KR101668391B1 - High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode - Google Patents

High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode Download PDF

Info

Publication number
KR101668391B1
KR101668391B1 KR1020150038772A KR20150038772A KR101668391B1 KR 101668391 B1 KR101668391 B1 KR 101668391B1 KR 1020150038772 A KR1020150038772 A KR 1020150038772A KR 20150038772 A KR20150038772 A KR 20150038772A KR 101668391 B1 KR101668391 B1 KR 101668391B1
Authority
KR
South Korea
Prior art keywords
carbon
felt
carbon nanofiber
fiber
pan
Prior art date
Application number
KR1020150038772A
Other languages
Korean (ko)
Other versions
KR20150037794A (en
Inventor
양갑승
김보혜
김창효
김두원
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of KR20150037794A publication Critical patent/KR20150037794A/en
Application granted granted Critical
Publication of KR101668391B1 publication Critical patent/KR101668391B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43835Mixed fibres, e.g. at least two chemically different fibres or fibre blends
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/04Carbonising or oxidising
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/14Carbides; Nitrides; Silicides; Borides
    • D10B2101/16Silicon carbide

Abstract

본 발명은 고밀도 탄소나노섬유펠트에 관한 것으로, 보다 구체적으로는 단일 배향성 탄소나노섬유펠트, 상기 탄소나노섬유펠트 제조방법 및 상기 탄소나노섬유펠트를 포함하는 응용제품에 관한 것이다. The present invention relates to a high density carbon nanofiber felt, and more particularly to a unidirectional carbon nanofiber felt, a method for manufacturing the carbon nanofiber felt, and an application product including the carbon nanofiber felt.

Description

단일 배향성 고밀도 탄소나노섬유펠트 및 상기 탄소나노섬유펠트를 포함하는 탄소나노섬유펠트 응용제품{High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a high-density carbon nano-fiber felt and a carbon nanofiber felt application including the carbon nanofiber felt,

본 발명은 고밀도 탄소나노섬유펠트에 관한 것으로, 보다 구체적으로는 단일 배향성탄소나노섬유펠트, 상기 탄소나노섬유펠트 제조방법 및 상기 탄소나노섬유펠트를 포함하는 응용제품에 관한 것이다.
The present invention relates to a high density carbon nanofiber felt, and more particularly to a unidirectional carbon nanofiber felt, a method for manufacturing the carbon nanofiber felt, and an application product including the carbon nanofiber felt.

전기 방사(electrospinning)는 노즐을 통해서 나오는 고분자 물질의 유체가 고전압하에서 테일러 콘을 형성하면서 가늘어지고 그 유체가 불안정 해져서 여러 갈래로 나뉘어져 10-1000 nm의 굵기를 갖는 나노섬유를 생성하는 섬유 제조 기법이다. Electrospinning is a fiber fabrication technique that produces nanofibers with a thickness of 10-1000 nm, because the fluid of the polymer material flowing through the nozzle is tapered under the high voltage and the fluid becomes unstable and divided into several branches .

기존의 전기 방사법으로는 섬유의 형성 속도가 권취속도에 비해서 상대적으로 크기 때문에 배향된 상태로 섬유를 권취 하지 못했고, 이 배향되지 않은 상태의 섬유는 탄소나노섬유를 제조하기 위한 후속 열처리 공정에서 섬유를 구성하고 있는 분자가 구속되지 못하기 때문에 기계적인 물성을 구현하기가 어려웠다. 여기에 비하여 기존의 탄소 섬유는 Polyacrlyonitrile (PAN), Rayon, Pitch 등을 필라멘트 상대로 프리커서 섬유를 제조하고 열수 처리 등을 통해서 연신하고 장력을 조절해 가면서 열처리 즉 안정화 탄화 공정을 거쳐 6-8 μm 직경 고강도 고탄성을 갖는 탄소 섬유를 제조하며 PAN 의 경우 강도 3.5-6.3 GPa 와 인장 탄성율 230-294 GPa (T300, T1000 grade) 를 갖는 탄소 섬유가 상용화 되었다. In the conventional electrospinning method, since the formation rate of the fibers is relatively large compared to the winding speed, the fibers can not be wound in the oriented state, and the fibers in the unoriented state can be formed by the fibers in the subsequent heat treatment process for producing carbon nanofibers It is difficult to realize mechanical properties because the constituent molecules are not constrained. In contrast, conventional carbon fibers are made of precursor fibers made of polyacrlyonitrile (PAN), Rayon, pitch, etc. by filament, stretched through hydrothermal treatment, and subjected to heat treatment, ie stabilization carbonization, The carbon fiber with high strength and high elasticity was manufactured. In case of PAN, the carbon fiber having the strength of 3.5-6.3 GPa and the tensile elastic modulus of 230-294 GPa (T300, T1000 grade) was commercialized.

종래에 알려진 전기 방사법으로 고강도의 섬유를 제조하기 위한 방법으로는 고속으로 권취하여 섬유를 배양하고 권취된 상태로 2200 ℃ 열처리하는 방법(Zhengping Zhou et al. Polymer 50 (2009) 2999-3006.)이 있는데, 상기 방법으로 얻어진 탄소섬유는 인장 강도가 0.3-0.6 GPa이고, 인장탄성율이 30-60 GPa에 불과하였다. 그 결과 기존의 탄소섬유의 물성에 크게 미치지 못하여 고강도 탄소섬유로의 용도로 사용하기에는 부적합하다.As a method for manufacturing a high-strength fiber by a known electrospinning method, a method of winding the fiber at high speed and heat-treating the fiber at 2200 ° C in a wound state (Zhengping Zhou et al., Polymer 50 (2009) 2999-3006) The carbon fiber obtained by the above method had a tensile strength of 0.3-0.6 GPa and a tensile elastic modulus of 30-60 GPa. As a result, it is not suitable for use as a high-strength carbon fiber because it is not much different from the properties of existing carbon fibers.

한편 전기 방사 기법을 이용하여 비표면적이 크고 기공이 제어된 나노 탄소 섬유 웹을 제조하여 100 kW/kg의 동력 밀도에서 22 Wh/kg (half cell 기준)의 에너지 밀도를 갖는 슈퍼캐패시터 전극소재를 제조하는 방법( Electrochemistry Communications 13, 2011, 1042)이 알려져 있지만, 이렇게 해서 제조된 나노 탄소 섬유 전극은 중량당의 에너지 저장 밀도는 크지만 부피당의 충진 밀도가 낮아 (0.3 g/cm3) 고 용량의 에너지를 저장하기 위해서는 큰 부피가 요구되어 상용화에 걸림돌이 되고 있다. On the other hand, a nano carbon fiber web with a large specific surface area and controlled pore size was manufactured by using the electrospinning method, and a super capacitor electrode material having an energy density of 22 Wh / kg (half cell basis) at a power density of 100 kW / kg was manufactured (Electrochemistry Communications 13, 2011, 1042) is known, but the nanocarbon fiber electrode thus produced has a high energy storage density per weight, but has a low packing density per volume (0.3 g / cm 3 ) It requires a large volume to store, which is a hindrance to commercialization.

현재 생산 판매되고 있는 활성탄소섬유는 주로 고가의 용융방사(melt-spinning)나 용융분사방사(melt-blown spinning) 장치에 의해 전구체를 섬유화한 다음 산화안정화, 탄소화 내지는 활성화하여 제조되고 있으나, 이러한 방법은 공정이 복잡하고, 섬유의 직경이 크기 때문에 체적대비 비표면적을 효과적으로 증진시키는 데에는 한계가 있다. 또한, 전극 활물질로 이용되는 경우, 섬유를 분쇄하여 바인더나 도전재를 첨가하는 공정을 거쳐야 되고, 직물상의 경우는 제조된 섬유의 섬유직경이 상대적으로 크고 밀도가 낮아 세공이 깊기 때문에 세공 내에서의 전하의 이동거리가 크고 전극의 밀도가 낮아 고속 충방전이나 고출력 특성이 저하되는 단점을 가지고 있었다.
Activated carbon fibers currently being produced and sold are produced by fibrousizing the precursor mainly by an expensive melt-spinning or melt-blown spinning apparatus and then oxidizing, stabilizing, carbonizing or activating the precursor. The method is complicated in process, and since the diameter of the fiber is large, there is a limit to effectively increase the specific surface area relative to the volume. When used as an electrode active material, it is necessary to carry out a step of pulverizing the fibers to add a binder or a conductive material. In the case of a fabric, since the fiber diameter of the fabricated fiber is relatively large and density is low, The charge transfer distance is large and the density of the electrode is low, so that high-speed charge / discharge and high output characteristics are deteriorated.

본 발명자들은 전기방사법으로 탄소나노섬유를 제조하는 공정에서 섬유를 일방향으로 배향하여 밀도를 크게하고 섬유를 구성하는 고분자 물질을 구속하는 공정을 개발함으로써 본 발명을 완성하였다.The present inventors have completed the present invention by developing a process of orienting fibers in one direction to increase the density and restricting the polymeric materials constituting the fibers in the process of manufacturing carbon nanofibers by electrospinning.

따라서, 본 발명의 목적은 일방향으로 배향되어 형성된 탄소나노섬유들을 포함하여 구성됨으로써 상용화된 탄소섬유에 근접하는 고밀도 특성을 갖는 동시에 나노섬유가 갖는 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도 특성을 갖는 단일배향성 탄소나노섬유펠트를 제공하는 것이다.Accordingly, it is an object of the present invention to provide a carbon nanofiber which is composed of carbon nanofibers oriented in one direction and has a high density characteristic close to a commercialized carbon fiber, and has a large specific surface area and high energy density and power density characteristic per unit volume And a carbon nanofiber layer formed on the carbon nanofiber layer.

본 발명의 또 다른 목적은 단일 배향성 탄소나노섬유펠트의 고밀도 특성 및 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 이용하여 고밀도 슈퍼캐패시터 전극, 고성능 필터 및 전극소재와 같은 부피당 충진 밀도가 높은 고에너지 부품소재인 각종 단일 배향성 탄소나노섬유펠트의 응용제품을 제공하는 것이다.  It is still another object of the present invention to provide a carbon nanofiber material having a high filling density per volume such as a high density super capacitor electrode, a high performance filter and an electrode material by using a high density characteristic and a large specific surface area of a unidirectional carbon nanofiber felt and a high energy density and a power density per unit volume And to provide applications of various kinds of unidirectional carbon nanofiber felt as an energy component material.

본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned can be clearly understood by those skilled in the art from the following description.

상술된 본 발명의 목적을 달성하기 위해, 본 발명은 한 방향으로 배향성을 갖도록 형성된 탄소나노섬유들을 포함하는 것을 특징으로 하는 단일배향성 탄소나노섬유펠트를 제공한다. In order to achieve the object of the present invention described above, the present invention provides a unidirectional carbon nanofiber felt comprising carbon nanofibers formed to have an orientation in one direction.

바람직한 실시예에 있어서, 상기 탄소나노섬유는 직경이 50 내지 400nm이다. In a preferred embodiment, the carbon nanofibers have a diameter of 50 to 400 nm.

바람직한 실시예에 있어서, 탄소나노섬유펠트의 겉보기 밀도가 0.7407g/cm3 내지 2.0 g/cm3 이다.In a preferred embodiment, the carbon nanofiber felt has an apparent density of 0.7407 g / cm < 3 > to 2.0 g / cm < 3 & gt ;.

바람직한 실시예에 있어서, SiOx(0<x<2), 금속산화물, 금속알콕사이드, 그래핀, 탄소나노튜브, 흑연입자 또는 카본블랙입자 중 하나 이상을 더 포함한다. In a preferred embodiment, it further comprises at least one of SiOx (0 < x < 2), metal oxide, metal alkoxide, graphene, carbon nanotubes, graphite particles or carbon black particles.

바람직한 실시예에 있어서, 전기전도도가 2.0 S/cm 이상이다. In a preferred embodiment, the electrical conductivity is at least 2.0 S / cm.

바람직한 실시예에 있어서, 상기 탄소나노섬유에 형성된 세공의 크기는 0.5-3nm이다.In a preferred embodiment, the size of the pores formed in the carbon nanofibers is 0.5-3 nm.

또한, 본 발명은 상술된 어느 하나의 단일배향성 탄소나노섬유펠트를 포함하는 단일배향성 탄소섬유펠트 응용제품을 제공한다.The present invention also provides a unidirectional carbon fiber felt application comprising any one of the above-described unidirectional carbon nanofiber felts.

바람직한 실시예에 있어서, 상기 탄소섬유펠트 응용제품은 슈퍼캐패시터 또는 고강도탄소나노섬유 복합재료이다.
In a preferred embodiment, the carbon fiber felt application is a supercapacitor or high strength carbon nanofiber composite material.

본 발명은 다음과 같은 우수한 효과를 갖는다.The present invention has the following excellent effects.

먼저, 본 발명의 단일배향성 탄소나노섬유펠트에 의하면 일방향으로 배향되어 형성된 탄소나노섬유들을 포함하여 구성됨으로써 상용화된 탄소섬유에 근접하는 고밀도 특성을 갖는 동시에 나노섬유가 갖는 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 갖는다.First, according to the unidirectional carbon nanofiber felt of the present invention, carbon nanofibers formed by orienting in one direction have high density characteristics close to commercialized carbon fibers, and at the same time, a large specific surface area of the nanofiber and a high energy per unit volume Density and power density.

또한 본 발명에 의하면 단일 배향성 탄소나노섬유펠트의 고밀도 특성 및 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 이용하여 기존의 전기방사 탄소나노섬유가 구현하지 못한 고강도탄소나노섬유 복합재료에 적용될 수 있고, 각종 응용제품 예를 들어 고성능 필터 및 슈퍼캐패시터, 리튬 이온전지와 같은 탄소나노섬유 기반 전극소재 등으로 부피당 충진 밀도와 전기전도도가 높은 고에너지 부품 소재에 적용될 수 있다.
Also, according to the present invention, it is possible to apply to a high-strength carbon nanofiber composite material which can not be realized by the conventional electrospinning carbon nanofibers by using the high density characteristic, large specific surface area, high energy density per unit volume and power density of the unidirectional carbon nanofiber felt And can be applied to various high-energy parts such as high-performance filters, supercapacitors, and lithium-ion-based carbon nanofiber-based electrode materials with high filling density and electric conductivity per unit volume.

도 1 은 본 발명의 단일배향성 탄소나노섬유 펠트의 응용제품의 개략도,
도 2 은 본 발명에 따른 다양한 농도의 방사용액의 점도를 나타낸 그래프,
도 3 중 (a)는 본 발명의 일 실시예에 의한 단일배향성 탄소나노섬유 펠트의 단일배향성을 보여주는 주사전자현미경사진이고, (b)는 일반전기방사법으로 제조된 PAN계 탄소나노섬유펠트의 주사전자현미경 사진,
도 4 는 본 발명의 다른 실시예에 의한 단일배향성 PAN 순중합체 & PAN 공중합체 나노섬유펠트들의 인장강도측정 결과 그래프.
도 5는 본 발명의 또 다른 실시예에서 얻어진 단일배향성 PNA/TEOS 탄소나노섬유펠트를 포함하는 슈퍼캐패시터 전극의 충방전 그래프.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view of the application of the unidirectional carbon nanofiber felt of the present invention,
2 is a graph showing the viscosity of the spinning solution of various concentrations according to the present invention,
FIG. 3 (a) is a scanning electron microscope (SEM) image showing the unidirectional orientation of the unidirectional carbon nanofiber felt according to an embodiment of the present invention, and FIG. 3 Electron microscope photograph,
4 is a graph showing tensile strength measurement results of unidirectional PAN prepolymer & PAN copolymer nanofiber felts according to another embodiment of the present invention.
5 is a graph showing the charge and discharge of the super capacitor electrode including the unidirectional PNA / TEOS carbon nanofiber felt obtained in another embodiment of the present invention.

본 발명에서 사용되는 용어는 가능한 현재 널리 사용되는 일반적인 용어를 선택하였으나, 특정한 경우는 출원인이 임의로 선정한 용어도 있는데 이 경우에는 단순한 용어의 명칭이 아닌 발명의 상세한 설명 부분에 기재되거나 사용된 의미를 고려하여 그 의미가 파악되어야 할 것이다.Although the terms used in the present invention have been selected as general terms that are widely used at present, there are some terms selected arbitrarily by the applicant in a specific case. In this case, the meaning described or used in the detailed description part of the invention The meaning must be grasped.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical structure of the present invention will be described in detail with reference to the accompanying drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Like reference numerals used to describe the present invention throughout the specification denote like elements.

본 발명의 제1 기술적 특징은 전기방사법으로 제조된 탄소나노섬유펠트에 포함된 탄소나노섬유들이 일방향으로 배향되어 형성된 단일배향성을 갖는 것에 있다. 이와 같이 일방향으로 배향되어 형성된 탄소나노섬유들로 이루어진 단일배향성 탄소나노섬유펠트는 상용화된 탄소섬유에 근접하는 고밀도 특성을 갖는 동시에 나노섬유가 갖는 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 갖게 되기 때문이다. The first technical feature of the present invention resides in that the carbon nanofibers contained in the carbon nanofiber felt produced by the electrospinning method are unidirectionally oriented in one direction. Unidirectional carbon nanofiber felt composed of carbon nanofibers oriented in one direction as described above has a high density characteristic close to commercialized carbon fiber and has high specific surface area of nanofiber and high energy density and power density per unit volume .

그 결과, 기존 탄소섬유펠트는 직경이 약 5 ~ 9 μm 탄소섬유가 엉켜있는 형태로써 인장강도 등 물리적 특징을 재현하기가 어렵지만 본 발명에 의한 단일배향성 탄소나노섬유펠트는 섬유가 한 방향으로 배향이 되어 있어 밀도가 높고 또한 물리적 강도를 구현할 수 있게 된다. As a result, it is difficult to reproduce physical characteristics such as tensile strength because carbon fibers having a diameter of about 5 to 9 μm are entangled with each other. However, in the unidirectional carbon nanofiber felt according to the present invention, fibers are oriented in one direction So that the density can be high and the physical strength can be realized.

따라서, 본 발명은 한 방향으로 배향성을 갖도록 형성된 탄소나노섬유들을 포함하는 것을 특징으로 하는 단일배향성 탄소나노섬유펠트를 제공한다.Accordingly, the present invention provides a unidirectional carbon nanofiber felt characterized by comprising carbon nanofibers formed to have an orientation in one direction.

본 발명의 단일배향성 탄소나노섬유펠트는 전기방사법으로 제조된 기존 탄소나노섬유펠트와 비교하면 고밀도 특성을 갖는데, 겉보기 밀도가 적어도 0.7407g/cm3 보다는 크고 2.0 g/cm3 인 범위에 있다. Single-orientation carbon nano fiber felt of the present invention as compared with the conventional carbon nano fiber felt produced by the electrospinning process gatneunde high-density characteristics, and to a large and 2.0 g / cm 3 range, rather than an apparent density of at least 0.7407g / cm 3.

이와 같은 밀도특성은 실제로 PAN계 탄소섬유의 비중이 1.7-1.9 g/cm3 인 것을 감안하면 이 섬유가 한 방향으로 적층되어 펠트가 제조 된다고 가정하는 경우 충진 밀도는 0.9069가 되어 1.54-1.73 g/cm3 진 밀도를 갖는 펠트를 제조 할 수 있는 점으로부터 예측 가능하다.Considering that the specific gravity of the PAN-based carbon fiber is 1.7-1.9 g / cm 3 , the filling density is 0.9069, assuming that the fibers are laminated in one direction to produce the felt. The density is 1.54-1.73 g / cm &lt; 3 &gt; density.

또한, 50 내지 400nm 범위의 직경을 갖는 탄소나노섬유로 이루어져 있을 뿐만 아니라 탄소나노섬유에 형성되는 세공의 크기는 0.5-3nm이므로 나노섬유가 갖는 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 갖는다.Further, since the pores formed in the carbon nanofiber are 0.5-3 nm in size as well as the carbon nanofibers having a diameter in the range of 50-400 nm, the nanofibers have a large specific surface area and high energy density and power density per unit volume .

본 발명의 단일배향성 탄소나노섬유펠트는 전기방사법으로 제조된 기존 탄소나노섬유펠트와 비교하면 거의 9배 이상의 매우 높은 전기전도도를 갖는데, 2.0 S/cm 이상(800℃ 탄화 시), 바람직하게는 5.0 S/cm 이상의 전기전도도를 나타내는 것이 바람직하다.The unidirectional carbon nanofiber felt of the present invention has a very high electrical conductivity of about 9 times or more as compared with the conventional carbon nanofiber felt produced by electrospinning, and has a conductivity of 2.0 S / cm or more (at 800 ° C carbonization), preferably 5.0 It is preferable to show an electric conductivity of S / cm or more.

또한, 본 발명의 단일배향성 탄소나노섬유펠트의 특성을 향상시키기 위한 구성성분을 더 포함할 수 있는데, 특히 에너지 밀도나 동력밀도를 향상시키거나 표면의 화학적 특성 및/또는 세공 특성을 적합하게 제어하기 위해 SiOx(0<x<2), 금속산화물, 금속알콕사이드, 그래핀, 탄소나노튜브, 흑연입자 또는 카본블랙입자 중 하나 이상을 더 포함한다.
Further, the carbon nanofibers may further include constituent components for improving the characteristics of the unidirectional carbon nanofiber felt of the present invention. In particular, it is possible to improve the energy density or power density or to suitably control the chemical and / Further comprises at least one of SiOx (0 < x < 2), a metal oxide, a metal alkoxide, a graphene, a carbon nanotube, a graphite particle or a carbon black particle.

본 발명의 제2 기술적 특징은 전기방사법으로 탄소나노섬유를 제조하는 공정을 수행하는 과정에서 탄소섬유를 일방향으로 배향시켜 형성하고 탄소섬유를 구성하는 고분자 물질을 구속하여 단일 배향성 탄소나노섬유펠트를 제조할 수 있는 제조방법에 있다.The second technical feature of the present invention is that carbon fiber is oriented in one direction in the process of manufacturing carbon nanofibers by electrospinning and the polymer material constituting carbon fibers is constrained to manufacture unidirectional carbon nanofiber felt In a manufacturing method that can be performed.

따라서, 본 발명의 단일배향성 탄소나노섬유펠트 제조방법은 탄소섬유 전구체물질을 포함하는 방사용액을 준비하는 단계; 상기 방사용액을 고속 권취 전기 방사하여 한 방향으로 배향된 전구체섬유펠트를 제조하는 단계; 상기 전구체섬유펠트를 산화안정화하여 내염화섬유펠트를 제조하는 단계; 및 상기 내염화섬유를 탄화시키는 단계를 포함하거나, 상기 내염화섬유를 활성화시키는 단계를 포함할 수 있다. Accordingly, the method for producing a unidirectional carbon nanofiber felt of the present invention comprises: preparing a spinning solution containing a carbon fiber precursor material; Spinning and spinning the spinning solution at high speed to produce a precursor fiber felt oriented in one direction; Oxidizing and stabilizing the precursor fiber felt to produce a chlorinated fiber felt; And carbonizing the chlorinated fibers, or activating the chlorinated fibers.

먼저, 방사용액은 3000 cP 내지 28000cP의 점도를 갖는 것이 바람직한데, 이와 같은 범위의 높은 점도를 띄게 되면 전기방사시 고전압을 인가하여도 섬유의 형성속도를 느리게 하는 작용을 하여 섬유의 배향을 유도할 수 있기 때문이다. It is preferable that the spinning solution has a viscosity of 3000 cP to 28000 cP. If the viscosity of the spinning solution is high, it may slow down the formation rate of the fiber even when a high voltage is applied during the electrospinning, It is because.

상술된 점도를 갖도록 탄소섬유전구체물질로 사용되는 공지된 물질 중 적절한 분자량과 화학적 성분으로 제조된 고분자 물질을 선택하여 방사용액을 준비할 수 있다. 예를 들어 탄소섬유전구체물질로 섬유성형용 폴리아크릴나이트릴(PAN)계를 사용하는 경우, 분자량이 150,000 이상이기만 하면 순중합체 (homopolymer) 뿐 아니라 5-15%의 공중합체 (copolymer)를 함유한 개질된 아크릴을 사용할 수 있다. 이 때 공중합체의 조성으로는 이타콘산 (itaconic acid)나 메틸아크릴레이트 (methylacrylate, MA)등을 공중합 물질로 사용할 수 있다. 용매로는 탄소섬유전구제물질이 용해되기만 하면 제한되지 않으나 dimethylformamide (DMF) 또는 dimethyl sulfoxide (DMSO)를 사용하는 것이 바람직하다.The spinning solution may be prepared by selecting a polymer material having a proper molecular weight and a chemical component from known materials used as a carbon fiber precursor material so as to have the above-mentioned viscosity. For example, in the case of using a polyacrylonitrile (PAN) system for fiber molding as a carbon fiber precursor material, if it has a molecular weight of 150,000 or more, not only a homopolymer but also a copolymer containing 5-15% Modified acrylic can be used. At this time, as the composition of the copolymer, itaconic acid, methylacrylate (MA) and the like can be used as a copolymer material. The solvent is not limited as long as the carbon fiber remover is dissolved, but it is preferable to use dimethylformamide (DMF) or dimethyl sulfoxide (DMSO).

탄소섬유전구체물질로 사용되는 섬유성형용 고분자는 폴리비닐알콜(PVA, polyvinylachol), 폴리이미드(PI, polyimide), 폴리벤질이미다졸(PBI, polybenzimidazol), 페놀 수지(phenol resin), 에폭시 수지(epoxy resin), 폴리에칠렌(PE, polyethylene), 폴리프로필렌(PP, polypropylene), 폴리비닐클로라이드(PVC, polyvinylchloride), 폴리스타이렌(PS, polystyrene), 폴리아닐린(PA, polyanaline), 폴리메칠메타클레이트(PMMA, polymethylmethacrylate), 폴리비닐리덴클로라이드(PVDC, polyvinylidence chloride), 폴리비닐리덴 플루오라이드(PVDF, povinylidene fluoride) 및 각종 피치(pitch) 등의 고분자를 포함하며, 필요한 경우 SiOx(0<x<2), 금속산화물, 금속알콕사이드, 그래핀, 탄소나노튜브, 흑연입자 또는 카본블랙입자 중 하나 이상을 더 포함한다.The fiber-forming polymer used as a carbon fiber precursor material is a polyvinyl alcohol (PVA), a polyimide (PI), a polybenzimidazole (PBI), a phenol resin, an epoxy resin epoxy resin, polyethylene (PE), polypropylene (PP), polyvinylchloride (PVC), polystyrene (PS), polyanaline (PA), polymethyl methacrylate (PMMA) (0 < x < 2), a metal such as polyvinylidene chloride, polyvinylidene chloride (PVDF), various kinds of pitches, Oxide, metal alkoxide, graphene, carbon nanotubes, graphite particles or carbon black particles.

전구체섬유펠트를 제조하기 위한 고속 권취 전기 방사는 방사구금과 콜렉터 간의 거리가 5 ~ 20 cm일 때 인가전압이 10 ~ 30 kV인 조건에서 전기 방사하면서 1000 ~ 2040 m/min의 속도로 권취하여 수행되는 것이 바람직한데, 상기 조건은 전기 방사되는 탄소나노섬유가 단일 배향성을 갖도록 하기 위한 조건으로 무수한 반복실험을 통해 실험적으로 결정된 값이다.High-speed spun electrospinning for the production of precursor fiber felt is carried out at a speed of 1000 ~ 2040 m / min while electrospinning at a voltage of 10 ~ 30 kV when the distance between the spinneret and the collector is 5 ~ 20 cm The condition is an experimentally determined value through a number of repeated experiments as a condition for causing the electrospun carbon nanofibers to have unidirectional orientation.

산화안정화는 상기 전구체섬유펠트에 1.5-4.0MPa의 하중을 주면서 공기분위기 하에서 분당 1℃의 승온 속도로 200~300 ℃에서 1시간 유지하여 수행되는 것이 바람직하다. 상기 산화안정화 조건 또한 무수한 반복실험을 통해 선택된 것으로 한 방향으로 배향된 전구체섬유펠트를 구성하는 고분자 물질이 열처리 하는 중에 인장된 상태에서 라멜라 결정 구조로 가지 않고 피브릴 상태로 구속되는 조건을 찾은 것이다.The oxidation stabilization is preferably carried out by maintaining a temperature of 200 ° C to 300 ° C for 1 hour at a heating rate of 1 ° C per minute under an air atmosphere while applying a load of 1.5-4.0 MPa to the precursor fiber felt. The oxidative stabilization conditions were also selected through a number of repeated experiments. Polymer materials constituting the precursor fiber felt oriented in one direction were found to be constrained to the fibril state without going to the lamellar crystal structure while being stretched during the heat treatment.

탄화는 불활성 분위기에서 분당 5 ℃의 승온 속도로 800 - 1500 ℃까지 승온한 후 1시간 유지하면서 수행되는데, 용도에 맞는 인장 강도와 인장 탄성율 및 전기 전도도에 따라 정해진 범위내에서 탄화조건을 설정할 수 있다.The carbonization is carried out in an inert atmosphere at a heating rate of 5 ° C / min up to 800 - 1500 ° C and then maintained for 1 hour. Carbonization conditions can be set within a predetermined range according to tensile strength, tensile elastic modulus and electric conductivity .

한편, 활성화는 불활성 분위기에서 분당 5 ℃의 승온 속도로 800 - 1500 ℃까지 승온한 후 1시간 동안 스팀분위기에서 수행되거나 CO2분위기에서 수행되는데, 용도에 맞는 인장 강도와 인장 탄성율 및 전기 전도도에 따라 정해진 범위내에서 활성화조건을 설정할 수 있다.On the other hand, the activation is performed in an inert atmosphere at a heating rate of 5 ° C / min to a temperature of 800 ° C to 1500 ° C and then for 1 hour in a steam atmosphere or in a CO 2 atmosphere. Depending on the tensile strength, tensile elastic modulus and electric conductivity The activation condition can be set within a predetermined range.

상술된 본 발명의 단일배향성 탄소나노섬유펠트는 상용화된 탄소섬유에 근접하는 고밀도 특성을 갖는 동시에 나노섬유가 갖는 큰 비표면적과 단위 부피당 높은 에너지 밀도와 동력 밀도를 갖게 되므로, 도 1에 도시된 바와 같이 본 발명의 단일배향성 탄소나노섬유펠트는 슈퍼캐패시터 및 리튬이온전지와 같은 고 에너지 전극소재, 촉매지지체, 고강도 보강재, 및 고강도 필터 등을 포함하는 다양한 탄소나노섬유응용제품에 적용될 수 있다.
The unidirectional carbon nanofiber felt of the present invention described above has a high density characteristic close to that of commercialized carbon fibers and has a large specific surface area and a high energy density and power density per unit volume of the nanofiber, Likewise, the unidirectional carbon nanofiber felt of the present invention can be applied to various carbon nanofiber applications including high-energy electrode materials such as supercapacitors and lithium ion batteries, catalyst supports, high-strength stiffeners, and high-strength filters.

실시예 1Example 1

1. 방사용액 준비 : 높은 점도를 갖는 PAN 고분자용액 제조1. Preparation of spinning solution: preparation of PAN polymer solution with high viscosity

탄소나노섬유전구체물질로는 분자량이 150,000인 PAN(polyacrylonitrile)을 사용하였다. 전체 중량비에 13%인 PAN을 용매인 Dimethylformamide(DMF)에 녹여 방사용액을 준비하였다. 준비된 PAN 방사용액은 점도가 5999 cP였다. PAN (polyacrylonitrile) having a molecular weight of 150,000 was used as the carbon nanofiber precursor material. PAN was dissolved in Dimethylformamide (DMF) as a solvent in a total weight ratio of 13% to prepare a spinning solution. The prepared PAN solution had a viscosity of 5999 cP.

2. 고속권취 전기방사 : 단일배향성을 갖는 PAN계 전구체섬유펠트 제조2. High-speed wound electrospinning: Manufacture of PAN-based precursor fiber felt with unidirectional orientation

준비된 PAN 고분자 방사용액을 전기방사 방법을 이용하여 단일배향성을 갖는 PAN계 전구체섬유펠트를 제조하였다. 이때의 전기방사의 조건으로는 18 kV의 인가전압을 가하였고 방사구금과 콜렉터 간의 거리는 7 cm 였고, 2040 m/min의 높은 속도로 권취하여 섬유의 배향을 유도하였다.PAN - based precursor fiber felt with unidirectional orientation was prepared by electrospinning the prepared PAN polymer spinning solution. As a condition of electrospinning, the applied voltage of 18 kV was applied. The distance between the spinneret and the collector was 7 cm and the fiber orientation was induced by winding at a high speed of 2040 m / min.

3. 중량식 연신 산화안정화 : 단일배향성을 갖는 PAN계 내염화섬유펠트 제조3. Weight Stretch Oxidation Stabilization: Manufacture of Chlorinated Fiber Felt in PAN System with Uniform Orientation

단일배향성을 갖는 PAN계 전구체섬유펠트를 3.6MPa 의 하중을 주면서 공기분위기 하에서 분당 1℃의 승온 속도로 200~300 ℃에서 1시간 유지하여 안정화함으로써 산화안정화 공정을 수행하여 섬유의 배향이 우수하고 섬유의 기계적 특성이 향상된 불용성의 내염화섬유펠트를 얻었다.The PAN-based precursor fiber felt having a unidirectional property was kept at 200 to 300 DEG C for 1 hour at a temperature raising rate of 1 DEG C per minute under an air atmosphere while a load of 3.6 MPa was applied to stabilize the fiber to thereby stabilize the fiber, Insoluble dechlorinated fiber felt having improved mechanical properties was obtained.

4. 탄화 : 단일배향성을 갖는 PAN계 탄소나노섬유펠트 제조4. Carbonization: Manufacture of PAN-based carbon nanofiber felt with unidirectional orientation

산화안정화하여 얻은 내염화섬유펠트를 불활성 분위기에서 분당 5 ℃의 승온 속도로 800℃까지 승온한 후 1시간 유지하면서 탄화하여 단일배향성을 갖는 PAN계 탄소나노섬유 펠트1을 제조하였다.
The oxidation resistant chlorinated fiber felts were heated in an inert atmosphere to a temperature of 800 ° C at a heating rate of 5 ° C per minute and then carbonized while keeping them for 1 hour to produce a PAN-based carbon nanofiber felt 1 having a unidirectional orientation.

실시예 2Example 2

탄화온도가 1400℃인 것을 제외하면 실시예1과 동일한 방법을 수행하여 단일배향성을 갖는 PAN계 탄소나노섬유 펠트2를 제조하였다. PAN-based carbon nanofiber felt 2 having a unidirectional property was produced in the same manner as in Example 1 except that the carbonization temperature was 1400 ° C.

실시예 3Example 3

탄소나노섬유전구체물질로 분자량이 150,000인 PAN 공중합체[PAN-itaconic acid(IA), PAN-Methyl Acrylate(MA) 등]를 사용하여 방사용액(점도 15015cP)를 제조하고, 탄화온도가 1400℃인 것을 제외하면 실시예1과 동일한 방법을 수행하여 단일배향성을 갖는 PAN계 탄소나노섬유 펠트3을 제조하였다.
(Viscosity 15015 cP) was prepared by using a PAN copolymer (PAN-itaconic acid (IA), PAN-Methyl Acrylate (MA), etc.) having a molecular weight of 150,000 as a carbon nanofiber precursor material. , A PAN-based carbon nanofiber felt 3 having a unidirectional characteristic was produced by performing the same method as in Example 1. The PAN-

비교예 1Comparative Example 1

고속권취 전기방사법이 아닌 일반전기방사법(권취속도 < 500 m/min, 방사용액점도 < 2000 cP)을 사용한 것을 제외하면 실시예1과 동일한 방법을 수행하여 일반탄소나노섬유펠트1을 제조하였다. General carbon nanofiber felt 1 was prepared in the same manner as in Example 1, except that the general electrospinning method (winding speed <500 m / min, spinning solution viscosity <2000 cP) was used instead of high speed winding electrospinning.

비교예 2Comparative Example 2

탄화온도가 1400℃인 것을 제외하면 비교예1과 동일한 방법을 수행하여 일반탄소나노섬유펠트2를 제조하였다.
The general carbon nanofiber felt 2 was prepared in the same manner as in Comparative Example 1, except that the carbonization temperature was 1400 ° C.

실험예 1Experimental Example 1

다양한 중량비로 제조된 PAN 용액의 점도 값을 실험하고, 그 결과를 도 2에 나타내었다. 도 2에서 (a)는 PAN 고분자용액의 25 ℃에서의 점도이고, (b) PAN co-polymer 용액의 25 ℃에서의 점도이다.The viscosity values of the PAN solution prepared at various weight ratios were tested and the results are shown in Fig. In FIG. 2, (a) is the viscosity of the PAN polymer solution at 25 ° C., and (b) is the viscosity of the PAN co-polymer solution at 25 ° C.

도 2에 도시된 점도 값을 갖는 방사용액을 대상으로, 방사구금과 콜렉터 간의 거리가 5 ~ 20 cm일 때 인가전압이 10 ~ 30 kV인 조건으로 전기 방사하면서 1000 ~ 2040 m/min의 속도로 권취하는 경우 점도가 6000 내지 28000cP의 범위에 있는 방사용액에서 섬유가 고배향성을 갖도록 형성되어 거의 단일 배향성을 나타내는 것을 확인할 수 있었다.
The spinning solution having the viscosity value shown in Fig. 2 was subjected to electrospinning at an applied voltage of 10 to 30 kV at a distance of 5 to 20 cm between the spinneret and the collector at a speed of 1000 to 2040 m / min It was confirmed that the fibers were formed so as to have high orientation in the spinning solution having a viscosity of 6000 to 28000 cP when rolled up, and showed almost unidirectional orientation.

실험예 2Experimental Example 2

실시예1에서 제조된 단일배향성 탄소나노섬유펠트1 및 비교예1에서 제조된 일반탄소나노섬유펠트를 주사전자현미경으로 관찰하고 그 결과 사진을 각각 도 3의 (a) 및 (b)에 나타내었다.The unidirectional carbon nanofiber felt 1 produced in Example 1 and the common carbon nanofiber felt produced in Comparative Example 1 were observed with a scanning electron microscope and the results are shown in FIGS. 3 (a) and 3 (b), respectively .

도 3의 (b)에 도시된 바와 같이 일반 전기방사법으로 제조된 일반탄소나노섬유펠트1에 포함된 PAN 탄소나노섬유는 배향이 무질서한 반면, 본 발명과 같이 고속권취 전기방사법에 의해 제조된 단일배향성 탄소나노섬유펠트1에 포함된 PAN계 탄소나노섬유는 한 방향으로 섬유가 적층되어 있음을 도 3의 (a)로부터 관찰할 수 있었다.
As shown in FIG. 3 (b), the PAN carbon nanofibers included in the general carbon nanofiber felt 1 produced by the general electrospinning method are randomly oriented, while the unidirectional The PAN-based carbon nanofibers contained in the carbon nanofiber felt 1 were observed from FIG. 3 (a) that the fibers were laminated in one direction.

실험예 3Experimental Example 3

실시예1에서 제조된 전구체섬유펠트(프리커서), 단일배향성 탄소나노섬유펠트1(800℃), 및 실시예2에서 제조된 단일배향성 탄소나노섬유펠트2(1400℃)와 비교예1에서 제조된 전구체섬유펠트(프리커서), 일반탄소나노섬유펠트1(800℃), 및 비교예2에서 제조된 일반탄소나노섬유펠트2(1400℃)를 대상으로 겉보기 밀도와 섬유밀도를 다음과 같이 측정하여 그 결과를 표1에 나타내었다. 겉보기 밀도는 시료를 (1 cm X 1 cm) 크기로 준비한 후 무게와 두께를 측정하여 계산하였다. 섬유밀도는 밀도측정장비 Ray-Ran test equipment LTD,.(3 column)을 사용하였고 밀도구배관법(KS L 6801)을 적용하여 측정하였다. 밀도측정범위는 1.16~2.2g/㎤ (1.16~1.28, 1.28~1.42, 1.50~2.20g/㎤)였다.(Precursor), unidirectional carbon nanofiber felt 1 (800 DEG C) produced in Example 1, and unidirectional carbon nanofiber felt 2 (1400 DEG C) prepared in Example 2 and Comparative Example 1 The apparent density and fiber density of the precursor fiber precursor (precursor), general carbon nanofiber felt 1 (800 ° C) and general carbon nanofiber felt 2 (1400 ° C) prepared in Comparative Example 2 were measured as follows The results are shown in Table 1. Apparent densities were calculated by measuring the weight and thickness after preparing samples (1 cm x 1 cm). The fiber density was measured by density gradient method (KS L 6801) using Ray-Ran test equipment LTD., (3 column) density measurement equipment. The density measurement range was 1.16 to 2.2 g / cm 3 (1.16 to 1.28, 1.28 to 1.42, 1.50 to 2.20 g / cm 3).

탄화
온도
carbonization
Temperature
겉보기 밀도(g/cm3)Apparent density (g / cm 3 ) 섬유 밀도(g/cm3)Fiber density (g / cm 3 )
실시예1Example 1 실시예2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 실시예1Example 1 실시예2Example 2 비교예 1Comparative Example 1 비교예 2Comparative Example 2 프리
커서
free
Cursor
0.52310.5231 -- 0.30980.3098 -- < 1.1795<1.1795 -- < 1.1600<1.1600 --
800 ℃800 ° C 1.30901.3090 -- 0.45800.4580 -- 1.73731.7373 -- 1.68581.6858 -- 1400℃1400 ° C -- 0.74070.7407 -- -- 1.53071.5307 -- --

표 1로부터 본 발명에서는 프리커서 섬유를 구성하는 고분자 물질을 구속하여 제조된 단일배향성 탄소나노섬유펠트의 섬유밀도가 비교예의 섬유 밀도보다 밀도가 높은 것을 알 수 있다. 특히, 800 ℃에서 탄화하여 겉보기 밀도를 측정하여 비교한 결과 고밀도화된 펠트의 밀도는 1.3090g/cm3로 일반 전기 방사법으로 제조된 0.3098에 비해서 4 배 큰 밀도를 관찰할 수 있었다.
It can be seen from Table 1 that the fiber density of the unidirectional carbon nanofiber felt produced by restricting the polymeric substance constituting the precursor fiber is higher than that of the comparative example. In particular, the density of the result of comparison by measuring the apparent density to high density felt is carbonized at 800 ℃ was observed four times greater than the density of 0.3098 prepared in general electrospinning process to 1.3090g / cm 3.

실험예 4Experimental Example 4

실시예 1 에서 제조된 PAN 순중합체 프리커서펠트 및 PAN 공중합체 프리커서펠트의 인장강도를 측정하였다. 인장강도 시료는 가로(2.5cm) X 세로(6cm)로 준비하였다. 준비된 시료를 ASTM D 882 방법으로 Gauge length: 40mm, Crosshead Speed: 25mm/min, 20℃, 습도 65% RH 의 조건에서 측정하였다. 인장강도 측정결과를 도 4 에 나타내었다. 도 4 중 (a)는 PAN 순중합체 나노섬유펠트의 응력-변형률 그래프이고, (b)는 PAN 공중합체 나노섬유펠트의 응력 변형률 그래프이다.The tensile strengths of the PAN pure polymer precursor felt and the PAN copolymer precursor felt produced in Example 1 were measured. Tensile strength specimens were prepared in width (2.5 cm) X length (6 cm). The prepared sample was measured by ASTM D 882 method under conditions of Gauge length: 40 mm, Crosshead speed: 25 mm / min, 20 ° C, and humidity 65% RH. The tensile strength measurement results are shown in Fig. 4 (a) is a stress-strain graph of the PAN pure polymer nanofiber felts, and (b) is a graph of the stress strain of the PAN copolymer nanofiber felt.

도 4에 도시된 바와 같이, PAN 순중합체가 사용된 나노섬유펠트 및 PAN 공중합체가 사용된 나노섬유펠트는 각각 160 Mpa과 161Mpa를 나타내어 2종류의 프리커서가 유사한 인장강도를 갖는 것을 알 수 있다. As shown in FIG. 4, the nanofiber felt using the PAN pure polymer and the nanofiber felt using the PAN copolymer showed 160 Mpa and 161 Mpa, respectively, indicating that the two types of precursors have similar tensile strengths .

실험예 5Experimental Example 5

실시예 2에서 제조된 PAN계 단일배향성 탄소나노섬유펠트 2를 대상으로 전기전도도를 측정하였다. 전기전도도는 1 X 4 cm 크기의 샘플을 준비하여 4 극단자법을 통해 측정하였고 그 결과를 표 2에 나타내었다. 비교 값은 Adv. Funct. Mater. 2006 , 16, 2393??397에서 얻어진 1500℃ 열처리된 일반 전기방사 탄소나노섬유의 측정결과를 사용하였다.The electrical conductivity of the PAN-based unidirectional carbon nanofiber Felt 2 prepared in Example 2 was measured. The electrical conductivity of the sample was measured by a 4-pole method using a 1 × 4 cm sample. The results are shown in Table 2. The comparison value is Adv. Funct. Mater. 2006 , 16, 2393? 397 , which is the result of measurement of 1500 占 폚 heat-treated general electrospun carbon nanofibers.

하기 표 2로부터, 본 발명의 단일배향성 탄소나노섬유펠트 2의 전기전도도 값은 섬유 배향 방향으로 약 136.78 S/cm 이어서 고밀도화 되지 않는 일반전기방사 탄소나노섬유의 전기전도도인 14.86 S/cm와 비교하여 9배 이상임을 알 수 있다. 이러한 전기전도도의 차이는 섬유 배향 방향의 밀도의 차이에서 기인하다 할 수 있다. 즉 탄소나노섬유는 배향을 통해 밀도가 증가하게 되는데, 본 발명에서는 전도성 물질인 탄소나노섬유의 수가 단위면적당 증가할 뿐만 아니라 하중을 부과해서 안정화하기 때문에 섬유의 결정성이 커지고 결점이 감소하는 특성 때문에 저항으로 작용하는 탄소나노섬유사이의 공극이 감소하게 높은 전기전도도를 나타내게 되는 것이다.It can be seen from the following Table 2 that the electrical conductivity value of the unidirectional carbon nanofiber Felt 2 of the present invention is about 136.78 S / cm in the direction of fiber orientation, so that compared with the electrical conductivity of general electrospun carbon nanofiber 14.86 S / cm 9 times. This difference in electrical conductivity can be attributed to the difference in density in the fiber orientation direction. That is, the density of carbon nanofibers is increased through orientation. In the present invention, the number of carbon nanofibers, which are conductive materials, increases not only by the unit area but also by imposing a load to stabilize the carbon nanofibers. The pores between the carbon nanofibers serving as resistors decrease and exhibit high electrical conductivity.

단일배향성
탄소나노섬유펠트 2
Unidirectional
Carbon nanofiber Felt 2
1500℃ 열처리된 일반 전기방사 탄소나노섬유1500 캜 Heat treated general electrospun carbon nanofiber
전기전도도
(S/cm)
Electrical conductivity
(S / cm)
136.78136.78 14.8614.86

실시예 4Example 4

1. 방사용액 준비 : 높은 점도를 갖는 PAN 고분자용액 제조1. Preparation of spinning solution: preparation of PAN polymer solution with high viscosity

탄소나노섬유전구체물질로는 분자량이 150,000인 PAN(polyacrylonitrile)과 Tetraetoxysilane (TEOS)를 8:2의 중량비로 섞어서 사용하였다. 전체 중량비에 13%인 PAN/TEOS를 용매인 Dimethylformamide(DMF)에 녹여 방사용액을 준비하였다. 준비된 PAN 방사용액은 점도가 3000 cP였다. PAN (polyacrylonitrile) and tetraethoxysilane (TEOS) having a molecular weight of 150,000 were mixed at a weight ratio of 8: 2 as the carbon nanofiber precursor material. PAN / TEOS, which is 13% in total weight ratio, was dissolved in dimethylformamide (DMF) as a solvent to prepare a spinning solution. The prepared PAN solution had a viscosity of 3000 cP.

2. 고속권취 전기방사 : 단일배향성을 갖는 PAN계 전구체섬유펠트 제조2. High-speed wound electrospinning: Manufacture of PAN-based precursor fiber felt with unidirectional orientation

준비된 PAN 고분자 방사용액을 전기방사 방법을 이용하여 단일배향성을 갖는 PAN계 전구체섬유펠트를 제조하였다. 이때의 전기방사의 조건으로는 18 kV의 인가전압을 가하였고 방사구금과 콜렉터 간의 거리는 7 cm 였고, 2040 m/min의 높은 속도로 권취하여 섬유의 배향을 유도하였다.PAN - based precursor fiber felt with unidirectional orientation was prepared by electrospinning the prepared PAN polymer spinning solution. As a condition of electrospinning, the applied voltage of 18 kV was applied. The distance between the spinneret and the collector was 7 cm and the fiber orientation was induced by winding at a high speed of 2040 m / min.

3. 중량식 연신 산화안정화 : 단일배향성을 갖는 PAN계 내염화섬유펠트 제조3. Weight Stretch Oxidation Stabilization: Manufacture of Chlorinated Fiber Felt in PAN System with Uniform Orientation

단일배향성을 갖는 PAN계 전구체섬유펠트를 3.6MPa 의 하중을 주면서 공기분위기 하에서 분당 1℃의 승온 속도로 200~300 ℃에서 1시간 유지하여 안정화함으로써 산화안정화 공정을 수행하여 섬유의 배향이 우수하고 섬유의 기계적 특성이 향상된 불용성의 내염화섬유펠트를 얻었다.The PAN-based precursor fiber felt having a unidirectional property was kept at 200 to 300 DEG C for 1 hour at a temperature raising rate of 1 DEG C per minute under an air atmosphere while a load of 3.6 MPa was applied to stabilize the fiber to thereby stabilize the fiber, Insoluble dechlorinated fiber felt having improved mechanical properties was obtained.

4. 활성화 : 단일배향성을 갖는 PAN/TEOS계 탄소나노섬유펠트 제조4. Activation: Manufacture of PAN / TEOS carbon nanofiber felt with unidirectional orientation

산화안정화하여 얻은 내염화섬유펠트를 불활성 분위기에서 분당 5 ℃의 승온 속도로 800℃까지 승온한 후 1시간 동안 스팀분위기에서 활성화하여 단일배향성PAN/TEOS계 탄소나노섬유 펠트1을 제조하였다.
The oxidized and stabilized chlorinated fiber felts were heated in an inert atmosphere to a temperature of 800 ° C at a rate of 5 ° C per minute and then activated in a steam atmosphere for 1 hour to prepare a unidirectional PAN / TEOS carbon nanofiber felt 1.

실시예 5 Example 5

CO2분위기에서 활성화한 것을 제외하면 실시예4와 동일한 방법으로 단일배향성 PAN/TEOS계 탄소나노섬유 펠트2를 제조하였다.
The PAN / TEOS carbon nanofiber Felt 2 with unidirectional orientation was prepared in the same manner as in Example 4, except that the activated carbon was activated in a CO 2 atmosphere.

실시예 6 Example 6

900℃까지 승온한 후 CO2분위기에서 활성화한 것을 제외하면 실시예4와 동일한 방법으로 단일배향성 PAN/TEOS계 탄소나노섬유 펠트3을 제조하였다.
The unidirectional PAN / TEOS carbon nanofiber Felt 3 was prepared in the same manner as in Example 4, except that the temperature was elevated to 900 ° C and then activated in a CO 2 atmosphere.

실험예 6Experimental Example 6

실시예4 내지 6에서 얻어진 단일배향성 PAN/TEOS계 탄소나노섬유 펠트1 내지 3의 수율 및 세공특성을 실험하였고, 그 결과를 표 3에 나타내었다. The yield and pore characteristics of the unidirectional PAN / TEOS based carbon nanofiber felt 1 to 3 obtained in Examples 4 to 6 were tested and the results are shown in Table 3.

하기 표 3으로부터, BET 비표면적은 750-1,410m2/g로 큰 특성을 나타냈으며 세공의 직경은 1.8-2.0nm로 대부분이 마이크로 세공이(< 2.0nm)고 약간의 메조세공 (>2.0nm)이 생성되었다. 이때의 활성화 수율은 16 ~ 28 % 수준이며 탄화후의 수율 (탄화수율 , 40%)로 환산하면 40 ~ 70 %로 높은 수율을 나타내는 것을 알 수 있다. As can be seen from the following Table 3, the BET specific surface area was as large as 750-1,410 m 2 / g and the diameter of the pores was 1.8-2.0 nm. Most of them had micropores (<2.0 nm) and some mesopores ) Was generated. At this time, the activation yield is in the range of 16 to 28%, which is 40 to 70% in terms of the yield after carbonization (40%).

PAN/TEOS계 탄소나노섬유
펠트 1
PAN / TEOS-based carbon nanofibers
Felt 1
PAN/TEOS계 탄소나노섬유
펠트2
PAN / TEOS-based carbon nanofibers
Felt 2
PAN/TEOS계 탄소나노섬유
펠트3
PAN / TEOS-based carbon nanofibers
Felt 3
BET비표면적
(㎡/g)
BET specific surface area
(M &lt; 2 &gt; / g)
1007.21007.2 748.39748.39 14081408
전체세공부피
(㎤/g)
Total pore volume
(Cm3 / g)
0.47630.4763 0.34600.3460 0.68330.6833
세공부피비Pore volume ratio micromicro 84.984.9 80.680.6 83.783.7 mesomeso 15.115.1 19.419.4 16.316.3 평균세공직경
(㎚)
Average pore diameter
(Nm)
1.89161.8916 1.82071.8207 1.94121.9412
최종수율 %
(방사섬유→최종처리후)
Final yield%
(Radiated fiber → after final treatment)
16%16% 28%28% 18%18%

실시예 7Example 7

실시예 4에서 얻어진 PAN/TEOS계 탄소나노섬유 펠트1를 Coin Type 지그에 장착하고 ionic liquid (IL-IMI, KOEI chemicals) 주입하여 PAN/TEOS계 탄소나노섬유 펠트1을 포함하는 슈퍼캐패시터전극을 준비하였다.
The PAN / TEOS carbon nanofiber felt 1 obtained in Example 4 was mounted on a coin type jig and an ionic liquid (IL-IMI, KOEI chemicals) was injected to prepare a super capacitor electrode including the PAN / TEOS carbon nanofiber felt 1 Respectively.

실험예 7Experimental Example 7

실시예 7에서 얻어진 슈퍼캐패시터전극을 대상으로 0.1mA/sec로 2.6V까지 3분 충전 후 7분 방전하는 충방전 실험을 수행하고 얻어진 결과를 표 4 및 도 5에 나타내었다. The super capacitor electrode obtained in Example 7 was charged for 3 minutes to 2.6 V at a rate of 0.1 mA / sec and discharged for 7 minutes. The results are shown in Table 4 and FIG.

특성characteristic 비표면적 (㎡/g)Specific surface area (m &lt; 2 &gt; / g) 전기 전도도
(S/cm)
Electrical conductivity
(S / cm)
전해질Electrolyte 셀저항Cell resistance 용량 F/g*
(셀용량, F)
Capacity F / g *
(Cell capacity, F)
상용화
제품
Commercialization
product
12191219 1.381.38 ionic liquidionic liquid 16Ω16Ω 61.9 61.9
실시예 7Example 7 > 800 > 800 2.54 (single fiber)2.54 (single fiber) ionic liquidionic liquid 214.3214.3

* 용량은 half cell 용량* Capacity is half cell capacity

표 4로부터 본 발명의 단일배향성 PAN/TEOS계 탄소나노섬유 펠트1을 포함하게 되면 상용화제품과 비교하여 거의 2배의 전기전도도와 3배 이상의 전기용량을 얻을 수 있음을 알 수 있다. It can be seen from Table 4 that when the unidirectional PAN / TEOS carbon nanofiber Felt 1 of the present invention is contained, electric conductivity of about twice and electric capacity of 3 times or more can be obtained as compared with commercialized products.

0.1mA/sec로 2.6V까지 3분 충전 후 7분 방전하는 충방전 실험을 수행하고 얻어진 결과 그래프인 도 5로부터, 방전 거동이 직선적이어서 본 발명의 단일배향성 PAN/TEOS계 탄소나노섬유 펠트1을 포함하는 전극이 저항이 낮은 전극임을 알 수 있다. 5 minutes after charging for 3 minutes at a discharge rate of 0.1 mA / sec and then discharging for 7 minutes. From the graph of FIG. 5 obtained, the discharge behavior was linear, showing that the unidirectional PAN / TEOS carbon nanofiber felt 1 of the present invention It can be understood that the electrode including the electrode is a low resistance electrode.

또한, 구체적으로 제시하지는 않았지만 본 발명의 단일배향성 탄소나노섬유펠트가 0.7407g/cm3 내지 2.0 g/cm3 범위 내의 겉보기 밀도를 갖게 되므로, 단일배향성 탄소나노섬유의 밀도를 1.30(g/cm3)으로 가정하고 50% 활성화 한 후에 전극을 제조한다 해도 최소한 0.65정도의 전극밀도의 구현이 가능하며 기존의 제품에 비해서 2.6배의 용량이 되는 것을 예측할 수 있다. In addition, since the single-orientation carbon nano fiber felt of the present invention Although not presented in detail it has an apparent density in the 0.7407g / cm 3 to 2.0 g / cm 3 range, a single orientation density of the carbon nanofibers, 1.30 (g / cm 3 ), It is possible to realize the electrode density of at least 0.65 even when the electrode is manufactured after 50% activation, and it is predicted that the capacity of the electrode is 2.6 times that of the conventional product.

이와 같은 특성으로 인해 본 발명의 단일배향성 탄소나노섬유펠트는 기존의 전기방사 탄소나노섬유가 구현하지 못한 고성능 슈퍼캐패시터, 고강도탄소나노섬유 복합재료에 적용될 수 있고, 향후 고성능 필터 및 리튬 이온전지와 같은 나노탄소섬유 기반 전극소재 등으로 부피당 충진 밀도와 전기전도도가 높은 고에너지 부품 소재에 적용될 수 있다.
Due to such characteristics, the unidirectional carbon nanofiber felt of the present invention can be applied to a high-performance super capacitor and a high-strength carbon nanofiber composite material which have not been realized by the conventional electrospun carbon nanofiber. In the future, Nano carbon fiber-based electrode material, etc., can be applied to high energy component materials having a high filling density per unit volume and high electrical conductivity.

본 발명은 이상에서 살펴본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, Various changes and modifications will be possible.

Claims (8)

한 방향으로 배향성을 갖도록 형성된 탄소나노섬유들을 포함하고, 상기 탄소나노섬유들을 포함하는 탄소나노섬유펠트의 겉보기 밀도는 0.7407g/cm3 내지 2.0 g/cm3 인 것을 특징으로 하는 단일배향성 탄소나노섬유펠트.
Comprising carbon nano fibers formed have an orientation in one direction, and the single-oriented carbon nanofibers, characterized in that the apparent density of the nano-carbon fiber felt comprising the carbon nanofiber of 0.7407g / cm 3 to 2.0 g / cm 3 felt.
제 1 항에 있어서,
상기 탄소나노섬유는 직경이 50 내지 400nm인 것을 특징으로 하는 단일배향성 탄소나노섬유펠트.
The method according to claim 1,
Wherein the carbon nanofibers have a diameter of 50 to 400 nm.
삭제delete 제 1 항에 있어서,
SiOx(0<x<2), 금속산화물, 금속알콕사이드, 그래핀, 탄소나노튜브, 흑연입자 또는 카본블랙입자 중 하나 이상을 더 포함하는 단일배향성 탄소나노섬유펠트.
The method according to claim 1,
Wherein the carbon nanotube layer further comprises at least one of SiOx (0 < x < 2), metal oxide, metal alkoxide, graphene, carbon nanotube, graphite particle or carbon black particle.
제 1 항에 있어서,
전기전도도가 2.0 S/cm 이상인 것을 특징으로 하는 단일배향성 탄소나노섬유펠트.
The method according to claim 1,
Wherein the electric conductivity is 2.0 S / cm or more.
제 1 항에 있어서,
상기 탄소나노섬유에 형성된 세공의 크기는 0.5-3nm인 것을 특징으로 하는 단일배향성 탄소나노섬유펠트.
The method according to claim 1,
Wherein the size of the pores formed in the carbon nanofibers is 0.5-3 nm.
제 1 항, 제 2 항, 제 4 항 내지 제 6 항 중 어느 한 항의 단일배향성 탄소나노섬유펠트를 포함하는 단일배향성 탄소나노섬유펠트 응용제품.
6. A single-oriented carbon nanofiber felt application comprising the unidirectional carbon nanofiber felt of any one of claims 1, 2 and 4 to 6.
제 7 항에 있어서,
상기 탄소섬유펠트 응용제품은 슈퍼캐패시터 또는 고강도탄소나노섬유 복합재료인 것을 특징으로 하는 단일배향성 탄소나노섬유펠트 응용제품.

8. The method of claim 7,
Wherein the carbon fiber felt application product is a supercapacitor or a high strength carbon nanofiber composite material.

KR1020150038772A 2012-10-23 2015-03-20 High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode KR101668391B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20120117713 2012-10-23
KR1020120117713 2012-10-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020130126578A Division KR101544538B1 (en) 2012-10-23 2013-10-23 High Density carbon Nano-fiber Felt with Unidirectional Orientation and Preparation of the Felt and Application to Supercapacitor Electrode

Publications (2)

Publication Number Publication Date
KR20150037794A KR20150037794A (en) 2015-04-08
KR101668391B1 true KR101668391B1 (en) 2016-10-28

Family

ID=50885987

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020130126578A KR101544538B1 (en) 2012-10-23 2013-10-23 High Density carbon Nano-fiber Felt with Unidirectional Orientation and Preparation of the Felt and Application to Supercapacitor Electrode
KR1020150038772A KR101668391B1 (en) 2012-10-23 2015-03-20 High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020130126578A KR101544538B1 (en) 2012-10-23 2013-10-23 High Density carbon Nano-fiber Felt with Unidirectional Orientation and Preparation of the Felt and Application to Supercapacitor Electrode

Country Status (1)

Country Link
KR (2) KR101544538B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105332093A (en) * 2015-01-03 2016-02-17 浙江理工大学 Bionic composite micro-nanofiber with filter and absorption dual functions and preparation method of bionic composite micro-nanofiber
CN104555912B (en) * 2015-01-22 2016-03-30 武汉理工大学 Pea shape nanotube and gradient pyrolysis electrostatic spinning preparation method thereof and application
CN104600310B (en) * 2015-01-22 2017-03-22 武汉理工大学 Mesoporous nanotube material of inorganic salt, preparation method of mesoporous nanotube material by employing gradient pyrolysis and electrostatic spinning, and application of mesoporous nanotube material
CN106894162B (en) * 2015-12-18 2020-03-10 中国科学院大连化学物理研究所 Composite fiber membrane and preparation and application thereof
CN107059248A (en) * 2017-03-29 2017-08-18 东华大学 A kind of graphene oxide monolayer modifies the preparation method of polyacrylonitrile nanofiber film
CN108456998B (en) * 2018-03-05 2020-11-17 绍兴厚创新材料科技有限公司 High-strength antibacterial nanofiber membrane and preparation method thereof
CN110626010A (en) * 2019-08-01 2019-12-31 天津工业大学 Activated carbon fiber felt and preparation method and application thereof
CN111041715B (en) * 2019-12-31 2021-08-31 松山湖材料实验室 Nano carbon fiber film and resin composite board for electromagnetic shielding and preparation method thereof
CN111153393A (en) * 2020-01-06 2020-05-15 西北工业大学 Polyaniline-based carbon material and regulation method and application of pore structure of polyaniline-based carbon material
CN116043531B (en) * 2023-03-06 2023-07-18 杭州德海艾科能源科技有限公司 Modified graphite felt for high density of vanadium battery and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050062407A (en) * 2003-12-19 2005-06-23 남재도 Method of preparing composite and aggregate including carbon nanotube
KR101147923B1 (en) * 2010-06-29 2012-07-11 전남대학교산학협력단 Method of preparing porous carbon nanofibers containing metaloxide, porous carbon nanofibers thereby and their applications including the same
KR101348202B1 (en) * 2011-11-30 2014-01-16 전남대학교산학협력단 Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995154B1 (en) 2010-02-11 2010-11-18 전남대학교산학협력단 Method of preparing porous carbon nanofibers, porous carbon nanofibers thereby and applications including the same

Also Published As

Publication number Publication date
KR20140052877A (en) 2014-05-07
KR20150037794A (en) 2015-04-08
KR101544538B1 (en) 2015-08-17

Similar Documents

Publication Publication Date Title
KR101668391B1 (en) High Density carbon Nano-fiber Felt with Unidirectional Orientation and Application to Supercapacitor Electrode
Chen et al. Fabrication and structural characterization of polyacrylonitrile and carbon nanofibers containing plasma-modified carbon nanotubes by electrospinning
Nataraj et al. Polyacrylonitrile-based nanofibers—A state-of-the-art review
Zhou et al. Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties
Moon et al. Strong electrospun nanometer-diameter polyacrylonitrile carbon fiber yarns
Inagaki et al. Carbon nanofibers prepared via electrospinning
KR100564774B1 (en) Nano-composite fiber its preparation and use
Atıcı et al. A review on centrifugally spun fibers and their applications
Hu et al. Strategies in precursors and post treatments to strengthen carbon nanofibers
KR101348202B1 (en) Metaloxide-carbonparticle-carbon nanofiber composites, preparation method for the same, and their application products from the same
US8845950B2 (en) Method for manufacturing polyimide-based carbon nanofiber electrode
US9725829B2 (en) Magneto-carbonization method for production of carbon fiber, and high performance carbon fibers made thereby
WO2016127465A1 (en) Preparation method for high-strength polyacrylonitrile nano composite fibres
Samadian et al. Needleless electrospinning system, an efficient platform to fabricate carbon nanofibers
Go et al. Laser carbonization of PAN-nanofiber mats with enhanced surface area and porosity
Zhu et al. Physical characterization of electrospun nanofibers
Zhou et al. Carbon nanofiber yarns fabricated from co-electrospun nanofibers
Song et al. Carbon nanofibers: synthesis and applications
Sun et al. High performance carbon nanotube/polymer composite fibers and water-driven actuators
Guan et al. Recent progress of graphene fiber/fabric supercapacitors: from building block architecture, fiber assembly, and fabric construction to wearable applications
Arbab et al. Optimum stabilization processing parameters for polyacrylonitrile-based carbon nanofibers and their difference with carbon (micro) fibers
Soltani et al. Fundamental and recent progress on the strengthening strategies for fabrication of polyacrylonitrile (PAN)-derived electrospun CNFs: Precursors, spinning and collection, and post-treatments
Tang et al. Electrospun PAN membranes toughened and strengthened by TPU/SHNT for high-performance lithium-ion batteries
Liu et al. Glassy carbon nanofibers from electrospun cellulose nanofiber
KR20030089657A (en) Preparation of activated polyimide-based carbon nanofiber electrode for supercapacitor by electrospinning and its application

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190923

Year of fee payment: 4