JP4056852B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP4056852B2
JP4056852B2 JP2002317638A JP2002317638A JP4056852B2 JP 4056852 B2 JP4056852 B2 JP 4056852B2 JP 2002317638 A JP2002317638 A JP 2002317638A JP 2002317638 A JP2002317638 A JP 2002317638A JP 4056852 B2 JP4056852 B2 JP 4056852B2
Authority
JP
Japan
Prior art keywords
voltage
axis
filter
system abnormality
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317638A
Other languages
Japanese (ja)
Other versions
JP2004153957A (en
Inventor
康弘 清藤
孝志 相原
克人 川畑
貴之 小野瀬
祐二 石田
公男 浦野
卓 佐藤
英樹 和久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi Ltd
Original Assignee
Tohoku Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Hitachi Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP2002317638A priority Critical patent/JP4056852B2/en
Publication of JP2004153957A publication Critical patent/JP2004153957A/en
Application granted granted Critical
Publication of JP4056852B2 publication Critical patent/JP4056852B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、系統に並列接続して使用する電力変換装置に関し、特に、電力貯蔵システムや無効電力補償装置に用いて好適な、系統電力の供給を安定化する電力変換装置に関する。
【0002】
【従来の技術】
このような目的に用いる電力変換装置としては、ナトリウム・イオウ(NaS)電池とインバータを組み合わせた電力貯蔵システムや、無効電力補償装置(SVC:Static Var Compensator)等がある。これらのシステムにおいては、系統に誘導性インピーダンスを介してインバータを並列接続する。例えば、電力貯蔵システムでは、このインバータを、余剰電力でNaS電池を充電し、不足電力をNaS電池からの放電によって補うように制御する。この電力制御系に基き基準電流指令が決まり、電圧制御回路によりインバータの出力電流を前記基準電流に一致させるべく電圧制御信号を生成する。さらに、系統の検出電圧を電圧制御信号に加算してインバータの出力を補正し、系統電圧に変動があった時に、ただちにその変動に応答させようとしたものが知られている。しかしながら、上述の電力変換装置では、系統電圧に追従してその系統に電力を供給するので、系統電圧に不平衡成分や高調波成分が含まれている場合は、それらに対しても不要な動作をしてしまう。このため、定常時において電力変換装置に出力電圧の不平衡分や発生高調波が増大してしまう問題があった。これを解決する手段として、特許文献1には、系統の検出電圧を入力信号とするフィルタと、このフィルタの出力信号と系統の検出電圧信号のうちどちらか一方を出力する切り換え器を備えている。そして、検出電圧信号とフィルタ出力信号の差が所定の値よりも大きいときは、前記切り換え器の出力を系統電圧の検出電圧に切り換える技術を提案している。
【0003】
【特許文献1】
特開平07−123726号公報(全体)
【0004】
【発明が解決しようとする課題】
特許文献1では、検出回路の入力にフィルタの出力信号を使用しているので、原理的に、系統異常発生からその現象の検出までに一定の検出遅れが生じる。このため、系統の電圧急変に対する高速応答性が不十分である。
【0005】
本発明の目的は、定常時においては、不平衡成分や高調波成分の出力を抑制するとともに、系統異常により系統電圧が急変した場合には、高速に応答して過電流の発生を防止し得る電力変換装置を提供することである。
【0006】
発明者が系統異常波形を解析したところ、系統異常が発生した直後から系統の検出電圧はその振幅および位相が急変すること、系統の検出電圧の急変時に電力変換装置の出力電圧信号を高速に補正できなければ過電流の発生を招くことが判った。
【0007】
本発明の他の目的は、系統の検出電圧の急変時に、電力変換装置の出力電圧信号を高速に補正し、過電流の発生を抑制することである。
【0008】
また、上記解析によれば、系統異常期間中は系統の電圧信号は激しく変動し、フィルタ出力信号とは周期的に乖離が見られることが判った。そして、再閉路前に誤って系統異常が収束したと判断し、電圧信号からフィルタの出力信号へ切り換えた場合に、出力電圧補正信号が不連続に急変して過電流の発生を招く可能性があることが判った。
【0009】
本発明のさらに他の目的は、系統異常収束の時期を正確に判断し、出力電圧補正信号の不連続な急変と、これに基く過電流の発生を抑制することである。
【0010】
【課題を解決するための手段】
本発明の特徴とするところは、系統の検出電圧に応じて電圧制御信号を補正する構成の電力変換装置において、補正信号の前段に系統の検出電圧を入力信号とする時定数可変の低域通過フィルタと、系統の異常を判定する系統異常判定手段と、この判定手段が系統異常と判定したことに応じて、前記フィルタの時定数をそれまでよりも短い状態に切換えるとともに、系統異常判定手段が系統異常の収束を判定したことに応じて、前記フィルタの時定数をそれ以前の長い時定数状態まで連続的に戻す時定数切換え手段を備えたことである。
【0011】
ここで言う連続的とは、必ずしも全部が連続しているものに限らず、多段階的であったり、あるいは一部に不連続部があっても構わない。要は、ステップ状に一挙に時定数が切換るものと区別する意味である。
【0012】
このように、フィルタの時定数を長い時定数状態まで連続的に戻すことによって、電圧補正信号の急変に起因する過電流の発生を防止する。
【0013】
本発明の他の特徴とするところは、系統の検出電圧振幅又は位相の変化率がしきい値を超えたことに応じて系統異常を判定する手段と、この系統異常判定手段が系統の異常を判定しているとき、前記フィルタの時定数をそれ以外の期間よりも短く又は前記フィルタを介さず前記系統の検出電圧を補正信号として取り込む手段を備えたことである。
【0014】
このように、フィルタを介することなく、直接に系統の検出電圧そのものの振幅又は位相の変化率がしきい値を超えたことに応じて系統異常を判定するので、系統の電圧急変に対する高速応答性を改善する。
【0015】
本発明の更に他の特徴とするところは、系統の検出電圧振幅又は位相の変化率がしきい値を超えたことに応じて系統異常と判定し、この変化率がしきい値を下回りかつ系統異常判定後に所定時間が経過したことに応じて系統異常の収束を判定することである。
【0016】
このように、フィルタを介することなく、直接に系統の検出電圧そのものの振幅又は位相の変化率がしきい値を超えたことに応じて系統異常を判定するとともに、系統異常収束の判定に所定時間の要素を導入することによって、過電流の発生を防止する。
【0017】
本発明の他の目的及び特徴は、以下に述べる実施例の説明で明らかにする。
【0018】
【発明の実施の形態】
以下、本発明の実施例について図を参照して説明する。
【0019】
図1は、本発明の第1の実施例による電力変換装置を示すブロック図である。インバータ1は、誘導性インピーダンス2を介して系統電源3を有する系統に並列に接続されている。誘導性インピーダンス2としては、一般には変換装置用変圧器又は交流リアクトルが使用される。なお、電力貯蔵システムにおいては、18はNaS電池である。
【0020】
電圧制御回路は、電圧位相検出器4、三相/dq軸変換器5,6、d軸電流制御回路7、q軸電流制御回路8、dq軸/三相変換器9、パルス幅変調回路10、減算器11,12及び加算器13,14とで形成されている。インバータ1の出力電流Ia〜Icと、基準電流であるd軸及びq軸電流設定値Id’及びIq’との差に応じて電圧制御信号Ucd及びUcqを生成し、この電圧制御信号に応じて前記インバータの出力電圧を制御する。また、前記電圧制御回路は、系統の検出電圧Vsa〜Vscに応じて前記電圧制御信号Ucd及びUcqを補正し、Vcd及びVcqを得る。このとき、フィルタ15,16は、三相/dq軸変換器5を介して系統の検出電圧を入力している。系統異常判定手段17は、系統異常発生フラグτvを出力し、フィルタ15,16は系統異常発生時は応答時定数を短い状態に切り換え、それ以外のときは応答時定数を長い状態に切り換える。
【0021】
次に、本実施例の動作について説明する。先ず、本実施例の基本動作の概要を説明する。インバータ1が出力する各相の電圧をVca,Vcb,Vccとし、系統の各相の電圧をVsa,Vsb,Vscとし、系統の各相に流れる電流をIa,Ib,Icとする。誘導性インピーダンス2のインダクタンスをLとし、抵抗を無視すると上記諸量の間には、下記(1)〜(3)式の関係が成りたつ。
【0022】
L・(dIa/dt)=Vca−Vsa (1)
L・(dIb/dt)=Vcb−Vsb (2)
L・(dIc/dt)=Vcc−Vsc (3)
ここで、dq2軸への変換操作を行う。dq2軸への変換は、例えば、インバータ1の出力電圧に対して下記(4)式で変換操作を行う。他の量についても同様である。
【0023】
【数1】

Figure 0004056852
【0024】
上記の変換操作を(1)〜(3)式について行えば(5),(6)式となる。
【0025】
L・(dId/dt)=Vcd−Vsd−ωLIq (5)
L・(dIq/dt)=Vcq−Vsq+ωLId (6)
ここで、Vcd,Vcqはインバータ1の発生電圧を2軸に変換した量、Vsd,Vsqは系統電圧を2軸に変換した量、Id,Iqはインバータ1の電流を2軸に変換した量、ωは系統電圧の角周波数である。
【0026】
更に、インバータ1の出力電圧を下記(7),(8)式に基づいて決める。
【0027】
Vcd=Vsd+ωLIq+Ucd (7)
Vcq=Vsq−ωLId+Ucq (8)
(7),(8)式を(5),(6)式に代入すると、(9),(10)式となる。
【0028】
L・(dId/dt)=Ucd (9)
L・(dIq/dt)=Ucq (10)
上記(9),(10)式から、Idを制御するにはUcdを、Iqを制御するにはUcqを制御すればよいことが分かる。したがって、インバータ1の各相の出力電圧は、Ucd,Ucqの操作量に基づいて(7),(8)式から得られるVcd,Vcqを三相に逆変換することで求められる。その逆変換は、下記(11)式で表せる。
【0029】
【数2】
Figure 0004056852
【0030】
次に、図1を参照して具体的に説明する。電圧位相検出器4では、系統電源3から検出した三相検出電圧Vsa,Vsb,Vscに基づいて、系統電圧の位相を求めてサイン波(以下、sinωtと記す)とコサイン波(以下、cosωtと記す)の信号を発生する。三相/dq軸変換器6は、インバータ1の三相出力電流Ia,Ib,Icを入力して、電圧位相検出器4から出力されるsinωt信号とcosωt信号から、d軸電流Idとq軸電流Iqを出力する。
【0031】
d軸電流Idは、減算器11においてd軸電流設定値Id’と比較され、その偏差がd軸電流制御回路7に入力される。d軸電流制御回路7は、前記偏差が0になるような信号を出力する。このd軸電流制御回路7の出力Udcとフィルタ15の出力Vsd2は、加算器13において加算され、d軸電圧設定値Vcdとしてdq軸/三相変換器9に入力される。
【0032】
同様に、q軸電流Iqは、減算器12においてq軸電流設定値Iq’と比較され、その偏差がq軸電流制御回路8に入力される。q軸電流制御回路8は、前記偏差が0になるような信号を出力する。このq軸電流制御回路8の出力Ucqとフィルタ16の出力Vsq2は、加算器14において加算され、q軸電圧設定値Vcqとしてdq軸/三相変換器9に入力される。
【0033】
dq軸/三相変換器9は、入力したd軸電圧設定値Vcdとq軸電圧設定値Vcqとを逆変換することによって三相電圧指令値Vca’,Vcb’,Vcc’を得て、これらをパルス幅変調回路10に出力する。パルス幅変調回路10は、インバータの三相出力電圧Vca,Vcb,Vccが三相電圧指令値Vca’,Vcb’,Vcc’と等しくなるようにインバータ1を制御する。
【0034】
次に、本実施例の特徴動作を図1を参照して説明する。三相/dq軸変換器5は、系統から三相電圧Vsa,Vsb,Vscを入力して、d軸電圧Vsd1とq軸電圧Vsq1に変換する。フィルタ15は、d軸電圧Vsd1を入力してd軸電圧Vsd2として出力する。ここで、2軸変換された電圧は、正相電圧が直流、逆相電圧が2倍調波、高調波電圧が高調波成分となるため、低域フィルタを用いることにより、d軸電圧Vsd2は正相電圧成分のみとなる。同様に、フィルタ16は、q軸電圧Vsq1を入力して系統電圧の正相分のみであるq軸電圧Vsq2を出力する。
【0035】
系統異常判定手段17は、三相/dq変換器5の出力であるd軸電圧Vsd1を入力する。d軸電圧Vsd1は、通常、系統電圧の正相分振幅値に相当する。系統異常判定手段17は、d軸電圧Vsd1の変化率の絶対値|ΔVsd1|を演算して、所定の設定値ΔVmaxと比較する。Vsd1の変化率の絶対値|ΔVsd1|が、設定値ΔVmaxより大きい場合は、系統異常発生と判断して、フィルタ15,16に対してそれらの時定数τvを長い状態τv1から短い状態τv2に切り換える指令を出力する。この指令はVsd1の変化率の絶対値|ΔVsd1|が設定値ΔVmaxより小さくなる状態が、設定された系統異常継続想定時間t1を超過するまで継続される。言い換えると、系統電圧振幅の変化率|ΔVsd1|が、しきい値ΔVmax以内に戻った状態が所定時間t1だけ継続したことによって、系統異常の収束と判定している。
【0036】
フィルタ時定数の具体例は、通常時にτv1=2[ms]、系統異常時はτv2=0.1[ms]である。フィルタ15,16は、(12)式で表される機能を持つ構成とすることが望ましい。すなわち、i回目のサンプリング時のフィルタ出力値Yiは、入力値Xi、係数a、前回(i―1)の出力値Yi 1の下で、
i=aXi+(1−a)Yi 1 (12)
となる特性を持つことである。このようにすれば、フィルタの時定数τvが、τv=τv1=2[ms]からτv=τv2=0.1[ms]に短くなるときは、0.1[ms]の短時間に変化する。一方、τv2=0.1[ms]からτv1=2[ms]へと長くなるときは、2[ms]をかけて連続的に変化する。
【0037】
また、系統異常継続想定時間t1は、例えばt1=200[ms]である。検出電圧振幅の変化率ΔVsd1は、離散制御において検出電圧振幅の前回取込み値と今回取込み値の差分である。取込み周期は約100[μs]、しきい値ΔVmaxは、0.03[pu]/100[μs]としている。
【0038】
系統電圧の急変がない場合は、系統異常判定手段17において、電圧Vsd1の変化率は小さくなっているため、判定手段17はフィルタ15及び16に対して時定数切り換え指令を出力しない。これにより、フィルタ15及び16は、時定数が長い状態τv=τv1(≧τv2)に保たれ、フィルタ出力Vsd2,Vsq2は、系統の検出電圧Vsd1,Vsq1に含まれる逆相分や高調波分は充分に除去された状態となる。
【0039】
一方、系統電圧において、電圧の急変があった場合は、系統異常判定手段17において、電圧Vsd1の変化率は一定値よりも大きくなり、判定手段17はフィルタ15及び16に対して時定数切り換え指令を直ちに出力する。例えば、サンプリングタイム100[μs]とすれば、前回と今回のサンプリング電圧値そのものの偏差により、100[μs]強で電圧の急変を検出できる。これにより、フィルタ15及び16は、直ちに短い時定数状態τv=τv2(≦τv1)に切り換わり、フィルタ出力Vsd2,Vsq2は、系統の検出電圧Vsd1,Vsq1に含まれる逆相分や高調波分がほぼそのまま伝わる状態となる。
【0040】
これにより、系統が定常状態では、系統異常判定手段17における電圧Vsd1の変化率が一定値以下であり、長い時定数のフィルタ15,16を通して系統電圧正相分が得られる。したがって、逆相電圧や高調波成分の影響をなくすことができ、きれいな波形でインバータ1を動作させることができる。
【0041】
一方、系統異常で電圧急変が発生した場合には、系統異常判定手段17における電圧Vsd1の変化率が一定値を超え、フィルタ15,16の時定数切り換え指令が出力される。このため、短い時定数であるフィルタ15,16を通した制御に高速に切り換えられ、系統の瞬時電圧に高速に追従して応答できる。
【0042】
したがって、本実施例の電力変換装置は、定常時における波形改善と異常時等における応答改善との双方を実現することができる。
【0043】
図2は、本発明の第2の実施例による電力変換装置を示すブロック図である。なお、図1に示す第1の実施例の構成要素と同一のものには同一符号を付して説明を省略する。第1の実施例と異なる構成は、系統異常判定手段17の入力信号がd軸電圧Vsd1ではなく、q軸電圧Vsq1であることである。q軸電圧Vsq1は、通常時において系統電圧の位相に相当する。q軸電圧Vsq1が変動する状態は系統電圧位相が変動しており、系統異常状態にあることを意味する。
【0044】
本実施例は、第1の実施例に比べ、系統異常判定手段17の入力信号が異なるのみであり、入力信号の取扱いは第1の実施例と全く同一である。したがって、本実施例の電力変換装置は、第1の実施例の電力変換装置と全く同様に、定常時における波形改善と異常時等における応答改善との双方を実現することができる。
【0045】
図3は、本発明の第1及び第2の実施例による系統電圧波形の挙動例である。2線地絡系統異常におけるd軸電圧Vsd1、q軸電圧Vsq1の解析波形と、フィルタ時定数切り換えにより算出されたd軸電圧Vsd2、q軸電圧Vsq2の解析波形である。フィルタを通過する前の信号である電圧Vsd1とVsq1に注目すると、通常時はVsd1=1[pu]、Vsq1=0[pu]付近で細かく振動しており、系統異常時にVsd1、Vsq1が大きく変動していることが正相電圧軌跡から理解できる。フィルタを通過した後の信号であるVsd2(Vsq2も同じ)に注目すると、通常時はVsd2=1[pu](Vsq2=0[pu])付近でほぼ一定値になっている。また、系統異常時はVsd1(Vsq1)とほぼ同じ挙動をしていることが正相電圧軌跡から理解できる。
【0046】
これらの実施例の電力変換装置においては、系統電圧が定常状態であるときには、系統異常判定手段17における系統の検出電圧振幅または検出電圧位相の変化率が所定の値よりも小さい。したがって、フィルタの時定数は長い状態となり、そのフィルタの出力を用いてインバータを制御する。これにより、電力変換装置は、インバータの出力において逆相電圧や高調波成分を減少させることができる。
【0047】
更に、これらの実施例の電力変換装置は、系統異常によって電圧急変が発生した場合には、系統異常判定手段における系統の検出電圧振幅または検出電圧位相の変化率が所定の値よりも大きくなる。したがって、フィルタの時定数は短い状態となり、系統の検出電圧にほぼ追従した信号を用いてインバータを制御する。判定手段の入力信号として、フィルタを通過した信号を使用せず生の信号のみを使用しているため、フィルタによる検出遅れ、例えば10[ms]がなく、約100分の1である100[μs]で判定が可能である。また、フィルタ出力と生信号を切り換えるのではなく、フィルタの時定数を切り換えるため、(12)式で述べたように、フィルタ内部の積分成分が寄与して出力電圧補正信号が不連続に急変することがない。これにより、本電力変換装置は、電圧急変に対して安定して高速に応答することができる。
【0048】
系統異常解析結果から、所定値以上の系統の検出電圧振幅又は位相の変化率が観測されるのは、系統異常発生直後と系統異常除去直後、再閉路直後が主である。それ以外の期間では前記変化率が所定の値より小さくなる状態が継続することが確認されている。前記変化率が所定の値より小さくなっていても系統異常が継続しているわけで、この期間にフィルタ時定数を短い状態から長い状態に戻すと電圧急変に対して高速に応答できず過電流を招いてしまう。一方、系統異常発生から異常除去を経由して高速再閉路までの時間は、電力事業者毎に一定の管理値内で実施されている。この管理値より若干長い時間を系統異常継続想定時間に設定する。これらの実施例の電力変換装置では、前記変化率が所定の値より小さくなる状態が、系統異常想定継続時間を超えて継続した場合に、フィルタの時定数を短い状態から長い状態に切り換えて、そのフィルタの出力を用いてインバータを制御する。充分な確認時限を持たせているため系統の検出電圧の変動が無い状況での切り換えが確保される。
【0049】
なお、系統異常の様相によっては、中速再閉路、低速再閉路が選択される場合もあるが、この場合は、欠相検出、不足電圧検出により母線が遮断されるため、本発明でも対応できない領域となる。
【0050】
【発明の効果】
本発明によれば、定常時においては、不平衡成分や高調波成分の出力を抑制するとともに、系統異常により系統電圧が急変した場合には、高速に応答して過電流の発生を防止し得る電力変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施例による電力変換装置を示すブロック図である。
【図2】本発明の第2の実施例による電力変換装置を示すブロック図である。
【図3】本発明の第1及び第2の実施例による系統電圧の挙動例を示す波形図である。
【符号の説明】
1…インバータ、2…誘導性インピーダンス、3…系統電源、4…電圧位相検出器、5,6…三相/dq軸変換器、7…d軸電流制御回路、8…q軸電流制御回路、9…dq軸/三相変換器、10…パルス幅変調回路、11,12…減算器、13,14…加算器、15,16…フィルタ、17…系統異常判定手段、18…NaS電池。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a power conversion device that is used by being connected in parallel to a system, and more particularly to a power conversion device that is suitable for use in a power storage system and a reactive power compensation device and that stabilizes the supply of system power.
[0002]
[Prior art]
Examples of the power conversion device used for such a purpose include a power storage system combining a sodium-sulfur (NaS) battery and an inverter, a reactive power compensator (SVC: Static Var Compensator), and the like. In these systems, inverters are connected in parallel to the system via an inductive impedance. For example, in the power storage system, the inverter is controlled such that the NaS battery is charged with surplus power and the insufficient power is compensated by discharging from the NaS battery. A reference current command is determined based on the power control system, and a voltage control signal is generated by the voltage control circuit so that the output current of the inverter matches the reference current. Furthermore, it is known that the detected voltage of the system is added to the voltage control signal to correct the output of the inverter, and when the system voltage varies, an attempt is made to immediately respond to the variation. However, in the above-described power converter, power is supplied to the system following the system voltage. Therefore, if the system voltage includes an unbalanced component or a harmonic component, unnecessary operation is also performed on the system voltage. Will do. For this reason, there has been a problem that the output voltage unbalanced portion and generated harmonics increase in the power conversion device in a steady state. As means for solving this, Patent Document 1 includes a filter that uses a detection voltage of the system as an input signal, and a switch that outputs either the output signal of the filter or the detection voltage signal of the system. . And when the difference of a detection voltage signal and a filter output signal is larger than predetermined value, the technique which switches the output of the said switch to the detection voltage of a system voltage is proposed.
[0003]
[Patent Document 1]
JP 07-123726 A (Overall)
[0004]
[Problems to be solved by the invention]
In Patent Document 1, since the output signal of the filter is used as the input of the detection circuit, in principle, a certain detection delay occurs from the occurrence of the system abnormality to the detection of the phenomenon. For this reason, the high-speed response with respect to the voltage sudden change of a system | strain is inadequate.
[0005]
The object of the present invention is to suppress the output of unbalanced components and harmonic components in a steady state, and to prevent the occurrence of overcurrent by responding at high speed when the system voltage suddenly changes due to a system abnormality. It is to provide a power conversion device.
[0006]
When the inventor analyzed the system abnormal waveform, immediately after the system abnormality occurred, the detected voltage of the system suddenly changed its amplitude and phase, and when the detected voltage of the system suddenly changed, the output voltage signal of the power converter was corrected at high speed. If it is not possible, it has been found that overcurrent occurs.
[0007]
Another object of the present invention is to correct the output voltage signal of the power converter at high speed when the detection voltage of the system suddenly changes, thereby suppressing the occurrence of overcurrent.
[0008]
Further, according to the above analysis, it was found that the voltage signal of the system fluctuates violently during the system abnormality period, and periodically deviates from the filter output signal. When it is determined that the system abnormality has been accidentally converged before reclosing, and the voltage signal is switched to the filter output signal, the output voltage correction signal may change suddenly and cause overcurrent. It turns out that there is.
[0009]
Still another object of the present invention is to accurately determine the timing of system abnormality convergence, and to suppress the discontinuous sudden change of the output voltage correction signal and the occurrence of overcurrent based thereon.
[0010]
[Means for Solving the Problems]
A feature of the present invention is that, in a power converter configured to correct a voltage control signal in accordance with a detected voltage of the system, a low-pass with a variable time constant using the detected voltage of the system as an input signal before the correction signal. A filter, a system abnormality determining means for determining abnormality of the system, and when the determination means determines that the system is abnormal, the time constant of the filter is switched to a state shorter than before, and a system abnormality determining means is provided. A time constant switching means for continuously returning the time constant of the filter to the previous long time constant state in response to the determination of the convergence of the system abnormality is provided.
[0011]
The term “continuous” as used herein is not necessarily limited to the case where all are continuous, but may be multi-staged or may have a discontinuous part. The point is to distinguish it from those whose time constants are switched in steps.
[0012]
In this way, by continuously returning the time constant of the filter to the long time constant state, occurrence of overcurrent due to a sudden change in the voltage correction signal is prevented.
[0013]
Another feature of the present invention is that means for determining a system abnormality in response to the change rate of the detected voltage amplitude or phase of the system exceeding a threshold value, and the system abnormality determining means detects the system abnormality. When the determination is made, the time constant of the filter is shorter than other periods, or means for taking in the detected voltage of the system as a correction signal without passing through the filter.
[0014]
In this way, the system abnormality is determined in response to the change rate of the amplitude or phase of the detected voltage itself directly exceeding the threshold value without using a filter, so that high-speed response to sudden voltage changes in the system To improve.
[0015]
Still another feature of the present invention is that a system abnormality is determined in response to the change rate of the detected voltage amplitude or phase of the system exceeding a threshold value, and the rate of change is below the threshold value and the system It is to determine the convergence of the system abnormality in response to the elapse of a predetermined time after the abnormality determination.
[0016]
In this way, the system abnormality is determined in accordance with the change rate of the amplitude or phase of the detection voltage itself of the system exceeding the threshold value directly without passing through the filter, and the system abnormality convergence is determined for a predetermined time. The occurrence of overcurrent is prevented by introducing the element.
[0017]
Other objects and features of the present invention will become apparent from the following description of the embodiments.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0019]
FIG. 1 is a block diagram showing a power converter according to a first embodiment of the present invention. The inverter 1 is connected in parallel to a system having a system power supply 3 via an inductive impedance 2. As the inductive impedance 2, a converter transformer or an AC reactor is generally used. In the power storage system, 18 is a NaS battery.
[0020]
The voltage control circuit includes a voltage phase detector 4, three-phase / dq axis converters 5, 6, a d-axis current control circuit 7, a q-axis current control circuit 8, a dq-axis / three-phase converter 9, and a pulse width modulation circuit 10. , Subtracters 11 and 12 and adders 13 and 14. Voltage control signals Ucd and Ucq are generated according to the difference between the output currents Ia to Ic of the inverter 1 and the d-axis and q-axis current set values Id ′ and Iq ′ that are reference currents, and according to the voltage control signal The output voltage of the inverter is controlled. The voltage control circuit corrects the voltage control signals Ucd and Ucq in accordance with the system detection voltages Vsa to Vsc to obtain Vcd and Vcq. At this time, the filters 15 and 16 receive the detection voltage of the system via the three-phase / dq axis converter 5. The system abnormality determination means 17 outputs a system abnormality occurrence flag τv, and the filters 15 and 16 switch the response time constant to a short state when a system abnormality occurs, and switch the response time constant to a long state at other times.
[0021]
Next, the operation of this embodiment will be described. First, the outline of the basic operation of this embodiment will be described. The voltage of each phase output from the inverter 1 is Vca, Vcb, Vcc, the voltage of each phase of the system is Vsa, Vsb, Vsc, and the current flowing in each phase of the system is Ia, Ib, Ic. When the inductance of the inductive impedance 2 is L and the resistance is ignored, the following formulas (1) to (3) are established between the above quantities.
[0022]
L · (dIa / dt) = Vca−Vsa (1)
L · (dIb / dt) = Vcb−Vsb (2)
L · (dIc / dt) = Vcc−Vsc (3)
Here, a conversion operation to the dq2 axis is performed. For conversion to the dq2 axis, for example, the conversion operation is performed on the output voltage of the inverter 1 by the following equation (4). The same applies to other amounts.
[0023]
[Expression 1]
Figure 0004056852
[0024]
If the above conversion operation is performed for the equations (1) to (3), equations (5) and (6) are obtained.
[0025]
L · (dId / dt) = Vcd−Vsd−ωLIq (5)
L · (dIq / dt) = Vcq−Vsq + ωLId (6)
Here, Vcd and Vcq are amounts obtained by converting the generated voltage of the inverter 1 into two axes, Vsd and Vsq are amounts obtained by converting the system voltage into two axes, Id and Iq are amounts obtained by converting the current of the inverter 1 into two axes, ω is the angular frequency of the system voltage.
[0026]
Further, the output voltage of the inverter 1 is determined based on the following equations (7) and (8).
[0027]
Vcd = Vsd + ωLIq + Ucd (7)
Vcq = Vsq−ωLId + Ucq (8)
Substituting Equations (7) and (8) into Equations (5) and (6) yields Equations (9) and (10).
[0028]
L · (dId / dt) = Ucd (9)
L · (dIq / dt) = Ucq (10)
From the above formulas (9) and (10), it can be seen that Ucd can be controlled to control Id and Ucq can be controlled to control Iq. Therefore, the output voltage of each phase of the inverter 1 is obtained by inversely converting Vcd and Vcq obtained from the equations (7) and (8) into three phases based on the manipulated variables of Ucd and Ucq. The inverse transformation can be expressed by the following equation (11).
[0029]
[Expression 2]
Figure 0004056852
[0030]
Next, a specific description will be given with reference to FIG. The voltage phase detector 4 obtains the phase of the system voltage based on the three-phase detection voltages Vsa, Vsb, and Vsc detected from the system power supply 3 to obtain a sine wave (hereinafter referred to as sin ωt) and a cosine wave (hereinafter referred to as cos ωt). Signal). The three-phase / dq axis converter 6 receives the three-phase output currents Ia, Ib, and Ic of the inverter 1 and outputs the d-axis current Id and the q-axis from the sin ωt signal and the cos ωt signal output from the voltage phase detector 4. The current Iq is output.
[0031]
The d-axis current Id is compared with the d-axis current set value Id ′ in the subtractor 11, and the deviation is input to the d-axis current control circuit 7. The d-axis current control circuit 7 outputs a signal such that the deviation becomes zero. The output Udc of the d-axis current control circuit 7 and the output Vsd2 of the filter 15 are added by the adder 13 and input to the dq-axis / three-phase converter 9 as the d-axis voltage setting value Vcd.
[0032]
Similarly, the q-axis current Iq is compared with the q-axis current set value Iq ′ by the subtractor 12, and the deviation is input to the q-axis current control circuit 8. The q-axis current control circuit 8 outputs a signal such that the deviation becomes zero. The output Ucq of the q-axis current control circuit 8 and the output Vsq2 of the filter 16 are added by the adder 14 and input to the dq-axis / three-phase converter 9 as the q-axis voltage set value Vcq.
[0033]
The dq-axis / three-phase converter 9 obtains three-phase voltage command values Vca ′, Vcb ′, Vcc ′ by inversely converting the input d-axis voltage set value Vcd and the q-axis voltage set value Vcq. Is output to the pulse width modulation circuit 10. The pulse width modulation circuit 10 controls the inverter 1 so that the three-phase output voltages Vca, Vcb, Vcc of the inverter become equal to the three-phase voltage command values Vca ′, Vcb ′, Vcc ′.
[0034]
Next, the characteristic operation of the present embodiment will be described with reference to FIG. The three-phase / dq axis converter 5 receives the three-phase voltages Vsa, Vsb, Vsc from the system and converts them into the d-axis voltage Vsd1 and the q-axis voltage Vsq1. The filter 15 receives the d-axis voltage Vsd1 and outputs it as the d-axis voltage Vsd2. Here, the biaxially converted voltage has a positive phase voltage of direct current, a negative phase voltage of double harmonics, and a harmonic voltage of higher harmonic components. Therefore, by using a low-pass filter, the d-axis voltage Vsd2 is Only positive phase voltage components. Similarly, the filter 16 inputs the q-axis voltage Vsq1 and outputs the q-axis voltage Vsq2 that is only for the positive phase of the system voltage.
[0035]
The system abnormality determination means 17 receives the d-axis voltage Vsd1 that is the output of the three-phase / dq converter 5. The d-axis voltage Vsd1 usually corresponds to the positive phase amplitude value of the system voltage. The system abnormality determination unit 17 calculates the absolute value | ΔVsd1 | of the change rate of the d-axis voltage Vsd1 and compares it with a predetermined set value ΔVmax. If the absolute value | ΔVsd1 | of the change rate of Vsd1 is larger than the set value ΔVmax, it is determined that a system abnormality has occurred, and the time constants τv of the filters 15 and 16 are switched from the long state τv1 to the short state τv2. Outputs a command. This command is continued until the absolute value | ΔVsd1 | of the change rate of Vsd1 is smaller than the set value ΔVmax until the set system abnormality continuation assumption time t1 is exceeded. In other words, the system voltage amplitude change rate | ΔVsd1 | is determined to be the convergence of the system abnormality because the state in which the system voltage amplitude change rate | ΔVsd1 |
[0036]
A specific example of the filter time constant is τv1 = 2 [ms] during normal operation and τv2 = 0.1 [ms] when the system is abnormal. It is desirable that the filters 15 and 16 have a function represented by the expression (12). That is, the filter output value Y i of the time of sampling of the i-th, the input value X i, coefficients a, the output value Y i of the previous (i-1) - Under 1,
Y i = aX i + (1 -a) Y i - 1 (12)
It has the characteristic that becomes. In this way, when the time constant τv of the filter becomes shorter from τv = τv1 = 2 [ms] to τv = τv2 = 0.1 [ms], it changes in a short time of 0.1 [ms]. . On the other hand, when τv2 = 0.1 [ms] becomes longer from τv1 = 2 [ms], it continuously changes over 2 [ms].
[0037]
Moreover, the system abnormality continuation estimated time t1 is, for example, t1 = 200 [ms]. The change rate ΔVsd1 of the detection voltage amplitude is a difference between the previous acquisition value and the current acquisition value of the detection voltage amplitude in the discrete control. The capture period is about 100 [μs], and the threshold value ΔVmax is 0.03 [pu] / 100 [μs].
[0038]
When there is no sudden change in the system voltage, since the rate of change of the voltage Vsd1 is small in the system abnormality determination unit 17, the determination unit 17 does not output a time constant switching command to the filters 15 and 16. As a result, the filters 15 and 16 are maintained in a state with a long time constant τv = τv1 (≧ τv2), and the filter outputs Vsd2 and Vsq2 have the antiphase component and the harmonic component included in the system detection voltages Vsd1 and Vsq1. It will be in the state removed enough.
[0039]
On the other hand, when there is a sudden voltage change in the system voltage, the system abnormality determination means 17 causes the rate of change of the voltage Vsd1 to be greater than a certain value, and the determination means 17 instructs the filters 15 and 16 to change the time constant. Is output immediately. For example, if the sampling time is 100 [μs], a sudden change in voltage can be detected at a little over 100 [μs] based on the deviation between the previous and current sampling voltage values. As a result, the filters 15 and 16 are immediately switched to a short time constant state τv = τv2 (≦ τv1), and the filter outputs Vsd2 and Vsq2 have antiphase components and harmonic components included in the system detection voltages Vsd1 and Vsq1. It becomes a state that is transmitted almost as it is.
[0040]
As a result, when the system is in a steady state, the rate of change of the voltage Vsd1 in the system abnormality determination means 17 is not more than a certain value, and the system voltage positive phase is obtained through the filters 15 and 16 having long time constants. Therefore, the influence of the negative phase voltage and the harmonic component can be eliminated, and the inverter 1 can be operated with a clean waveform.
[0041]
On the other hand, when a sudden voltage change occurs due to a system abnormality, the rate of change of the voltage Vsd1 in the system abnormality determination means 17 exceeds a certain value, and a time constant switching command for the filters 15 and 16 is output. For this reason, it is possible to switch to the control through the filters 15 and 16 having a short time constant at high speed and to respond to the instantaneous voltage of the system at high speed.
[0042]
Therefore, the power conversion device according to the present embodiment can realize both the waveform improvement in the steady state and the response improvement in the abnormal time.
[0043]
FIG. 2 is a block diagram showing a power converter according to a second embodiment of the present invention. The same components as those of the first embodiment shown in FIG. A different configuration from the first embodiment is that the input signal of the system abnormality determination means 17 is not the d-axis voltage Vsd1 but the q-axis voltage Vsq1. The q-axis voltage Vsq1 corresponds to the phase of the system voltage at normal times. The state in which the q-axis voltage Vsq1 varies means that the system voltage phase varies and the system is in an abnormal state.
[0044]
The present embodiment is different from the first embodiment only in the input signal of the system abnormality determination means 17, and the handling of the input signal is exactly the same as the first embodiment. Therefore, the power conversion device of the present embodiment can realize both the waveform improvement at the normal time and the response improvement at the time of abnormality, just like the power conversion device of the first embodiment.
[0045]
FIG. 3 is an example of the behavior of the system voltage waveform according to the first and second embodiments of the present invention. These are an analysis waveform of the d-axis voltage Vsd1 and the q-axis voltage Vsq1 in a two-wire ground fault system abnormality, and an analysis waveform of the d-axis voltage Vsd2 and the q-axis voltage Vsq2 calculated by switching the filter time constant. When attention is paid to the voltages Vsd1 and Vsq1, which are signals before passing through the filter, in normal times, Vsd1 = 1 [pu] and Vsq1 = 0 [pu] are vibrated finely, and Vsd1 and Vsq1 fluctuate greatly when the system is abnormal. This can be understood from the positive phase voltage locus. When attention is paid to Vsd2 (Vsq2 is the same) which is a signal after passing through the filter, the signal is almost constant in the vicinity of Vsd2 = 1 [pu] (Vsq2 = 0 [pu]) in normal times. In addition, it can be understood from the positive phase voltage locus that the behavior is almost the same as Vsd1 (Vsq1) when the system is abnormal.
[0046]
In the power converters of these embodiments, when the system voltage is in a steady state, the rate of change of the detected voltage amplitude or detected voltage phase of the system in the system abnormality determination means 17 is smaller than a predetermined value. Therefore, the time constant of the filter becomes long, and the inverter is controlled using the output of the filter. Thereby, the power converter device can reduce a negative phase voltage and a harmonic component in the output of an inverter.
[0047]
Furthermore, in the power converters of these embodiments, when a sudden voltage change occurs due to a system abnormality, the change rate of the detected voltage amplitude or detected voltage phase of the system in the system abnormality determining unit becomes larger than a predetermined value. Accordingly, the time constant of the filter is short, and the inverter is controlled using a signal that substantially follows the detection voltage of the system. Since only the raw signal is used as the input signal of the determination means without using the signal that has passed through the filter, there is no detection delay due to the filter, for example, 10 [ms], which is about 1/100 [μs. ] Can be determined. In addition, since the filter time constant is switched instead of switching the filter output and the raw signal, the integral component in the filter contributes and the output voltage correction signal changes discontinuously and suddenly as described in the equation (12). There is nothing. Thereby, this power converter device can respond to a voltage sudden change stably at high speed.
[0048]
From the system abnormality analysis result, the change rate of the detected voltage amplitude or phase of the system exceeding a predetermined value is mainly observed immediately after the occurrence of the system abnormality, immediately after removal of the system abnormality, and immediately after reclosing. It has been confirmed that the state in which the rate of change is smaller than a predetermined value continues in other periods. Even if the rate of change is smaller than a predetermined value, the system abnormality continues, and if the filter time constant is returned from a short state to a long state during this period, an overcurrent cannot be quickly responded to a sudden voltage change. Will be invited. On the other hand, the time from the occurrence of system abnormality to the high-speed reclosing via abnormality removal is carried out within a certain management value for each electric power company. A time slightly longer than this management value is set as the system abnormality continuation estimated time. In the power converters of these examples, when the state in which the rate of change is smaller than a predetermined value continues beyond the expected system abnormality duration, the filter time constant is switched from a short state to a long state, The inverter is controlled using the output of the filter. Since a sufficient confirmation time is provided, switching in a situation where there is no fluctuation in the detection voltage of the system is ensured.
[0049]
Depending on the state of the system abnormality, the medium speed reclosing circuit and the low speed reclosing circuit may be selected. However, in this case, the bus is interrupted by the phase loss detection and the undervoltage detection, so the present invention cannot cope with it. It becomes an area.
[0050]
【The invention's effect】
According to the present invention, in a steady state, the output of unbalanced components and harmonic components can be suppressed, and when the system voltage suddenly changes due to a system abnormality, the occurrence of overcurrent can be prevented by responding at high speed. A power converter can be provided.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a power converter according to a first embodiment of the present invention.
FIG. 2 is a block diagram showing a power conversion device according to a second embodiment of the present invention.
FIG. 3 is a waveform diagram showing an example of system voltage behavior according to the first and second embodiments of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Inverter, 2 ... Inductive impedance, 3 ... System power supply, 4 ... Voltage phase detector, 5, 6 ... Three phase / dq axis converter, 7 ... d axis current control circuit, 8 ... q axis current control circuit, DESCRIPTION OF SYMBOLS 9 ... dq axis / three-phase converter, 10 ... Pulse width modulation circuit, 11, 12 ... Subtractor, 13, 14 ... Adder, 15, 16 ... Filter, 17 ... System abnormality determination means, 18 ... NaS battery.

Claims (3)

系統に誘導性インピーダンスを介して並列接続されたインバータと、このインバータの出力電流と基準電流の差に応じて電圧制御信号を生成し、この電圧制御信号に応じて前記インバータの出力電圧を制御する電圧制御回路とを有し、系統の検出電圧に応じて前記電圧制御信号を補正する構成の電力変換装置において、補正信号の前段に挿入され前記系統の検出電圧を入力信号とする時定数可変の低域通過フィルタと、いかなるフィルタも通過しない系統電圧信号を用いて、この系統電圧信号の電圧振幅の変化率がしきい値を超えたことに応じて系統異常と判定し、この変化率がしきい値を下回りかつこの下回った状態が所定時間経過したことに応じて系統異常の収束を判定する系統異常判定手段と、この系統異常判定手段が系統の異常を判定したことに応じて、前記低域通過フィルタの時定数をそれ以前よりも短い状態に切換えるとともに、前記系統異常判定手段が系統異常の収束を判定したことに応じて、前記低域通過フィルタの時定数をそれ以前の長い時定数状態まで連続的に戻す時定数切換え手段を備えるとともに、前記低域通過フィルタは、i回目のサンプリング時のフィルタ出力値Y が、入力値X 、係数a、前回(i−1)の出力値Y i−1 の下で、(12)式で表される機能を持つ構成としたことを特徴とする電力変換装置。
=aX +(1−a)Y i−1 ………………………………………………(12)
An inverter connected in parallel to the system via an inductive impedance, and a voltage control signal is generated according to the difference between the output current of the inverter and a reference current, and the output voltage of the inverter is controlled according to the voltage control signal In a power conversion device having a voltage control circuit and correcting the voltage control signal according to the detection voltage of the system, a time constant variable that is inserted before the correction signal and uses the detection voltage of the system as an input signal. Using a low-pass filter and a system voltage signal that does not pass through any filter, the system voltage is determined to be abnormal when the rate of change in the voltage amplitude of the system voltage signal exceeds a threshold value. A system abnormality determining means for determining convergence of the system abnormality in response to a lapse of a predetermined time that is below the threshold value and this lower state, and the system abnormality determining means determines the abnormality of the system. Depending on the fact, the time constant of the low-pass filter with switched to shorter state than before it, in response to the system abnormality determination means determines the convergence of system abnormality, when the low-pass filter Rutotomoni with constant switching means when constant continuously back to constant state when previous long, the low pass filter, i-th filter output value Y i of the time of sampling of the input value X i, coefficients a A power conversion device having a function represented by the equation (12) under the output value Y i-1 of the previous (i-1) .
Y i = aX i + (1-a) Y i-1 ……………………………………………… (12)
請求項1において、前記系統異常判定手段は、前記系統の三相電圧をdq軸に変換する手段と、この変換により得られたd軸電圧の変化率を予定値と比較する手段を備えたことを特徴とする電力変換装置。  2. The system abnormality determining means according to claim 1, comprising means for converting the three-phase voltage of the system to a dq axis, and means for comparing the rate of change of the d axis voltage obtained by this conversion with a predetermined value. The power converter characterized by this. 請求項1において、前記系統異常判定手段は、前記系統の三相電圧をdq軸に変換する手段と、この変換により得られたq軸電圧の変化率を予定値と比較する手段を備えたことを特徴とする電力変換装置。  2. The system abnormality determining means according to claim 1, comprising means for converting the three-phase voltage of the system to a dq axis, and means for comparing the rate of change of the q-axis voltage obtained by this conversion with a predetermined value. The power converter characterized by this.
JP2002317638A 2002-10-31 2002-10-31 Power converter Expired - Fee Related JP4056852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317638A JP4056852B2 (en) 2002-10-31 2002-10-31 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317638A JP4056852B2 (en) 2002-10-31 2002-10-31 Power converter

Publications (2)

Publication Number Publication Date
JP2004153957A JP2004153957A (en) 2004-05-27
JP4056852B2 true JP4056852B2 (en) 2008-03-05

Family

ID=32460983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317638A Expired - Fee Related JP4056852B2 (en) 2002-10-31 2002-10-31 Power converter

Country Status (1)

Country Link
JP (1) JP4056852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8397569B2 (en) * 2008-04-10 2013-03-19 Panasonic Corporation Inertial force sensor

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4518002B2 (en) * 2005-11-01 2010-08-04 富士電機システムズ株式会社 Power stabilization system using power storage device and control device thereof
JP4748052B2 (en) * 2006-12-22 2011-08-17 東芝三菱電機産業システム株式会社 AC output converter parallel operation controller
JP4894509B2 (en) * 2006-12-27 2012-03-14 東京電力株式会社 Inverter control device
JP5085224B2 (en) * 2007-08-10 2012-11-28 株式会社ダイヘン Signal extraction circuit and system interconnection inverter device including the same
JP5498100B2 (en) * 2009-08-31 2014-05-21 株式会社ダイヘン Inverter control circuit, grid-connected inverter system equipped with this inverter control circuit
JP5178670B2 (en) * 2009-09-17 2013-04-10 三菱電機株式会社 Power converter
JP5424908B2 (en) * 2010-01-19 2014-02-26 美和電気株式会社 Accident detection device and accident detection method
JP5567365B2 (en) * 2010-03-10 2014-08-06 株式会社ダイヘン Inverter control circuit and grid-connected inverter system provided with this inverter control circuit
JP5596395B2 (en) * 2010-03-31 2014-09-24 株式会社ダイヘン Inverter control circuit and grid-connected inverter system provided with this inverter control circuit
JP5877648B2 (en) 2011-03-23 2016-03-08 北陸電力株式会社 Distributed power system
JP5776308B2 (en) * 2011-04-26 2015-09-09 富士電機株式会社 Grid interconnection power converter
JP5678844B2 (en) * 2011-09-07 2015-03-04 三菱電機株式会社 Control device for power converter
KR101493511B1 (en) * 2013-06-26 2015-02-16 포스코에너지 주식회사 An apparatus and a method for controlling an overcurrent of a grid connected inverter according to error of grid voltage
JP2013215093A (en) * 2013-07-22 2013-10-17 Daihen Corp Inverter control circuit, and system interconnection inverter system having inverter control circuit
WO2016051500A1 (en) * 2014-09-30 2016-04-07 株式会社安川電機 Power conversion device, power generation system, and current control method
US10734900B2 (en) * 2016-12-28 2020-08-04 Mitsubishi Electric Corporation Converter device, motor drive device, refrigerator, air conditioner, and heat-pump water heater
JP6889026B2 (en) * 2017-05-15 2021-06-18 株式会社日立インダストリアルプロダクツ Power converter
JP6939465B2 (en) * 2017-11-22 2021-09-22 株式会社明電舎 Power converter
CN112236931B (en) * 2019-05-14 2023-12-22 东芝三菱电机产业系统株式会社 Phase failure detection device for power conversion device
JP7318419B2 (en) * 2019-08-28 2023-08-01 富士電機株式会社 AC system monitoring system
CN111896798B (en) * 2020-08-04 2022-12-09 中车青岛四方车辆研究所有限公司 Method and device for detecting output unbalanced power of auxiliary converter
CN114285036B (en) * 2022-03-07 2022-07-05 深圳市德兰明海科技有限公司 Three-phase power grid abnormity detection method and system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8397569B2 (en) * 2008-04-10 2013-03-19 Panasonic Corporation Inertial force sensor

Also Published As

Publication number Publication date
JP2004153957A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP4056852B2 (en) Power converter
KR100240905B1 (en) Npc inverter control system
JP5542609B2 (en) Reactive power compensator
WO2015165191A1 (en) Steady state control method for three-phase double-mode inverter
JP5580147B2 (en) Stabilization control method
US10236793B2 (en) Grid connection power conversion device and output current control method thereof
EP2606548A2 (en) Method of controlling a grid side converter of a wind turbine and system suitable therefore
JP2008306805A (en) Power conversion device
US20070189045A1 (en) Power system having a voltage regulator with a notch filter
WO2020217428A1 (en) Control device
JP3992679B2 (en) Power converter
Jabbarnejad et al. Combined control of grid connected converters based on a flexible switching table for fast dynamic and reduced harmonics
CN112260280A (en) Harmonic control method for bidirectional AC/DC converter in hybrid micro-grid
JP2002238163A (en) Power converter
Wei et al. Performance analysis and improvement of output current controller for three-phase shunt active power filter
JP6361398B2 (en) Control device for power conversion device for grid connection, and power conversion device for grid connection
CN115864807A (en) Three-phase inverter short-circuit current limiting method and system for non-fault phase continuous power supply
JP4034458B2 (en) Self-excited AC / DC converter control device and circuit breaker circuit control device
JPH07123726A (en) Power converter
Paul Shunt active and series active filters-based power quality conditioner for matrix converter
JPH08147057A (en) Device and method for generating reactive power
JP2001136664A (en) Distributed power generating system
WO2020217427A1 (en) Control device
EP4318917A1 (en) Power conversion device and control device
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees