JPH09135535A - Static-type reactive power compensator - Google Patents

Static-type reactive power compensator

Info

Publication number
JPH09135535A
JPH09135535A JP7313542A JP31354295A JPH09135535A JP H09135535 A JPH09135535 A JP H09135535A JP 7313542 A JP7313542 A JP 7313542A JP 31354295 A JP31354295 A JP 31354295A JP H09135535 A JPH09135535 A JP H09135535A
Authority
JP
Japan
Prior art keywords
output
power
current transformer
transformer
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7313542A
Other languages
Japanese (ja)
Other versions
JP3343711B2 (en
Inventor
Hideki Yoshitake
秀樹 吉武
Tsutomu Fukui
努 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP31354295A priority Critical patent/JP3343711B2/en
Publication of JPH09135535A publication Critical patent/JPH09135535A/en
Application granted granted Critical
Publication of JP3343711B2 publication Critical patent/JP3343711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Abstract

PROBLEM TO BE SOLVED: To make it possible to control a power factor or reactive power to a constant value even if the power flow changes. SOLUTION: This equipment is provided with a second current transformer 4 which is inserted in a distribution line or feed line 1 and a first current transformer 7 which detects the input current of a main circuit 2 which generates reactive power ranging from leading one to lagging one. A power flow direction detecting means 8 detects the direction of the power flow from the outputs of a transformer 3 and the second current transformer 4. An arithmetic means 9 outputs the output of the second current transformer 4 when the power is flowing forward and outputs an added value of the reverse output of the second current transformer 4 and the output of the first current transformer when the power is flowing reversely. A controlling means 6 receives the outputs of the transformer 3 and the arithmetic means 9 and finds a power factor or reactive power from the outputs of the second current transformer 4 and the transformer 3 when the power is flowing forward and from an added value of the reverse output of the second current transformer 4 and the output of the first current transformer 7 and the output of the transformer 3 when the power is flowing reversely. The controlling means 6 controls the main circuit 2 so that the power factor or reactive power becomes a target value which is set by a target value setting means 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、配電線または送電
線の力率または無効電力を一定制御する静止型無効電力
補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static var compensator for constant control of power factor or reactive power of a distribution line or a transmission line.

【0002】[0002]

【従来の技術】近年、種々の電気機器が使用されるの
で、配電線または送電線の力率改善がますます重要にな
ってきている。
2. Description of the Related Art In recent years, since various electric devices are used, it is becoming more and more important to improve the power factor of distribution lines or transmission lines.

【0003】以下、従来の無効電力補償装置について図
面を参照しながら説明する。図7は従来の無効電力保証
装置の構成を示すブロック図である。配電線または送電
線の電力損失を抑える目的で静止型無効電力補償装置を
使用し、その無効電力出力を制御して配電線または送電
線の力率を1付近に、または無効電力をゼロ付近に保つ
ように制御している。図7において、1は配電線または
送電線、2は複数のリアクトルと複数のコンデンサと1
つまたは複数個直列のサイリスタの逆並列回路とで構成
され、前記サイリスタの導通角を制御することにより進
みから遅れの無効電力を発生させる主回路、3は配電線
または送電線1の電圧を位相とともに検出するための変
圧器、4は配電線または送電線1に流れる電流を位相と
ともに検出するための第2の変流器、5は配電線または
送電線1の力率または無効電力の目標値を設定する目標
値設定手段、6は配電線または送電線1の力率または無
効電力を演算して求めるとともに、その値が前記目標値
になるように主回路2が発生する無効電力を制御する制
御手段である。
A conventional reactive power compensator will be described below with reference to the drawings. FIG. 7 is a block diagram showing the configuration of a conventional reactive power guarantee device. A static var compensator is used for the purpose of suppressing the power loss of the distribution line or the transmission line, and the reactive power output is controlled so that the power factor of the distribution line or the transmission line is near 1 or the reactive power is near zero. It's controlled to keep. In FIG. 7, 1 is a distribution line or transmission line, 2 is a plurality of reactors and a plurality of capacitors, and 1
A main circuit 3 composed of one or a plurality of series-connected thyristors and an anti-parallel circuit of the thyristors to generate reactive power from advanced to delayed by controlling the conduction angle of the thyristors. And a second transformer for detecting the current flowing in the distribution line or the transmission line 1 together with the phase, and 5 are target values of the power factor or reactive power of the distribution line or the transmission line 1. A target value setting means 6 for calculating the power factor or reactive power of the distribution line or the power transmission line 1 is calculated, and the reactive power generated by the main circuit 2 is controlled so that the value becomes the target value. It is a control means.

【0004】上記構成において、制御手段6は、配電線
または送電線1に挿入された変圧器3の出力と第2の変
流器4の出力とから制御手段6により配電線または送電
線1の力率または無効電力を演算し、その値が目標値設
定手段になるようにサイリスタの導通角を制御すること
により、配電線または送電線1の力率を1近くに保ち、
配電線または送電線1の電力損失を抑制している。
In the above structure, the control means 6 controls the distribution line or the transmission line 1 from the output of the transformer 3 and the output of the second current transformer 4 inserted in the distribution line or the transmission line 1. By calculating the power factor or reactive power and controlling the conduction angle of the thyristor so that the value becomes the target value setting means, the power factor of the distribution line or the transmission line 1 is kept close to 1,
The power loss of the distribution line or the transmission line 1 is suppressed.

【0005】[0005]

【発明が解決しようとする課題】このような従来の無効
電力補償装置では、実際の配電線または送電線におい
て、事故時、負荷融通時、または系統変更時などにおい
て潮流方向が反転したときには、力率または無効電力を
継続して一定制御することができなかった。
In such a conventional reactive power compensator, in the actual distribution line or transmission line, when the power flow direction is reversed at the time of an accident, load interchange, or system change, The constant rate or reactive power could not be controlled continuously.

【0006】本発明は上記の課題を解決するもので、潮
流方向が変わっても力率または無効電力一定制御を継続
してできる静止型無効電力補償装置を提供することを目
的とする。
The present invention solves the above problems, and an object of the present invention is to provide a static var compensator capable of continuing constant power factor or reactive power control even if the power flow direction changes.

【0007】[0007]

【課題を解決するための手段】請求項1に係わる本発明
は、配電線または送電線に接続され、進みから遅れの無
効電力を発生する主回路と、前記配電線または送電線の
電圧を検出する変圧器と、前記主回路の入力電流を検出
する第1の変流器と、前記配電線または送電線に前記主
回路の接続点よりも電源側に挿入された第2の変流器と
を備え、前記第2の変流器の出力と前記変圧器の出力と
により前記配電線または送電線の潮流の方向を検出し、
順方向潮流の場合には前記第2の変流器の出力と前記変
圧器の出力とにより力率または無効電力を求め、逆方向
潮流の場合には前記第2の変流器の出力の反転出力に前
記第1の変流器の出力を加算した出力と前記変圧器の出
力とにより力率または無効電力を求め、その値が目標値
になるように前記主回路を制御することにより、潮流潮
流方向にかかわらず前記配電線または送電線の力率また
は無効電力を一定制御するようにした静止型無効電力補
償装置である。
According to a first aspect of the present invention, a main circuit which is connected to a distribution line or a transmission line and generates a reactive power from a lead to a delay and a voltage of the distribution line or the transmission line are detected. A transformer, a first current transformer that detects an input current of the main circuit, and a second current transformer that is inserted into the distribution line or the power transmission line closer to the power source than the connection point of the main circuit. And detecting the direction of the tidal current of the distribution line or the transmission line by the output of the second current transformer and the output of the transformer,
In the case of forward power flow, the power factor or reactive power is obtained from the output of the second current transformer and the output of the transformer, and in the case of reverse power flow, the output of the second current transformer is reversed. The power factor or the reactive power is obtained from the output obtained by adding the output of the first current transformer to the output and the output of the transformer, and the main circuit is controlled so that the value becomes the target value. It is a static var compensator for performing constant control of power factor or reactive power of the distribution line or transmission line regardless of the direction of power flow.

【0008】これにより、潮流方向にかかわらず配電線
または送電線の力率または無効電力を一定制御すること
ができる。また、請求項2に係わる本発明は、配電線ま
たは送電線に接続され、進みから遅れ無効電力を発生さ
せる主回路と、前記配電線または送電線の電圧を検出す
る変圧器と、前記主回路の入力電流を検出する第1の変
流器と、前記配電線または送電線に前記主回路の接続点
よりも負荷側に挿入された第2の変流器とを備え、前記
第2の変流器の出力と前記変圧器の出力とにより前記配
電線または送電線の潮流の方向を検出し、順方向潮流の
場合には前記第2の変流器の出力に前記第1の変流器の
出力を加算した出力と前記変圧器の出力とにより力率ま
たは無効電力を求め、逆方向潮流の場合には前記第2の
変流器の出力の反転出力と前記変圧器の出力とにより力
率または無効電力を求め、その値が目標値になるように
前記主回路を制御することにより、潮流方向にかかわら
ず前記配電線または送電線の力率または無効電力を一定
制御するようにした静止型無効電力補償装置である。
Thus, the power factor or the reactive power of the distribution line or the transmission line can be controlled to be constant regardless of the direction of the power flow. Further, the present invention according to claim 2 is a main circuit connected to a distribution line or a transmission line to generate a reactive power from a lead to a delay, a transformer for detecting a voltage of the distribution line or the transmission line, and the main circuit. A second current transformer inserted into the distribution line or the power transmission line on the load side with respect to the connection point of the main circuit, the second current transformer detecting the input current of the second current transformer. The direction of the power flow of the distribution line or the power transmission line is detected by the output of the current transformer and the output of the transformer, and in the case of forward power flow, the first current transformer is output to the output of the second current transformer. The power factor or reactive power is obtained from the output of the transformer and the output of the transformer, and in the case of reverse power flow, the output is reversed by the output of the second current transformer and the output of the transformer. Rate or reactive power, and controlling the main circuit so that the value becomes the target value. Ri is a static var compensator in which the power factor or reactive power of the power distribution lines or transmission lines regardless of the flow direction so that constant control.

【0009】これにより、潮流方向にかかわらず配電線
または送電線の力率または無効電力を一定制御すること
ができる。また、請求項3に係わる本発明は、配電線ま
たは送電線に接続され、進みから遅れ無効電力を発生さ
せる主回路と、前記配電線または送電線の電圧を検出す
る変圧器と、前記配電線または送電線に前記主回路の接
続点よりも電源側に挿入した第1の変流器と、前記配電
線または送電線に前記主回路の接続点よりも負荷側に挿
入した第2の変流器とを備え、前記第1の変流器の出力
と前記変圧器の出力とにより前記配電線または送電線の
潮流方向を検出し、順方向潮流の場合には前記第2の変
流器の出力と前記変圧器の出力とにより力率または無効
電力を求め、逆方向潮流の場合には前記第2の変流器の
出力と前記変圧器の出力とにより力率または無効電力を
求め、その値が目標値になるように前記主回路を制御す
ることにより、潮流方向にかかわらず前記配電線または
送電線の力率または無効電力を一定制御するようにした
静止型無効電力補償装置である。
Thus, the power factor or reactive power of the distribution line or the transmission line can be controlled to be constant regardless of the direction of the power flow. The present invention according to claim 3 is the main circuit, which is connected to a distribution line or a transmission line and generates a reactive power from a lead to a delay, a transformer for detecting the voltage of the distribution line or the transmission line, and the distribution line. Alternatively, a first current transformer inserted in the power transmission line on the power source side of the main circuit connection point and a second current transformer inserted in the distribution line or the power transmission line on the load side of the main circuit connection point. And a power flow direction of the distribution line or the transmission line is detected by the output of the first current transformer and the output of the transformer, and in the case of forward power flow, the power flow of the second current transformer is detected. The power factor or reactive power is obtained from the output and the output of the transformer, and in the case of reverse flow, the power factor or reactive power is obtained from the output of the second current transformer and the output of the transformer. By controlling the main circuit so that the value reaches the target value, Warazu wherein is the power factor or reactive power distribution lines or power lines a static var compensator apparatus adapted to constant control.

【0010】これにより、潮流方向にかかわらず配電線
または送電線の力率または無効電力を一定制御すること
ができる。
Thus, the power factor or the reactive power of the distribution line or the transmission line can be controlled to be constant regardless of the direction of the power flow.

【0011】[0011]

【発明の実施の形態】請求項1に記載の本発明は、配電
線または送電線に接続され、進みから遅れの無効電力を
発生する主回路と、前記配電線または送電線の電圧を検
出する変圧器と、前記主回路の入力電流を検出する第1
の変流器と、前記配電線または送電線に前記主回路の接
続点よりも電源側に挿入された第2の変流器と、前記第
2の変流器の出力と前記変圧器の出力とにより前記配電
線または送電線の潮流の方向を検出する潮流方向検出手
段と、前記配電線または送電線の力率または無効電力の
目標値を設定する目標値設定手段と、前記第1の変流器
の出力と前記第2の変流器の出力とを入力し、前記潮流
方向が順方向のときは前記第2の変流器の出力を出力
し、前記潮流方向が逆方向のときは前記第2の変流器の
出力の極性の反転出力と前記第1の変流器の出力との和
を演算して出力する演算手段と、前記変圧器の出力と前
記演算手段出力とにより前記配電線または送電線の力率
または無効電力を演算し、その値が前記目標値設定手段
の目標値に一致するように前記主回路が発生する無効電
力を制御する制御手段とを備え、前記潮流方向検出手段
により潮流の方向を検出し、制御手段は、順方向潮流の
場合には前記第2の変流器の出力と前記変圧器の出力と
により力率または無効電力を求め、逆方向潮流の場合に
は前記第2の変流器の出力の反転出力に前記第1の変流
器の出力を加算した出力と前記変圧器の出力とにより力
率または無効電力を求め、その値が前記目標値設定手段
に設定した目標値になるように前記主回路を制御するこ
とにより、潮流潮流方向にかかわらず前記配電線または
送電線の力率または無効電力を一定制御する静止型無効
電力補償装置である。また、請求項2に記載の本発明
は、配電線または送電線に接続され、進みから遅れ無効
電力を発生させる主回路と、前記配電線または送電線の
電圧を検出する変圧器と、前記主回路の入力電流を検出
する第1の変流器と、前記配電線または送電線に前記主
回路の接続点よりも負荷側に挿入された第2の変流器
と、前記第2の変流器の出力と前記変圧器の出力とによ
り前記配電線または送電線の潮流の方向を検出する潮流
方向検出手段と、前記配電線または送電線の力率または
無効電力の目標値を設定する目標値設定手段と、前記第
1の変流器の出力と前記第2の変流器の出力とを入力
し、前記潮流方向が順方向のときは前記第2の変流器の
出力と前記第1の変流器の出力との和を出力し、前記潮
流方向が逆方向のときは前記第2の変流器の出力の極性
の反転信号を出力する演算手段と、前記変圧器の出力と
前記演算手段出力とにより前記配電線または送電線の力
率または無効電力を演算し、その値が前記目標値設定手
段の目標値に一致するように前記主回路が発生する無効
電力を制御する制御手段とを備え、前記潮流方向検出手
段により潮流の方向を検出し、制御手段は、順方向潮流
の場合には前記第2の変流器の出力に前記第1の変流器
の出力を加算した出力と前記変圧器の出力とにより力率
または無効電力を求め、逆方向潮流の場合には前記第2
の変流器の出力の反転出力と前記変圧器の出力とにより
力率または無効電力を求め、その値が前記目標値設定手
段に設定した目標値になるように前記主回路を制御する
ことにより、潮流方向にかかわらず前記配電線または送
電線の力率または無効電力を一定制御する静止型無効電
力補償装置である。また、請求項3に記載の本発明は、
配電線または送電線に接続され、進みから遅れ無効電力
を発生させる主回路と、前記配電線または送電線の電圧
を検出する変圧器と、前記配電線または送電線に前記主
回路の接続点よりも電源側に挿入した第1の変流器と、
前記配電線または送電線に前記主回路の接続点よりも負
荷側に挿入した第2の変流器と、前記第1の変流器の出
力と前記変圧器の出力とにより前記配電線または送電線
の潮流方向を検出する潮流方向検出手段と、前記配電線
または送電線の力率または無効電力の目標値を設定する
目標値設定手段と、前記第1の変流器の出力と前記第2
の変流器の出力とを入力し、前記潮流方向が順方向のと
きは前記第1の変流器の出力を出力し、潮流方向が逆方
向のときは前記第2の変流器の出力を出力する演算手段
と、前記変圧器の出力と前記演算手段出力とにより前記
配電線または送電線の力率または無効電力を演算し、そ
の値が前記目標値設定手段の目標値に一致するように前
記主回路が発生する無効電力を制御する制御手段とを備
え、前記潮流方向検出手段により潮流の方向を検出し、
制御手段は、順方向潮流の場合には前記第2の変流器の
出力と前記変圧器の出力とにより力率または無効電力を
求め、逆方向潮流の場合には前記第2の変流器の出力と
前記変圧器の出力とにより力率または無効電力を求め、
その値が前記目標値設定手段に設定した目標値になるよ
うに前記主回路を制御することにより、潮流方向にかか
わらず前記配電線または送電線の力率または無効電力を
一定制御する静止型無効電力補償装置である。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention according to claim 1 detects a voltage of a distribution line or a transmission line, and a main circuit which is connected to a distribution line or a transmission line and generates reactive power from advance to delay. A transformer and a first for detecting the input current of the main circuit
Current transformer, a second current transformer inserted into the distribution line or the transmission line on the power supply side of the connection point of the main circuit, an output of the second current transformer, and an output of the transformer. And a power flow direction detecting means for detecting a power flow direction of the distribution line or the transmission line, a target value setting means for setting a target value of the power factor or reactive power of the distribution line or the transmission line, and the first variable The output of the current transformer and the output of the second current transformer are input, the output of the second current transformer is output when the power flow direction is the forward direction, and the output of the second current transformer is output when the power flow direction is the reverse direction. The calculation means for calculating and outputting the sum of the inverted output of the output polarity of the second current transformer and the output of the first current transformer, and the output of the transformer and the output of the calculation means Calculate the power factor or reactive power of the distribution line or transmission line, and the value matches the target value of the target value setting means. Control means for controlling the reactive power generated by the main circuit, the direction of the tidal current is detected by the tidal current direction detecting means, and the controlling means controls the second current transformer in the case of forward tidal current. The power factor or reactive power is obtained from the output and the output of the transformer, and in the case of reverse flow, the output obtained by adding the output of the first current transformer to the inverted output of the output of the second current transformer. And the output of the transformer to obtain the power factor or reactive power, and by controlling the main circuit so that the value becomes the target value set in the target value setting means, the power distribution or the reactive power is changed regardless of the power flow direction. It is a static var compensator that constantly controls the power factor or reactive power of an electric wire or a transmission line. Further, the present invention according to claim 2 is a main circuit that is connected to a distribution line or a transmission line and that generates a reactive power that is delayed from a lead, a transformer that detects a voltage of the distribution line or the transmission line, and the main circuit. A first current transformer that detects an input current of the circuit; a second current transformer that is inserted into the distribution line or the transmission line on the load side from a connection point of the main circuit; and the second current transformer Direction detecting means for detecting the direction of the flow of the distribution line or the transmission line by the output of the transformer and the output of the transformer, and a target value for setting the target value of the power factor or reactive power of the distribution line or the transmission line. The setting means, the output of the first current transformer and the output of the second current transformer are input, and when the flow direction is the forward direction, the output of the second current transformer and the first current transformer. Output from the current transformer of the second current transformer, and outputs the sum of the output of the current transformer of Calculating means for outputting an inversion signal of the polarity of, and the output of the transformer and the output of the calculating means to calculate the power factor or reactive power of the distribution line or the transmission line, and the value is the target of the target value setting means. A control means for controlling the reactive power generated by the main circuit so as to match the value, the power flow direction detection means detects the direction of the power flow, and the control means controls the second power flow in the case of forward power flow. The power factor or reactive power is obtained from the output of the current transformer and the output of the first current transformer and the output of the transformer, and in the case of reverse flow, the second
By obtaining the power factor or reactive power from the output of the current transformer and the output of the transformer, by controlling the main circuit so that the value becomes the target value set in the target value setting means. A static var compensator for constant control of the power factor or reactive power of the distribution line or the transmission line regardless of the flow direction. Further, the present invention according to claim 3 is
A main circuit that is connected to a distribution line or a transmission line and that generates a reactive power from a lead to a delay, a transformer that detects the voltage of the distribution line or the transmission line, and a connection point of the main circuit to the distribution line or the transmission line. Also the first current transformer inserted on the power supply side,
A second current transformer inserted into the distribution line or the transmission line on the load side of the connection point of the main circuit, and the output of the first current transformer and the output of the transformer, A power flow direction detecting means for detecting a power flow direction of the electric wire, a target value setting means for setting a target value of the power factor or the reactive power of the distribution line or the transmission line, an output of the first current transformer, and the second current
And the output of the current transformer, the output of the first current transformer is output when the power flow direction is forward, and the output of the second current transformer when the power flow direction is reverse. Calculating the power factor or reactive power of the distribution line or the transmission line by the output means of the transformer and the output of the transformer, so that the value matches the target value of the target value setting means. And a control means for controlling the reactive power generated by the main circuit, the direction of the tidal current is detected by the tidal current direction detecting means,
The control means obtains a power factor or reactive power from the output of the second current transformer and the output of the transformer in the case of forward power flow, and in the case of reverse power flow, the second current transformer. The power factor or reactive power by the output of the transformer and the output of the transformer,
By controlling the main circuit so that the value becomes the target value set in the target value setting means, a static type reactive device that constantly controls the power factor or reactive power of the distribution line or the transmission line regardless of the power flow direction It is a power compensator.

【0012】以下、本発明の実施の形態について説明す
る。 (実施の形態1)以下、請求項1に係わる本発明の静止
型無効電力補償装置の一実施形態について図面を参照し
ながら説明する。図1は本実施形態の構成を示す回路図
である。なお、図7に示した従来例と同じ構成要素には
同一番号を付与している。
Hereinafter, embodiments of the present invention will be described. (Embodiment 1) An embodiment of a static var compensator of the present invention according to claim 1 will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing the configuration of this embodiment. The same components as those of the conventional example shown in FIG. 7 are given the same numbers.

【0013】図において、1は配電線または送電線、2
はコンデンサとリアクトルとサイリスタよりなる主回路
であり、サイリスタがオフ時はコンデンサによる進み無
効電力が出力され、サイリスタの導通角を増加させるに
従って進み無効電力が減少し、サイリスタがフル導通に
なるとリアクトルとコンデンサ容量との差の分の遅れ無
効電力が発生し、サイリスタの導通角を制御することに
より、進みから遅れまでの無効電力を連続的に制御す
る。7は本静止型無効電力補償装置の入力電流を検出す
る第1の変流器、8は潮流方向検出手段であり、第2の
変流器4と変圧器3とから得られる電圧と電流とから配
電線または送電線1における潮流方向を検出する。潮流
方向の検出方法としては、たとえば、有効電力を演算
し、その値が正の場合は順方向の潮流、負の場合は逆潮
流と判断でき、また、相電圧と電流との位相差が±90
°以内の場合は順方向の潮流、±90°より開いている
場合は逆方向の潮流と判断することができる。なお、他
の方法で潮流方向を検出してもよい。9は演算手段であ
り、潮流が順方向の場合は配電線または送電線1に設置
されている第2の変流器4の信号をそのまま素通して制
御手段6に出力し、潮流が逆方向の場合は第2の変流器
4の反転信号と第1の変流器7の信号との和を演算して
制御手段6に出力する。
In the figure, 1 is a distribution line or power transmission line, 2
Is a main circuit consisting of a capacitor, a reactor, and a thyristor.When the thyristor is off, the reactive power is output by the capacitor, and as the conduction angle of the thyristor increases, the reactive power decreases, and when the thyristor becomes fully conductive, it becomes a reactor. A delayed reactive power corresponding to the difference from the capacitor capacity is generated, and by controlling the conduction angle of the thyristor, the reactive power from the lead to the delay is continuously controlled. Reference numeral 7 is a first current transformer for detecting an input current of the static var compensator, 8 is a power flow direction detecting means, and a voltage and a current obtained from the second current transformer 4 and the transformer 3 The power flow direction in the distribution line or the transmission line 1 is detected from. As a method of detecting the power flow direction, for example, active power is calculated, and when the value is positive, it can be determined as forward power flow and when it is negative, it can be determined as reverse power flow, and the phase difference between the phase voltage and current is ± 90
It can be judged that the flow is in the forward direction when the angle is within °, and the flow in the reverse direction when the angle is more than ± 90 °. The tidal current direction may be detected by other methods. Reference numeral 9 denotes a computing means, which outputs the signal of the second current transformer 4 installed in the distribution line or the power transmission line 1 to the control means 6 as it is when the tide is in the forward direction, and outputs the signal in the reverse direction. In this case, the sum of the inverted signal of the second current transformer 4 and the signal of the first current transformer 7 is calculated and output to the control means 6.

【0014】上記構成において、潮流方向検出手段8が
潮流方向が順方向か逆方向であるかを検出して演算手段
9および制御手段6に指示する。潮流方向が順方向であ
る場合には演算手段9は第2の変流器4の出力をそのま
ま制御手段6に与えるので、制御手段6は、従来例と同
様に、第2の変流器4の出力と変圧器3の出力とにより
配電線または送電線1における力率または無効電力を求
め、それらが目標値設定手段5に設定された目標値にな
るように主回路2を制御する。また、潮流方向が逆方向
の場合には、演算手段9は第2の変流器4の反転出力と
第1の変流器7の出力とを加算することにより逆潮流時
における電源側の電流値を制御手段6に出力し、制御手
段6は逆潮流時の力率または無効電力を求め、目標値設
定手段5で設定された力率または無効電力の目標値にな
るように主回路2のサイリスタを制御する。
In the above structure, the tidal current direction detecting means 8 detects whether the tidal current direction is the forward direction or the backward direction and instructs the computing means 9 and the control means 6. When the power flow direction is the forward direction, the calculation means 9 gives the output of the second current transformer 4 to the control means 6 as it is, so that the control means 6 is the same as the conventional example. The power factor or the reactive power in the distribution line or the transmission line 1 is obtained from the output of 1 and the output of the transformer 3, and the main circuit 2 is controlled so that the power factor or the reactive power becomes the target value set in the target value setting means 5. When the power flow direction is the reverse direction, the calculating means 9 adds the inverted output of the second current transformer 4 and the output of the first current transformer 7 to generate the current on the power supply side during the reverse power flow. The value is output to the control means 6, the control means 6 obtains the power factor or reactive power at the time of reverse power flow, and the main circuit 2 of the main circuit 2 is set so that the power factor or reactive power set by the target value setting means 5 is reached. Control the thyristor.

【0015】なお、本実施形態において図1は単相交流
配電線の場合を示したが、三相交流配電線または送電線
においては、各相ごとに同一の構成を用いて力率または
無効電力制御できることは言うまでもない。また、図4
に示したように、主回路2として、コンデンサ回路とサ
イリスタ回路との並列回路に直列なリアクトルを備えた
ものでもよい。また、配電線または送電線1に取付る変
流器として光電流センサを用いてもよい。光電流センサ
を用いると電線を切断する必要がないので工法上非常に
有利である。
In the present embodiment, FIG. 1 shows the case of a single-phase AC distribution line, but in a three-phase AC distribution line or a transmission line, the same configuration is used for each phase and the power factor or reactive power is used. It goes without saying that you can control it. FIG.
As shown in FIG. 5, the main circuit 2 may be a parallel circuit including a capacitor circuit and a thyristor circuit, which includes a reactor in series. A photocurrent sensor may be used as a current transformer attached to the distribution line or the power transmission line 1. The use of the photocurrent sensor is very advantageous in terms of construction method because it is not necessary to cut the electric wire.

【0016】(実施の形態2)以下、請求項2に係わる
本発明の静止型無効電力補償装置の一実施形態について
図2を参照しながら説明する。なお、図1と同じ構成要
素には同一番号を付与して説明を省略する。請求項1に
係わる本発明と異なる点は、配電線または送電線1の第
2の変流器4を負荷側に設置し、演算手段9では、潮流
が順方向の場合は第2の変流器4の信号と静止型無効電
流補償装置の入力電流を検出する第1の変流器7の信号
との和を制御手段6に出力し、逆潮流の場合には第2の
変流器4の反転信号を制御手段6に出力するようにした
ことにある。この場合、第2の変流器4の出力は順方向
潮流時の出力極性を基準としている。
(Second Embodiment) An embodiment of the static var compensator according to the present invention will be described below with reference to FIG. In addition, the same components as those in FIG. The difference from the present invention according to claim 1 is that the second current transformer 4 of the distribution line or the power transmission line 1 is installed on the load side, and the computing means 9 uses the second current transformer 4 when the tidal current is in the forward direction. The sum of the signal from the transformer 4 and the signal from the first current transformer 7 for detecting the input current of the static var compensator is output to the control means 6, and the second current transformer 4 in the case of reverse flow. The inversion signal of is output to the control means 6. In this case, the output of the second current transformer 4 is based on the output polarity during forward power flow.

【0017】上記構成において、潮流方向検出手段8
は、実施形態1と同様に潮流の方向を検出して演算手段
9および制御手段6に指示する。順方向潮流の場合に
は、演算手段9は第2の変流器4の出力と第1の変流器
7の出力との和を演算することにより順方向潮流時の電
流を制御手段6に与え、制御手段6は変圧器3の電圧出
力と前記電流とにより力率または無効電力を求め、目標
設定手段5に設定された目標値になるように主回路2の
サイリスタを制御する。また、逆潮流の場合には演算手
段9は第2の変流器4の反転信号により逆潮流時の電流
を制御手段6に出力する。制御手段6はその電流と変圧
器3の電圧出力とにより力率または無効電力を求め、目
標値設定手段5に設定された力率または無効電力の目標
値になるように主回路2のサイリスタを制御する。
In the above structure, the power flow direction detecting means 8
In the same manner as in the first embodiment, detects the direction of the tidal current and instructs the calculation means 9 and the control means 6. In the case of the forward power flow, the calculating means 9 calculates the sum of the output of the second current transformer 4 and the output of the first current transformer 7 so that the current during the forward power flow is sent to the control means 6. Then, the control means 6 obtains the power factor or the reactive power by the voltage output of the transformer 3 and the current, and controls the thyristor of the main circuit 2 so as to reach the target value set in the target setting means 5. In the case of reverse power flow, the calculation means 9 outputs the current at the time of reverse power flow to the control means 6 by the inversion signal of the second current transformer 4. The control means 6 obtains the power factor or reactive power from the current and the voltage output of the transformer 3, and controls the thyristor of the main circuit 2 so that the target value of the power factor or reactive power set in the target value setting means 5 becomes the target value. Control.

【0018】なお、本実施形態において図2は単相交流
配電線の場合を示したが、三相交流配電線または送電線
においては、各相ごとに同一の構成を用いて力率または
無効電力制御できることは言うまでもない。また、図5
に示したように、主回路2として、コンデンサ回路とサ
イリスタ回路との並列回路に直列なリアクトルを備えた
ものでもよい。また、配電線または送電線1に取付る変
流器として光電流センサを用いてもよい。
Although FIG. 2 shows the case of the single-phase AC distribution line in the present embodiment, in the case of the three-phase AC distribution line or the transmission line, the same configuration is used for each phase and the power factor or reactive power is used. It goes without saying that you can control it. FIG.
As shown in FIG. 5, the main circuit 2 may be a parallel circuit including a capacitor circuit and a thyristor circuit, which includes a reactor in series. A photocurrent sensor may be used as a current transformer attached to the distribution line or the power transmission line 1.

【0019】(実施の形態3)以下、請求項3に係わる
本発明の無効電力補償装置の一実施形態について図面を
参照しながら説明する。図3は本実施形態の構成を示す
ブロック図である。なお、図1および図2と同じ構成要
素には同一番号を付与して説明を省略する。本実施形態
が実施形態1ないし実施形態2と異なる点は、配電線ま
たは送電線1には、電源側に第2の変流器4、負荷側に
第1の変流器7とを設け、静止型無効電力調整装置の入
力線には設置されず、また、演算手段9では潮流が順方
向の場合は電源側の第2の変流器4の信号を制御手段6
に出力し、逆潮流の場合は負荷側の第1の変流器7の信
号を制御手段6に出力するようにしたことにあり、単に
第2の変流器4と第1の変流器7の出力切り替え動作の
み行う。
(Embodiment 3) An embodiment of the reactive power compensator of the present invention according to claim 3 will be described below with reference to the drawings. FIG. 3 is a block diagram showing the configuration of the present embodiment. The same components as those in FIGS. 1 and 2 are designated by the same reference numerals and the description thereof will be omitted. This embodiment is different from Embodiments 1 and 2 in that a distribution line or a transmission line 1 is provided with a second current transformer 4 on the power supply side and a first current transformer 7 on the load side. It is not installed in the input line of the static var compensator, and when the calculation means 9 is in the forward direction, the signal from the second current transformer 4 on the power supply side is controlled by the control means 6.
In the case of reverse power flow, the signal of the first current transformer 7 on the load side is output to the control means 6, and the second current transformer 4 and the first current transformer are simply used. Only the output switching operation of No. 7 is performed.

【0020】上記構成において、潮流方向検出手段8
は、実施形態1と同様に、潮流の方向を検出して演算手
段9および制御手段6に指示する。制御手段6は、順方
向潮流の場合は第2の変流器4の出力と変圧器3の出力
とにより、また、逆方向潮流の場合には第1の変流器7
と変圧器3の出力とにより、それぞれ力率または無効電
力を求め、目標値設定手段5で設定された力率または無
効電力の目標値になるように主回路2のサイリスタを制
御する。
In the above structure, the power flow direction detecting means 8
In the same manner as in the first embodiment, detects the direction of the tidal current and instructs the calculation means 9 and the control means 6. The control means 6 uses the output of the second current transformer 4 and the output of the transformer 3 in the case of forward power flow, and the first current transformer 7 in the case of reverse power flow.
And the output of the transformer 3 determine the power factor or the reactive power, respectively, and control the thyristor of the main circuit 2 so that the target value of the power factor or the reactive power set by the target value setting means 5 is reached.

【0021】なお、本実施形態において図3は単相交流
配電線の場合を示したが、三相交流配電線または送電線
においては、各相ごとに同一の構成を用いて力率または
無効電力制御できることは言うまでもない。また、図6
に示したように、主回路2として、コンデンサ回路とサ
イリスタ回路との並列回路に直列なリアクトルを備えた
ものでもよい。また、配電線または送電線1に取付る変
流器として光電流センサを用いてもよい。
In the present embodiment, FIG. 3 shows the case of a single-phase AC distribution line, but in a three-phase AC distribution line or a transmission line, the same configuration is used for each phase and the power factor or reactive power is used. It goes without saying that you can control it. FIG.
As shown in FIG. 5, the main circuit 2 may be a parallel circuit including a capacitor circuit and a thyristor circuit, which includes a reactor in series. A photocurrent sensor may be used as a current transformer attached to the distribution line or the power transmission line 1.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、配電線
または送電線の潮流の方向が変わっても力率または無効
電力制御を継続して一定制御することができる。また、
変流器を光電流センサにより実現すれば、電線を切断す
る必要がないので工法上非常に有利である。
As is apparent from the above description, the power factor or reactive power control can be continuously and constantly controlled even if the direction of the power flow of the distribution line or the transmission line changes. Also,
If the current transformer is realized by a photocurrent sensor, it is not necessary to cut the electric wire, which is very advantageous in terms of construction method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係わる本発明の静止型無効電力補償
装置の一実施例の構成を示す回路図
1 is a circuit diagram showing the configuration of an embodiment of a static var compensator of the present invention according to claim 1;

【図2】請求項2に係わる本発明の静止型無効電力補償
装置の一実施例の構成を示す回路図
FIG. 2 is a circuit diagram showing a configuration of an embodiment of a static var compensator of the present invention according to claim 2;

【図3】請求項3に係わる本発明の静止型無効電力補償
装置の一実施例の構成を示す回路図
FIG. 3 is a circuit diagram showing a configuration of an embodiment of a static var compensator of the present invention according to claim 3;

【図4】請求項1に係わる本発明の静止型無効電力補償
装置の他の実施例の構成を示す回路図
FIG. 4 is a circuit diagram showing the configuration of another embodiment of the static var compensator of the present invention according to claim 1;

【図5】請求項2に係わる本発明の静止型無効電力補償
装置の他の実施例の構成を示す回路図
FIG. 5 is a circuit diagram showing the configuration of another embodiment of the static var compensator of the present invention according to claim 2;

【図6】請求項3に係わる本発明の静止型無効電力補償
装置の他の実施例の構成を示す回路図
FIG. 6 is a circuit diagram showing the configuration of another embodiment of the static var compensator of the present invention according to claim 3;

【図7】従来の静止型無効電力補償装置の構成を示す回
路図
FIG. 7 is a circuit diagram showing a configuration of a conventional static var compensator.

【符号の説明】[Explanation of symbols]

1 配電線または送電線 2 主回路 3 変圧器 4 第2の変流器 5 目標値設定手段 6 制御手段 7 第1の変流器 8 潮流方向検出手段 9 演算手段 1 Distribution Line or Transmission Line 2 Main Circuit 3 Transformer 4 Second Current Transformer 5 Target Value Setting Means 6 Control Means 7 First Current Transformer 8 Tidal Current Direction Detecting Means 9 Computing Means

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 配電線または送電線に接続され、進みか
ら遅れの無効電力を発生する主回路と、前記配電線また
は送電線の電圧を検出する変圧器と、前記主回路の入力
電流を検出する第1の変流器と、前記配電線または送電
線に前記主回路の接続点よりも電源側に挿入された第2
の変流器と、前記第2の変流器の出力と前記変圧器の出
力とにより前記配電線または送電線の潮流の方向を検出
する潮流方向検出手段と、前記配電線または送電線の力
率または無効電力の目標値を設定する目標値設定手段
と、前記第1の変流器の出力と前記第2の変流器の出力
とを入力し、前記潮流方向が順方向のときは前記第2の
変流器の出力を出力し、前記潮流方向が逆方向のときは
前記第2の変流器の出力の極性の反転出力と前記第1の
変流器の出力との和を演算して出力する演算手段と、前
記変圧器の出力と前記演算手段出力とにより前記配電線
または送電線の力率または無効電力を演算し、その値が
前記目標値設定手段の目標値に一致するように前記主回
路が発生する無効電力を制御する制御手段とを備え、前
記潮流方向検出手段により潮流の方向を検出し、制御手
段は、順方向潮流の場合には前記第2の変流器の出力と
前記変圧器の出力とにより力率または無効電力を求め、
逆方向潮流の場合には前記第2の変流器の出力の反転出
力に前記第1の変流器の出力を加算した出力と前記変圧
器の出力とにより力率または無効電力を求め、その値が
前記目標値設定手段に設定した目標値になるように前記
主回路を制御することにより、潮流方向にかかわらず前
記配電線または送電線の力率または無効電力を一定制御
する静止型無効電力補償装置。
1. A main circuit which is connected to a distribution line or a transmission line and which generates reactive power from leading to lagging, a transformer which detects the voltage of the distribution line or the transmission line, and an input current of the main circuit. And a second current transformer inserted into the distribution line or the power transmission line on the power source side with respect to the connection point of the main circuit.
Current transformer, a power flow direction detecting means for detecting the power flow direction of the distribution line or the transmission line by the output of the second current transformer and the output of the transformer, and the force of the distribution line or the transmission line. A target value setting means for setting a target value of the rate or the reactive power, an output of the first current transformer and an output of the second current transformer are input, and when the power flow direction is a forward direction, The output of the second current transformer is output, and when the power flow direction is the reverse direction, the sum of the inverted output of the polarity of the output of the second current transformer and the output of the first current transformer is calculated. The power factor or reactive power of the distribution line or the transmission line is calculated by the output means of the transformer and the output of the transformer and the output of the calculation means, and the value matches the target value of the target value setting means. And a control means for controlling the reactive power generated by the main circuit, More detecting the direction of power flow, control means, in the case of forward power flow determined power factor or reactive power by the output of the transformer and the output of the second current transformer,
In the case of reverse power flow, the power factor or reactive power is obtained from the output obtained by adding the output of the first current transformer to the inverted output of the output of the second current transformer and the output of the transformer, and By controlling the main circuit so that the value becomes the target value set in the target value setting means, static type reactive power that constantly controls the power factor or reactive power of the distribution line or the transmission line regardless of the power flow direction Compensation device.
【請求項2】 配電線または送電線に接続され、進みか
ら遅れ無効電力を発生させる主回路と、前記配電線また
は送電線の電圧を検出する変圧器と、前記主回路の入力
電流を検出する第1の変流器と、前記配電線または送電
線に前記主回路の接続点よりも負荷側に挿入された第2
の変流器と、前記第2の変流器の出力と前記変圧器の出
力とにより前記配電線または送電線の潮流の方向を検出
する潮流方向検出手段と、前記配電線または送電線の力
率または無効電力の目標値を設定する目標値設定手段
と、前記第1の変流器の出力と前記第2の変流器の出力
とを入力し、前記潮流方向が順方向のときは前記第2の
変流器の出力と前記第1の変流器の出力との和を出力
し、前記潮流方向が逆方向のときは前記第2の変流器の
出力の極性の反転信号を出力する演算手段と、前記変圧
器の出力と前記演算手段出力とにより前記配電線または
送電線の力率または無効電力を演算し、その値が前記目
標値設定手段の目標値に一致するように前記主回路が発
生する無効電力を制御する制御手段とを備え、前記潮流
方向検出手段により潮流の方向を検出し、制御手段は、
順方向潮流の場合には前記第2の変流器の出力に前記第
1の変流器の出力を加算した出力と前記変圧器の出力と
により力率または無効電力を求め、逆方向潮流の場合に
は前記第2変流器の出力の反転出力と前記変圧器の出力
とにより力率または無効電力を求め、その値が前記目標
値設定手段に設定した目標値になるように前記主回路を
制御することにより、潮流方向にかかわらず前記配電線
または送電線の力率または無効電力を一定制御する静止
型無効電力補償装置。
2. A main circuit that is connected to a distribution line or a transmission line and that generates a reactive power from a lead to a delay, a transformer that detects the voltage of the distribution line or the transmission line, and an input current of the main circuit. A first current transformer and a second one inserted into the distribution line or the transmission line on the load side with respect to the connection point of the main circuit.
Current transformer, a power flow direction detecting means for detecting the power flow direction of the distribution line or the transmission line by the output of the second current transformer and the output of the transformer, and the force of the distribution line or the transmission line. A target value setting means for setting a target value of the rate or the reactive power, an output of the first current transformer and an output of the second current transformer are input, and when the power flow direction is a forward direction, The sum of the output of the second current transformer and the output of the first current transformer is output, and when the power flow direction is the reverse direction, an inverted signal of the polarity of the output of the second current transformer is output. Calculating means for calculating the power factor or reactive power of the distribution line or the transmission line by the output of the transformer and the output of the calculating means, and the value is matched with the target value of the target value setting means. A control means for controlling the reactive power generated by the main circuit is provided, and the tide is detected by the tide direction detection means. Detecting the direction and control means,
In the case of forward power flow, the power factor or reactive power is obtained from the output of the second current transformer plus the output of the first current transformer and the output of the transformer to determine the reverse power flow. In this case, the power factor or the reactive power is obtained from the inverted output of the output of the second current transformer and the output of the transformer, and the main circuit is adjusted so that the value becomes the target value set in the target value setting means. The static var compensator for controlling the power factor or the reactive power of the distribution line or the power transmission line irrespective of the power flow direction by controlling.
【請求項3】 配電線または送電線に接続され、進みか
ら遅れ無効電力を発生させる主回路と、前記配電線また
は送電線の電圧を検出する変圧器と、前記配電線または
送電線に前記主回路の接続点よりも電源側に挿入した第
1の変流器と、前記配電線または送電線に前記主回路の
接続点よりも負荷側に挿入した第2の変流器と、前記第
1の変流器の出力と前記変圧器の出力とにより前記配電
線または送電線の潮流方向を検出する潮流方向検出手段
と、前記配電線または送電線の力率または無効電力の目
標値を設定する目標値設定手段と、前記第1の変流器の
出力と前記第2の変流器の出力とを入力し、前記潮流方
向が順方向のときは前記第1の変流器の出力を出力し、
潮流方向が逆方向のときは前記第2の変流器の出力を出
力する演算手段と、前記変圧器の出力と前記演算手段出
力とにより前記配電線または送電線の力率または無効電
力を演算し、その値が前記目標値設定手段の目標値に一
致するように前記主回路が発生する無効電力を制御する
制御手段とを備え、前記潮流方向検出手段により潮流の
方向を検出し、制御手段は、順方向潮流の場合には前記
第2の変流器の出力と前記変圧器の出力とにより力率ま
たは無効電力を求め、逆方向潮流の場合には前記第2の
変流器の出力と前記変圧器の出力とにより力率または無
効電力を求め、その値が前記目標値設定手段に設定した
目標値になるように前記主回路を制御することにより、
潮流方向にかかわらず前記配電線または送電線の力率ま
たは無効電力を一定制御する静止型無効電力補償装置。
3. A main circuit connected to a distribution line or a transmission line to generate a reactive power from a lead to a delay, a transformer for detecting a voltage of the distribution line or the transmission line, and the main circuit connected to the distribution line or the transmission line. A first current transformer inserted on the power supply side of the connection point of the circuit; a second current transformer inserted on the distribution line or the transmission line on the load side of the connection point of the main circuit; And a power flow direction detection means for detecting the power flow direction of the distribution line or the transmission line by the output of the current transformer and the output of the transformer, and the target value of the power factor or reactive power of the distribution line or the transmission line. Target value setting means, the output of the first current transformer and the output of the second current transformer are input, and the output of the first current transformer is output when the flow direction is forward. Then
When the power flow direction is in the opposite direction, calculation means for outputting the output of the second current transformer, and the output of the transformer and the output of the calculation means calculate the power factor or reactive power of the distribution line or the transmission line. And a control means for controlling the reactive power generated by the main circuit so that the value matches the target value of the target value setting means, the power flow direction detecting means detects the direction of the power flow, and the control means Is the power factor or reactive power obtained from the output of the second current transformer and the output of the transformer in the case of forward power flow, and the output of the second current transformer in the case of reverse power flow. By determining the power factor or reactive power by the output of the transformer and the transformer, by controlling the main circuit so that the value becomes the target value set in the target value setting means,
A static var compensator for constant control of the power factor or reactive power of the distribution line or transmission line regardless of the direction of power flow.
【請求項4】 前記第1のリアクトルとコンデンサとの
第1の直列回路に、第2のリアクトルと1つまたは複数
個直列のサイリスタの逆並列回路との第2の直列回路を
並列接続して構成され、前記サイリスタの導通角の制御
により進みから遅れまでの無効電力を発生する主回路を
備えた請求項1ないし請求項3のいずれかに記載の静止
型無効電力補償装置。
4. A first series circuit of the first reactor and a capacitor is connected in parallel with a second series circuit of a second reactor and an antiparallel circuit of one or more series thyristors. The static var compensator according to claim 1, further comprising a main circuit configured to generate a reactive power from leading to lag by controlling a conduction angle of the thyristor.
【請求項5】 第1のリアクトルとコンデンサとの第1
の直列回路と、第2のリアクトルと1つまたは複数個直
列のサイリスタの逆並列回路の第2の直列回路との並列
回路に第3のリアクトルを直列接続して構成され、前記
サイリスタの導通角により進みから遅れまでの無効電力
を発生する主回路を備えた請求項1ないし請求項3のい
ずれかに記載の静止型無効電力補償装置。
5. A first reactor and a first capacitor
Is connected in series to a parallel circuit of a second series circuit of an anti-parallel circuit of one or a plurality of second reactors and one or more series of second reactors, and a conduction angle of the thyristor. The static var compensator according to any one of claims 1 to 3, further comprising a main circuit that generates a reactive power from a lead to a lag.
【請求項6】 光電流センサにより第1の変流器と第2
の変流器のいずれか一方、または両方ともを構成した請
求項1ないし請求項5のいずれかに記載の静止型無効電
力補償装置。
6. A first current transformer and a second current transformer using a photocurrent sensor.
The static var compensator according to any one of claims 1 to 5, which constitutes either one or both of the current transformers.
JP31354295A 1995-11-06 1995-11-06 Static var compensator Expired - Fee Related JP3343711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31354295A JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31354295A JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Publications (2)

Publication Number Publication Date
JPH09135535A true JPH09135535A (en) 1997-05-20
JP3343711B2 JP3343711B2 (en) 2002-11-11

Family

ID=18042582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31354295A Expired - Fee Related JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Country Status (1)

Country Link
JP (1) JP3343711B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064295A (en) * 2001-08-28 2003-03-05 Dainippon Ink & Chem Inc Coating composition
KR101378545B1 (en) * 2012-12-24 2014-03-27 한국전력공사 Apparatus for controlling thyristor controlled series capacitor
JP2014073008A (en) * 2012-09-28 2014-04-21 Energy Support Corp Reactive power compensator
JP2014239634A (en) * 2013-05-10 2014-12-18 株式会社明電舎 Distribution line voltage control device and voltage control method
JP2015104297A (en) * 2013-11-28 2015-06-04 富士電機機器制御株式会社 Electric leak monitoring and protection system
JP2023002994A (en) * 2021-06-23 2023-01-11 愛知電機株式会社 Method for controlling power factor by using self-excited reactive power compensator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064295A (en) * 2001-08-28 2003-03-05 Dainippon Ink & Chem Inc Coating composition
JP2014073008A (en) * 2012-09-28 2014-04-21 Energy Support Corp Reactive power compensator
KR101378545B1 (en) * 2012-12-24 2014-03-27 한국전력공사 Apparatus for controlling thyristor controlled series capacitor
JP2014239634A (en) * 2013-05-10 2014-12-18 株式会社明電舎 Distribution line voltage control device and voltage control method
JP2015104297A (en) * 2013-11-28 2015-06-04 富士電機機器制御株式会社 Electric leak monitoring and protection system
JP2023002994A (en) * 2021-06-23 2023-01-11 愛知電機株式会社 Method for controlling power factor by using self-excited reactive power compensator

Also Published As

Publication number Publication date
JP3343711B2 (en) 2002-11-11

Similar Documents

Publication Publication Date Title
KR910009763B1 (en) Parallel operating system of a.c converter
US4052657A (en) Distribution system for a. c. electrical energy derived from d. c. energy sources
EP0519635B1 (en) Method and apparatus for controlling the output voltage of an AC electrical system
JP4056852B2 (en) Power converter
JPS6051474A (en) Thyristor voltage limiting circuit for current source inverter
JPH06233464A (en) Apparatus for suppressing voltage fluctuations and harmonics
JPH09135535A (en) Static-type reactive power compensator
US6563722B1 (en) System and method for compensating for line imbalances in line commutated converters
RU2677628C1 (en) Three-phase reactive power compensator
JPH05184154A (en) Parallel operation controller for ac output converter
JPH0625951B2 (en) Reactive power compensator
JP2580746B2 (en) Control method of suburban power compensator
JP2001352759A (en) Pwm rectifier
JP2802523B2 (en) Negative phase current compensator
JP2001028887A (en) Power converter
JPH05260665A (en) Parallel operation controller for ac output converter
JPH07257238A (en) Voltage compensation device for ac electricity railway
JPS607919B2 (en) Power supply method for polyphase AC motor
JPH04344128A (en) Unbalance compensator
JPH07177748A (en) Controller of system interconnection inverter
RU2088015C1 (en) Method for controlling static reactive-power thyristor compensator
JP2771948B2 (en) Power converter control device
JPH07203631A (en) Control equipment for self-excited alternating-current-to-direct-current converter
JPH07160346A (en) Stationary reactive power compensator
JPH02134574A (en) Ac voltage detector

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees