JPH0698469A - Control system of voltage detection-type reactive-power compensation apparatus - Google Patents

Control system of voltage detection-type reactive-power compensation apparatus

Info

Publication number
JPH0698469A
JPH0698469A JP4246981A JP24698192A JPH0698469A JP H0698469 A JPH0698469 A JP H0698469A JP 4246981 A JP4246981 A JP 4246981A JP 24698192 A JP24698192 A JP 24698192A JP H0698469 A JPH0698469 A JP H0698469A
Authority
JP
Japan
Prior art keywords
voltage
control
phase
voltage detection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4246981A
Other languages
Japanese (ja)
Inventor
Hideki Yamamura
英機 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP4246981A priority Critical patent/JPH0698469A/en
Publication of JPH0698469A publication Critical patent/JPH0698469A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/10Flexible AC transmission systems [FACTS]

Abstract

PURPOSE:To control this system at high speed and to restrain a fluctuation in a voltage by a method wherein a detection circuit is installed in order to detect a DC signal in a system voltage and an operation circuit expressed by a specific operation formula is installed. CONSTITUTION:The difference between a detected system voltage VL and a target reference voltage Vref is input to a control-meter circuit 13. Reactive power generated by a thyristor-controlled reactor connected to a system bus 1 is increased or decreased and controlled by its output. The system voltage VL is made to follow the target voltage Vref. Especially a phase voltage VL as the system voltage and a phase voltage VL' delayed by 90 deg. from it are converted respectively into DC signals by squaring devices 17, 18. A voltage detection circuit 16 which finds a DC signal VC in the system voltage by instantaneously adding both and by removing a ripple is provided. The operation and processing of the voltage detection circuit 16 is expressed by a formula of VC={(VL<2>+VL'<2>)/2}<1/2>. Thereby, the system voltage VL can be converted instantaneously into a direct current by the voltage detection circuit 16, and the V control system of a feedback can be achieved at high speed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、交流電力系統に設置
した無効電力補償装置(以下SVCと呼称する)の制御
を、検出した系統電圧VLと目標基準電圧Vrefの差分に
基づいて行う電圧検出形SVC制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention controls a reactive power compensator (hereinafter referred to as SVC) installed in an AC power system based on a difference between a detected system voltage V L and a target reference voltage V ref. The present invention relates to a voltage detection type SVC control system.

【0002】[0002]

【従来の技術】SVCは、電力系統に供給する無効電力
を増減することによって、負荷変動に基づく電圧変動を
抑制する。このSVCの制御は、負荷の無効電力変動を
検出し、これによってオープンループのQ制御を行うこ
とが、高速制御が可能なことから好ましい。特に、フリ
ッカレベルの電圧変動を抑制したい場合、高速応答は不
可欠で、例えば10msec以下の応答速度が必要になる。
2. Description of the Related Art SVC suppresses voltage fluctuations due to load fluctuations by increasing or decreasing the reactive power supplied to the power system. In this SVC control, it is preferable to detect a reactive power fluctuation of the load and thereby perform open loop Q control because high speed control is possible. In particular, when it is desired to suppress voltage fluctuations at the flicker level, high-speed response is essential, and a response speed of, for example, 10 msec or less is required.

【0003】しかし、SVCの設置場所が限定され、負
荷電流を容易に検出できない場合などには、負荷の無効
電力を検出できないため、上記Q制御方式を採用できな
い。
However, when the installation location of the SVC is limited and the load current cannot be detected easily, the reactive power of the load cannot be detected, so that the Q control method cannot be adopted.

【0004】このような系統では、系統電圧VLの直流
信号(実効値)を検出し、これが目標基準電圧Vref
追従するようにSVCの発生する無効電力を増減するV
制御(AVR制御)を行っている。この目標基準電圧V
refは、例えば、ローパスフィルタで取出した系統電圧
Lの長周期成分(変電所の送り出し電圧に相当する)
を用いる。
In such a system, a DC signal (effective value) of the system voltage VL is detected, and V which increases / decreases the reactive power generated by the SVC so as to follow the target reference voltage V ref.
Control (AVR control) is performed. This target reference voltage V
ref is, for example, a long-period component of the system voltage V L extracted by a low-pass filter (corresponding to the sending voltage of the substation).
To use.

【0005】V制御はフィードバック制御であり、系統
安定化のために一次の遅れ要素を持つ調節計回路を必要
とし、上記Q制御に比べて応答性で劣るという問題があ
る。
The V control is a feedback control, requires a controller circuit having a first-order lag element for system stabilization, and has a problem that the response is inferior to the Q control.

【0006】この応答性に関係する部分を伝達関数で表
したSVCの制御系は図4のようになる。図4におい
て、1は系統母線で、変電所電源ESに電源側インピ−
ダンスXSを通してつながれ、遠方の変動負荷2に給電
する。
FIG. 4 shows the control system of the SVC in which the portion related to the response is represented by a transfer function. In FIG. 4, reference numeral 1 is a system bus, which is connected to the substation power supply E S by an impedance on the power supply side.
It is connected through dance X S and supplies the variable load 2 in the distance.

【0007】3は系統母線1に接続されたSVCで、サ
イリスタ制御リアクトル(以下TCRと呼称する)とフ
ィルタ(以下FCと呼称する)を並列接続したものであ
る。TCRは、逆並列接続サイリスタ4と遅相電力Q
TCRを発生する高インピーダンス変圧器等のリアクトル
Lとから構成され、FCは、一定の進相電力QFCを発
生するコンデンサ5と、このコンデンサ5とで高調波を
吸収する小容量の直列リアクトル6とから構成される。
Reference numeral 3 denotes an SVC connected to the system bus 1, which is a thyristor control reactor (hereinafter referred to as TCR) and a filter (hereinafter referred to as FC) connected in parallel. The TCR consists of the anti-parallel connection thyristor 4 and the lagging power Q.
FC is composed of a reactor X L such as a high impedance transformer that generates TCR , and FC is a capacitor 5 that generates a constant advance power Q FC and a small-capacity series reactor that absorbs harmonics with this capacitor 5. 6 and 6.

【0008】7はPLL回路で、変成器PT1を介して
系統母線1から系統電圧VLを受け、電源同期信号を作
る。8は電圧検出回路で、整流器9およびリップル除去
用のローパスフィルタ10から構成され、変成器PT1
を介して受けた系統電圧VLから直流信号Vcを出力す
る。ローパスフィルタ10の伝達関数G1(S)は1/
(1+ST1)である。
A PLL circuit 7 receives a system voltage V L from the system bus 1 via a transformer PT 1 and produces a power supply synchronizing signal. Reference numeral 8 is a voltage detection circuit, which is composed of a rectifier 9 and a ripple-removing low-pass filter 10, and is provided with a transformer PT 1
A DC signal V c is output from the system voltage V L received via the. The transfer function G 1 (S) of the low-pass filter 10 is 1 /
(1 + ST 1 ).

【0009】11は基準電圧発生回路で、ローパスフィ
ルタから構成され、上記直流信号V cから系統電圧VL
長周期成分を目標基準電圧Vrefとして取出す。この伝
達関数G2(S)は、1/(1+ST2)である。
Reference numeral 11 is a reference voltage generating circuit, which is a low-pass filter.
The DC signal V cTo system voltage VLof
Target period voltage VrefTake out as. This biography
Reaching function G2(S) is 1 / (1 + ST2).

【0010】12は加算器で、検出した系統電圧VL
直流信号Vcと目標基準電圧Vrefの差を出力する。13
はAVR制御を行う調節計回路で、伝達関数としてK3
/(1+ST3)を持つ。
An adder 12 outputs the difference between the detected DC signal V c of the system voltage V L and the target reference voltage V ref . Thirteen
Is a controller circuit for AVR control, and K 3 is used as a transfer function.
Holds / (1 + ST 3 ).

【0011】14はパルス発生器で、調節計回路13の
出力と前記電源同期信号を比較し、正負のトリガパルス
を生成する。15はトリガパルスをサイリスタのゲート
1,G2に出力するパルス増幅器である。
A pulse generator 14 compares the output of the controller circuit 13 with the power supply synchronizing signal to generate positive and negative trigger pulses. A pulse amplifier 15 outputs a trigger pulse to the gates G 1 and G 2 of the thyristor.

【0012】上記構成は、系統電圧VLの直流信号V
cと、基準電圧発生回路11により取出した目標基準電
圧Vrefとの差(Vc−Vref)を、一定の応答遅れを持
たせた調節計回路13に入力し、その出力で、TCRを
制御する。すなわち、系統電圧V Lの直流信号Vcが、目
標基準電圧Vrefに近づくようにTCRの遅相電力QTCR
を増減して、電圧変動を抑制する。
The above-mentioned configuration has a system voltage VLDC signal V
cAnd the target reference voltage extracted by the reference voltage generation circuit 11.
Pressure VrefDifference with (Vc-Vref) With a constant response delay
Input the applied controller circuit 13 and output it to the TCR
Control. That is, the system voltage V LDC signal VcBut the eyes
Standard reference voltage VrefTCR lagging power Q to approachTCR
Is increased or decreased to suppress voltage fluctuations.

【0013】[0013]

【発明が解決しようとする課題】上記制御系の応答速度
を、伝達関数から検討する。電圧検出回路8の伝達関数
1(S)はローパスフィルタ10の1/(1+ST1
である。また、基準電圧発生回路11の伝達関数G
2(S)は、1/(1+ST2)であり、これと並列の、
加算器12に電圧検出信号Vcを入力する信号線を含め
た伝達関数G2′(S)は1+1/(1+ST2)とな
る。調節計回路13の伝達関数はG3(S)はK3/(1
+ST3)である。
The response speed of the control system will be examined from the transfer function. The transfer function G 1 (S) of the voltage detection circuit 8 is 1 / (1 + ST 1 ) of the low pass filter 10.
Is. Further, the transfer function G of the reference voltage generation circuit 11
2 (S) is 1 / (1 + ST 2 ), and in parallel with this,
The transfer function G 2 ′ (S) including the signal line for inputting the voltage detection signal V c to the adder 12 becomes 1 + 1 / (1 + ST 2 ). The transfer function of the controller circuit 13 is G 3 (S) is K 3 / (1
+ ST 3 ).

【0014】したがって、制御系全体の伝達関数はG0
(S)は、 G0(S)=G1(S)・{(1+G2(S)・G3(S)} となる。
Therefore, the transfer function of the entire control system is G 0
(S) becomes G 0 (S) = G 1 (S) · {(1 + G 2 (S) · G 3 (S)}.

【0015】ここで、基準電圧発生回路11は長周期成
分を取出すため、ST2を大きくしてあり、1+G
2(S)≒1とみなせる。
Here, since the reference voltage generating circuit 11 extracts the long-period component, ST 2 is set to a large value and 1 + G.
2 (S) ≈ 1 can be considered.

【0016】したがって、制御系全体の伝達関数は、 G0(S)≒G1(S)・G3(S)…… となる。Therefore, the transfer function of the entire control system is G 0 (S) ≉G 1 (S) G 3 (S).

【0017】この伝達関数G0(S)による電圧変動抑
制の応答速度を考える。系統の電圧変動ΔVは、電源側
インピ−ダンスXSにおいて、負荷2の無効電力変動Δ
L(フリッカ変化分)に応じて発生する(ΔV=ΔQL
・XS)。SVCは、TCRの無効電力の変化分ΔQTCR
で補償することによって、これを抑制しようとする(Δ
TCR=−ΔQL=−ΔV/XS)。ところが検出される
ΔVは、伝達関数G0(S)を通して、TCRの無効電
力QTCRを変化させる。この関係は、G0(S)=ΔQ
TCR/ΔVとなっている。
Consider the response speed of the voltage fluctuation suppression by the transfer function G 0 (S). The system voltage fluctuation ΔV is the reactive power fluctuation Δ of the load 2 in the power supply side impedance X S.
Occurs according to Q L (change in flicker) (ΔV = ΔQ L
・ X S ). SVC is the change in reactive power of TCR ΔQ TCR
Try to suppress this by compensating with (Δ
Q TCR = -ΔQ L = -ΔV / X S ). However, the detected ΔV changes the reactive power Q TCR of the TCR through the transfer function G 0 (S). This relationship is G 0 (S) = ΔQ
It is TCR / ΔV.

【0018】ここで、G0(S)の各一次遅れ要素S
1,ST3は、フィードバック制御系では、制御の安定
化のため、ST1<<ST3とする必要がある。前記リッ
プル除去用のローパスフィルタ10のST1は、ST1
1サイクル(20msec/50HZ)より、短くすること
ができない。ST3はST1の5倍程度必要であることか
ら、SVCの高速制御は期待できない。
Here, each first-order lag element S of G 0 (S)
In the feedback control system, T 1 and ST 3 need to be ST 1 << ST 3 in order to stabilize the control. ST 1 of the low-pass filter 10 for removing the ripple is ST 1
Than one cycle (20msec / 50H Z), it can not be shortened. Since ST 3 is required to be about 5 times that of ST 1 , high-speed control of SVC cannot be expected.

【0019】このV制御採用による応答遅れは、アーク
炉のように負荷変動が急峻でかつ不規則に変化する電圧
変動(フリッカ)ΔVを抑制対象とする場合に、応答が
追付かず、その改善効果は著しく低下する。
The response delay due to the adoption of the V control does not catch up with the response when the voltage fluctuation (flicker) ΔV in which the load fluctuation is abrupt and changes irregularly is suppressed as in the arc furnace, and the response is improved. The effect is significantly reduced.

【0020】そこで、この発明は、V制御を採用した場
合でも、高速制御が可能な制御方式を提供することを目
的とする。
Therefore, an object of the present invention is to provide a control system capable of high speed control even when V control is adopted.

【0021】[0021]

【課題を解決するための手段】この発明が提供する電圧
検出形SVCの制御方式は、検出した系統電圧VLの直
流信号Vcと目標基準電圧Vrefとの差を、安定化のため
充分に大きな応答遅れを持たせた増幅回路である調節計
回路に入力し、その出力で、系統母線に接続したサイリ
スタ制御リアクトルの発生する無効電力を増減制御し
て、系統電圧VLを目標電圧Vrefに追従させるようにし
た電圧検出形の無効電力補償装置において、系統電圧の
相電圧と、この90°遅れの相電圧を、各々2乗器で直
流信号に変換し、両者を瞬時加算してリップルを除去す
ることにより、系統電圧VLの直流信号Vcを求める電圧
検出回路を具備したことを特徴とする。
The control system of the voltage detection type SVC provided by the present invention is sufficient for stabilizing the difference between the detected DC signal V c of the system voltage V L and the target reference voltage V ref. Is input to a controller circuit which is an amplifier circuit having a large response delay, and its output controls increase / decrease of reactive power generated by a thyristor control reactor connected to a system bus to set a system voltage V L to a target voltage V L. In a voltage detection type reactive power compensator that is made to follow ref , the phase voltage of the system voltage and the phase voltage delayed by 90 ° are each converted into a DC signal by a squarer, and both are instantaneously added. It is characterized in that a voltage detection circuit for determining the DC signal V c of the system voltage V L is provided by removing the ripple.

【0022】この電圧検出回路の上記演算処理は、具体
的には、次の演算式で表せる。
The above arithmetic processing of this voltage detection circuit can be specifically expressed by the following arithmetic expression.

【数1】 [Equation 1]

【0023】[0023]

【作用】上記演算式に基づき瞬時値の演算を行うと、検
出の各時点で、系統電圧VLについて実効値対応の直流
信号VCが得られる。
When the instantaneous value is calculated based on the above formula, the DC signal V C corresponding to the effective value is obtained for the system voltage V L at each detection time point.

【0024】すなわち、VLとVL′は90°の位相差を
持ち、VL 2=Vl 2・cos2ωθ、VL 2′=Vl 2・si
2ωθと表され、cos2ωθ+sin2ωθ=1よ
り、各瞬時値を2乗して、瞬時加算すると各時点でリッ
プルが除去されたVL 2が求められる。加算により2倍電
圧になっているので、係数器で1/2を掛け、これを開
平すると、実効値対応の直流信号Vcが得られる。
That is, V L and V L ′ have a phase difference of 90 °, and V L 2 = V l 2 · cos 2 ωθ, V L 2 ′ = V l 2 · si
It is expressed as n 2 ωθ, and from cos 2 ωθ + sin 2 ωθ = 1, each instantaneous value is squared and instantaneously added to obtain V L 2 with ripples removed at each time point. Since the voltage has been doubled by the addition, the coefficient unit is multiplied by 1/2 and square rooted to obtain the DC signal V c corresponding to the effective value.

【0025】この電圧検出回路16の検出遅れは、演算
時間だけであり、前記リップル除去用のローパスフィル
タ10を用いた場合の1/10程度の数msecで求めるこ
とができる。調節計回路13の一次遅れ要素ST3も、
これに対応させ、従来同様に、その5倍程度とすればよ
いから、SVCの制御系の応答速度は、従来の1/10
程度に速めることができる。
The detection delay of the voltage detection circuit 16 is only the calculation time, and can be obtained in a few msec which is about 1/10 of that when the ripple removing low-pass filter 10 is used. The first-order lag element ST 3 of the controller circuit 13 is also
Corresponding to this, the response speed of the control system of the SVC is 1/10 of that of the conventional one because it can be set to about 5 times the same as in the conventional one.
You can speed it up to a certain degree.

【0026】これによってV制御方式(フィードバック
制御)で、Q制御方式(オープンループ制御)並の応答
性が確保でき、SVCの性能を向上できる。
As a result, the V control method (feedback control) can ensure the same responsiveness as the Q control method (open loop control), and the SVC performance can be improved.

【0027】[0027]

【実施例】図1に、この発明の一実施例を示す。これ
は、電圧検出回路16を、従来のローパスフィルタ10
を用いた従来の電圧検出回路8と置換えたもので、同一
符号を付けて示す他の部分は、図3に示す従来構成と同
一乃至同等の構成である。
1 shows an embodiment of the present invention. This is because the voltage detection circuit 16 is replaced with the conventional low-pass filter 10
The voltage detecting circuit 8 is replaced with the conventional voltage detecting circuit 8 using the above, and the other parts indicated by the same reference numerals have the same or equivalent configuration as the conventional configuration shown in FIG.

【0028】この発明は、系統電圧を直流化した制御信
号Vcの算出に、系統電圧VLと系統電圧より90°遅れ
た電圧VL′を用い、それらの瞬時値を2乗した値を瞬
時加算し、1/2倍し、開平する。したがって、系統電
圧の90°遅れの電圧を取出すΔ−Y結線の変成器PT
2を増設し、瞬時値を2乗する2乗器17,18、加算
器19、係数器20、開閉器21を設けている。
The present invention uses the system voltage V L and the voltage V L ′ which is delayed by 90 ° from the system voltage to calculate the control signal V c obtained by converting the system voltage into a direct current, and calculates the value obtained by squaring the instantaneous value thereof. Instantly add, halve and square root. Therefore, a transformer PT having a Δ-Y connection for extracting a voltage delayed by 90 ° from the system voltage
2 is added, and squarers 17, 18 for squaring the instantaneous value, an adder 19, a coefficient unit 20, and a switch 21 are provided.

【0029】この電圧検出回路16の詳細を、3相回路
で示すと図2のようになる。この電圧検出回路16は、
3相分設けられたSVCに対応し、U相、V相、W相の
夫々について設けられる。
The details of the voltage detecting circuit 16 are shown in FIG. 2 as a three-phase circuit. This voltage detection circuit 16
Corresponding to the SVC provided for three phases, it is provided for each of the U phase, V phase, and W phase.

【0030】変成器PT1は、Y−Y結線で相電圧を位
相変化なしに取出す。なお、Δ結線の三次回路が設けら
れ、第3高調波を吸収している。
The transformer PT 1 takes out the phase voltage by the YY connection without changing the phase. A third circuit with a Δ connection is provided to absorb the third harmonic.

【0031】変成器PT2は、Δ−Y結線で90°の位
相差を作り出す。すなわち1次側のU相に対し2次側の
V′相は90°遅れる。
The transformer PT 2 produces a 90 ° phase difference with the Δ-Y connection. That is, the V'phase on the secondary side is delayed by 90 ° with respect to the U phase on the primary side.

【0032】U相の電圧検出回路16uの演算を波形図
で示すと図3のようになる。すなわち、U相の電圧検出
回路16uは、U相の電圧Vuと、これから90°遅れた
V′相の電圧Vv′を受ける。そして、これらを2乗器
17,18で2乗し、加算器19で瞬時加算する。さら
に、係数器20で1/2倍し、開平器21で開平して、
U相の実効値対応の直流信号Vcuを算出する。
The operation of the U-phase voltage detection circuit 16 u is shown in the waveform diagram of FIG. That is, the U-phase voltage detection circuit 16 u receives the U-phase voltage V u and the V′-phase voltage V v ′ which is delayed by 90 °. Then, these are squared by the squarers 17 and 18, and added instantaneously by the adder 19. Further, the coefficient unit 20 is halved, and the square rootizer 21 is used to open the square root,
A DC signal Vcu corresponding to the U-phase effective value is calculated.

【0033】一次V相と二次W′相、一次W相と二次
U′相の電圧も、上記同様に90°の位相差を持つ。そ
こで、V相とW相の電圧検出回路16v,16wの演算
も、これらの電圧を受けて、同様に行われ、夫々、V相
の直流信号Vcv、W相の直流信号Vcwを出力する。
The voltages of the primary V phase and the secondary W'phase, and the voltages of the primary W phase and the secondary U'phase also have a phase difference of 90 ° as in the above. Therefore, the operations of the V-phase and W-phase voltage detection circuits 16 v and 16 w are similarly performed in response to these voltages, and the V-phase DC signal V cv and the W-phase DC signal V cw are respectively calculated. Output.

【0034】なお、変成器PT1,PT2に、振幅の出力
誤差があると、図3に示された2乗器の出力波形からわ
かるように、電源の4倍周期のリップルが発生するの
で、この場合は各2乗器17,18の出力レベルで調整
する。
When the transformers PT 1 and PT 2 have an output error in amplitude, as can be seen from the output waveform of the squarer shown in FIG. 3, a ripple of a quadruple cycle of the power supply occurs. In this case, the output levels of the respective squarers 17 and 18 are adjusted.

【0035】上記電圧検出回路16においては、系統電
圧VLの検出遅れは演算時間だけで決定され、数msecの
回路が実現できる。調節計回路13のST3は、この高
速化された電圧検出回路16の応答速度に応じて決定す
ればよく、例えば、ST3=5・ST1≒10msec程度に
できる。
In the voltage detection circuit 16, the detection delay of the system voltage V L is determined only by the calculation time, and a circuit of several msec can be realized. ST 3 of the controller circuit 13 may be determined according to the response speed of the speeded up voltage detection circuit 16, and for example, ST 3 = 5 · ST 1 ≈10 msec.

【0036】この応答速度は、オープンループのQ制御
方式の時間遅れに近づくもので、これによって、V制御
方式で、Q制御方式のフリッカ改善効果と同程度のもの
が期待できる。
This response speed is close to the time delay of the open loop Q control system, and therefore, the V control system can be expected to have the same flicker improvement effect as the Q control system.

【0037】[0037]

【発明の効果】この発明によれば、電圧検出回路16
で、系統電圧VLの直流変換が瞬時に行え、この応答時
間ST1の5倍程度に設定される次段調節計回路13の
応答時間ST3を、従来の1/10程度に短縮できる。
これによって、V制御方式の高速化が達成される。
According to the present invention, the voltage detection circuit 16
Thus, the DC voltage of the system voltage V L can be instantly converted, and the response time ST 3 of the next-stage controller circuit 13 which is set to about 5 times the response time ST 1 can be shortened to about 1/10 of the conventional one.
As a result, the speedup of the V control method is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の一実施例を示す電圧検出形SVC制
御装置の制御系統図
FIG. 1 is a control system diagram of a voltage detection type SVC control device showing an embodiment of the present invention.

【図2】図1の電圧検出回路を三相回路で示す図FIG. 2 is a diagram showing the voltage detection circuit of FIG. 1 as a three-phase circuit.

【図3】図1の電圧検出回路の演算の内容を示す電圧波
形図
FIG. 3 is a voltage waveform diagram showing the contents of calculation of the voltage detection circuit of FIG.

【図4】従来の電圧検出形SVC制御装置の制御系統図FIG. 4 is a control system diagram of a conventional voltage detection type SVC control device.

【符号の説明】[Explanation of symbols]

1 系統母線 2 負荷 3 無効電力補償装置(SVC) 11 基準電圧発生回路 12 加算器 13 調節計回路 14 パルス発生器 15 パルス増幅器 16 電圧検出回路 17,18 2乗器 19 加算器 20 係数器 21 開閉器 PT1 位相差なく系統電圧の相電圧を取出す変成器 PT2 90°の位相遅れで相電圧を取出す変成器1 system bus 2 load 3 reactive power compensator (SVC) 11 reference voltage generation circuit 12 adder 13 controller circuit 14 pulse generator 15 pulse amplifier 16 voltage detection circuit 17,18 squarer 19 adder 20 coefficient unit 21 switching Transformer PT 1 Transformer for extracting phase voltage of system voltage without phase difference PT 2 Transformer for extracting phase voltage with 90 ° phase delay

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 検出した系統電圧VLと目標基準電圧V
refとの差を、安定化のため系統電圧の検出時間に対し
て充分に大きな応答遅れを持たせた調節計回路に入力
し、その出力で、系統母線に接続したサイリスタ制御リ
アクトルの発生する無効電力を増減制御して、系統電圧
Lを目標電圧Vrefに追従させるようにした電圧検出形
の無効電力補償装置において、 系統電圧の相電圧と、この90°遅れの相電圧を、各々
2乗器で直流信号に変換し、両者を瞬時加算してリップ
ルを除去することにより、系統の直流電圧VLを求める
電圧検出回路を具備したことを特徴とする電圧検出形無
効電力補償装置の制御方式。
1. A detected system voltage V L and a target reference voltage V
The difference from ref is input to the controller circuit that has a sufficiently large response delay with respect to the detection time of the system voltage for stabilization, and the output is used to disable the thyristor control reactor connected to the system bus. In the voltage detection type reactive power compensator in which the power is controlled to increase or decrease so that the grid voltage VL follows the target voltage Vref , the phase voltage of the grid voltage and the phase voltage delayed by 90 ° are respectively 2 Control of a voltage detection type reactive power compensating device characterized by comprising a voltage detection circuit for converting a direct current signal by a multiplier and instantaneously adding both to remove a ripple to obtain a direct current voltage VL of a system. method.
JP4246981A 1992-09-17 1992-09-17 Control system of voltage detection-type reactive-power compensation apparatus Withdrawn JPH0698469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4246981A JPH0698469A (en) 1992-09-17 1992-09-17 Control system of voltage detection-type reactive-power compensation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4246981A JPH0698469A (en) 1992-09-17 1992-09-17 Control system of voltage detection-type reactive-power compensation apparatus

Publications (1)

Publication Number Publication Date
JPH0698469A true JPH0698469A (en) 1994-04-08

Family

ID=17156597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4246981A Withdrawn JPH0698469A (en) 1992-09-17 1992-09-17 Control system of voltage detection-type reactive-power compensation apparatus

Country Status (1)

Country Link
JP (1) JPH0698469A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388372A (en) * 2015-10-23 2016-03-09 中国电力科学研究院 Wind farm reactive power compensation device dynamic response time detection method
CN106199286A (en) * 2016-08-20 2016-12-07 国网山西省电力公司电力科学研究院 Wind energy turbine set dynamic reactive compensation device response speed method of testing
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
JP2018148664A (en) * 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same
JP2019140898A (en) * 2018-02-13 2019-08-22 富士電機株式会社 Reactive power compensation device and control program thereof, and reactive power compensation system
CN114895231A (en) * 2022-07-12 2022-08-12 南京宏泰半导体科技有限公司 High-end voltage differential sampling calibration system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388372A (en) * 2015-10-23 2016-03-09 中国电力科学研究院 Wind farm reactive power compensation device dynamic response time detection method
CN105388372B (en) * 2015-10-23 2018-08-28 中国电力科学研究院 A kind of Reactive Compensation in Wind Farm device dynamic response time detection method
JP2017147875A (en) * 2016-02-18 2017-08-24 富士電機株式会社 Reactive power output device, control method for reactive power output device, and power system
CN106199286A (en) * 2016-08-20 2016-12-07 国网山西省电力公司电力科学研究院 Wind energy turbine set dynamic reactive compensation device response speed method of testing
JP2018148664A (en) * 2017-03-03 2018-09-20 富士電機株式会社 Reactive power compensator and control system of the same
JP2019140898A (en) * 2018-02-13 2019-08-22 富士電機株式会社 Reactive power compensation device and control program thereof, and reactive power compensation system
CN114895231A (en) * 2022-07-12 2022-08-12 南京宏泰半导体科技有限公司 High-end voltage differential sampling calibration system and method

Similar Documents

Publication Publication Date Title
KR101129072B1 (en) Instantaneous voltage-drop compensation circuit, power conversion apparatus, instantaneous voltage-drop compensation method and computer readable medium storing instantaneous voltage-drop compensation program
JP6796029B2 (en) New energy source integrated power converter
JP4230648B2 (en) Controller for reactive power series compensator
JP6490249B2 (en) Power conversion device and power conversion system
US8560136B2 (en) System stabilizing device
JP2007124779A (en) Distributed power supply system and method for stabilizing system
US4903184A (en) Reactive power controller
US7778053B2 (en) Power system having a voltage regulator with a notch filter
US5804949A (en) Thyristor-controlled series capacitor triggering system
Hassan et al. A robust PLL for grid interactive voltage source converters
US5065304A (en) Controller for AC power converter
US5438253A (en) Static var generator using self-commutated inverter
Le Roux et al. Integrated active rectifier and power quality compensator with reduced current measurement
JPH0698469A (en) Control system of voltage detection-type reactive-power compensation apparatus
JP4971758B2 (en) Power converter
US10063242B2 (en) Phase-locked loop method for use in utility electricity parallel-connection system
Razali et al. Real-time implementation of dq control for grid connected three phase voltage source converter
Paul Shunt active and series active filters-based power quality conditioner for matrix converter
JP3570913B2 (en) Control device for semiconductor switch
JPH0919065A (en) Circuit for synchronization changeover of inverter
Zaveri et al. Simulation and analysis of control strategies for DSTATCOM
JPH0432621B2 (en)
JP2000217258A (en) Device for controlling self-excited ac/dc converter and device for controlling breaker circuit
JP2781602B2 (en) Power converter control device and system thereof
JP3254999B2 (en) PWM control self-excited rectifier

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991130