JP3343711B2 - Static var compensator - Google Patents

Static var compensator

Info

Publication number
JP3343711B2
JP3343711B2 JP31354295A JP31354295A JP3343711B2 JP 3343711 B2 JP3343711 B2 JP 3343711B2 JP 31354295 A JP31354295 A JP 31354295A JP 31354295 A JP31354295 A JP 31354295A JP 3343711 B2 JP3343711 B2 JP 3343711B2
Authority
JP
Japan
Prior art keywords
output
current transformer
power
transformer
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31354295A
Other languages
Japanese (ja)
Other versions
JPH09135535A (en
Inventor
秀樹 吉武
努 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP31354295A priority Critical patent/JP3343711B2/en
Publication of JPH09135535A publication Critical patent/JPH09135535A/en
Application granted granted Critical
Publication of JP3343711B2 publication Critical patent/JP3343711B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、配電線または送電
線の力率または無効電力を一定制御する静止型無効電力
補償装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a static var compensator for controlling a power factor or a reactive power of a distribution line or a transmission line.

【0002】[0002]

【従来の技術】近年、種々の電気機器が使用されるの
で、配電線または送電線の力率改善がますます重要にな
ってきている。
2. Description of the Related Art In recent years, various types of electric equipment have been used, so that it has become increasingly important to improve the power factor of a distribution line or a transmission line.

【0003】以下、従来の無効電力補償装置について図
面を参照しながら説明する。図7は従来の無効電力補償
装置の構成を示すブロック図である。配電線または送電
線の電力損失を抑える目的で静止型無効電力補償装置を
使用し、その無効電力出力を制御して配電線または送電
線の力率を1付近に、または無効電力をゼロ付近に保つ
ように制御している。図7において、1は配電線または
送電線、2は複数のリアクトルと複数のコンデンサと1
つまたは複数個直列のサイリスタの逆並列回路とで構成
され、前記サイリスタの導通角を制御することにより進
みから遅れの無効電力を発生させる主回路、3は配電線
または送電線1の電圧を位相とともに検出するための変
圧器、4は配電線または送電線1に流れる電流を位相と
ともに検出するための第2の変流器、5は配電線または
送電線1の力率または無効電力の目標値を設定する目標
値設定手段、6は配電線または送電線1の力率または無
効電力を演算して求めるとともに、その値が前記目標値
になるように主回路2が発生する無効電力を制御する制
御手段である。
Hereinafter, a conventional reactive power compensator will be described with reference to the drawings. FIG. 7 is a block diagram showing a configuration of a conventional reactive power compensation device. A static reactive power compensator is used to reduce the power loss of the distribution line or transmission line, and the reactive power output is controlled to reduce the power factor of the distribution line or transmission line to around 1 or to reduce the reactive power to around zero. It is controlled to keep. In FIG. 7, 1 is a distribution line or a transmission line, 2 is a plurality of reactors, a plurality of capacitors, and 1
A main circuit for generating a reactive power from a lead to a delay by controlling the conduction angle of the thyristor; And 4 is a second current transformer for detecting the current flowing in the distribution line or the transmission line 1 together with the phase, 5 is the target value of the power factor or reactive power of the distribution line or the transmission line 1 Is set by calculating the power factor or the reactive power of the distribution line or the transmission line 1 and controls the reactive power generated by the main circuit 2 so that the value becomes the target value. Control means.

【0004】上記構成において、制御手段6は、配電線
または送電線1に挿入された変圧器3の出力と第2の変
流器4の出力とから制御手段6により配電線または送電
線1の力率または無効電力を演算し、その値が目標値設
定手段になるようにサイリスタの導通角を制御すること
により、配電線または送電線1の力率を1近くに保ち、
配電線または送電線1の電力損失を抑制している。
In the above configuration, the control means 6 controls the distribution line or the transmission line 1 based on the output of the transformer 3 inserted into the distribution line or the transmission line 1 and the output of the second current transformer 4. By calculating the power factor or the reactive power and controlling the conduction angle of the thyristor so that the value becomes the target value setting means, the power factor of the distribution line or the transmission line 1 is kept close to 1,
The power loss of the distribution line or the transmission line 1 is suppressed.

【0005】[0005]

【発明が解決しようとする課題】このような従来の無効
電力補償装置では、実際の配電線または送電線におい
て、事故時、負荷融通時、または系統変更時などにおい
て潮流方向が反転したときには、力率または無効電力を
継続して一定制御することができなかった。
In such a conventional reactive power compensator, when the power flow direction is reversed in an actual distribution line or transmission line at the time of an accident, load interchange, or system change, etc. The rate or reactive power could not be controlled continuously.

【0006】本発明は上記の課題を解決するもので、潮
流方向が変わっても力率または無効電力一定制御を継続
してできる静止型無効電力補償装置を提供することを目
的とする。
An object of the present invention is to solve the above-mentioned problems, and an object of the present invention is to provide a static var compensator capable of maintaining constant power factor or reactive power control even when the power flow direction changes.

【0007】[0007]

【課題を解決するための手段】請求項1に係わる本発明
は、配電線または送電線に接続され、進みから遅れの無
効電力を発生する主回路と、前記配電線または送電線の
電圧を検出する変圧器と、前記主回路の入力電流を検出
する第1の変流器と、前記配電線または送電線に前記主
回路の接続点よりも電源側に挿入された第2の変流器と
を備え、前記第2の変流器の出力と前記変圧器の出力と
により前記配電線または送電線の潮流の方向を検出し、
順方向潮流の場合には前記第2の変流器の出力と前記変
圧器の出力とにより力率または無効電力を求め、逆方向
潮流の場合には前記第2の変流器の出力の反転出力に前
記第1の変流器の出力を加算した出力と前記変圧器の出
力とにより力率または無効電力を求め、その値が目標値
になるように前記主回路を制御することにより、潮流潮
流方向にかかわらず前記配電線または送電線の力率また
は無効電力を一定制御するようにした静止型無効電力補
償装置である。
According to the present invention, there is provided a main circuit which is connected to a distribution line or a transmission line and generates reactive power from leading to delay, and detecting a voltage of the distribution line or the transmission line. A current transformer that detects an input current of the main circuit, and a second current transformer that is inserted into the distribution line or the transmission line closer to a power supply than a connection point of the main circuit. Comprising, based on the output of the second current transformer and the output of the transformer, detects the direction of the power flow of the distribution line or transmission line,
In the case of forward power flow, a power factor or reactive power is obtained from the output of the second current transformer and the output of the transformer, and in the case of reverse power flow, the output of the second current transformer is inverted. The power factor or reactive power is obtained from the output obtained by adding the output of the first current transformer to the output and the output of the transformer, and the main circuit is controlled so that the value becomes a target value. A static var compensator configured to constantly control the power factor or reactive power of the distribution line or the transmission line regardless of the power flow direction.

【0008】これにより、潮流方向にかかわらず配電線
または送電線の力率または無効電力を一定制御すること
ができる。また、請求項2に係わる本発明は、配電線ま
たは送電線に接続され、進みから遅れ無効電力を発生さ
せる主回路と、前記配電線または送電線の電圧を検出す
る変圧器と、前記主回路の入力電流を検出する第1の変
流器と、前記配電線または送電線に前記主回路の接続点
よりも負荷側に挿入された第2の変流器とを備え、前記
第2の変流器の出力と前記変圧器の出力とにより前記配
電線または送電線の潮流の方向を検出し、順方向潮流の
場合には前記第2の変流器の出力に前記第1の変流器の
出力を加算した出力と前記変圧器の出力とにより力率ま
たは無効電力を求め、逆方向潮流の場合には前記第2の
変流器の出力の反転出力と前記変圧器の出力とにより力
率または無効電力を求め、その値が目標値になるように
前記主回路を制御することにより、潮流方向にかかわら
ず前記配電線または送電線の力率または無効電力を一定
制御するようにした静止型無効電力補償装置である。
[0008] Thus, the power factor or the reactive power of the distribution line or the transmission line can be controlled to be constant regardless of the power flow direction. The present invention according to claim 2 is a main circuit that is connected to a distribution line or a transmission line and generates a reactive power delayed from a lead, a transformer that detects a voltage of the distribution line or the transmission line, and the main circuit. A first current transformer for detecting the input current of the second current transformer, and a second current transformer inserted into the distribution line or the transmission line on the load side of the connection point of the main circuit. The direction of the power flow of the distribution line or the transmission line is detected from the output of the current transformer and the output of the transformer, and in the case of the forward power flow, the first current transformer is output to the output of the second current transformer. The power factor or reactive power is obtained from the output obtained by adding the outputs of the above and the output of the transformer, and in the case of reverse power flow, the power is obtained by the inverted output of the output of the second current transformer and the output of the transformer. Rate or reactive power, and controlling the main circuit so that the value becomes a target value. Ri is a static var compensator in which the power factor or reactive power of the power distribution lines or transmission lines regardless of the flow direction so that constant control.

【0009】これにより、潮流方向にかかわらず配電線
または送電線の力率または無効電力を一定制御すること
ができる。
Thus, the power factor or the reactive power of the distribution line or the transmission line can be controlled to be constant regardless of the power flow direction.

【0010】[0010]

【0011】[0011]

【発明の実施の形態】請求項1に記載の本発明は、配電
線または送電線に接続され、進みから遅れの無効電力を
発生する主回路と、前記配電線または送電線の電圧を検
出する変圧器と、前記主回路の入力電流を検出する第1
の変流器と、前記配電線または送電線に前記主回路の接
続点よりも電源側に挿入された第2の変流器と、前記第
2の変流器の出力と前記変圧器の出力とにより前記配電
線または送電線の潮流の方向を検出する潮流方向検出手
段と、前記配電線または送電線の力率または無効電力の
目標値を設定する目標値設定手段と、前記第1の変流器
の出力と前記第2の変流器の出力とを入力し、前記潮流
方向が順方向のときは前記第2の変流器の出力を出力
し、前記潮流方向が逆方向のときは前記第2の変流器の
出力の極性の反転出力と前記第1の変流器の出力との和
を演算して出力する演算手段と、前記変圧器の出力と前
記演算手段出力とにより前記配電線または送電線の力率
または無効電力を演算し、その値が前記目標値設定手段
の目標値に一致するように前記主回路が発生する無効電
力を制御する制御手段とを備え、前記潮流方向検出手段
により潮流の方向を検出し、制御手段は、順方向潮流の
場合には前記第1の変流器の出力と前記変圧器の出力と
により力率または無効電力を求め、逆方向潮流の場合に
は前記第2の変流器の出力の反転出力に前記第1の変流
器の出力を加算した出力と前記変圧器の出力とにより力
率または無効電力を求め、その値が前記目標値設定手段
に設定した目標値になるように前記主回路を制御するこ
とにより、潮流方向にかかわらず前記配電線または送電
線の力率または無効電力を一定制御する静止型無効電力
補償装置である。また、請求項2に記載の本発明は、配
電線または送電線に接続され、進みから遅れ無効電力を
発生させる主回路と、前記配電線または送電線の電圧を
検出する変圧器と、前記主回路の入力電流を検出する第
1の変流器と、前記配電線または送電線に前記主回路の
接続点よりも負荷側に挿入された第2の変流器と、前記
第2の変流器の出力と前記変圧器の出力とにより前記配
電線または送電線の潮流の方向を検出する潮流方向検出
手段と、前記配電線または送電線の力率または無効電力
の目標値を設定する目標値設定手段と、前記第1の変流
器の出力と前記第2の変流器の出力とを入力し、前記潮
流方向が順方向のときは前記第2の変流器の出力と前記
第1の変流器の出力との和を出力し、前記潮流方向が逆
方向のときは前記第2の変流器の出力の極性の反転信号
を出力する演算手段と、前記変圧器の出力と前記演算手
段出力とにより前記配電線または送電線の力率または無
効電力を演算し、その値が前記目標値設定手段の目標値
に一致するように前記主回路が発生する無効電力を制御
する制御手段とを備え、前記潮流方向検出手段により潮
流の方向を検出し、制御手段は、順方向潮流の場合には
前記第2の変流器の出力に前記第1の変流器の出力を加
算した出力と前記変圧器の出力とにより力率または無効
電力を求め、逆方向潮流の場合には前記第2の変流器の
出力の反転出力と前記変圧器の出力とにより力率または
無効電力を求め、その値が前記目標値設定手段に設定し
た目標値になるように前記主回路を制御することによ
り、潮流方向にかかわらず前記配電線または送電線の力
率または無効電力を一定制御する静止型無効電力補償装
置である
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention according to claim 1 is a main circuit that is connected to a distribution line or a transmission line and generates reactive power from a lead to a delay, and detects a voltage of the distribution line or the transmission line. A transformer for detecting an input current of the main circuit;
Current transformer, a second current transformer inserted into the distribution line or the transmission line closer to a power source than a connection point of the main circuit, an output of the second current transformer, and an output of the transformer A power flow direction detecting means for detecting a power flow direction of the distribution line or the transmission line, a target value setting means for setting a power factor or a reactive power target value of the distribution line or the transmission line, The output of the current transformer and the output of the second current transformer are input, and the output of the second current transformer is output when the power flow direction is the forward direction, and the output of the second current transformer is output when the power flow direction is the reverse direction. Calculating means for calculating and outputting the sum of the inverted output of the polarity of the output of the second current transformer and the output of the first current transformer; and the output of the transformer and the output of the calculating means. Calculate the power factor or reactive power of the distribution line or transmission line, and the value matches the target value of the target value setting means. Control means for controlling the reactive power generated by the main circuit, the direction of the power flow is detected by the power flow direction detection means, and the control means controls the first current transformer in the case of a forward power flow. A power factor or reactive power is obtained from the output and the output of the transformer, and in the case of reverse power flow, an output obtained by adding the output of the first current transformer to the inverted output of the output of the second current transformer. And a power factor or reactive power obtained from the output of the transformer and controlling the main circuit so that the value becomes a target value set in the target value setting means. Alternatively, it is a static var compensator that controls the power factor or reactive power of the transmission line to a constant value. Also, the present invention according to claim 2 is a main circuit that is connected to a distribution line or a transmission line and generates a reactive power delayed from a lead, a transformer that detects a voltage of the distribution line or the transmission line, A first current transformer for detecting an input current of a circuit, a second current transformer inserted into the distribution line or the transmission line closer to a load than a connection point of the main circuit, and the second current transformer Direction detection means for detecting the direction of the power flow of the distribution line or transmission line based on the output of the transformer and the output of the transformer, and a target value for setting a target value of the power factor or reactive power of the distribution line or the transmission line Setting means for receiving an output of the first current transformer and an output of the second current transformer, wherein when the power flow direction is forward, the output of the second current transformer and the first And the output of the second current transformer is output when the power flow direction is the opposite direction. And a power factor or reactive power of the distribution line or the transmission line is calculated by the output of the transformer and the output of the calculation means, and the calculated value is the target of the target value setting means. Control means for controlling the reactive power generated by the main circuit so as to match the value, a direction of the power flow is detected by the power flow direction detection means, and the control means detects the second power flow in the case of a forward power flow. A power factor or reactive power is obtained from an output obtained by adding an output of the first current transformer to an output of the current transformer and an output of the transformer, and in the case of reverse power flow, the second current transformer The power factor or the reactive power is obtained from the inverted output of the output of the transformer and the output of the transformer, and the main circuit is controlled so that the value becomes the target value set in the target value setting means. Regardless of the power of the distribution line or transmission line Or static var compensator for constant control of the reactive power.

【0012】以下、本発明の実施の形態について説明す
る。 (実施の形態1)以下、請求項1に係わる本発明の静止
型無効電力補償装置の一実施形態について図面を参照し
ながら説明する。図1は本実施形態の構成を示す回路図
である。なお、図7に示した従来例と同じ構成要素には
同一番号を付与している。
Hereinafter, embodiments of the present invention will be described. (Embodiment 1) An embodiment of a static var compensator according to the present invention will be described below with reference to the drawings. FIG. 1 is a circuit diagram showing the configuration of the present embodiment. The same components as those in the conventional example shown in FIG. 7 are given the same numbers.

【0013】図において、1は配電線または送電線、2
はコンデンサとリアクトルとサイリスタよりなる主回路
であり、サイリスタがオフ時はコンデンサによる進み無
効電力が出力され、サイリスタの導通角を増加させるに
従って進み無効電力が減少し、サイリスタがフル導通に
なるとリアクトルとコンデンサ容量との差の分の遅れ無
効電力が発生し、サイリスタの導通角を制御することに
より、進みから遅れまでの無効電力を連続的に制御す
る。7は本静止型無効電力補償装置の入力電流を検出す
る第1の変流器、8は潮流方向検出手段であり、第2の
変流器4と変圧器3とから得られる電圧と電流とから配
電線または送電線1における潮流方向を検出する。潮流
方向の検出方法としては、たとえば、有効電力を演算
し、その値が正の場合は順方向の潮流、負の場合は逆潮
流と判断でき、また、相電圧と電流との位相差が±90
°以内の場合は順方向の潮流、±90°より開いている
場合は逆方向の潮流と判断することができる。なお、他
の方法で潮流方向を検出してもよい。9は演算手段であ
り、潮流が順方向の場合は配電線または送電線1に設置
されている第2の変流器4の信号をそのまま素通して制
御手段6に出力し、潮流が逆方向の場合は第2の変流器
4の反転信号と第1の変流器7の信号との和を演算して
制御手段6に出力する。
In the figure, 1 is a distribution line or a transmission line, 2
Is a main circuit consisting of a capacitor, a reactor, and a thyristor.When the thyristor is off, advanced reactive power by the capacitor is output, and as the conduction angle of the thyristor increases, the advanced reactive power decreases. Delay reactive power corresponding to the difference from the capacitor capacity is generated, and by controlling the conduction angle of the thyristor, the reactive power from advance to delay is continuously controlled. Reference numeral 7 denotes a first current transformer for detecting an input current of the static var compensator, 8 denotes a power flow direction detecting means, and a voltage and a current obtained from the second current transformer 4 and the transformer 3 To detect the power flow direction in the distribution line or transmission line 1. As a method of detecting the power flow direction, for example, the active power is calculated, and when the value is positive, it can be determined that the power flow is in the forward direction, and when the value is negative, it can be determined that the power flow is in the reverse direction, and the phase difference between the phase voltage and the current is ± 90
If it is within ± °, it can be determined that the current is in the forward direction. The power flow direction may be detected by another method. Numeral 9 denotes a calculating means, which outputs the signal of the second current transformer 4 installed in the distribution line or the transmission line 1 to the control means 6 as it is when the tide is in the forward direction, and outputs the signal to the control means 6 in the reverse direction. In this case, the sum of the inverted signal of the second current transformer 4 and the signal of the first current transformer 7 is calculated and output to the control means 6.

【0014】上記構成において、潮流方向検出手段8が
潮流方向が順方向か逆方向であるかを検出して演算手段
9および制御手段6に指示する。潮流方向が順方向であ
る場合には演算手段9は第2の変流器4の出力をそのま
ま制御手段6に与えるので、制御手段6は、従来例と同
様に、第2の変流器4の出力と変圧器3の出力とにより
配電線または送電線1における力率または無効電力を求
め、それらが目標値設定手段5に設定された目標値にな
るように主回路2を制御する。また、潮流方向が逆方向
の場合には、演算手段9は第2の変流器4の反転出力と
第1の変流器7の出力とを加算することにより逆潮流時
における電源側の電流値を制御手段6に出力し、制御手
段6は逆潮流時の力率または無効電力を求め、目標値設
定手段5で設定された力率または無効電力の目標値にな
るように主回路2のサイリスタを制御する。
In the above configuration, the power flow direction detecting means 8 detects whether the power flow direction is the forward direction or the reverse direction, and instructs the calculating means 9 and the control means 6. When the power flow direction is the forward direction, the arithmetic means 9 gives the output of the second current transformer 4 to the control means 6 as it is, so that the control means 6 The power factor or reactive power in the distribution line or the transmission line 1 is obtained from the output of the transformer 3 and the output of the transformer 3, and the main circuit 2 is controlled so that the power factor or the reactive power becomes the target value set in the target value setting means 5. When the power flow direction is reverse, the calculating means 9 adds the inverted output of the second current transformer 4 and the output of the first current transformer 7 to obtain the current on the power supply side during the reverse power flow. The control unit 6 outputs the power factor or the reactive power at the time of reverse power flow, and determines the power factor or the reactive power of the main circuit 2 so as to reach the target value of the power factor or the reactive power set by the target value setting unit 5. Control the thyristor.

【0015】なお、本実施形態において図1は単相交流
配電線の場合を示したが、三相交流配電線または送電線
においては、各相ごとに同一の構成を用いて力率または
無効電力制御できることは言うまでもない。また、図4
に示したように、主回路2として、コンデンサ回路とサ
イリスタ回路との並列回路に直列なリアクトルを備えた
ものでもよい。また、配電線または送電線1に取付る変
流器として光電流センサを用いてもよい。光電流センサ
を用いると電線を切断する必要がないので工法上非常に
有利である。
In this embodiment, FIG. 1 shows the case of a single-phase AC distribution line. However, in a three-phase AC distribution line or a transmission line, the power factor or the reactive power is controlled by using the same configuration for each phase. It goes without saying that it can be controlled. FIG.
As shown in (1), the main circuit 2 may include a reactor in series with a parallel circuit of a capacitor circuit and a thyristor circuit. Further, a photocurrent sensor may be used as a current transformer attached to the distribution line or the transmission line 1. The use of a photocurrent sensor is very advantageous in terms of the construction method because it is not necessary to cut the electric wire.

【0016】以下、請求項2に係わる本発明の静止型無
効電力補償装置の一実施形態について図2を参照しなが
ら説明する。なお、図1と同じ構成要素には同一符号
付与して説明を省略する。請求項1に係わる本発明と異
なる点は、配電線または送電線1の第2の変流器4を負
荷側に設置し、演算手段9では、潮流が順方向の場合は
第2の変流器4の信号と静止型無効電力補償装置の入力
電流を検出する第1の変流器7の信号との和を制御手段
6に出力し、逆潮流の場合には第2の変流器4の反転信
号を制御手段6に出力するようにしたことにある。この
場合、第2の変流器4の出力は順方向潮流時の出力極性
を基準としている。
An embodiment of the static var compensator according to the present invention will be described below with reference to FIG. The same components as those in FIG. 1 are denoted by the same reference numerals , and description thereof will be omitted. The present invention according to claim 1 is different from the present invention in that the second current transformer 4 of the distribution line or the transmission line 1 is installed on the load side, and the calculating means 9 uses the second current transformer when the power flow is in the forward direction. And outputs the sum of the signal of the current transformer 4 and the signal of the first current transformer 7 for detecting the input current of the static reactive power compensator to the control means 6, and in the case of reverse power flow, the second current transformer 4 Is output to the control means 6. In this case, the output of the second current transformer 4 is based on the output polarity at the time of forward power flow.

【0017】上記構成において、潮流方向検出手段8
は、実施形態1と同様に潮流の方向を検出して演算手段
9および制御手段6に指示する。順方向潮流の場合に
は、演算手段9は第2の変流器4の出力と第1の変流器
7の出力との和を演算することにより順方向潮流時の電
流を制御手段6に与え、制御手段6は変圧器3の電圧出
力と前記電流とにより力率または無効電力を求め、目標
設定手段5に設定された目標値になるように主回路2の
サイリスタを制御する。また、逆潮流の場合には演算手
段9は第2の変流器4の反転信号により逆潮流時の電流
を制御手段6に出力する。制御手段6はその電流と変圧
器3の電圧出力とにより力率または無効電力を求め、目
標値設定手段5に設定された力率または無効電力の目標
値になるように主回路2のサイリスタを制御する。
In the above configuration, the power flow direction detecting means 8
Detects the direction of the tidal current as in the first embodiment, and instructs the calculating means 9 and the control means 6. In the case of a forward power flow, the calculating means 9 calculates the sum of the output of the second current transformer 4 and the output of the first current transformer 7 to thereby supply the current during the forward power flow to the control means 6. Then, the control means 6 obtains a power factor or a reactive power from the voltage output of the transformer 3 and the current, and controls the thyristor of the main circuit 2 so as to reach the target value set in the target setting means 5. In the case of a reverse power flow, the calculating means 9 outputs the current at the time of the reverse power flow to the control means 6 based on the inverted signal of the second current transformer 4. The control means 6 determines the power factor or the reactive power based on the current and the voltage output of the transformer 3, and controls the thyristor of the main circuit 2 so as to reach the target value of the power factor or the reactive power set in the target value setting means 5. Control.

【0018】なお、本実施形態において図2は単相交流
配電線の場合を示したが、三相交流配電線または送電線
においては、各相ごとに同一の構成を用いて力率または
無効電力制御できることは言うまでもない。また、図5
に示したように、主回路2として、コンデンサ回路とサ
イリスタ回路との並列回路に直列なリアクトルを備えた
ものでもよい。また、配電線または送電線1に取付る変
流器として光電流センサを用いてもよい。
In this embodiment, FIG. 2 shows a case of a single-phase AC distribution line, but in a three-phase AC distribution line or a transmission line, a power factor or a reactive power It goes without saying that it can be controlled. FIG.
As shown in (1), the main circuit 2 may include a reactor in series with a parallel circuit of a capacitor circuit and a thyristor circuit. Further, a photocurrent sensor may be used as a current transformer attached to the distribution line or the transmission line 1.

【0019】(参考例) 以下、本発明の静止型無効電力補償装置に係わる参考例
について図面を参照しながら説明する。図3は本参考例
の構成を示すブロック図である。なお、図1および図2
と同じ構成要素には同一符号を付与して説明を省略す
る。本参考例が実施形態1ないし実施形態2と異なる点
は、配電線または送電線1には、電源側に第2の変流器
4、負荷側に第1の変流器7とを設け、静止型無効電力
補償装置の入力線には設置されず、また、演算手段9で
は潮流が順方向の場合は電源側の第2の変流器4の信号
を制御手段6に出力し、逆潮流の場合は負荷側の第1の
変流器7の信号を制御手段6に出力するようにしたこと
にあり、単に第2の変流器4と第1の変流器7の出力切
り替え動作のみ行う。
Reference Example Hereinafter, a reference example of the static var compensator according to the present invention will be described with reference to the drawings. FIG. 3 is a block diagram showing the configuration of the present reference example . 1 and 2
The same reference numerals are given to the same components as those described above, and the description is omitted. This reference example is different from the first and second embodiments in that the distribution line or the transmission line 1 is provided with the second current transformer 4 on the power supply side and the first current transformer 7 on the load side. Static reactive power
It is not installed on the input line of the compensator , and the calculating means 9 outputs the signal of the second current transformer 4 on the power supply side to the control means 6 when the power flow is in the forward direction, and outputs the load when the power flow is in the reverse direction. Since the signal of the first current transformer 7 on the side is output to the control means 6, only the output switching operation of the second current transformer 4 and the first current transformer 7 is performed.

【0020】上記構成において、潮流方向検出手段8
は、実施形態1と同様に、潮流の方向を検出して演算手
段9および制御手段6に指示する。制御手段6は、順方
向潮流の場合は第2の変流器4の出力と変圧器3の出力
とにより、また、逆方向潮流の場合には第1の変流器7
と変圧器3の出力とにより、それぞれ力率または無効電
力を求め、目標値設定手段5で設定された力率または無
効電力の目標値になるように主回路2のサイリスタを制
御する。
In the above configuration, the power flow direction detecting means 8
Detects the direction of the tidal current and instructs the arithmetic means 9 and the control means 6 as in the first embodiment. The control means 6 controls the output of the second current transformer 4 and the output of the transformer 3 in the case of forward power flow, and the first current transformer 7 in the case of reverse power flow.
The power factor or the reactive power is obtained from the output of the transformer 3 and the power factor or the reactive power, respectively, and the thyristor of the main circuit 2 is controlled so that the target value of the power factor or the reactive power set by the target value setting means 5 is obtained.

【0021】なお、本参考例において図3は単相交流配
電線の場合を示したが、三相交流配電線または送電線に
おいては、各相ごとに同一の構成を用いて力率または無
効電力制御できることは言うまでもない。また、図6に
示したように、主回路2として、コンデンサ回路とサイ
リスタ回路との並列回路に直列なリアクトルを備えたも
のでもよい。また、配電線または送電線1に取付る変流
器として光電流センサを用いてもよい。
In this embodiment , FIG. 3 shows the case of a single-phase AC distribution line, but in the case of a three-phase AC distribution line or a transmission line, the power factor or the reactive power It goes without saying that it can be controlled. Further, as shown in FIG. 6, the main circuit 2 may include a reactor in series with a parallel circuit of a capacitor circuit and a thyristor circuit. Further, a photocurrent sensor may be used as a current transformer attached to the distribution line or the transmission line 1.

【0022】[0022]

【発明の効果】以上の説明から明らかなように、配電線
または送電線の潮流の方向が変わっても力率または無効
電力制御を継続して一定制御することができる。また、
変流器を光電流センサにより実現すれば、電線を切断す
る必要がないので工法上非常に有利である。
As is apparent from the above description, the power factor or the reactive power control can be continuously controlled even if the direction of the power flow in the distribution line or the transmission line changes. Also,
If the current transformer is realized by a photocurrent sensor, there is no need to cut the electric wire, which is very advantageous in terms of the construction method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】請求項1に係わる本発明の静止型無効電力補償
装置の一実施例の構成を示す回路図
FIG. 1 is a circuit diagram showing a configuration of an embodiment of a static var compensator of the present invention according to claim 1;

【図2】請求項2に係わる本発明の静止型無効電力補償
装置の一実施例の構成を示す回路図
FIG. 2 is a circuit diagram showing a configuration of an embodiment of a static var compensator of the present invention according to claim 2;

【図3】本発明の静止型無効電力補償装置に係わる参考
の構成を示す回路図
FIG. 3 is a reference relating to the static var compensator of the present invention .
Circuit diagram showing example configuration

【図4】請求項1に係わる本発明の静止型無効電力補償
装置の他の実施例の構成を示す回路図
FIG. 4 is a circuit diagram showing the configuration of another embodiment of the static var compensator of the present invention according to claim 1;

【図5】請求項2に係わる本発明の静止型無効電力補償
装置の他の実施例の構成を示す回路図
FIG. 5 is a circuit diagram showing the configuration of another embodiment of the static var compensator of the present invention according to claim 2;

【図6】本発明の静止型無効電力補償装置に係わる参考
の他の構成を示す回路図
FIG. 6 is a reference relating to the static var compensator of the present invention .
Circuit diagram showing another configuration of the example

【図7】従来の静止型無効電力補償装置の構成を示す回
路図
FIG. 7 is a circuit diagram showing a configuration of a conventional static var compensator.

【符号の説明】[Explanation of symbols]

1 配電線または送電線 2 主回路 3 変圧器 4 第2の変流器 5 目標値設定手段 6 制御手段 7 第1の変流器 8 潮流方向検出手段 9 演算手段 DESCRIPTION OF SYMBOLS 1 Distribution line or transmission line 2 Main circuit 3 Transformer 4 Second current transformer 5 Target value setting means 6 Control means 7 First current transformer 8 Power flow direction detecting means 9 Computing means

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02J 3/00 - 5/00 G05F 1/70 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H02J 3/00-5/00 G05F 1/70

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配電線または送電線に接続され、進みか
ら遅れの無効電力を発生する主回路と、前記配電線また
は送電線の電圧を検出する変圧器と、前記主回路の入力
電流を検出する第1の変流器と、前記配電線または送電
線に前記主回路の接続点よりも電源側に挿入された第2
の変流器と、前記第2の変流器の出力と前記変圧器の出
力とにより前記配電線または送電線の潮流の方向を検出
する潮流方向検出手段と、前記配電線または送電線の力
率または無効電力の目標値を設定する目標値設定手段
と、前記第1の変流器の出力と前記第2の変流器の出力
とを入力し、前記潮流方向が順方向のときは前記第2の
変流器の出力を出力し、前記潮流方向が逆方向のときは
前記第2の変流器の出力の極性の反転出力と前記第1の
変流器の出力との和を演算して出力する演算手段と、前
記変圧器の出力と前記演算手段出力とにより前記配電線
または送電線の力率または無効電力を演算し、その値が
前記目標値設定手段の目標値に一致するように前記主回
路が発生する無効電力を制御する制御手段とを備え、前
記潮流方向検出手段により潮流の方向を検出し、制御手
段は、順方向潮流の場合には前記第2の変流器の出力と
前記変圧器の出力とにより力率または無効電力を求め、
逆方向潮流の場合には前記第2の変流器の出力の反転出
力に前記第1の変流器の出力を加算した出力と前記変圧
器の出力とにより力率または無効電力を求め、その値が
前記目標値設定手段に設定した目標値になるように前記
主回路を制御することにより、潮流潮流方向にかかわら
ず前記配電線または送電線の力率または無効電力を一定
制御する静止型無効電力補償装置。
1. A main circuit that is connected to a distribution line or a transmission line and generates reactive power from leading to lag, a transformer that detects a voltage of the distribution line or a transmission line, and detects an input current of the main circuit. And a second current transformer inserted into the distribution line or the transmission line closer to a power source than a connection point of the main circuit.
Current transformer, power flow direction detecting means for detecting the direction of the power flow in the distribution line or the transmission line based on the output of the second current transformer and the output of the transformer, and the power of the distribution line or the transmission line. A target value setting means for setting a target value of a rate or a reactive power; inputting an output of the first current transformer and an output of the second current transformer; Outputting the output of the second current transformer, and calculating the sum of the inverted output of the polarity of the output of the second current transformer and the output of the first current transformer when the power flow direction is reverse. And calculating the power factor or reactive power of the distribution line or the transmission line based on the output of the transformer and the output of the calculation means, and the value matches the target value of the target value setting means. Control means for controlling the reactive power generated by the main circuit, the power flow direction detecting means More detecting the direction of power flow, control means, in the case of forward power flow determined power factor or reactive power by the output of the transformer and the output of the second current transformer,
In the case of reverse power flow, a power factor or reactive power is obtained from an output obtained by adding the output of the first current transformer to an inverted output of the output of the second current transformer and the output of the transformer, and By controlling the main circuit so that the value becomes a target value set in the target value setting means, a static reactive type that constantly controls the power factor or reactive power of the distribution line or the transmission line regardless of the power flow direction. Power compensator.
【請求項2】 配電線または送電線に接続され、進みか
ら遅れ無効電力を発生させる主回路と、前記配電線また
は送電線の電圧を検出する変圧器と、前記主回路の入力
電流を検出する第1の変流器と、前記配電線または送電
線に前記主回路の接続点よりも負荷側に挿入された第2
の変流器と、前記第2の変流器の出力と前記変圧器の出
力とにより前記配電線または送電線の潮流の方向を検出
する潮流方向検出手段と、前記配電線または送電線の力
率または無効電力の目標値を設定する目標値設定手段
と、前記第1の変流器の出力と前記第2の変流器の出力
とを入力し、前記潮流方向が順方向のときは前記第2の
変流器の出力と前記第1の変流器の出力との和を出力
し、前記潮流方向が逆方向のときは前記第2の変流器の
出力の極性の反転信号を出力する演算手段と、前記変圧
器の出力と前記演算手段出力とにより前記配電線または
送電線の力率または無効電力を演算し、その値が前記目
標値設定手段の目標値に一致するように前記主回路が発
生する無効電力を制御する制御手段とを備え、前記潮流
方向検出手段により潮流の方向を検出し、制御手段は、
順方向潮流の場合には前記第2の変流器の出力に前記第
1の変流器の出力を加算した出力と前記変圧器の出力と
により力率または無効電力を求め、逆方向潮流の場合に
は前記第2変流器の出力の反転出力と前記変圧器の出
力とにより力率または無効電力を求め、その値が前記目
標値設定手段に設定した目標値になるように前記主回路
を制御することにより、潮流方向にかかわらず前記配電
線または送電線の力率または無効電力を一定制御する静
止型無効電力補償装置。
2. A main circuit which is connected to a distribution line or a transmission line and generates a reactive power from a lead to a delay, a transformer which detects a voltage of the distribution line or a transmission line, and which detects an input current of the main circuit. A first current transformer, and a second current transformer inserted into the distribution line or the transmission line on a load side of a connection point of the main circuit.
Current transformer, power flow direction detecting means for detecting the direction of the power flow in the distribution line or the transmission line based on the output of the second current transformer and the output of the transformer, and the power of the distribution line or the transmission line. A target value setting means for setting a target value of a rate or a reactive power; inputting an output of the first current transformer and an output of the second current transformer; Outputting the sum of the output of the second current transformer and the output of the first current transformer, and outputting an inverted signal of the polarity of the output of the second current transformer when the power flow direction is the opposite direction; Calculating means, and the power factor or reactive power of the distribution line or the transmission line is calculated by the output of the transformer and the output of the calculating means, so that the value matches the target value of the target value setting means. Control means for controlling the reactive power generated by the main circuit; Detecting the direction and control means,
In the case of a forward power flow, a power factor or reactive power is obtained from an output obtained by adding an output of the first current transformer to an output of the second current transformer and an output of the transformer, and obtains a power factor or reactive power by the output of the transformer and the inverted output of the output of the second current transformer when the main so that the target value the value is set to the target value setting means A static var compensator that controls a circuit to constantly control the power factor or the reactive power of the distribution line or the transmission line regardless of the power flow direction.
【請求項3】 第1のリアクトルとコンデンサとの第1
の直列回路と、第2のリアクトルと1つまたは複数個直
列のサイリスタの逆並列回路との第2の直列回路を並列
接続して構成され、前記サイリスタの導通角の制御によ
り進みから遅れまでの無効電力を発生する主回路を備え
た請求項1または請求項2のいずれかに記載の静止型無
効電力補償装置。
3. The first reactor and the first capacitor
Series circuit and one or more second reactors
Parallel the second series circuit with the anti-parallel circuit of the thyristors in the row
Connected to each other, and by controlling the conduction angle of the thyristor.
Equipped with a main circuit that generates reactive power from advance to delay
The static var compensator according to claim 1 or claim 2 .
【請求項4】 第3のリアクトルと第2のコンデンサか
ら成る第3の直列回路と、第4のリアクトルと1つまた
は複数個直列のサイリスタの逆並列回路から成る第4の
直列回路との並列回路に第5のリアクトルを直列接続し
て構成され、前記サイリスタの導通角により進みから遅
れまでの無効電力を発生する主回路を備えた請求項1ま
たは請求項2のいずれかに記載の静止型無効電力補償装
置。
4. A method according to claim 3, wherein the third reactor and the second capacitor
A third series circuit comprising the fourth reactor and one or more
Consists of an anti-parallel circuit of a plurality of thyristors in series.
The fifth reactor is connected in series to the parallel circuit with the series circuit.
From the advance due to the conduction angle of the thyristor.
And a main circuit for generating the reactive power up to that time.
A static var compensator according to claim 2 .
【請求項5】 光電流センサにより第1の変流器と第2
の変流器のいずれか一方、または両方ともを構成した請
求項1ないし請求項4のいずれかに記載の静止型無効電
力補償装置。
5. A first current transformer and a second current transformer by a photocurrent sensor.
Contractors that constitute one or both of the current transformers
The static var compensator according to any one of claims 1 to 4 .
JP31354295A 1995-11-06 1995-11-06 Static var compensator Expired - Fee Related JP3343711B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31354295A JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31354295A JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Publications (2)

Publication Number Publication Date
JPH09135535A JPH09135535A (en) 1997-05-20
JP3343711B2 true JP3343711B2 (en) 2002-11-11

Family

ID=18042582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31354295A Expired - Fee Related JP3343711B2 (en) 1995-11-06 1995-11-06 Static var compensator

Country Status (1)

Country Link
JP (1) JP3343711B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003064295A (en) * 2001-08-28 2003-03-05 Dainippon Ink & Chem Inc Coating composition
JP5978088B2 (en) * 2012-09-28 2016-08-24 エナジーサポート株式会社 Reactive power compensator
KR101378545B1 (en) * 2012-12-24 2014-03-27 한국전력공사 Apparatus for controlling thyristor controlled series capacitor
JP6188489B2 (en) * 2013-05-10 2017-08-30 株式会社明電舎 Distribution line voltage control apparatus and voltage control method
JP6210299B2 (en) * 2013-11-28 2017-10-11 富士電機機器制御株式会社 Earth leakage monitoring and protection system
JP2023002994A (en) * 2021-06-23 2023-01-11 愛知電機株式会社 Method for controlling power factor by using self-excited reactive power compensator

Also Published As

Publication number Publication date
JPH09135535A (en) 1997-05-20

Similar Documents

Publication Publication Date Title
JP3265398B2 (en) DC power transmission device control device
US5666275A (en) Control system for power conversion system
US6411066B1 (en) Method to control the flow of active power in a high voltage direct current transmission system and device for the same
EP0519635B1 (en) Method and apparatus for controlling the output voltage of an AC electrical system
JPS6051474A (en) Thyristor voltage limiting circuit for current source inverter
JP3343711B2 (en) Static var compensator
JP2708648B2 (en) Parallel operation control device
JP3488320B2 (en) Inverter synchronous switching circuit
JPH0956170A (en) Controller for inverter for system linkage
JPH0625951B2 (en) Reactive power compensator
JP3355772B2 (en) AC electric railway voltage compensator
JP3328039B2 (en) Static var compensator
JPH0221220B2 (en)
JP2771948B2 (en) Power converter control device
JP2001352759A (en) Pwm rectifier
JPS6362984B2 (en)
JPH03222016A (en) Control system for reactive power compensator
JPH04344128A (en) Unbalance compensator
JPS5875428A (en) Voltage for ac/dc parallel transmission system and reactive power control system
JPH0642183B2 (en) Coordinated operation control system of reactive power compensator
JPH07203631A (en) Control equipment for self-excited alternating-current-to-direct-current converter
JPH0731301Y2 (en) Controller for reactive power compensator
JPH0682305B2 (en) Reactive power compensator
JPH05260665A (en) Parallel operation controller for ac output converter
JPS6295932A (en) Controller for self-exciting dc/ac converter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees