KR100564774B1 - Nano-composite fiber its preparation and use - Google Patents

Nano-composite fiber its preparation and use Download PDF

Info

Publication number
KR100564774B1
KR100564774B1 KR1020030018056A KR20030018056A KR100564774B1 KR 100564774 B1 KR100564774 B1 KR 100564774B1 KR 1020030018056 A KR1020030018056 A KR 1020030018056A KR 20030018056 A KR20030018056 A KR 20030018056A KR 100564774 B1 KR100564774 B1 KR 100564774B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
fiber
carbon nanotubes
nanoparticles
nonwoven fabric
Prior art date
Application number
KR1020030018056A
Other languages
Korean (ko)
Other versions
KR20040083573A (en
Inventor
김찬
안계혁
이영희
양갑승
Original Assignee
김찬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김찬 filed Critical 김찬
Priority to KR1020030018056A priority Critical patent/KR100564774B1/en
Publication of KR20040083573A publication Critical patent/KR20040083573A/en
Application granted granted Critical
Publication of KR100564774B1 publication Critical patent/KR100564774B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 전기방사(electrospinning or electrostatic spinnin) 방법에 의해 나노복합체(nano-composite)를 제조하는 방법으로 더욱 상세하게는 섬유 성형성 고분자 용액에 카본나노튜브(carbon nanotube) 또는 나노입자(nano-particle)을 분산시킨 후 고전압의 전기장을 가하여 방사제조한 직경 1㎛ 미만의 나노복합체 섬유 및 상기 나노복합체 섬유로 되는 부직포에 관한 것으로, 본 발명의 나노복합체는 각종 고성능 필터재, 전기이중층을 이용한 슈퍼캐퍼시터(supercapacitor)용 전극재료, 2차 전지용 전극재료, 전자파 차폐재 및 고전도성 재료 등으로 매우 유용하다.The present invention is a method for producing a nano-composite by the electrospinning or electrostatic spinnin method, and more specifically, carbon nanotube (carbon nanotube) or nanoparticles (nano-particle) in a fiber-forming polymer solution The present invention relates to a nanocomposite fiber having a diameter of less than 1 μm and a nonwoven fabric made of the nanocomposite fiber, wherein the nanocomposite of the present invention is a supercapacitor using various high performance filter materials and electric double layers. It is very useful as an electrode material for a supercapacitor, an electrode material for a secondary battery, an electromagnetic shielding material, and a highly conductive material.

전기방사, 나노복합체, 카본나노튜브, 나노입자, 슈퍼캐퍼시터, 전자파 차폐재료, 고전도성 섬유 Electrospinning, Nanocomposites, Carbon Nanotubes, Nanoparticles, Supercapacitors, Electromagnetic Wave Shielding Materials, High Conductivity Fibers                  

Description

나노복합체 섬유, 그 제조방법 및 용도{Nano-composite fiber, its preparation and use}Nanocomposite fiber, its manufacturing method and use {Nano-composite fiber, its preparation and use}

도 1은 카본나노튜브의 함량에 따른 본 발명 나노복합체 부직포의 주사 전자현미경 사진.1 is a scanning electron micrograph of the nanocomposite nonwoven fabric of the present invention according to the content of carbon nanotubes.

도 2는 본 발명에 따라 활성화처리된 나노복합체 부직포의 77K 질소 등온 흡착곡선을 나타낸 그래프.Figure 2 is a graph showing the 77K nitrogen isothermal adsorption curve of the nanocomposite nonwoven fabric activated according to the present invention.

도 3은 방전전류 밀도 100mA/㎠에서 카본나노튜브 함량에 따른 활성화처리된 나노복합체 부직포 전극의 KOH 30wt% 전해질에서의 용량을 나타낸 그래프. Figure 3 is a graph showing the capacity in the KOH 30wt% electrolyte of the activated nanocomposite nonwoven electrode according to the carbon nanotube content at a discharge current density of 100mA / ㎠.

본 발명은 카본나노튜브나 나노입자가 분산된 나노복합체 섬유, 그 제조방법 및 용도에 관한 것으로, 더욱 상세하게는 섬유 성형성 고분자 용액에 나노 크기의 카본나노튜브(carbon nanotube)나 나노입자(nano-particle) 등과 같은 나노물질을 분산시킨 후 정전방사하여 제조하는 직경 1㎛ 미만의 나노복합체 섬유와 이러한 나노복합체 섬유를 전기이중층 슈퍼캐퍼시터용 전극 제조 등에 이용하는 방법에 관한 것이다.The present invention relates to a nanocomposite fiber in which carbon nanotubes or nanoparticles are dispersed, a method of manufacturing the same, and a use thereof. More specifically, the present invention relates to a nano-size carbon nanotube or nanoparticles in a fiber moldable polymer solution. The present invention relates to a nanocomposite fiber having a diameter of less than 1 μm prepared by dispersing nanomaterials such as -particles) and electrostatic spinning, and a method of using the nanocomposite fibers for manufacturing an electrode for an electric double layer supercapacitor.

일반적으로 전기이중층 슈퍼캐퍼시터용 전극으로는 활성탄 및 카본/금속 복합체(carbon/metal composite), 발포 카본(foamed or aerogel carbon) 등이 주로 이용되어져 왔으며, 최근에는 전도성 고분자와 탄소 중간체적인 폴리아세닉 반도체(polyacenic semiconductor: PAS) 등의 새로운 형태의 탄소전극도 출현하고 있는 실정이다. 현재, 전기이중층 슈퍼캐퍼시터용 전극 활물질로 가장 많이 이용되고 있는 활성탄은 형태에 따라 입상, 분말상, 섬유상으로 구분되며, 비표면적이 최고 3000㎡/g을 초과하는 것도 출현하고 있다. 그러나 이와 같은 활성탄을 전극재료로 응용시 폴리비닐리덴 플루오라이드(PVDF: polyvinylidene fluoride)나 폴리테트라플루오로에틸렌(PTFE: polytetrafluoro ethylene)와 같은 바인더에 전기전도성을 향상시키기 위해 카본블랙 등을 첨가하여 슬러리 상태로 만든 후 집전체에 도포하거나 압착하는 방법을 사용하고 있다. 이때 만들어진 전극은 전기적인 절연체인 바인더 등의 영향으로 세공이 막히거나 전극 자체의 저항으로 작용하게 되어 슈퍼캐퍼시터의 성능을 저하시키는 원인이 되기도 하며, 전극 제조시 2차 가공이 있어 전극제조 비용을 상승시키는 원인이 되기도 한다. 최근에는 바인더 물질을 사용하지 않는 방법으로 활성탄소섬유 직물(펠트상, felt)을 직접 슈퍼캐퍼시터용 전극으로 사용하는 방법이 제안되고 있으나 이 방법도 전도성 물질을 함유하지 않고 있어 전극자체의 저항이 큰 단점과 활성탄소섬유를 직물로 가공해야 하는 단점을 지니고 있다. 특히, 대한민국 공개특허 특 2002-0008227의 경우, 전기방사(정전방사)에 의해 제조된 나노섬유를 활성화하여 전극재료로 이용하는 방법이 제안되고 있다. 이 방법으로 제조된 활성화 카본나노섬유의 경우도 활성탄소섬유를 직물상으로 제조한 것과 같이 전극 자체 저항이 커서 고전류 방전을 요하는 경우에는 적절한 방법이 아님을 알 수 있다. In general, as an electrode for an electric double layer supercapacitor, activated carbon, carbon / metal composite, foamed or aerogel carbon, and the like have been mainly used, and recently, a conductive polymer and a carbon intermediate polyacetic semiconductor ( New types of carbon electrodes such as polyacenic semiconductor (PAS) are also emerging. Currently, activated carbon, which is most commonly used as an electrode active material for electric double layer supercapacitors, is divided into granular, powdery, and fibrous forms depending on the form, and a specific surface area of more than 3000 m 2 / g has also emerged. However, when activated carbon is applied as an electrode material, carbon black or the like is added to a binder such as polyvinylidene fluoride (PVDF) or polytetrafluoroethylene (PTFE) to improve electrical conductivity. After making it into a state, the method of apply | coating to a collector or pressing is used. The electrode made at this time may cause the pores to be blocked by the influence of an electrical insulator, etc., or act as a resistance of the electrode itself, which may cause a decrease in the performance of the supercapacitor. It can also cause you to. Recently, a method of using an activated carbon fiber fabric (felt) directly as a supercapacitor electrode has been proposed as a method that does not use a binder material. However, this method also does not contain a conductive material and thus has a high resistance of the electrode itself. There are disadvantages and disadvantages of processing activated carbon fibers into fabrics. In particular, in the case of Korean Patent Laid-Open Publication No. 2002-0008227, a method of activating nanofibers produced by electrospinning (electrostatic spinning) and using them as an electrode material has been proposed. In the case of activated carbon nanofibers produced by this method, it can be seen that it is not an appropriate method when high current discharge is required due to the large electrode self-resistance, such as fabricating activated carbon fibers in a fabric form.

삭제delete

따라서 본 발명은 상기한 선행기술의 제반 문제점을 해소할 수 있는 나노복합체 섬유를 제공하는 데에 있다.Therefore, the present invention is to provide a nanocomposite fiber that can solve the above problems of the prior art.

본 발명의 다른 목적은 상기한 나노복합체 섬유의 제조방법을 제공하는 데에 있다. Another object of the present invention is to provide a method for producing the nanocomposite fibers.

본 발명의 또 다른 목적은 상기한 섬유로 되는 3차원 나노복합체 구조물을 제공하는 데에 있다. Still another object of the present invention is to provide a three-dimensional nanocomposite structure made of the fibers described above.

본 발명의 또 다른 목적은 상기한 3차원 나노복합체 구조물의 제조방법을 제공하는 데에 있다. Still another object of the present invention is to provide a method of manufacturing the above-mentioned three-dimensional nanocomposite structure.

본 발명의 또 다른 목적은 상기한 3차원 나노복합체 구조물의 슈퍼캐퍼시터용 전극재료로의 용도를 제공하는 것에 있다.Another object of the present invention is to provide a use of the three-dimensional nanocomposite structure as an electrode material for supercapacitors.

상기한 목적들을 달성하기 위한 본 발명자의 연구에서 정기방사방법에 의해서 나노입자가 분산된 나노복합체 섬유를 제조할 수 있고, 이러한 섬유는 나노 입자가 섬유표면에 노출되거나 섬유 내부에 네트워크를 형성하여 전체 섬유의 전기전도성을 급격하게 향상시키는 효과가 있어 대용량화 및 고성능화가 가능하다는 사실을 알게 되어 본 발명을 완성하게 된 것이다. In the present inventor's research for achieving the above objects, it is possible to produce nanocomposite fibers in which nanoparticles are dispersed by a regular spinning method, which is exposed to the fiber surface or forms a network inside the fiber to form a whole The present invention has completed the present invention because it has the effect of rapidly improving the electrical conductivity of the fiber, thereby enabling a large capacity and high performance.

삭제delete

본 발명에 의하면, 섬유성형성 고분자를 함유하는 방사용액에 카본나노튜브와 같은 나노재료나, 카본블랙입자, 흑연입자 또는 금속입자와 같은 나노입자를 분산하는 공정, 카본나노튜브 또는 나노입자가 분산된 방사용액을 정전방사장치의 방사구에 넣고 방사노즐과 집전체 사이에 고전압을 인가하여 정전방사하는 공정을 포함하는 것을 특징으로 하는 나노복합체 섬유의 제조방법이 제공된다.
또한 본 발명에 의하면 상기한 방법으로 제조되는 나노복합체 섬유가 제공된다.
또한 본 발명에 의하면 상기한 나노복합체 섬유로 되는 나노복합체 부직포가 제공된다.
또한 본 발명에 의하면 상기한 부직포가 산화성 가스 분위기하에 150~450℃의 반응온도에서 안정화처리, 불활성 분위기하에 700~1500℃의 반응온도에서 탄소화처리, 수증기나 이산화탄소와 같은 산화성 가스 분위기하에 600~1200℃의 반응온도에서 활성화처리 및 불활성 분위기나 진공상태하에 2000~3000℃의 반응온도에서 흑연화처리로 이루어지는 군에서 선택되는 적어도 하나의 방법으로 처리된 것을 특징으로 하는 나노복합체 부직포가 제공된다.
또한 본 발명에 의하면 상기한 나노복합체 부직포를 이용한 슈퍼캐퍼시터용 전극이 제공된다.
이하, 본 발명을 보다 상세하게 설명하기로 한다.
본 발명에 따르는 나노복합체 섬유는 카본나노튜브 또는 나노입자가 섬유성형성 고분자내에 분산되고 섬유의 직경이 나노크기를 갖는다. 본 발명에 있어서, 나노복합체 섬유내에는 분산되는 나노입자의 예로는 카본블랙입자, 흑연입자 또는 금속입자 등이 있다.
카본나노튜브는 벽수(wall-number)에 따라 단층카본나노튜브(SWCNT, single-walled carbon nanotube)나 다층나노튜브(MWCNT, Multi-walled carbon nanotube)로 구분하며, 이들 모두 본 발명의 섬유제조에 사용할 수 있다. 카본나노튜브는 직경 0.4nm에서 200nm 정도의 것이 바람직하다.
또한, 고전도성을 나타내는 카본블랙입자, 흑연입자, 금속입자와 같은 나노입자는 100nm 미만의 크기를 갖는 것이 바람직하다.
본 발명에 따르는 나노복합체 섬유중의 카본나노튜브 또는 나노입자의 함량은 0.1∼50 wt%가 적당하다.
섬유 성형성 고분자로는 폴리아크릴로나이트릴(PAN,polyacrylonitrile), 폴리비닐알콜(PVA, polyvinylachol), 폴리이미드(PI, polyimide), 폴리벤질이미다졸(PBI, polybenzimidazol), 페놀 수지(phenol resin), 에폭시 수지(epoxy resin), 폴리에칠렌(PE, polyethylene), 폴리프로필렌(PP, polypropylene), 폴리비닐클로라이드(PVC, polyvinylchloride), 폴리스타이렌(PS, polystyrene), 폴리아닐린(PA, polyanaline), 폴리메칠메타클레이트(PMMA, polymethylmethacrylate), 폴리비닐리덴클로라이드(PVDC, polyvinylidence chloride), 폴리비닐리덴 플루오라이드(PVDF, povinylidene fluoride) 및 각종 피치(pitch) 등이 사용될 수 있다.
본 발명에 있어서, 상기한 나노복합체 섬유는 섬유성형성 고분자를 함유하는 방사용액에 카본나노튜브 또는 나노입자를 분산하는 공정, 카본나노튜브 또는 나노입자가 분산된 방사용액을 정전방사장치의 방사구에 넣고 방사노즐과 집전체 사이에 고전압을 인가하여 정전방사함으로써 제조할 수 있다.
방사용액의 제조에는 섬유성형성 고분자의 종류에 따라 해당 고분자를 용해할 수 있는 적절한 용매를 선택 사용할 수 있으며, 또한 방사 용액에는 분산제, 열 및 자외선 안정제, 가교제나 반응 개시제 등을 적당히 첨가할 수 있다.
방사용액에 카본나노튜브나 나노입자를 분산시킬 때에는 초음파나 교반 등의 방법을 이용할 수 있다.
정전방사장치에서 카본나노튜브나 나노입자가 분산되어 있는 방사용액을 방사구에 넣고 방사노즐과 집전체(collector) 사이에 고전압을 인가하여 방사하면 카본나노튜브나 나노입자가 분사된 섬유가 집전체에 포집된다.
방사구와 집전체 사이에 형성되는 전계(電界)는 전압조절장치를 통하여 조절이 가능하다. 또한, 방사구와 집전체에 부여하는 전극들은 서로 극이 다르게 설정하며, 전압은 50kV 이내로 조절하는 것이 바람직하다. 또한, 방사구와 집전체에는 동일한 전압을 부여할 수 도 있으며, 서로 다른 전압을 부여할 수 도 있다.
According to the present invention, a process for dispersing nanomaterials such as carbon nanotubes, nanoparticles such as carbon black particles, graphite particles or metal particles, and carbon nanotubes or nanoparticles are dispersed in a spinning solution containing a fibrous forming polymer. Provided is a method for producing a nanocomposite fiber, comprising the step of putting the spinning solution into the spinneret of the electrostatic spinning device and applying a high voltage between the spinning nozzle and the current collector to electrostatic spinning.
The present invention also provides a nanocomposite fiber produced by the above method.
According to the present invention, there is also provided a nanocomposite nonwoven fabric comprising the nanocomposite fibers.
According to the present invention, the nonwoven fabric is stabilized at a reaction temperature of 150 to 450 ° C. under an oxidizing gas atmosphere, carbonization treatment at a reaction temperature of 700 to 1500 ° C. under an inert atmosphere, and 600 to 600 ° C. in an oxidizing gas atmosphere such as water vapor or carbon dioxide. A nanocomposite nonwoven fabric is provided which is treated by at least one method selected from the group consisting of an activation treatment at a reaction temperature of 1200 ° C. and a graphitization treatment at a reaction temperature of 2000 to 3000 ° C. under an inert atmosphere or vacuum.
According to the present invention, there is provided a supercapacitor electrode using the nanocomposite nonwoven fabric.
Hereinafter, the present invention will be described in more detail.
The nanocomposite fiber according to the present invention has carbon nanotubes or nanoparticles dispersed in a fibrous forming polymer and the diameter of the fiber has a nano size. In the present invention, examples of the nanoparticles dispersed in the nanocomposite fibers include carbon black particles, graphite particles, metal particles, and the like.
Carbon nanotubes are classified into single-walled carbon nanotubes (SWCNTs) or multi-walled carbon nanotubes (MWCNTs) according to wall-number, all of which are used in the fabrication of the present invention. Can be used. The carbon nanotubes preferably have a diameter of about 0.4 nm to about 200 nm.
In addition, nanoparticles such as carbon black particles, graphite particles, and metal particles exhibiting high conductivity may preferably have a size of less than 100 nm.
The content of carbon nanotubes or nanoparticles in the nanocomposite fibers according to the present invention is suitably 0.1 to 50 wt%.
Fiber-forming polymers include polyacrylonitrile (PAN), polyvinyl alcohol (PVA, polyvinylachol), polyimide (PI, polyimide), polybenzimidazole (PBI, polybenzimidazol), and phenol resin ), Epoxy resin, polyethylene (PE, polyethylene), polypropylene (PP, polypropylene), polyvinyl chloride (PVC, polyvinylchloride), polystyrene (PS, polystyrene), polyaniline (PA, polyanaline), polymethylmetha Crate (PMMA, polymethylmethacrylate), polyvinylidene chloride (PVDC, polyvinylidence chloride), polyvinylidene fluoride (PVDF, povinylidene fluoride) and various pitches (pitch) and the like can be used.
In the present invention, the nanocomposite fiber is a process for dispersing carbon nanotubes or nanoparticles in a spinning solution containing a fibrous forming polymer, the spinneret of the electrospinning apparatus is a spinning solution in which carbon nanotubes or nanoparticles are dispersed It can be produced by electrostatic spinning by applying a high voltage between the spinning nozzle and the current collector.
In preparing the spinning solution, a suitable solvent capable of dissolving the polymer may be selected and used according to the type of the fibrous forming polymer, and a dispersing agent, a heat and ultraviolet stabilizer, a crosslinking agent or a reaction initiator may be appropriately added to the spinning solution. .
When dispersing carbon nanotubes or nanoparticles in a spinning solution, methods such as ultrasonic wave and stirring may be used.
In the electrostatic spinning device, the spinning solution in which carbon nanotubes or nanoparticles are dispersed is placed in a spinneret, and spinning is performed by applying a high voltage between the spinning nozzle and the collector, and the carbon nanotubes or nanoparticles are injected into the fiber. Is collected.
An electric field formed between the spinneret and the current collector can be adjusted through a voltage regulator. In addition, the electrodes provided to the spinneret and the current collector have different poles, and the voltage is preferably controlled within 50 kV. In addition, the spinneret and the current collector may be provided with the same voltage, or may have different voltages.

삭제delete

본 발명에 따르는 나노복합체 섬유는 워터펀칭이나 니들펀칭, 열고정 등의 방법등으로 부직포화하여 나노복합체 부직포로 제조할 수 있으며, 이러한 나노복합체 부직포는 고성능 필터재료나 전자파 차폐재로 응용이 가능하다.
또한 상기한 나노복합체 섬유로 되는 부직포는 후가공하여 여러가지 유용한 기능을 부여할 수도 있다. 이러한 후가공의 예로는 산화안정화처리, 탄소화처리, 활성화처리, 흑연화처리 등이 있으며, 이러한 처리는 단독으로 또는 2이상의 처리를 병행하여 수행할 수도 있다.
산화안정화처리는 산화성 가스분위기 하에 150℃∼450℃의 반응온도에서 처리하는 것으로, 본 발명의 나노복합체 섬유로 되는 부직포가 상기한 바와 같은 산화안정화처리를 받게 되면 내염성이 부여되, 각종 방화재나 전자파 차폐재로 응용이 가능하다.
탄소화처리는 상기 산화안정화처리후 불활성 분위기하에 700℃∼1500℃의 반응온도에서 처리하는 것으로, 본 발명의 나노복합체섬유로 되는 부직포가 상기한 바와 같은 탄소화처리를 받게 되면 각종 구조물의 보강재나 전도성이 요구되는 영역에 응용이 가능하며, 전자파 차폐재로 사용이 가능하다.
활성화처리는 상기 산화안정화처리후 수증기(steam)나 이산화탄소(CO2) 등의 산화성 분위기 가스 분위가하에 600℃∼1200℃ 반응온도에서 처리하는 것으로, 본 발명의 나노복합체섬유로 되는 부직포가 상기한 바와 같은 활성화처리를 받게 되면 아주 높은 비표면적(500㎡/g∼3000㎡/g)을 갖는 동시에 동일한 세공구조가 섬유표면에 거의 노출되고, 카본나노튜브나 카본블랙 및 흑연이나 금속 등의 나노입자가 섬유내 네트워크를 형성하거나 표면에 노출되어 있어 높은 전도성을 나타내게 된다. 특히 고전도성을 요구하는 분야에는 탄소화처리한 후 활성화처리할 수 도 있다. 이와 같이 탄소화처리후에 활성화처리한 나노복합체 부직포는 각종 유해물질을 흡착할 수 있는 고성능 액상필터나 기상필터에 적용이 가능하다. 특히 전기이중층을 이용하는 슈퍼캐퍼시터용 전극에 응용하는 경우, 일반적인 전극에 사용되고 있는 활성탄에 비해 높은 전기전도성과 이온의 흡착에 유리한 세공이 표면에 노출되어 있을 뿐만 아니라 전극 제조시 바인더 물질이나 전도성 물질인 카본블랙 등을 첨가하는 2차 가공이 없이 제조된 상태 그대로 사용할 수 있다. 기존의 페놀계나 PAN계 펠트(Felt)상 활성탄소섬유에 비해 고전도성 물질인 카본나노튜브나 카본블랙, 흑연이나 금속 등의 나노입자가 섬유 내부 및 표면에 노출되어 있어 고전도성을 나타내며, 박막형태로 제조가 가능하여 슈퍼캐퍼시터용 전극에 응용시 제조단가 절감과 성능향상, 가공성 개선을 동시에 이룰수 있는 장점이 있다.
The nanocomposite fiber according to the present invention can be manufactured into a nanocomposite nonwoven fabric by nonwoven by water punching, needle punching, heat setting, or the like, and the nanocomposite nonwoven fabric can be applied as a high performance filter material or electromagnetic shielding material.
In addition, the nonwoven fabric made of the nanocomposite fibers may be post-processed to impart various useful functions. Examples of such post-processing include oxidation stabilization treatment, carbonization treatment, activation treatment, graphitization treatment, and the like, and these treatments may be performed alone or in combination of two or more treatments.
Oxidation stabilization treatment is carried out under an oxidizing gas atmosphere at a reaction temperature of 150 ° C to 450 ° C. When the nonwoven fabric of the nanocomposite fiber of the present invention is subjected to the oxidation stabilization treatment as described above, flame resistance is given. It can be applied as an electromagnetic shielding material.
The carbonization treatment is performed at a reaction temperature of 700 ° C. to 1500 ° C. under an inert atmosphere after the oxidation stabilization treatment. When the nonwoven fabric made of the nanocomposite fiber of the present invention is subjected to the carbonization treatment as described above, the reinforcement of various structures or It can be applied to areas requiring conductivity and can be used as electromagnetic shielding material.
The activation treatment is carried out at a reaction temperature of 600 ° C. to 1200 ° C. under an oxidizing atmosphere gas such as steam or carbon dioxide (CO 2 ) after the oxidation stabilization treatment, and the nonwoven fabric of the nanocomposite fiber of the present invention is as described above. When subjected to the same activation treatment, it has a very high specific surface area (500 m 2 / g to 3000 m 2 / g), and the same pore structure is almost exposed to the fiber surface, and carbon nanotubes, carbon black and nano particles such as graphite and metal It forms a network within the fiber or is exposed to the surface, resulting in high conductivity. In particular, the field requiring high conductivity may be activated after carbonization. The nanocomposite nonwoven fabric activated after the carbonization treatment can be applied to a high performance liquid filter or a gas phase filter capable of adsorbing various harmful substances. In particular, when applied to a supercapacitor electrode using an electric double layer, compared to activated carbon used in general electrodes, pores advantageous for high electrical conductivity and ions adsorption are exposed on the surface, and carbon, which is a binder material or a conductive material in electrode production, is exposed. It can be used as it is, without making secondary processing which adds black etc. Compared to the existing phenolic or PAN-based felt-based activated carbon fibers, nanoparticles such as carbon nanotubes, carbon black, graphite, and metals, which are highly conductive materials, are exposed to the inside and the surface of the fibers to exhibit high conductivity. As it can be manufactured as a supercapacitor electrode, it is possible to reduce manufacturing cost, improve performance, and improve processability when applied to supercapacitor electrodes.

흑연화처리는 불활성 분위기나 진공상태에서 2000℃∼3000℃의 반응온도에서 처리하는 것으로, 본 발명의 나노복합체섬유로 되는 부직포가 상기한 바와 같은 흑연화처리를 받게 되면 기존의 피치나 PAN계 흑연섬유에 비해 고강도, 고탄성율 및 고전도성을 나타내며, 2차 전지의 부극재료나 고강도 고탄성율을 요구하는 복합체의 필러로도 적용이 가능하며, 특수 용도용 전자파 차폐재료로도 응용이 가능하다.The graphitization treatment is performed at a reaction temperature of 2000 ° C. to 3000 ° C. in an inert atmosphere or in a vacuum state. When the nonwoven fabric made of the nanocomposite fiber of the present invention is subjected to the graphitization treatment as described above, the existing pitch or PAN graphite Compared to the fiber, it shows high strength, high modulus and high conductivity, and can be applied as a negative electrode material of a secondary battery or a composite filler requiring high strength and high modulus of elasticity.

실시예 1Example 1

화학적 기상 증착법(CVD, Chemicla vapor decomposition)법에 의해 제조된 직경 20nm, 길이 10∼50㎛인 다층카본나노튜를 섬유성형성 고분자인 폴리아크릴로니트릴(PAN)수지 용액(용매: DMF, 농도: 10wt.%)에 초음파를 이용한 분산방법으로 분산시켜 방사용액을 제조하였다. 방사용액의 제조에 사용된 카본나노튜브의 함량은 섬유중량기준으로 0.5~5wt%에서 조절하였다.
만들어진 방사용액은 정전방사장치의 방사구에 넣고 방사노즐과 집전체 사이에 인가되는 전압을 5kV∼30kV로 조절하면서 정전방사하여 집전체에서 카본나노튜브가 함유된 나노복합체 PAN 섬유를 회수하고 이를 통상의 방법으로 부직포로 제조하였다.
얻어진 섬유의 직경은 대부분 70nm에서 1㎛ 미만이었으며, 카본나노튜브의 함량이 증가할수록 직경이 감소하는 경향과 구슬형태가 많아지는 현상을 보였다.
도 1은 방사용액의 농도 10wt%에서 카본나노튜브의 함량이 PAN 섬유의 중량비 0.5wt%에서 5.0wt% 까지의 함량별로 정전방사된 섬유로 이루어진 부직포의 주사 전자현미경 사진을 나타낸 것이다. 이때 방사조건으로는 인가전압 15kV, 방사노즐과 방사구와의 거리는 15㎝ 였다.
A multilayer carbon nanotube having a diameter of 20 nm and a length of 10 to 50 μm, prepared by chemical vapor deposition (CVD), is a polyacrylonitrile (PAN) resin solution (solvent: DMF, concentration: fibrous forming polymer). 10 wt.%) Was dispersed by ultrasonic dispersion to prepare a spinning solution. The content of carbon nanotubes used in the preparation of the spinning solution was controlled at 0.5 to 5 wt% based on the fiber weight.
The spinning solution is placed in the spinneret of the electrostatic spinning device and electrostatically spun by adjusting the voltage applied between the spinning nozzle and the current collector to 5 kV to 30 kV to recover the nanocomposite PAN fibers containing carbon nanotubes from the current collector. It was made of a nonwoven fabric by the method of.
The diameter of the obtained fiber was mostly less than 1 ㎛ at 70nm, the diameter tends to decrease and the shape of the beads increases as the content of carbon nanotubes increases.
Figure 1 shows a scanning electron micrograph of a nonwoven fabric consisting of electrospun fibers by the content of carbon nanotubes from 0.5wt% to 5.0wt% by weight of PAN fiber at a concentration of 10wt% of the spinning solution. At this time, as the radiation condition, the applied voltage was 15kV, and the distance between the spinneret and the spinneret was 15 cm.

실시예 2Example 2

실시예 1에 의해 제조된 카본나노튜브가 함유된 나노복합체 부직포를 압축공기를 이용하여 150~450℃에서 산화안정화처리한 후, 수증기와 질소가스의 함량이 0.3vol.%의 비율로 700℃~900℃의 온도범위에서 각각 1시간씩 활성화처리 하였다. 이때 얻어지는 나노복합체 부직포의 비표면적은 800℃에서 1시간 활성화시켰을 경우, 카본나노튜브 함량에 따라 1000㎡/g에서 2200㎡/g의 범위를 나타냈다. 도 2에는 활성화처리된 나노복합체 부직포의 77K 질소 등온 흡착곡선이 제시된다. After the nanocomposite nonwoven fabric containing carbon nanotubes prepared in Example 1 was subjected to oxidative stabilization at 150 to 450 ° C. using compressed air, the content of water vapor and nitrogen gas was 700 ° C. to 0.3 vol.%. Each treatment was activated for 1 hour in the temperature range of 900 ℃. At this time, the specific surface area of the obtained nanocomposite nonwoven fabric showed a range of 1000 m 2 / g to 2200 m 2 / g depending on the carbon nanotube content when activated for 1 hour at 800 ℃. Figure 2 shows the 77K nitrogen isothermal adsorption curve of the activated nanocomposite nonwoven fabric.

실시예 3Example 3

실시예 2에서 활성화처리된 나노복합체 부직포를 세로 가각 1.5㎝씩 절단하여 전기이중층 캐퍼시터를 측정하였다. 집전체로는 니켈호일(nickle foil)을 사용하였으며, 전해질로는 30 wt% KOH 수용액을 사용했다. 충방전 전압은 0.0∼0.9V 범위였으며, 충방전 전류밀도는 100mA/㎠ 였다. 방전용량 C(F)는 다음과 같은 방법에 의해 계산했다. The nanocomposite nonwoven fabric activated in Example 2 was cut by 1.5 cm each to measure an electric double layer capacitor. Nickel foil was used as the current collector and 30 wt% KOH aqueous solution was used as the electrolyte. The charge and discharge voltage ranged from 0.0 to 0.9V, and the charge and discharge current density was 100 mA / cm 2. Discharge capacity C (F) was calculated by the following method.

C = I(ΔV)/(Δt)C = I (ΔV) / (Δt)

여기에서 I는 방전전류 밀도, ΔV는 방전시간에 따른 전압차, Δt는 방전시간이다. Where I is the discharge current density, ΔV is the voltage difference according to the discharge time, and Δt is the discharge time.

카본나노튜브 함량에 따라 충방전 용량은 80에서 220F/g의 값을 나타냈다. 도 3은 방전전류 밀도 100mA/㎠에서 카본나노튜브 함량에 따른 활성화된 나노복합체 부직포 전극의 KOH 30wt% 전해질에서의 용량을 나타낸 것이다. According to the carbon nanotube content, the charge and discharge capacity showed a value of 80 to 220 F / g. Figure 3 shows the capacity in the KOH 30wt% electrolyte of the activated nanocomposite nonwoven electrode according to the carbon nanotube content at a discharge current density of 100mA / ㎠.

본 발명에 따라 카본나노튜브 및 나노입자 등이 정전방사 방법을 통해 나노미터 크기의 섬유내에 균일하게 분산된 나노복합체 섬유로 되는 나노복합체 구조물은 산화안정화, 탄소화, 활성화, 흑연화 등의 후가공을 처리하는 것에 의해 카본나노튜브 및 나노입자가 탄소섬유내에 네트워크를 형성하는 3차원 탄소 나노복합체(carbon nanocomposite)로 제조되며, 이러한 나노복합체는 전극재료에 응용시 2차 가공이나 바인더 및 도전재료를 첨가하지 않고 원래 상태대로 사용할 수 있어 가공비의 절감과 고성능화를 동시에 이룰 수 있는 등의 장점이 있다.According to the present invention, a nanocomposite structure in which carbon nanotubes and nanoparticles are nanocomposite fibers uniformly dispersed in nanometer-sized fibers through an electrospinning method is used for post-processing such as oxidation stabilization, carbonization, activation, and graphitization. By processing, carbon nanotubes and nanoparticles are made of three-dimensional carbon nanocomposites, which form a network in carbon fiber, and these nanocomposites are added to secondary processing or binders and conductive materials when applied to electrode materials. Because it can be used as it is, it can reduce processing costs and achieve high performance at the same time.

삭제delete

Claims (8)

섬유성형성 고분자를 함유하는 방사용액에 카본나노튜브나, 카본블랙입자, 흑연입자 또는 금속입자와 같은 나노입자를 분산하는 공정, 카본나노튜브 또는 나노입자가 분산된 상기 방사용액을 정전방사장치의 방사구에 넣고 방사노즐과 집전체 사이에 고전압을 인가하여 정전방사하는 공정을 포함하는 것을 특징으로 하는 나노복합체 섬유의 제조방법.Dispersing nanoparticles such as carbon nanotubes, carbon black particles, graphite particles, or metal particles in a spinning solution containing a fibrous forming polymer, and discharging the spinning solution in which carbon nanotubes or nanoparticles are dispersed. The method for producing a nanocomposite fiber comprising the step of electrostatic spinning into the spinneret by applying a high voltage between the spinning nozzle and the current collector. 제 1 항에 있어서, 상기 카본나노튜브는 직경 0.4nm~200nm의 단층 또는 다층 카본나노튜브이고, 상기 나노입자는 크기가 100nm 미만인 것을 특징으로 하는 나노복합체섬유의 제조방법.The method of claim 1, wherein the carbon nanotubes are single layer or multilayer carbon nanotubes having a diameter of 0.4 nm to 200 nm, and the nanoparticles have a size of less than 100 nm. 삭제delete 삭제delete 상기 청구항 1 기재의 방법으로 제조되는 나노복합체 섬유. Nanocomposite fibers produced by the method of claim 1. 상기 청구항 5 기재의 나노복합체 섬유가 워터펀칭, 니들펀칭, 또는 열고정에 의해 부직포화된 것임을 특징으로 하는 나노복합체 부직포.The nanocomposite fiber of claim 5, wherein the nanocomposite fiber is nonwoven by water punching, needle punching, or heat setting. 제 6 항에 있어서, 상기한 부직포가 산화성 가스 분위기하에 150~450℃의 반응온도에서 산화안정화처리, 불활성 분위기하에 700~1500℃의 반응온도에서 탄소화처리, 수증기 또는 이산화탄소와 같은 산화성 가스 분위기하에 600~1200℃의 반응온도에서 활성화처리 및 불활성 분위기나 진공상태하에 2000~3000℃의 반응온도에서 흑연화처리로 이루어지는 군에서 선택되는 적어도 하나의 방법으로 처리된 것임을 특징으로 하는 나노복합체 부직포.The nonwoven fabric of claim 6, wherein the nonwoven fabric is oxidative stabilized at a reaction temperature of 150 to 450 DEG C under an oxidizing gas atmosphere, and carbonized at a reaction temperature of 700 to 1500 DEG C under an inert atmosphere, under an oxidizing gas atmosphere such as water vapor or carbon dioxide. Nanocomposite nonwoven fabric, characterized in that treated by at least one method selected from the group consisting of activation treatment at a reaction temperature of 600 ~ 1200 ℃ and graphitization treatment at a reaction temperature of 2000 ~ 3000 ℃ in an inert atmosphere or vacuum. 삭제delete
KR1020030018056A 2003-03-24 2003-03-24 Nano-composite fiber its preparation and use KR100564774B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030018056A KR100564774B1 (en) 2003-03-24 2003-03-24 Nano-composite fiber its preparation and use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030018056A KR100564774B1 (en) 2003-03-24 2003-03-24 Nano-composite fiber its preparation and use

Publications (2)

Publication Number Publication Date
KR20040083573A KR20040083573A (en) 2004-10-06
KR100564774B1 true KR100564774B1 (en) 2006-03-28

Family

ID=37367263

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030018056A KR100564774B1 (en) 2003-03-24 2003-03-24 Nano-composite fiber its preparation and use

Country Status (1)

Country Link
KR (1) KR100564774B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101127947B1 (en) * 2008-07-03 2012-03-23 코오롱패션머티리얼 (주) Mask
US20120113565A1 (en) * 2007-04-16 2012-05-10 Korea Institute Of Science And Technology Electrode for super capacitor having metal oxide deposited on ultrafine carbon fiber and the fabrication method thereof
KR101156674B1 (en) * 2009-12-16 2012-06-15 충남대학교산학협력단 Gas sensor using porous nano-fiber containing electrically conductive carbon material and manufacturing method thereof
KR20140039456A (en) * 2012-09-24 2014-04-02 가톨릭대학교 산학협력단 Bioplastic film containing conductive nanofiber layer of carbon black, and method for preparing the same
KR101398294B1 (en) 2012-07-11 2014-05-27 서울대학교산학협력단 Method for manufacturing carbon nanotube fiber by electrospinning and method for manufacturing organic solar cell using the same
KR101468975B1 (en) * 2008-07-03 2014-12-04 주식회사 그라프 High conducting film using low-dimensional materials

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7592277B2 (en) 2005-05-17 2009-09-22 Research Triangle Institute Nanofiber mats and production methods thereof
KR100631844B1 (en) 2004-09-24 2006-10-09 삼성전기주식회사 Field emission type emitter electrode with carbon fiber web structure and manufacturing method
KR100715155B1 (en) * 2005-05-03 2007-05-10 주식회사 아모메디 Preparation method of electrocatalysts for fuel cells using nanocomposite carbon fibers
KR100772442B1 (en) * 2005-12-28 2007-11-01 엘지전자 주식회사 Electric double layer capacitor, polarizable electrode for electric double layer capacitor and method for manufacturing the same
KR100841939B1 (en) * 2006-02-07 2008-06-27 (주) 아모센스 Preparation method of thermal conductive sheet
KR100819900B1 (en) * 2006-06-12 2008-04-08 한국생산기술연구원 Super capacitor using graphite type material comprising nano sized activated carbon fiber
KR100783490B1 (en) * 2006-07-27 2007-12-11 전남대학교산학협력단 Preparation method of c-type carbon nanofibers by electrospinning
DE102007055283A1 (en) 2006-11-21 2008-05-29 The Yokohama Rubber Co., Ltd. Electrode for a capacitor and electric double layer capacitor using the same
KR20090093323A (en) 2008-02-29 2009-09-02 삼성전자주식회사 Deionization apparatus and method of producing the same
KR101290728B1 (en) 2008-03-07 2013-07-26 삼성전자주식회사 Electrode module and deionization apparatus using the same
KR101118186B1 (en) * 2008-08-13 2012-03-16 주식회사 아모그린텍 Electrode Material for Supercapacitor, Electrode for Supercapacitor using the Electrode Material and Method for Manufacturing the Same
US20120028116A1 (en) * 2009-02-17 2012-02-02 Won-Gil Choi Composition for producing positive electrode for electricity storage device, positive electrode for electricity storage device made with said composition, and electricity storage device comprising same
KR101348202B1 (en) * 2011-11-30 2014-01-16 전남대학교산학협력단 Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
KR101518995B1 (en) * 2012-08-06 2015-05-11 주식회사 아모그린텍 Heat radiation sheet and manufacturing method thereof
WO2014025154A1 (en) * 2012-08-06 2014-02-13 주식회사 아모그린텍 Heat radiation sheet and method for manufacturing same
KR101348200B1 (en) * 2012-09-26 2014-01-07 전남대학교산학협력단 Carbon nanofiber composite containing silicon nanoparticles coated with stabilizer, preparation of the same and lithium secondary battery using the same
CN110359130B (en) * 2019-07-31 2021-07-30 河北科技大学 Waste plastic-based hybrid carbon nanofiber and preparation method and application thereof
CN111599607B (en) * 2020-06-04 2022-05-06 广东海之源新材料科技有限公司 Hollow carbon nanofiber-CoS2Electrode material of super capacitor and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113565A1 (en) * 2007-04-16 2012-05-10 Korea Institute Of Science And Technology Electrode for super capacitor having metal oxide deposited on ultrafine carbon fiber and the fabrication method thereof
KR101127947B1 (en) * 2008-07-03 2012-03-23 코오롱패션머티리얼 (주) Mask
KR101468975B1 (en) * 2008-07-03 2014-12-04 주식회사 그라프 High conducting film using low-dimensional materials
KR101156674B1 (en) * 2009-12-16 2012-06-15 충남대학교산학협력단 Gas sensor using porous nano-fiber containing electrically conductive carbon material and manufacturing method thereof
KR101398294B1 (en) 2012-07-11 2014-05-27 서울대학교산학협력단 Method for manufacturing carbon nanotube fiber by electrospinning and method for manufacturing organic solar cell using the same
KR20140039456A (en) * 2012-09-24 2014-04-02 가톨릭대학교 산학협력단 Bioplastic film containing conductive nanofiber layer of carbon black, and method for preparing the same

Also Published As

Publication number Publication date
KR20040083573A (en) 2004-10-06

Similar Documents

Publication Publication Date Title
KR100564774B1 (en) Nano-composite fiber its preparation and use
Chen et al. Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning
Di et al. Ultrastrong, foldable, and highly conductive carbon nanotube film
US7938996B2 (en) Polymer-free carbon nanotube assemblies (fibers, ropes, ribbons, films)
Inagaki et al. Carbon nanofibers prepared via electrospinning
US7623340B1 (en) Nano-scaled graphene plate nanocomposites for supercapacitor electrodes
Huang et al. Fabrication of vanadium oxide, with different valences of vanadium,-embedded carbon fibers and their electrochemical performance for supercapacitor
Liu et al. Preparation of carbon nanofibres through electrospinning and thermal treatment
KR101337483B1 (en) Activated carbon fibers, methods of their preparation, and devices comprising activated carbon fibers
US7875219B2 (en) Process for producing nano-scaled graphene platelet nanocomposite electrodes for supercapacitors
Hsu et al. Preparation of interconnected carbon nanofibers as electrodes for supercapacitors
Yu et al. Microstructure design of carbonaceous fibers: a promising strategy toward high‐performance weaveable/wearable supercapacitors
JP4465137B2 (en) Method for oxidizing multi-walled carbon nanotubes
Kaerkitcha et al. Control of physical properties of carbon nanofibers obtained from coaxial electrospinning of PMMA and PAN with adjustable inner/outer nozzle-ends
Tang et al. Amorphous-crystalline TiO2/carbon nanofibers composite electrode by one-step electrospinning for symmetric supercapacitor
KR101668391B1 (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
Zhao et al. Solution blown silicon carbide porous nanofiber membrane as electrode materials for supercapacitors
WO2015146984A1 (en) Electroconductive porous body, solid polymer fuel cell, and method for manufacturing electroconductive porous body
Le et al. Strategies for fabricating versatile carbon nanomaterials from polymer precursors
Guan et al. Hydrophilicity improvement of graphene fibers for high-performance flexible supercapacitor
Song et al. Carbon nanofibers: synthesis and applications
Zhu et al. Physical characterization of electrospun nanofibers
Sharafkhani et al. Enhanced sensing performance of polyvinylidene fluoride nanofibers containing preferred oriented carbon nanotubes
Lee et al. Electrospun carbon nanofibers as a functional composite platform: A review of highly tunable microstructures and morphologies for versatile applications
KR101438065B1 (en) Hybrid nano-complex, method for producing the same, and electrode for supercapacitor comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B701 Decision to grant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130319

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140320

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150302

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160303

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170213

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190212

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20200206

Year of fee payment: 15