of a buckypaper membrane
Du et al. Polyaniline-modified oriented graphene hydrogel film as the free-standing electrode for flexible solid-state supercapacitors
Zhang et al. Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors
He et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes
Hong et al. Carbon-based layer-by-layer nanostructures: from films to hollow capsules
Peng et al. Superlight, mechanically flexible, thermally superinsulating, and antifrosting anisotropic nanocomposite foam based on hierarchical graphene oxide assembly
Oh et al. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties
Zu et al. Superelastic multifunctional aminosilane-crosslinked graphene aerogels for high thermal insulation, three-component separation, and strain/pressure-sensing arrays
Zhao et al. Highly stable carbon nanotube/polyaniline porous network for multifunctional applications
Luo et al. Carbon nanotube/chitosan-based elastic carbon aerogel for pressure sensing
Zhang et al. Heterogeneous, 3D architecturing of 2D titanium carbide (MXene) for microdroplet manipulation and voice recognition
Huang et al. Supramolecule-inspired fabrication of carbon nanoparticles in situ anchored graphene nanosheets material for high-performance supercapacitors
Sapner et al. L-Lysine-functionalized reduced graphene oxide as a highly efficient electrocatalyst for enhanced oxygen evolution reaction
CN101239712A (zh) 碳纳米管薄膜结构及其制备方法
TW201247424A (en) Method for manufacturing a graphene/ carbon nanotube composite
Khakpour et al. Bipolar exfoliation and in situ deposition of high-quality graphene for supercapacitor application
Weng et al. Elastomer-free, stretchable, and conformable silver nanowire conductors enabled by three-dimensional buckled microstructures
Zhou et al. 3D printing graphene oxide soft robotics
Nag et al. Fabrication and implementation of carbon nanotubes for piezoresistive-sensing applications: A review
CN104788952B (zh) 碳纳米管复合结构的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant