WO2014025154A1 - Heat radiation sheet and method for manufacturing same - Google Patents

Heat radiation sheet and method for manufacturing same Download PDF

Info

Publication number
WO2014025154A1
WO2014025154A1 PCT/KR2013/006838 KR2013006838W WO2014025154A1 WO 2014025154 A1 WO2014025154 A1 WO 2014025154A1 KR 2013006838 W KR2013006838 W KR 2013006838W WO 2014025154 A1 WO2014025154 A1 WO 2014025154A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
layer
heat dissipation
web
solvent
Prior art date
Application number
PCT/KR2013/006838
Other languages
French (fr)
Korean (ko)
Inventor
서인용
이승훈
정용식
소윤미
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020130089635A external-priority patent/KR101518995B1/en
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority to CN201380041560.5A priority Critical patent/CN104520100B/en
Publication of WO2014025154A1 publication Critical patent/WO2014025154A1/en
Priority to US14/611,518 priority patent/US20150144320A1/en
Priority to US17/016,832 priority patent/US11456230B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a heat dissipation sheet installed in an electronic device to discharge heat generated inside the device to the outside, and more particularly, to a heat dissipation sheet manufactured in the form of a nano-web by an electrospinning method and a method of manufacturing the same.
  • the current electronic devices are thinner and thinner and their performance is higher. Therefore, the electronic devices must be quickly discharged to the outside to prevent the electronic devices from being damaged by heat. Therefore, the heat radiation sheet is used to release the heat energy generated inside the system to the outside.
  • the conventional heat dissipation sheet is a heat conductive metal plate, as disclosed in Korean Patent Publication No. 10-0721462 (May 17, 2007), and a tacky adhesive formed on at least one side of the metal plate and having a cell as a foam structure therein. It includes a foam sheet, wherein the adhesive foam sheet is formed of an adhesive mixture containing a pressure-sensitive adhesive and a cell-forming agent, the pressure-sensitive adhesive is an acrylic resin, a silicone resin or a polyurethane resin, the cell forming agent is composed of a micro hollow tool do.
  • the conventional heat dissipation sheet has a problem that it is difficult to use a thin thickness electronic devices such as portable electronic devices because the thickness is thick because the adhesive foam sheet is attached to the surface of the metal plate.
  • the heat dissipation sheet is used to punch out according to the size of the heat generating part to attach to the heat generating parts of the electronic device, in the case of the conventional heat dissipation sheet, there is a problem that precise punching is difficult because the foam sheet has adhesiveness when punching.
  • An object of the present invention is to provide a heat dissipation sheet and a method of manufacturing the same, which are manufactured in the form of a nanoweb by an electrospinning method to improve the thermal conductivity while making the thickness thin.
  • Another object of the present invention is to produce a pressure-sensitive adhesive layer for attaching to the heating element by the electrospinning method, it is possible to improve the punchability and the heat-conductive material is included, the adhesive layer can also have a heat dissipation performance can improve heat dissipation performance It is to provide a heat dissipation sheet and a method of manufacturing the same.
  • the heat dissipation sheet of the present invention comprises a heat dissipation layer formed in the form of a web having a plurality of pores by electrospinning a spinning solution mixed with a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent; And an adhesive layer formed on one side or both sides of the heat dissipating layer and electrospinning an adhesive material mixed with an adhesive, a heat conductive material, and a solvent to form a web.
  • the heat dissipation sheet of the present invention is a substrate in the form of a web formed by the electrospinning method; An adhesive layer laminated on one surface of the substrate; And a metal layer coated on the other side of the substrate and having a thermal conductivity.
  • Method for producing a heat dissipation sheet of the present invention comprises the steps of electrospinning the pressure-sensitive adhesive material, the heat conductive material and the solvent mixed adhesive material to form a pressure-sensitive adhesive layer of the nano-web form; And forming a heat dissipating layer in the form of a web by electrospinning a spinning solution in which a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent are mixed on one surface of the adhesive layer.
  • the heat dissipation sheet of the present invention is manufactured in the form of a web by the electrospinning method, thereby making the thickness thin, and there is an advantage that it can be applied to a thin electronic device.
  • the heat dissipation sheet of the present invention may be produced in the form of a web by electrospinning the pressure-sensitive adhesive layer to improve the punchability, and includes a heat conductive material in the pressure-sensitive adhesive layer has the advantage of improving the heat dissipation performance.
  • FIG. 1 is a cross-sectional view of a heat radiation sheet according to a first embodiment of the present invention.
  • FIG 2 is an enlarged view of a heat radiation layer according to a first embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a heat radiation sheet according to a second embodiment of the present invention.
  • Figure 4 is a block diagram of an electrospinning apparatus for producing a heat radiation sheet of the present invention.
  • FIG. 1 is a cross-sectional view of a heat radiation sheet according to a first embodiment of the present invention
  • Figure 2 is an enlarged view of a heat radiation sheet according to a first embodiment of the present invention.
  • the heat dissipation sheet according to the first embodiment is formed by the electrospinning method and includes a heat conductive material, the heat dissipation layer 10 in the form of a nano-web having thermal conductivity, and adhesively laminated on one or both surfaces of the heat dissipation layer 10.
  • Layer 20 is formed by the electrospinning method and includes a heat conductive material, the heat dissipation layer 10 in the form of a nano-web having thermal conductivity, and adhesively laminated on one or both surfaces of the heat dissipation layer 10.
  • the heat dissipating layer 10 forms a spinning solution by mixing a polymer material and a solvent capable of electrospinning, or a polymer material, a heat conducting material and a solvent in a predetermined ratio, and electrospinning the spinning solution to form the nanofibers 14,
  • the nanofibers 14 are accumulated to form a nano web having a plurality of pores 12.
  • the nano web may be referred to as a web.
  • the radiation method applied to the present invention is a general electrospinning, air electrospinning (AES: Air-Electrospinning), electrospray (electrospray), electrobrown spinning, centrifugal electrospinning Flash-electrospinning can be used.
  • AES Air-Electrospinning
  • electrospray electrospray
  • electrobrown spinning electrobrown spinning
  • centrifugal electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning can be used.
  • the radiation layer 10 and the adhesive layer 20 of the present invention can be applied to any spinning method of the spinning method that can be made in the form of the nanofibers accumulated.
  • the polymeric material used to make the heat dissipating layer 10 may be, for example, polyvinylidene fluoride (PVDF), poly (vinylidene fluoride-co-hexafluoropropylene), perfuluropolymer, polyvinyl chloride or poly Polyethylene including vinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo-oxyethylene), polyethylene oxide and polypropylene oxide , Polyvinyl acetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymer, polyacrylonitrile copolymer including polyacrylonitrile methyl methacrylate copolymer, polymethyl methacrylate , Polymethyl methacrylate copolymers and mixtures thereof This may be used.
  • PVDF polyvinylidene fluoride
  • the thermally conductive material may be any one of thermally conductive metals such as Ni, Cu, and Ag, and conductive carbon, carbon black, carbon nanotubes, and conductive polymers (PDOT). In addition, any material may be used as long as the material has thermal conductivity.
  • the thermally conductive particles are dispersed in the nanofibers 14 of the heat dissipating layer 10 in the form of a nanoweb. That is, part of the thermally conductive particles are exposed to the surface of the nanofibers 14 of the heat dissipation layer 10 to participate in thermal conduction.
  • the thickness is determined according to the radiation amount of the spinning solution. Therefore, there is an advantage that it is easy to make the thickness of the heat radiation layer 10 to a desired thickness.
  • the heat dissipation layer 10 is formed in the form of a nano web in which the nanofibers are accumulated by the spinning method, the heat dissipation layer 10 may be formed in a form having a plurality of pores without a separate process, and the size of the pores is adjusted according to the amount of spinning solution. It is also possible.
  • the adhesive layer 20 is manufactured by the same electrospinning method as the method of making the heat dissipation layer 10. That is, a pressure-sensitive adhesive, a thermally conductive material and a solvent are mixed to form a thermally conductive adhesive material having a viscosity suitable for electrospinning, and the thermally conductive adhesive material has a predetermined thickness on one or both sides of the heat dissipating layer 10 by an electrospinning method. Laminate.
  • the adhesive layer 20 is radiated in the form of ultrafine fiber strands and adheres to the surface of the heat dissipating layer 10. At this time, the adhesive material is introduced into the pores 12 of the heat insulating layer 10 to increase the adhesive strength between the heat radiation layer 10 and the adhesive layer 20. Therefore, the phenomenon that the heat dissipation layer 10 peels off from the adhesive layer 20 is reduced, and the reliability of the heat dissipation sheet is improved. In addition, the thickness of the adhesive layer 20 is reduced by the adhesive material introduced into the pores 12 to implement an ultra-thin heat dissipation sheet.
  • the same material as the heat conductive material forming the heat dissipating layer 10 may be used.
  • the adhesive layer 20 is manufactured by separately manufacturing the heat-dissipating layer 10 and the adhesive layer 20 by an electrospinning method, in addition to the method of directly electrospinning a thermally conductive adhesive material to the heat-dissipating layer 10, and then laminating them. In the process, a method of laminating the thermally conductive adhesive layer 20 on one or both surfaces of the heat dissipation layer 10 may also be applied.
  • the thickness of the adhesive layer 20 is determined according to the radiation amount of the thermally conductive adhesive material. Therefore, the thickness of the adhesion layer 20 can be made free.
  • the adhesive layer 20 includes a heat conductive material, since the adhesive layer 20 has adhesiveness and thermal conductivity to attach the heat dissipation layer to the heat generating parts, the heat dissipation performance may be improved.
  • thermally conductive particles may be dispersed and disposed between the heat dissipation layer 10 and the adhesive layer 20. Thermally conductive particles are disposed outside the nanofibers of the heat dissipation layer 10 and the nanofibers of the pressure-sensitive adhesive layer 20 positioned on the interface between the heat dissipation layer 10 and the adhesive layer 20. By transferring the generated heat to the heat dissipation layer 10, it is possible to increase the heat dissipation efficiency.
  • the thermally conductive particles and the solvent are mixed to make a spray solution, and a bead consisting of the thermally conductive particles and the solvent is sprayed onto the nanoweb of the adhesive layer 20 by an electrospraying process, the solvent is volatilized and thermally conductive. Particles are dispersed in the nanoweb of the adhesive layer 20. Thereafter, when the nanoweb of the heat dissipation layer 10 is formed on the nanoweb of the adhesive layer 20 to which the thermally conductive particles are injected, the thermally conductive particles are formed between the heat dissipation layer 10 and the adhesive layer 20 described above.
  • distribution can be manufactured.
  • the heat dissipation layer 10 quickly diffuses heat generated from a heat generator such as an LED, a CPU, an IC, and the like, thereby preventing a local temperature rise of the heat generator.
  • a heat generator such as an LED, a CPU, an IC, and the like
  • FIG 3 is a cross-sectional view of a heat radiation sheet according to a second embodiment of the present invention.
  • the heat dissipation sheet according to the second embodiment is coated on the base 30 of the nano-web form formed by the electrospinning method, the adhesive layer 40 laminated on one side of the base 30, and the other side of the base 30 And includes a metal layer 50 having thermal conductivity.
  • the substrate 30 mixes a polymer material and a solvent in a predetermined ratio to form a spinning solution having an electrospinable viscosity, and electrospins the spinning solution to form nanofibers, and the nanofibers are accumulated to have a plurality of pores. It is formed in the form of a nano web (nano web).
  • the substrate 30 may also have the same structure as the heat dissipation layer 10 in the first embodiment. That is, the substrate 30 may be formed of a polymer material to perform a role of supporting the metal layer, and a structure having a role of supporting a metal layer and a heat conducting role at the same time by including a heat conductive material such as the heat dissipation layer 10. It is also possible to apply.
  • the polymer material forming the substrate 30 is the same as the polymer material described in the first embodiment, a detailed description thereof will be omitted.
  • the adhesive layer 40 is the same as the structure of the adhesive layer 20 described in the first embodiment, a detailed description thereof will be omitted.
  • Ni, Cu, Ag, or the like may be used as the metal having a thermal conductivity, and the metal layer 50 may be applied with a method of attaching a metal foil.
  • the heat dissipation sheet according to the second embodiment may be provided with a metal layer 50 having excellent thermal conductivity to further improve heat dissipation performance.
  • the metal layer 50 may be implemented as a metal pattern layer coated on the other surface of the substrate 30 in a pattern shape, and the metal pattern layer has a larger contact area than the metal layer 50 having a bulk surface. As a result, the heat dissipation efficiency is increased.
  • Figure 4 is a block diagram showing an electrospinning apparatus for manufacturing a heat radiation sheet according to the present invention.
  • the electrospinning apparatus of the present invention comprises a first mixing tank 70 in which a pressure sensitive adhesive, a heat conductive material and a solvent are mixed, and a spinning solution in which an electrospinable polymer material, a heat conductive material, and a solvent are mixed.
  • the second radiation nozzle 76 connected to the mixing tank 72 to form the heat dissipation layer 10, and disposed below the first radiation nozzle 74 and the second radiation nozzle 76, may be attached to the adhesive layer 20.
  • the heat dissipation layer 10 includes a collector 78 sequentially stacked.
  • the first mixing tank 70 is provided with a first stirrer 60 to mix the polymer material, the heat conductive material and the solvent evenly, and to maintain a constant viscosity of the spinning solution, and the second mixing tank 72 includes an adhesive, A second stirrer 62 is provided to mix the heat conductive material and the solvent evenly and to maintain the viscosity of the adhesive material.
  • the nanofibers 14 are radiated to the collector. 14 is collected to form a nano web.
  • first radiation nozzle 74 and the second radiation nozzle 76 may be arranged in plurality, may be arranged sequentially in one chamber, each may be arranged in different chambers.
  • Each of the first radiation nozzles 74 and the second radiation nozzles 76 is provided with an air injection device 64 so that the nanofibers 14 radiated from the first radiation nozzles 74 and the second radiation nozzles 76 are formed. It is not captured by the collector 78 and prevents it from flying.
  • Collector 78 is used a conveyor for automatically transferring the release film 82 so that the adhesive layer 20 and the heat dissipation layer 10 are sequentially stacked on the release film 82, or the adhesive layer 20 and the heat dissipation layer
  • the table form can be used when 10 is formed in different chambers.
  • a release film roll 80 wound around the release film 82 is disposed to supply the release film 82 to the upper surface of the collector 78.
  • a pressure roller 86 is provided at the rear of the collector 78 to pressurize (calender) the pressure-sensitive adhesive layer 20 and the heat dissipation layer 10 to a predetermined thickness, and is pressed while passing through the pressure roller 86.
  • a sheet roll 88 is provided on which a heat dissipation sheet having a predetermined thickness is wound.
  • the release film 82 wound around the release film roll 80 is released and supplied to the collector 78.
  • the adhesive material is made into the nanofibers 14 in the first radiation nozzle 74 to radiate onto the surface of the release film 82. . Then, the nanofibers 14 are accumulated on the surface of the release film 82 to form an adhesive layer 20.
  • the adhesive layer 20 contains a heat conductive material, the adhesive layer 20 serves to dissipate heat even in the adhesive layer 20 itself.
  • the air injector 64 installed in the first radiation nozzle 74 the air is injected to the nanofibers 14 so that the nanofibers 14 do not fly and the release film 82 does not fly. To be collected and integrated on the surface of the
  • the adhesive layer 20 is moved to the lower portion of the second radiation nozzle 76 and the high voltage electrostatic force is applied between the collector 78 and the second radiation nozzle 76. As a result, the spinning solution is made into the nanofibers 14 on the adhesive layer 20 in the second spinning nozzle 76 to be spun. Then, the heat radiation layer 10 in the form of a nano web having a plurality of pores 12 on the surface of the adhesive layer 20 is formed.
  • the heat dissipation sheet completed while going through this process is pressed to a predetermined thickness while passing through the pressure roller (86). Then, it is wound around the sheet roll 88 and stored.
  • the adhesive layer 20 is disposed on one side or both sides of the heat dissipation layer 10, and the heat dissipation layer 10 and adhesive
  • the method of laminating and manufacturing between the layers 30 is also applicable.
  • each of the heat dissipation layer 10 and the adhesive layer 20 is one of a non-woven fabric, a paper, and a polyolefin-based film such as PE, PP, etc., made of a polymer material that is not dissolved by a solvent used in the spinning solution.
  • the heat dissipation sheet has a structure in which the metal layer 50 is coated on the surface of the substrate 30 formed by the electrospinning method, the adhesive layer 40 and the substrate 30 are manufactured in the same manner as above, and then the substrate 30 By coating the metal layer 50 on the surface of the) to produce a heat dissipation sheet.
  • the substrate 30 may include a heat conducting material in the same manner as the heat dissipation layer 10 described above, and a structure in which only the polymer material is electrospun to perform only a role of the substrate may be applied.
  • the present invention provides a heat dissipation sheet that can be made thin in thickness by manufacturing in the form of a nano-web by the electrospinning method, which can be applied to an electronic device having a thin thickness.

Abstract

A heat radiation sheet according to the present invention comprises: a heat radiation layer formed as a web form having a plurality of pores by electrospinning polymeric material and a solvent, or a spinning solution which is a mixture of polymeric material, heat-conducting material and a solvent; and an adhesion layer laminated on one or both sides of the heat radiation layer, and formed as a web by electrospinning adhesive material which is a mixture of an adhesive, heat-conductive material and a solvent.

Description

방열 시트 및 그 제조방법Heat dissipation sheet and its manufacturing method
본 발명은 전자기기에 설치되어 기기 내부에서 발생되는 열을 외부로 방출시키는 방열 시트에 관한 것으로, 보다 상세하게는 전기 방사방법에 의해 나노 웹 형태로 제조되는 방열 시트 및 그 제조방법에 관한 것이다.The present invention relates to a heat dissipation sheet installed in an electronic device to discharge heat generated inside the device to the outside, and more particularly, to a heat dissipation sheet manufactured in the form of a nano-web by an electrospinning method and a method of manufacturing the same.
일반적으로 컴퓨터, 휴대용 개인단말기, 통신기 등의 전자기기는 기기 내부에서 발생한 과도한 열에너지를 외부로 확산시키지 못해 잔상문제 및 시스템 안정성에 심각한 우려를 내재하고 있다. 이러한 열에너지는 제품의 수명을 단축하거나 고장, 오동작을 유발하며, 심한 경우에는 폭발 및 화재의 원인을 제공하기도 한다. In general, electronic devices such as computers, portable personal terminals, and communication devices do not diffuse excessive thermal energy generated inside the device to the outside, which causes serious afterimage problems and system stability. This thermal energy shortens the life of the product, causes failures and malfunctions, and in severe cases can also cause explosions and fires.
특히, 현재의 전자기기는 두께가 날로 슬림화되고, 성능은 높아지고 있기 때문에 기기 내부의 각종 회로부품에서 발생되는 열을 외부로 신속하게 방출하여 전자기기가 열에 의해 손상되는 것을 방지해야된다. 따라서 시스템 내부에서 발생한 열에너지를 외부로 방출시키기 위해 방열 시트가 사용된다.In particular, the current electronic devices are thinner and thinner and their performance is higher. Therefore, the electronic devices must be quickly discharged to the outside to prevent the electronic devices from being damaged by heat. Therefore, the heat radiation sheet is used to release the heat energy generated inside the system to the outside.
종래의 방열 시트는 한국 등록특허공보 10-0721462(2007년 05월 17일)에 개시된 바와 같이, 열전도성의 금속판과, 이 금속판의 적어도 하나의 면에 형성되고 그 내부에 폼구조로서 셀이 형성된 점착성의 폼시트를 포함하고, 상기 점착성의 폼시트는 점착제와 셀형성제가 함유된 점착성 혼합물로 형성되고, 상기 점착제는 아크릴계 수지, 실리콘계 수지 또는 폴리우레탄계 수지이고, 상기 셀형성제는 미소중공구로 구성된다. The conventional heat dissipation sheet is a heat conductive metal plate, as disclosed in Korean Patent Publication No. 10-0721462 (May 17, 2007), and a tacky adhesive formed on at least one side of the metal plate and having a cell as a foam structure therein. It includes a foam sheet, wherein the adhesive foam sheet is formed of an adhesive mixture containing a pressure-sensitive adhesive and a cell-forming agent, the pressure-sensitive adhesive is an acrylic resin, a silicone resin or a polyurethane resin, the cell forming agent is composed of a micro hollow tool do.
하지만, 종래의 방열 시트는 금속판의 표면에 점착성의 폼시트를 부착하여 사용하기 때문에 두께가 두꺼워 휴대 전자기기 등 두께가 얇은 전자기기에는 사용이 어려운 문제가 있다.However, the conventional heat dissipation sheet has a problem that it is difficult to use a thin thickness electronic devices such as portable electronic devices because the thickness is thick because the adhesive foam sheet is attached to the surface of the metal plate.
또한, 방열 시트는 전자기기의 발열부품에 부착하기 위해 발열부품의 크기에 맞게 타발하여 사용하는 데, 종래의 방열 시트의 경우 타발 시 폼시트가 점착성을 갖기 때문에 정밀한 타발이 어려운 문제가 있다. In addition, the heat dissipation sheet is used to punch out according to the size of the heat generating part to attach to the heat generating parts of the electronic device, in the case of the conventional heat dissipation sheet, there is a problem that precise punching is difficult because the foam sheet has adhesiveness when punching.
본 발명의 목적은 전기 방사방법에 의해 나노 웹 형태로 제조하여 두께를 얇게 만들면서 열전도성을 향상시킬 수 있는 방열 시트 및 그 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION An object of the present invention is to provide a heat dissipation sheet and a method of manufacturing the same, which are manufactured in the form of a nanoweb by an electrospinning method to improve the thermal conductivity while making the thickness thin.
본 발명의 다른 목적은 발열부품에 부착하기 위한 점착층을 전기 방사방법에 의해 제조함으로써, 타발성을 향상시킬 수 있고 열전도 물질이 포함되어 점착층도 방열성능을 가질 수 있어 방열 성능을 향상시킬 수 있는 방열 시트 및 그 제조방법을 제공하는 것이다. Another object of the present invention is to produce a pressure-sensitive adhesive layer for attaching to the heating element by the electrospinning method, it is possible to improve the punchability and the heat-conductive material is included, the adhesive layer can also have a heat dissipation performance can improve heat dissipation performance It is to provide a heat dissipation sheet and a method of manufacturing the same.
본 발명이 해결하려는 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. The problem to be solved by the present invention is not limited to the technical problem mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following description. .
상기 목적을 달성하기 위하여, 본 발명의 방열 시트는 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매를 혼합한 방사용액을 전기 방사하여 다수의 기공을 갖는 웹 형태로 형성되는 방열층; 및 상기 방열층의 일면 또는 양면에 적층되고 점착제, 열전도 물질 및 용매를 혼합한 점착물질을 전기 방사하여 웹 형태로 형성되는 점착층을 포함하는 것을 특징으로 한다.In order to achieve the above object, the heat dissipation sheet of the present invention comprises a heat dissipation layer formed in the form of a web having a plurality of pores by electrospinning a spinning solution mixed with a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent; And an adhesive layer formed on one side or both sides of the heat dissipating layer and electrospinning an adhesive material mixed with an adhesive, a heat conductive material, and a solvent to form a web.
본 발명의 방열 시트는 전기 방사방법에 의해 형성되는 웹 형태의 기재; 상기 기재의 일면에 적층되는 점착층; 및 상기 기재의 타면에 코팅되어 열 전도성을 갖는 금속층을 포함하는 것을 특징으로 한다.The heat dissipation sheet of the present invention is a substrate in the form of a web formed by the electrospinning method; An adhesive layer laminated on one surface of the substrate; And a metal layer coated on the other side of the substrate and having a thermal conductivity.
본 발명의 방열 시트 제조방법은 점착제, 열전도 물질 및 용매가 혼합된 점착물질을 전기 방사하여 나노 웹 형태의 점착층을 형성하는 단계; 및 상기 점착층의 일면에, 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매가 혼합된 방사용액을 전기 방사하여 웹 형태의 방열층을 형성하는 단계를 포함하는 것을 특징으로 한다.Method for producing a heat dissipation sheet of the present invention comprises the steps of electrospinning the pressure-sensitive adhesive material, the heat conductive material and the solvent mixed adhesive material to form a pressure-sensitive adhesive layer of the nano-web form; And forming a heat dissipating layer in the form of a web by electrospinning a spinning solution in which a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent are mixed on one surface of the adhesive layer.
상기한 바와 같이, 본 발명의 방열 시트는 전기 방사방법에 의해 웹 형태로 제조함으로써, 두께를 얇게 만들 수 있어 두께가 얇은 전자기기에 적용이 가능한 장점이 있다. As described above, the heat dissipation sheet of the present invention is manufactured in the form of a web by the electrospinning method, thereby making the thickness thin, and there is an advantage that it can be applied to a thin electronic device.
또한, 본 발명의 방열 시트는 점착층을 전기 방사하여 웹 형태로 제조하여 타발성을 향상시킬 수 있고, 점착층에 열전도 물질을 포함시켜 방열 성능을 향상시킬 수 있는 장점이 있다. In addition, the heat dissipation sheet of the present invention may be produced in the form of a web by electrospinning the pressure-sensitive adhesive layer to improve the punchability, and includes a heat conductive material in the pressure-sensitive adhesive layer has the advantage of improving the heat dissipation performance.
도 1은 본 발명의 제1실시예에 따른 방열 시트의 단면도이다. 1 is a cross-sectional view of a heat radiation sheet according to a first embodiment of the present invention.
도 2는 본 발명의 제1실시예에 따른 방열층의 확대도이다. 2 is an enlarged view of a heat radiation layer according to a first embodiment of the present invention.
도 3은 본 발명의 제2실시예에 따른 방열 시트의 단면도이다. 3 is a cross-sectional view of a heat radiation sheet according to a second embodiment of the present invention.
도 4는 본 발명의 방열 시트를 제조하기 위한 전기 방사장치의 구성도이다.Figure 4 is a block diagram of an electrospinning apparatus for producing a heat radiation sheet of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명에 따른 실시예를 상세히 설명한다. 이 과정에서 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 사용자, 운용자의 의도 또는 관례에 따라 달라질 수 있다. 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. In this process, the size or shape of the components shown in the drawings may be exaggerated for clarity and convenience of description. In addition, terms that are specifically defined in consideration of the configuration and operation of the present invention may vary depending on the intention or custom of the user or operator. Definitions of these terms should be made based on the contents throughout the specification.
도 1은 본 발명의 제1실시예에 따른 방열 시트의 단면도이고, 도 2는 본 발명의 제1실시예에 따른 방열 시트의 확대도이다. 1 is a cross-sectional view of a heat radiation sheet according to a first embodiment of the present invention, Figure 2 is an enlarged view of a heat radiation sheet according to a first embodiment of the present invention.
제1실시예에 따른 방열 시트는 전기 방사방법에 의해 형성되고 열 전도성 물질이 포함되어 열 전도성을 갖는 나노 웹 형태의 방열층(10)과, 방열층(10)에 일면 또는 양면에 적층되는 점착층(20)을 포함한다. The heat dissipation sheet according to the first embodiment is formed by the electrospinning method and includes a heat conductive material, the heat dissipation layer 10 in the form of a nano-web having thermal conductivity, and adhesively laminated on one or both surfaces of the heat dissipation layer 10. Layer 20.
방열층(10)은 전기 방사가 가능한 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매를 일정 비율로 혼합하여 방사용액을 만들고, 이 방사용액을 전기 방사하여 나노 섬유(14)를 형성하고, 이 나노 섬유(14)가 축적되어 다수의 기공(12)을 갖는 나노 웹(nano web) 형태로 형성된다. 여기서, 나노 웹은 웹으로 지칭될 수 있다.The heat dissipating layer 10 forms a spinning solution by mixing a polymer material and a solvent capable of electrospinning, or a polymer material, a heat conducting material and a solvent in a predetermined ratio, and electrospinning the spinning solution to form the nanofibers 14, The nanofibers 14 are accumulated to form a nano web having a plurality of pores 12. Here, the nano web may be referred to as a web.
여기에서, 본 발명에 적용되는 방사 방법은 일반적인 전기방사(electrospinning), 에어 전기방사(AES: Air-Electrospinning), 전기분사(electrospray), 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning) 중 어느 하나를 사용할 수 있다.Here, the radiation method applied to the present invention is a general electrospinning, air electrospinning (AES: Air-Electrospinning), electrospray (electrospray), electrobrown spinning, centrifugal electrospinning Flash-electrospinning can be used.
즉, 본 발명의 방열층(10) 및 점착층(20)은 나노 섬유들이 축적된 형태로 만들 수 있는 방사 방법 중 어떠한 방사 방법도 적용이 가능하다. That is, the radiation layer 10 and the adhesive layer 20 of the present invention can be applied to any spinning method of the spinning method that can be made in the form of the nanofibers accumulated.
방열층(10)를 만드는데 사용되는 고분자 물질은 예를 들어, 폴리비닐리덴플루오라이드(PVDF), 폴리(비닐리덴플루오라이드-코-헥사플루오로프로필렌), 퍼풀루오로폴리머, 폴리비닐클로라이드 또는 폴리비닐리덴 클로라이드 및 이들의 공중합체 및 폴리에틸렌글리콜 디알킬에테르 및 폴리에틸렌글리콜 디알킬에스터를 포함하는 폴리에틸렌글리콜 유도체, 폴리(옥시메틸렌-올리 고-옥시에틸렌), 폴리에틸렌옥사이드 및 폴리프로필렌옥사이드를 포함하는 폴리옥사이드, 폴리비닐아세테이트, 폴리(비닐피롤리돈-비닐아세테이트), 폴리스티렌 및 폴리스티렌 아크릴로니트릴 공중합체, 폴리아크릴로니트릴 메틸메타크릴레이트 공중합체를 포함하는 폴리아크릴로니트릴 공중합체, 폴리메틸메타크릴레이트, 폴리메틸메타크릴레이트 공중합체 및 이들의 혼합물이 사용될 수 있다. The polymeric material used to make the heat dissipating layer 10 may be, for example, polyvinylidene fluoride (PVDF), poly (vinylidene fluoride-co-hexafluoropropylene), perfuluropolymer, polyvinyl chloride or poly Polyethylene including vinylidene chloride and copolymers thereof and polyethylene glycol derivatives including polyethylene glycol dialkyl ether and polyethylene glycol dialkyl ester, poly (oxymethylene-oligo-oxyethylene), polyethylene oxide and polypropylene oxide , Polyvinyl acetate, poly (vinylpyrrolidone-vinylacetate), polystyrene and polystyrene acrylonitrile copolymer, polyacrylonitrile copolymer including polyacrylonitrile methyl methacrylate copolymer, polymethyl methacrylate , Polymethyl methacrylate copolymers and mixtures thereof This may be used.
그리고, 열전도 물질은 열 전도성이 우수한 Ni, Cu, Ag 등의 열 전도성 금속 및 전도성 카본(Carbon), 전도성 카본 블랙(Carbon Black), 탄소나노튜브(CNT), 전도성 폴리머(PDOT) 중 어느 하나가 사용될 수 있고, 이외에 열 전도성을 갖는 물질이면 어떠한 물질도 적용이 가능하다. The thermally conductive material may be any one of thermally conductive metals such as Ni, Cu, and Ag, and conductive carbon, carbon black, carbon nanotubes, and conductive polymers (PDOT). In addition, any material may be used as long as the material has thermal conductivity.
여기서, 열전도 물질로 적용된 열전도성 입자, 고분자 물질, 용매를 혼합하여 방사용액을 제조하게 되면, 열전도성 입자는 나노 웹 형태의 방열층(10)의 나노 섬유(14)에 분산되어 있는 상태가 된다. 즉, 방열층(10)의 나노 섬유(14)의 표면에는 열전도성 입자의 일부가 노출되어 열전도에 참여한다.Here, when the spinning solution is prepared by mixing the thermally conductive particles, the polymer material, and the solvent applied as the thermally conductive material, the thermally conductive particles are dispersed in the nanofibers 14 of the heat dissipating layer 10 in the form of a nanoweb. . That is, part of the thermally conductive particles are exposed to the surface of the nanofibers 14 of the heat dissipation layer 10 to participate in thermal conduction.
방열층(10)은 전기방사 방법으로 제조되므로 방사용액의 방사량에 따라 두께가 결정된다. 따라서, 방열층(10)의 두께를 원하는 두께로 만들기가 쉬운 장점이 있다. Since the heat radiation layer 10 is manufactured by the electrospinning method, the thickness is determined according to the radiation amount of the spinning solution. Therefore, there is an advantage that it is easy to make the thickness of the heat radiation layer 10 to a desired thickness.
이와 같이, 방열층(10)은 방사 방법에 의해 나노 섬유가 축적된 나노 웹 형태로 형성되므로 별도의 공정없이 복수의 기공을 갖는 형태로 만들 수 있고, 방사용액의 방사량에 따라 기공의 크기를 조절하는 것도 가능하다. As such, since the heat dissipation layer 10 is formed in the form of a nano web in which the nanofibers are accumulated by the spinning method, the heat dissipation layer 10 may be formed in a form having a plurality of pores without a separate process, and the size of the pores is adjusted according to the amount of spinning solution. It is also possible.
점착층(20)은 방열층(10)을 만드는 방법과 동일한 전기방사 방법에 의해 제조된다. 즉, 점착성을 갖는 점착제, 열전도 물질 및 용매를 혼합하여 전기방사에 적합한 점도를 갖는 열 전도성 점착물질을 만들고, 이 열 전도성 점착물질을 전기방사 방법으로 방열층(10)의 일면 또는 양면에 일정 두께로 적층한다. The adhesive layer 20 is manufactured by the same electrospinning method as the method of making the heat dissipation layer 10. That is, a pressure-sensitive adhesive, a thermally conductive material and a solvent are mixed to form a thermally conductive adhesive material having a viscosity suitable for electrospinning, and the thermally conductive adhesive material has a predetermined thickness on one or both sides of the heat dissipating layer 10 by an electrospinning method. Laminate.
점착층(20)은 초극세 섬유가닥 형태로 방사되어 방열층(10)의 표면에 점착된다. 이때, 점착물질이 단열층(10)의 기공(12)에 유입되어서 방열층(10)과 점착층(20) 사이의 점착 강도가 증가된다. 그러므로, 방열층(10)이 점착층(20)에서 박리되는 현상이 줄어들어, 방열 시트의 신뢰성은 향상된다. 아울러, 기공(12)에 유입된 점착물질에 의해 점착층(20)의 두께는 얇아져 초박막 방열 시트를 구현할 수 있다.The adhesive layer 20 is radiated in the form of ultrafine fiber strands and adheres to the surface of the heat dissipating layer 10. At this time, the adhesive material is introduced into the pores 12 of the heat insulating layer 10 to increase the adhesive strength between the heat radiation layer 10 and the adhesive layer 20. Therefore, the phenomenon that the heat dissipation layer 10 peels off from the adhesive layer 20 is reduced, and the reliability of the heat dissipation sheet is improved. In addition, the thickness of the adhesive layer 20 is reduced by the adhesive material introduced into the pores 12 to implement an ultra-thin heat dissipation sheet.
점착층(20)을 형성하는 열전도 물질은 방열층(10)을 형성하는 열전도 물질과 동일한 물질이 사용될 수 있다.As the heat conductive material forming the adhesive layer 20, the same material as the heat conductive material forming the heat dissipating layer 10 may be used.
여기에서, 점착층(20)은 방열층(10)에 열 전도성 점착물질을 직접 전기 방사하는 방법 이외에, 전기 방사방법으로 방열층(10) 및 점착층(20)을 각각 별도로 제조한 후, 합지 공정에서 방열층(10)의 일면 또는 양면에 열 전도성 점착층(20)을 합지하여 제조하는 방법도 적용이 가능하다. Here, the adhesive layer 20 is manufactured by separately manufacturing the heat-dissipating layer 10 and the adhesive layer 20 by an electrospinning method, in addition to the method of directly electrospinning a thermally conductive adhesive material to the heat-dissipating layer 10, and then laminating them. In the process, a method of laminating the thermally conductive adhesive layer 20 on one or both surfaces of the heat dissipation layer 10 may also be applied.
점착층(20)도 마찬가지로 열 전도성 점착물질의 방사량에 따라 두께가 결정된다. 따라서, 점착층(20)의 두께를 자유롭게 만들 수 있다. Similarly, the thickness of the adhesive layer 20 is determined according to the radiation amount of the thermally conductive adhesive material. Therefore, the thickness of the adhesion layer 20 can be made free.
이와 같이, 점착층(20)에는 열전도 물질이 포함되어 있기 때문에 발열부품에 방열층을 부착시키기는 점착성과 열전도성을 함께 가지게 되므로 방열 성능을 향상시킬 수 있다. As described above, since the adhesive layer 20 includes a heat conductive material, since the adhesive layer 20 has adhesiveness and thermal conductivity to attach the heat dissipation layer to the heat generating parts, the heat dissipation performance may be improved.
한편, 본 발명에서는 방열층(10)과 점착층(20) 사이에 열전도성 입자를 분산시켜 배치시킬 수 있다. 방열층(10)과 점착층(20)의 계면 상에 위치된 방열층(10)의 나노 섬유와 점착층(20)의 나노 섬유의 외측에 열전도성 입자가 배치되어, 전자기기의 발열부품에서 발생된 열을 방열층(10)으로 보다 잘 전달하여, 방열 효율을 증가시킬 수 있다.In the present invention, thermally conductive particles may be dispersed and disposed between the heat dissipation layer 10 and the adhesive layer 20. Thermally conductive particles are disposed outside the nanofibers of the heat dissipation layer 10 and the nanofibers of the pressure-sensitive adhesive layer 20 positioned on the interface between the heat dissipation layer 10 and the adhesive layer 20. By transferring the generated heat to the heat dissipation layer 10, it is possible to increase the heat dissipation efficiency.
여기서, 열전도성 입자와 용매를 혼합하여 분사 용액을 만들고, 전기 분사 공정으로 열전도성 입자와 용매로 이루어진 비드(bead)를 점착층(20)의 나노 웹에 분사하게 되면, 용매는 휘발되면서 열전도성 입자가 점착층(20)의 나노 웹에 분산된다. 그 후, 방열층(10)의 나노 웹을 열전도성 입자가 분사된 점착층(20)의 나노 웹에 형성하게 되면, 전술된 방열층(10)과 점착층(20) 사이에 열전도성 입자가 분산되어 배치된 방열 시트를 제조할 수 있다.Here, when the thermally conductive particles and the solvent are mixed to make a spray solution, and a bead consisting of the thermally conductive particles and the solvent is sprayed onto the nanoweb of the adhesive layer 20 by an electrospraying process, the solvent is volatilized and thermally conductive. Particles are dispersed in the nanoweb of the adhesive layer 20. Thereafter, when the nanoweb of the heat dissipation layer 10 is formed on the nanoweb of the adhesive layer 20 to which the thermally conductive particles are injected, the thermally conductive particles are formed between the heat dissipation layer 10 and the adhesive layer 20 described above. The heat dissipation sheet arrange | positioned by dispersion | distribution can be manufactured.
그리고, 본 발명에서 방열층(10)은 LED, CPU, IC 등과 같은 발열체로부터 발생된 열을 빠르게 확산시켜서 발열체의 국부적인 온도 상승이 일어나는 것을 방지한다. In the present invention, the heat dissipation layer 10 quickly diffuses heat generated from a heat generator such as an LED, a CPU, an IC, and the like, thereby preventing a local temperature rise of the heat generator.
도 3은 본 발명의 제2실시예에 따른 방열 시트의 단면도이다.3 is a cross-sectional view of a heat radiation sheet according to a second embodiment of the present invention.
제2실시예에 따른 방열 시트는 전기 방사방법에 의해 형성되는 나노 웹 형태의 기재(30)와, 기재(30)의 일면에 적층되는 점착층(40)과, 기재(30)의 타면에 코팅되어 열 전도성을 갖는 금속층(50)을 포함한다. The heat dissipation sheet according to the second embodiment is coated on the base 30 of the nano-web form formed by the electrospinning method, the adhesive layer 40 laminated on one side of the base 30, and the other side of the base 30 And includes a metal layer 50 having thermal conductivity.
기재(30)는 고분자 물질과 용매를 일정 비율로 혼합하여 전기 방사 가능한 점도를 갖는 방사용액을 만들고, 이 방사용액을 전기 방사하여 나노 섬유를 형성하고, 이 나노 섬유가 축적되어 다수의 기공을 갖는 나노 웹(nano web) 형태로 형성된다. The substrate 30 mixes a polymer material and a solvent in a predetermined ratio to form a spinning solution having an electrospinable viscosity, and electrospins the spinning solution to form nanofibers, and the nanofibers are accumulated to have a plurality of pores. It is formed in the form of a nano web (nano web).
그리고, 기재(30)는 위의 제1실시예에서 방열층(10)과 동일한 구조도 적용이 가능하다. 즉, 기재(30)는 고분자 물질로 형성되어 금속층을 지지하는 역할을 수행하는 구조도 가능하고, 방열층(10)과 같이 열전도 물질이 포함되어 금속층을 지지하는 역할과 열 전도 역할을 동시에 갖는 구조도 적용이 가능하다. In addition, the substrate 30 may also have the same structure as the heat dissipation layer 10 in the first embodiment. That is, the substrate 30 may be formed of a polymer material to perform a role of supporting the metal layer, and a structure having a role of supporting a metal layer and a heat conducting role at the same time by including a heat conductive material such as the heat dissipation layer 10. It is also possible to apply.
여기에서, 기재(30)를 형성하는 고분자 물질은 위의 제1실시예에서 설명한 고분자 물질과 동일하므로 자세한 설명은 생략한다. Here, since the polymer material forming the substrate 30 is the same as the polymer material described in the first embodiment, a detailed description thereof will be omitted.
점착층(40)은 위의 제1실시예에서 설명한 점착층(20)의 구조와 동일하므로 자세한 설명을 생략한다. Since the adhesive layer 40 is the same as the structure of the adhesive layer 20 described in the first embodiment, a detailed description thereof will be omitted.
금속층(50)은 열 전도성을 갖는 금속 일 예로, Ni, Cu, Ag 등이 사용될 수 있으며, 코팅 방법 이외에, 금속 포일(foil)이 부착하는 방법도 적용이 가능하다. For example, Ni, Cu, Ag, or the like may be used as the metal having a thermal conductivity, and the metal layer 50 may be applied with a method of attaching a metal foil.
이와 같이, 제2실시예에 따른 방열 시트는 열전도성이 우수한 금속층(50)이 구비되어 방열 성능을 더욱 향상시킬 수 있다. As described above, the heat dissipation sheet according to the second embodiment may be provided with a metal layer 50 having excellent thermal conductivity to further improve heat dissipation performance.
한편, 상기 금속층(50)은 기재(30)의 타면에 패턴 형상으로 코팅된 금속 패턴층으로 구현할 수 있고, 금속 패턴층은 벌크(bulk) 형상의 면을 갖는 금속층(50)보다 접촉 면적이 커서, 열 방출 효율을 증가시키게 된다.Meanwhile, the metal layer 50 may be implemented as a metal pattern layer coated on the other surface of the substrate 30 in a pattern shape, and the metal pattern layer has a larger contact area than the metal layer 50 having a bulk surface. As a result, the heat dissipation efficiency is increased.
도 4는 본 발명에 따른 방열 시트를 제조하는 전기방사 장치를 나타낸 구성도이다. Figure 4 is a block diagram showing an electrospinning apparatus for manufacturing a heat radiation sheet according to the present invention.
본 발명의 전기방사 장치는 점착제, 열전도 물질 및 용매가 혼합된 점착물질이 저장되는 제1믹싱 탱크(70)와, 전기 방사가 가능한 고분자 물질, 열전도 물질 및 용매가 혼합된 방사용액이 저장되는 제2믹싱 탱크(Mixing Tank)(72)와, 고전압 발생기가 연결되고 제1믹싱 탱크(70)와 연결되어 점착층(20)을 형성하는 제1방사노즐(74)과, 고전압 발생기와 연결되고 제2믹싱 탱크(72)와 연결되어 방열층(10)을 형성하는 제2방사노즐(76)과, 제1방사노즐(74)과 제2방사노즐(76)의 하측에 배치되어 점착층(20)과 방열층(10)이 순차적으로 적층되는 콜렉터(78)를 포함한다.The electrospinning apparatus of the present invention comprises a first mixing tank 70 in which a pressure sensitive adhesive, a heat conductive material and a solvent are mixed, and a spinning solution in which an electrospinable polymer material, a heat conductive material, and a solvent are mixed. A first mixing nozzle 72 connected to the high voltage generator and a first radiation nozzle 74 connected to the first mixing tank 70 to form an adhesive layer 20, and The second radiation nozzle 76 connected to the mixing tank 72 to form the heat dissipation layer 10, and disposed below the first radiation nozzle 74 and the second radiation nozzle 76, may be attached to the adhesive layer 20. ) And the heat dissipation layer 10 includes a collector 78 sequentially stacked.
제1믹싱 탱크(70)에는 고분자 물질, 열전도 물질 및 용매를 고르게 섞어줌과 아울러 방사용액이 일정 점도를 유지하도록 하는 제1교반기(60)가 구비되고, 제2믹싱 탱크(72)에는 점착제, 열전도 물질 및 용매를 고르게 섞어줌과 아울러 점착물질이 일정 점도를 유지하도록 하는 제2교반기(62)가 구비된다. The first mixing tank 70 is provided with a first stirrer 60 to mix the polymer material, the heat conductive material and the solvent evenly, and to maintain a constant viscosity of the spinning solution, and the second mixing tank 72 includes an adhesive, A second stirrer 62 is provided to mix the heat conductive material and the solvent evenly and to maintain the viscosity of the adhesive material.
콜렉터(78)와 제1방사노즐(74) 사이 및 콜렉터(78)와 제2방사노즐(76) 사이에는 90~120Kv의 고전압 정전기력이 인가됨에 따라 나노 섬유(14)이 방사되어 콜렉터에 나노 섬유(14)가 포집되어 나노 웹을 형성한다. As the high voltage electrostatic force of 90 to 120 Kv is applied between the collector 78 and the first radiation nozzle 74 and between the collector 78 and the second radiation nozzle 76, the nanofibers 14 are radiated to the collector. 14 is collected to form a nano web.
여기에서, 제1방사노즐(74) 및 제2방사노즐(76)은 복수로 배열되어 있고, 하나의 챔버 내부에 순차적으로 배치될 수 있고, 각기 다른 챔버에 각각 배치될 수 있다. Here, the first radiation nozzle 74 and the second radiation nozzle 76 may be arranged in plurality, may be arranged sequentially in one chamber, each may be arranged in different chambers.
제1방사노즐(74) 및 제2방사노즐(76)에는 각각 에어 분사장치(64)가 구비되어 제1방사노즐(74) 및 제2방사노즐(76)에서 방사되는 나노 섬유(14)가 콜렉터(78)에 포집되지 못하고 날리는 것을 방지한다. Each of the first radiation nozzles 74 and the second radiation nozzles 76 is provided with an air injection device 64 so that the nanofibers 14 radiated from the first radiation nozzles 74 and the second radiation nozzles 76 are formed. It is not captured by the collector 78 and prevents it from flying.
콜렉터(78)는 이형필름(82) 위에 점착층(20) 및 방열층(10)이 순차적으로 적층되도록 이형필름(82)을 자동으로 이송시키는 컨베이어가 사용되거나, 점착층(20) 및 방열층(10)이 각기 다른 챔버에서 형성될 경우 테이블 형태가 사용될 수 있다. Collector 78 is used a conveyor for automatically transferring the release film 82 so that the adhesive layer 20 and the heat dissipation layer 10 are sequentially stacked on the release film 82, or the adhesive layer 20 and the heat dissipation layer The table form can be used when 10 is formed in different chambers.
콜렉터(78)의 전방에는 이형필름(82)이 감겨진 이형필름 롤(80) 이 배치되어 콜렉터(78)의 상면으로 이형필름(82)을 공급해준다. 그리고, 콜렉터(78)의 후방에는 점착층(20) 및 방열층(10)을 가압(캘린더링)하여 일정 두께로 만드는 가압롤러(86)가 구비되고, 가압롤러(86)를 통과하면서 가압되어 일정 두께로 된 방열 시트가 감겨지는 시트 롤(88)이 구비된다. In front of the collector 78, a release film roll 80 wound around the release film 82 is disposed to supply the release film 82 to the upper surface of the collector 78. In addition, a pressure roller 86 is provided at the rear of the collector 78 to pressurize (calender) the pressure-sensitive adhesive layer 20 and the heat dissipation layer 10 to a predetermined thickness, and is pressed while passing through the pressure roller 86. A sheet roll 88 is provided on which a heat dissipation sheet having a predetermined thickness is wound.
이와 같이, 구성되는 전기방사 장치를 이용하여 방열 시트를 제조하는 공정을 다음에서 설명한다. Thus, the process of manufacturing a heat radiation sheet using the electrospinning apparatus comprised is demonstrated below.
먼저, 콜렉터(78)가 구동되면, 이형필름 롤(80)에 감겨진 이형필름(82)이 풀리면서 콜렉터(78)로 공급된다. First, when the collector 78 is driven, the release film 82 wound around the release film roll 80 is released and supplied to the collector 78.
그리고, 콜렉터(78)와 제1방사노즐(74) 사이에 고전압 정전기력을 인가함에 의해 제1방사노즐(74)에서 점착물질을 나노 섬유(14)로 만들어 이형필름(82)의 표면에 방사한다. 그러면 이형필름(82)의 표면에 나노 섬유(14)가 축적되어 점착층(20)이 형성된다. In addition, by applying a high voltage electrostatic force between the collector 78 and the first radiation nozzle 74, the adhesive material is made into the nanofibers 14 in the first radiation nozzle 74 to radiate onto the surface of the release film 82. . Then, the nanofibers 14 are accumulated on the surface of the release film 82 to form an adhesive layer 20.
여기에서, 점착층(20)은 열전도 물질이 포함되어 있기 때문에 점착층(20) 자체에서도 열을 방열시키는 역할을 하게 된다. Here, since the adhesive layer 20 contains a heat conductive material, the adhesive layer 20 serves to dissipate heat even in the adhesive layer 20 itself.
이때, 제1방사노즐(74)에 설치된 에어 분사장치(64)에서 나노 섬유(14)를 방사할 때 나노 섬유(14)에 에어를 분사하여 나노 섬유(14)가 날리지 않고 이형필름(82)의 표면에 포집 및 집적될 수 있도록 한다. At this time, when the nano-fiber 14 is radiated by the air injector 64 installed in the first radiation nozzle 74, the air is injected to the nanofibers 14 so that the nanofibers 14 do not fly and the release film 82 does not fly. To be collected and integrated on the surface of the
그리고, 점착층(20)의 제조가 완료되면, 점착층(20)이 제2방사노즐(76)의 하부로 이동되고 콜렉터(78)와 제2방사노즐(76) 사이에 고전압 정전기력을 인가함에 의해 제2방사노즐(76)에서 점착층(20) 위에 방사용액을 나노 섬유(14)로 만들어 방사한다. 그러면, 점착층(20)의 표면에 다수의 기공(12)을 갖는 나노 웹 형태의 방열층(10)이 형성된다. When the manufacture of the adhesive layer 20 is completed, the adhesive layer 20 is moved to the lower portion of the second radiation nozzle 76 and the high voltage electrostatic force is applied between the collector 78 and the second radiation nozzle 76. As a result, the spinning solution is made into the nanofibers 14 on the adhesive layer 20 in the second spinning nozzle 76 to be spun. Then, the heat radiation layer 10 in the form of a nano web having a plurality of pores 12 on the surface of the adhesive layer 20 is formed.
이와 같은 과정을 거치면서 완성된 방열 시트는 가압 롤러(86)를 통과하면서 일정 두께로 가압된다. 그리고, 시트 롤(88)에 감겨져 보관된다. The heat dissipation sheet completed while going through this process is pressed to a predetermined thickness while passing through the pressure roller (86). Then, it is wound around the sheet roll 88 and stored.
이와 같은 제조방법 이외에, 방열층(10)과 점착층(20)을 각각 별도로 제조한 후, 방열층(10)의 일면 또는 양면에 점착층(20)을 배치하고, 방열층(10)과 점착층(30) 사이를 합지하여 제조하는 방법도 적용이 가능하다. In addition to such a manufacturing method, after separately manufacturing the heat dissipation layer 10 and the adhesive layer 20, the adhesive layer 20 is disposed on one side or both sides of the heat dissipation layer 10, and the heat dissipation layer 10 and adhesive The method of laminating and manufacturing between the layers 30 is also applicable.
여기서, 방열층(10)과 점착층(20) 각각은 방사 용액에 사용되는 용매에 의해 용해가 이루어지지 않는 고분자 재료로 이루어진 부직포, 종이, 및 PE, PP 등의 폴리올레핀(polyolefin)계 필름 중 하나의 트랜스퍼 시트에 형성하고, 방열층(10)과 점착층(20)을 합지한 후, 트랜스퍼 시트를 제거하는 공정을 수행할 수 있다.Here, each of the heat dissipation layer 10 and the adhesive layer 20 is one of a non-woven fabric, a paper, and a polyolefin-based film such as PE, PP, etc., made of a polymer material that is not dissolved by a solvent used in the spinning solution. After forming on the transfer sheet, the heat-dissipating layer 10 and the adhesive layer 20 is laminated, the process of removing the transfer sheet can be performed.
그리고, 방열 시트가 전기 방사방법으로 형성되는 기재(30)의 표면에 금속층(50)이 코팅되는 구조일 경우에는 위와 동일한 방법으로 점착층(40)과 기재(30)를 제조한 후 기재(30)의 표면에 금속층(50)을 코팅하여 방열 시트를 제조한다.In addition, when the heat dissipation sheet has a structure in which the metal layer 50 is coated on the surface of the substrate 30 formed by the electrospinning method, the adhesive layer 40 and the substrate 30 are manufactured in the same manner as above, and then the substrate 30 By coating the metal layer 50 on the surface of the) to produce a heat dissipation sheet.
이때, 기재(30)는 위에서 설명한 방열층(10)과 동일하게 열전도 물질이 포함될 수 있고, 고분자 물질만 전기 방사하여 기재의 역할만 수행하는 구조가 적용될 수 있다. In this case, the substrate 30 may include a heat conducting material in the same manner as the heat dissipation layer 10 described above, and a structure in which only the polymer material is electrospun to perform only a role of the substrate may be applied.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다. In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 전기 방사방법에 의해 나노 웹 형태로 제조함으로써, 두께를 얇게 만들 수 있어 두께가 얇은 전자기기에 적용이 가능한 방열 시트를 제공한다.The present invention provides a heat dissipation sheet that can be made thin in thickness by manufacturing in the form of a nano-web by the electrospinning method, which can be applied to an electronic device having a thin thickness.

Claims (11)

  1. 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매를 혼합한 방사용액을 전기 방사하여 다수의 기공을 갖는 웹 형태로 형성되는 방열층; 및 A heat dissipation layer formed into a web having a plurality of pores by electrospinning a spinning solution in which a polymer material and a solvent or a polymer material, a heat conductive material and a solvent are mixed; And
    상기 방열층의 일면 또는 양면에 적층되고 점착제, 열전도 물질 및 용매를 혼합한 점착물질을 전기 방사하여 웹 형태로 형성되는 점착층을 포함하는 방열 시트.A heat dissipation sheet including a pressure-sensitive adhesive layer formed on one side or both sides of the heat dissipation layer and electro-spinning the pressure-sensitive adhesive material mixed with a pressure-sensitive adhesive, a heat conductive material and a solvent to form a web.
  2. 제1항에 있어서, 상기 열전도 물질은 열 전도성이 우수한 열 전도성 금속 및 전도성 카본(Carbon), 전도성 카본 블랙(Carbon Black), 탄소나노튜브(CNT), 전도성 폴리머(PDOT) 중 어느 하나인 방열 시트.The heat dissipating sheet of claim 1, wherein the thermal conductive material is any one of a thermally conductive metal having excellent thermal conductivity and conductive carbon, conductive carbon black, carbon nanotubes, and conductive polymers (PDOT). .
  3. 제1항에 있어서, 상기 열전도 물질은 열전도성 입자이고, 상기 방열층 및 상기 점착층의 웹의 나노 섬유의 표면에는 상기 열전도성 입자의 일부가 노출되어 있는 방열 시트.The heat dissipation sheet according to claim 1, wherein the heat conductive material is heat conductive particles, and a part of the heat conductive particles is exposed on the surface of the nanofibers of the web of the heat dissipation layer and the adhesive layer.
  4. 제1항에 있어서, 상기 점착층은 전자기기의 발열부품에 접촉 및 점착되어 있는 방열 시트.The heat dissipating sheet according to claim 1, wherein the adhesive layer is in contact with and adhered to a heat generating part of the electronic device.
  5. 제1항에 있어서, 상기 방열층과 상기 점착층 사이에 열전도성 입자가 분산 되어 있는 방열 시트.The heat dissipation sheet according to claim 1, wherein thermally conductive particles are dispersed between the heat dissipation layer and the adhesive layer.
  6. 전기 방사방법에 의해 형성되는 웹 형태의 기재;A substrate in the form of a web formed by an electrospinning method;
    상기 기재의 일면에 적층되는 점착층; 및An adhesive layer laminated on one surface of the substrate; And
    상기 기재의 타면에 코팅되어 열 전도성을 갖는 금속층을 포함하는 방열 시트.A heat radiation sheet comprising a metal layer coated on the other side of the substrate having a thermal conductivity.
  7. 제6항에 있어서, 상기 기재는 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매를 혼합한 방사용액을 전기 방사하여 형성되는 다수의 기공을 갖는 웹 구조이고, 상기 점착층은 점착제, 열전도 물질 및 용매를 혼합한 점착물질을 전기 방사하여 형성되는 웹 구조인 방열 시트.The method of claim 6, wherein the base material is a web structure having a plurality of pores formed by electrospinning a spinning material containing a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent, the adhesive layer is an adhesive, a heat conductive material And a web structure formed by electrospinning an adhesive material mixed with a solvent.
  8. 제6항에 있어서, 상기 금속층은 상기 기재의 타면에 패턴 형상으로 코팅된 금속 패턴층인 방열 시트.The heat dissipation sheet according to claim 6, wherein the metal layer is a metal pattern layer coated in a pattern shape on the other surface of the substrate.
  9. 점착제, 열전도 물질 및 용매가 혼합된 점착물질을 전기 방사하여 웹 형태의 점착층을 형성하는 단계; 및 Electrospinning the pressure-sensitive adhesive material mixed with the pressure-sensitive adhesive, the heat conductive material and the solvent to form a pressure-sensitive adhesive layer in the form of a web; And
    상기 점착층의 일면에, 고분자 물질 및 용매, 또는 고분자 물질, 열전도 물질 및 용매가 혼합된 방사용액을 전기 방사하여 웹 형태의 방열층을 형성하는 단계를 포함하는 방열 시트 제조방법.On one side of the adhesive layer, a method of manufacturing a heat radiation sheet comprising the step of electrospinning a spinning solution in which a polymer material and a solvent, or a polymer material, a heat conductive material and a solvent are mixed to form a heat radiation layer in the form of a web.
  10. 제9항에 있어서, 상기 웹 형태의 점착층을 형성하는 단계와 상기 웹 형태의 방열층을 형성하는 단계 사이에, 10. The method of claim 9, between the step of forming the adhesive layer in the form of the web and the step of forming the heat dissipation layer in the form of the web,
    열전도성 입자, 용매가 혼합된 분사 용액을 전기 분사하여 상기 점착층의 웹에 상기 열전도성 입자를 분산시키는 단계가 더 포함된 방열 시트의 제조방법.A method of manufacturing a heat dissipation sheet further comprising the step of dispersing the thermally conductive particles in a web of the adhesive layer by electrospraying a spray solution mixed with thermally conductive particles and a solvent.
  11. 제9항에 있어서, 상기 웹 형태의 방열층을 형성하는 단계 후에, 상기 점착층과 방열층을 가압하는 단계가 더 포함된 방열 시트의 제조방법.The method of claim 9, further comprising pressing the adhesive layer and the heat radiation layer after forming the heat radiation layer in the web form.
PCT/KR2013/006838 2012-08-06 2013-07-30 Heat radiation sheet and method for manufacturing same WO2014025154A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380041560.5A CN104520100B (en) 2012-08-06 2013-07-30 Fin and preparation method thereof
US14/611,518 US20150144320A1 (en) 2012-08-06 2015-02-02 Heat radiation sheet and method of manufacturing same
US17/016,832 US11456230B2 (en) 2012-08-06 2020-09-10 Heat radiation sheet and method of manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20120085769 2012-08-06
KR10-2012-0085769 2012-08-06
KR10-2013-0089635 2013-07-29
KR1020130089635A KR101518995B1 (en) 2012-08-06 2013-07-29 Heat radiation sheet and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/611,518 Division US20150144320A1 (en) 2012-08-06 2015-02-02 Heat radiation sheet and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2014025154A1 true WO2014025154A1 (en) 2014-02-13

Family

ID=50068338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006838 WO2014025154A1 (en) 2012-08-06 2013-07-30 Heat radiation sheet and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2014025154A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241297A (en) * 2014-07-04 2016-01-13 英诺晶片科技股份有限公司 Heat radiation sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040083573A (en) * 2003-03-24 2004-10-06 김찬 Preparation of Carbon Nanotube Based Nanostructured Carbon Fiber by Electrospinning and Their Applications to Electric Double Layer Supercapacitor
KR20050062407A (en) * 2003-12-19 2005-06-23 남재도 Method of preparing composite and aggregate including carbon nanotube
KR20050113937A (en) * 2004-05-31 2005-12-05 주식회사 엘지화학 Adhesive radiation sheet
KR100725028B1 (en) * 2006-10-24 2007-06-07 (주) 아모센스 Preparation method of thermal conductive sheet using nanocomposite carbon fiber
KR20070080546A (en) * 2006-02-07 2007-08-10 (주) 아모센스 Preparation method of thermal conductive sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040083573A (en) * 2003-03-24 2004-10-06 김찬 Preparation of Carbon Nanotube Based Nanostructured Carbon Fiber by Electrospinning and Their Applications to Electric Double Layer Supercapacitor
KR20050062407A (en) * 2003-12-19 2005-06-23 남재도 Method of preparing composite and aggregate including carbon nanotube
KR20050113937A (en) * 2004-05-31 2005-12-05 주식회사 엘지화학 Adhesive radiation sheet
KR20070080546A (en) * 2006-02-07 2007-08-10 (주) 아모센스 Preparation method of thermal conductive sheet
KR100725028B1 (en) * 2006-10-24 2007-06-07 (주) 아모센스 Preparation method of thermal conductive sheet using nanocomposite carbon fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241297A (en) * 2014-07-04 2016-01-13 英诺晶片科技股份有限公司 Heat radiation sheet
KR20160005231A (en) * 2014-07-04 2016-01-14 주식회사 이노칩테크놀로지 Heat radiation sheet
KR101885664B1 (en) * 2014-07-04 2018-08-06 주식회사 모다이노칩 Method of manufacturing a heat radiation sheet

Similar Documents

Publication Publication Date Title
US11456230B2 (en) Heat radiation sheet and method of manufacturing same
US10004152B2 (en) Heat insulation sheet and method of manufacturing same
EP2874479B1 (en) Hybrid insulation sheet and electronic equipment comprising same
US9718994B2 (en) Conductive adhesive tape and manufacturing method thereof
KR20140113226A (en) A pressure-sensitive adhesive tape and manufacturing method thereof
WO2013133558A1 (en) Matte film and manufacturing method therefor
WO2017209429A1 (en) Thin electromagnetic shielding sheet and electronic device provided with same
WO2015102415A1 (en) Composite sheet and portable terminal having same
KR20150047760A (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
KR101885664B1 (en) Method of manufacturing a heat radiation sheet
KR102020640B1 (en) Heat insulation sheet, porduction method thereof and portable terminal having the same
WO2015060698A1 (en) Method for applying adhesive binder to separation membrane
KR20120028583A (en) Conductive polymer adhesive using nano-fiber
WO2014025154A1 (en) Heat radiation sheet and method for manufacturing same
WO2014025152A1 (en) Heat insulation sheet and method for manufacturing same
KR20150047759A (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
WO2015053493A1 (en) Heat-insulating and heat-radiating sheet, mobile terminal and display using same
KR101619234B1 (en) Sheet for Heat Insulation and Heat Dissipation, and portable terminal and display having the same
WO2017052179A1 (en) Separator membrane for fuel cell, method for preparing same, and fuel cell electrode assembly
WO2013172591A1 (en) Waterproof sound-permitting sheet, method for manufacturing same, and electronic device provided with waterproof sound-permitting sheet
KR101990106B1 (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
WO2022158827A1 (en) Waterproof sound-transmitting sheet and method for manufacturing waterproof sound-transmitting sheet
WO2014025155A1 (en) Adhesive tape and method for manufacturing same
KR101576157B1 (en) Heat insulation sheet, porduction method thereof and portable terminal having the same
WO2022065646A1 (en) Functional fabric obtained by recycling separator for secondary battery, and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13827349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13827349

Country of ref document: EP

Kind code of ref document: A1