JP2015104297A - Electric leak monitoring and protection system - Google Patents

Electric leak monitoring and protection system Download PDF

Info

Publication number
JP2015104297A
JP2015104297A JP2013245871A JP2013245871A JP2015104297A JP 2015104297 A JP2015104297 A JP 2015104297A JP 2013245871 A JP2013245871 A JP 2013245871A JP 2013245871 A JP2013245871 A JP 2013245871A JP 2015104297 A JP2015104297 A JP 2015104297A
Authority
JP
Japan
Prior art keywords
power
line
leakage
cable
protection system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013245871A
Other languages
Japanese (ja)
Other versions
JP6210299B2 (en
Inventor
悟志 町田
Satoshi Machida
悟志 町田
敏明 谷
Toshiaki Tani
敏明 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2013245871A priority Critical patent/JP6210299B2/en
Publication of JP2015104297A publication Critical patent/JP2015104297A/en
Application granted granted Critical
Publication of JP6210299B2 publication Critical patent/JP6210299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent unnecessary cutoff of a cable by using power information on the cable in power generation of a distribution type power supply, regardless of a grounded system or non-grounded system.SOLUTION: An electric leak monitoring and protection system comprises: a first cable Dand second cable Dwhose primary sides are connected to the secondary side of a distribution transformer and which branch out; first open/close means Efor performing opening operation when electric leak occurs in the first cable; second open/close means Efor performing opening operation when electric leak occurs in the second cable; effective power calculation means H based on voltage and current in the first cable; direction determination means I for outputting an operation delay instruction Sby determining inverse load flow power made from effective power flowing toward a branch point of the first and second cables; and delay means J for making the opening operation of the first open/close means be later by prescribed time than the opening operation of the second open/close means, by using the operation delay instruction S. A first load to which power is supplied from a power system and a distribution type power supply interconnected with the power system are connected to the first cable; a second load to which power is supplied from the power system is connected to the second cable.

Description

本発明は、各種の分散型電源が連系された交流配電系統において、漏電が発生していない回路が不要に遮断されるのを防止するようにした漏電監視保護システムに関するものである。   The present invention relates to a leakage monitoring and protection system for preventing a circuit in which leakage has not occurred from being unnecessarily interrupted in an AC distribution system in which various distributed power sources are interconnected.

図6は、低圧配電系統における従来の漏電監視保護方式を示している。
図6において、10は一次側が電力系統に接続された配電変圧器であり、その二次側は接地されていると共に、配線用遮断器20を介してa点により分岐して配線用遮断器21,22にそれぞれ接続されている。
配線用遮断器21には線路31を介して負荷51が接続され、配線用遮断器22には線路32を介して負荷52が接続されている。配線用遮断器21は、線路31上の零相変流器41の検出信号が入力される漏電リレー21Rによって駆動され、配線用遮断器22は、線路32上の零相変流器42の検出信号が入力される漏電リレー22Rによって駆動されるようになっている。
なお、配線用遮断器21,22及び漏電リレー21R,22Rに代えて、漏電遮断器が用いられることもある。
FIG. 6 shows a conventional leakage monitoring and protection system in a low voltage distribution system.
In FIG. 6, reference numeral 10 denotes a distribution transformer whose primary side is connected to the power system, and whose secondary side is grounded, and is branched by a point a via a wiring breaker 20. , 22 are respectively connected.
A load 51 is connected to the wiring breaker 21 via a line 31, and a load 52 is connected to the wiring breaker 22 via a line 32. The circuit breaker 21 for wiring is driven by the earth leakage relay 21R to which the detection signal of the zero-phase current transformer 41 on the line 31 is input, and the circuit breaker 22 is detected by the zero-phase current transformer 42 on the line 32. It is driven by a leakage relay 22R to which a signal is input.
An earth leakage breaker may be used instead of the circuit breakers 21 and 22 and the earth leakage relays 21R and 22R.

いま、配線用遮断器20,21,22が全て投入されている状態において、例えば線路32の地点(事故点)Fで漏電が発生すると、図中、実線で示すように、漏洩電流Ig1が配線用遮断器20,22及び大地を経由して流れる。この漏洩電流Ig1は零相変流器42により検出されて漏電リレー22Rを動作させ、配線用遮断器22が遮断されるため、故障回路、すなわち線路32及び負荷52が系統から遮断されることになる。この時、電力系統から線路31側に漏洩電流が流れることはなく、配線用遮断器21は閉状態を保っているので、負荷51に対しては支障なく電力を供給することができる。 Now, in the state where all the circuit breakers 20, 21 and 22 for wiring are turned on, for example, when a leakage occurs at the point (accident point) F of the line 32, the leakage current Ig1 becomes as shown by the solid line in the figure. It flows through the circuit breakers 20 and 22 for wiring and the ground. This leakage current Ig1 is detected by the zero-phase current transformer 42 to operate the leakage relay 22R and the circuit breaker 22 is cut off, so that the fault circuit, that is, the line 32 and the load 52 are cut off from the system. become. At this time, no leakage current flows from the power system to the line 31 side, and the circuit breaker 21 for wiring is kept closed, so that power can be supplied to the load 51 without any problem.

次に、図7は、分散電源が連系された低圧配電系統に、図6と同様の漏電監視保護方式を適用した例である。
図7において、線路31には負荷51の他に分散型電源60が接続されている。この分散型電源60は、例えばエンジン発電機、太陽光発電機、風力発電機等であり、線路31、配線用遮断器21,20及び配電変圧器10を介して電力系統に連系している。なお、線路31,32には、有効電力、無効電力等を監視するための電力監視装置71,72がそれぞれ接続されている。
Next, FIG. 7 is an example in which the same leakage monitoring protection system as that in FIG. 6 is applied to a low-voltage distribution system in which distributed power sources are interconnected.
In FIG. 7, a distributed power source 60 is connected to the line 31 in addition to a load 51. The distributed power source 60 is, for example, an engine generator, a solar power generator, a wind power generator, or the like, and is connected to the power system via the line 31, the circuit breakers 21 and 20, and the distribution transformer 10. . Note that power monitoring devices 71 and 72 for monitoring active power, reactive power, and the like are connected to the lines 31 and 32, respectively.

この低圧配電系統において、配線用遮断器20,21,22が全て投入されている時に線路32の地点Fで漏電が発生すると、前記同様の経路で漏洩電流Ig1が流れるため、配線用遮断器22が動作して線路32及び負荷52が系統から遮断される。
また、この系統構成では、配線用遮断器22が遮断されるまでは、線路31側の分散型電源60から線路31,32を介して地点Fを経由する回路に漏洩電流Ig2が流れるので、漏電リレー21Rの動作により配線用遮断器21も遮断される。すなわち、線路31側では漏電が発生していないため電力系統から負荷51に引き続き給電可能であるにも関わらず、配線用遮断器21が不要な遮断動作を行うことになる。
In this low-voltage distribution system, if leakage occurs at the point F of the line 32 when all the circuit breakers 20, 21, 22 are turned on, the leakage current Ig1 flows through the same path as described above. 22 operates and the line 32 and the load 52 are disconnected from the system.
Further, in this system configuration, since the leakage current Ig2 flows from the distributed power supply 60 on the line 31 side to the circuit passing through the point F through the lines 31 and 32 until the wiring breaker 22 is interrupted, The circuit breaker 21 for wiring is also interrupted by the operation of the earth leakage relay 21R. That is, since no electric leakage has occurred on the line 31 side, the circuit breaker 21 for wiring performs an unnecessary breaking operation even though power can be continuously supplied from the power system to the load 51.

このように配線用遮断器21の不要遮断動作が発生するのは、線路31に接続された分散型電源60が発電していること、及び、分散型電源60の非発電時における線路31側の漏電発生を考慮して、漏電リレー21Rにも漏電リレー22Rと同レベルの動作感度、動作時限等が設定されていることによる。   As described above, the unnecessary circuit breaker operation of the circuit breaker 21 occurs because the distributed power source 60 connected to the line 31 is generating power, and on the line 31 side when the distributed power source 60 is not generating power. This is because, in consideration of the occurrence of leakage, the leakage relay 21R has the same level of operation sensitivity, operation time limit, etc. as the leakage relay 22R.

ここで、低圧配電線路における他回路の遮断器の不要遮断動作を防止する従来技術としては、例えば図8,図9に示すものが知られている。
図8は、特許文献1に記載された漏電検出保護装置の構成図であり、11は二次側が接地された配電変圧器、43は零相変流器、81は分圧コンデンサにより接地相−大地間電圧Vを検出する電圧検出器、82は分圧コンデンサにより零相電圧Vを検出する零相電圧検出器、91は漏電リレーである。
この従来技術では、漏電リレー91が、接地相−大地間電圧Vと零相電圧Vとから求めた接地相の対地静電容量に対する充電電流を零相電流Iから差し引いて抵抗成分漏洩電流Igrを検出し、検出した漏洩電流Igrが設定レベルを超えた場合に自回路の負荷側の地絡事故と判断して遮断器を動作させ、所定の保護動作を行っている。
Here, as a prior art for preventing an unnecessary circuit breaker operation of a circuit breaker of another circuit in a low voltage distribution line, for example, those shown in FIGS. 8 and 9 are known.
FIG. 8 is a configuration diagram of the leakage detection protection device described in Patent Document 1, wherein 11 is a distribution transformer whose secondary side is grounded, 43 is a zero-phase current transformer, 81 is a ground phase by a voltage dividing capacitor, voltage detector for detecting a ground voltage V e, 82 is the zero-phase voltage detector for detecting a zero-phase voltage V 0 by dividing capacitors, 91 is leakage relay.
In this prior art, the leakage relay 91 subtracts the charging current for the ground-phase ground capacitance obtained from the ground-phase voltage V e and the zero-phase voltage V 0 from the zero-phase current I 0 and leaks the resistance component. The current I gr is detected, and when the detected leakage current I gr exceeds the set level, it is determined that the load side of the circuit has a ground fault and the circuit breaker is operated to perform a predetermined protection operation.

また、図9は、特許文献2に記載された絶縁監視装置の構成図であり、12は二次側が非接地の配電変圧器、13は接地用変圧器(EVT)、43は零相変流器、82は分圧コンデンサからなる零相電圧検出器、83は同じく分圧コンデンサからなる相電圧検出器、92は絶縁監視部である。
この従来技術では、絶縁監視部92が、零相電圧検出値、相電圧検出値及び零相電流Iを用いてベクトル演算を行い、地点Fの絶縁抵抗値や抵抗成分漏洩電流Igrを算出して表示出力等を行っている。
FIG. 9 is a block diagram of the insulation monitoring device described in Patent Document 2, wherein 12 is a distribution transformer whose secondary side is ungrounded, 13 is a grounding transformer (EVT), and 43 is a zero-phase current transformer. , 82 is a zero-phase voltage detector composed of a voltage dividing capacitor, 83 is a phase voltage detector also composed of a voltage dividing capacitor, and 92 is an insulation monitoring unit.
In this prior art, the insulation monitoring unit 92 performs a vector calculation using the zero-phase voltage detection value, the phase voltage detection value, and the zero-phase current I 0 to calculate the insulation resistance value and the resistance component leakage current I gr at the point F. Display output and so on.

更に、他の従来技術として、配電系統の電圧、電流等を検出して複数の負荷回路の電力、電力量等を監視すると共に、線路の漏電・絶縁監視機能を備えた監視装置や監視システムが特許文献3,4に記載されている。   Furthermore, as another conventional technique, there are a monitoring device and a monitoring system having a function of monitoring a leakage current and insulation of a line as well as monitoring a power and an electric energy of a plurality of load circuits by detecting a voltage and a current of a distribution system. It is described in Patent Documents 3 and 4.

特開2001−352663号公報(図7等)JP 2001-352663 A (FIG. 7 etc.) 特開2006−10608号公報(図5等)JP 2006-10608 A (FIG. 5 etc.) 特開2012−132812号公報(図3等)JP 2012-132812 A (FIG. 3 etc.) 特開2005−304148号公報(図1等)Japanese Patent Laying-Open No. 2005-304148 (FIG. 1 etc.)

特許文献1,2に記載された従来技術では、零相電圧を基準にして漏洩電流の方向判別を行うため零相電圧検出器が必要であり、特に、非接地系統を対象とする特許文献2では、更に接地用変圧器を設置する必要があるので、これらが回路の大型化やコスト増加の原因となっていた。また、線路の相線式(三相三線式など)の初期設定等も煩雑であった。
更に、特許文献3,4には、回路や設備の状態監視用に求めた電力情報を、漏電・絶縁監視に有効利用する着想は示されていない。
In the prior art described in Patent Documents 1 and 2, a zero-phase voltage detector is required to determine the direction of leakage current with reference to the zero-phase voltage, and in particular, Patent Document 2 targeting a non-grounded system. Then, since it is necessary to install a transformer for grounding, these have caused an increase in circuit size and cost. In addition, initial setting of the phase line system (three-phase three-wire system, etc.) of the line is complicated.
Furthermore, Patent Documents 3 and 4 do not show the idea of effectively using the power information obtained for monitoring the state of circuits and facilities for monitoring leakage and insulation.

そこで、本発明の解決課題は、零相電圧を検出することなく、また、接地系統、非接地系統を問わずに、分散型電源の発電時における線路の電力情報を利用して自己の線路の不要遮断を防止するようにした漏電監視保護システムを提供することにある。   Therefore, the problem to be solved by the present invention is to detect the power of the own line by using the power information of the line at the time of power generation of the distributed power source without detecting the zero-phase voltage, regardless of the grounded system or the non-grounded system. An object of the present invention is to provide a leakage monitoring and protection system that prevents unnecessary interruptions.

上記課題を解決するために、請求項1に係る漏電監視保護システムは次のように構成されている。
すなわち、本発明の漏電監視保護システムは、図1に示すように、一次側が電力系統Aに接続された配電変圧器Bの二次側に主開閉手段Cを介して接続され、かつ、互いに分岐している第1の線路D及び第2の線路Dと、第1の線路Dに設置されて漏電発生時に開動作する第1の開閉手段Eと、第2の線路Dに設置されて漏電発生時に開動作する第2の開閉手段Eと、第1の線路Dの電圧及び電流から有効電力を演算する有効電力演算手段Hと、この有効電力が、第1の開閉手段Eを介して第1の線路D及び第2の線路Dの分岐点に向かう逆潮流電力であることを判別して動作遅延指令STDを出力する方向判別手段Iと、動作遅延指令STDにより、第1の開閉手段Eの開動作を第2の開閉手段Eの開動作よりも一定時間遅延させる遅延手段Jと、を備え、第1の線路Dには、第1の開閉手段Eを介して電力系統Aから給電される第1の負荷Fと、第1の開閉手段Eを介して電力系統Aに連系する分散型電源Gと、が接続され、第2の線路Dには、第2の開閉手段Eを介して電力系統Aから給電される第2の負荷Fが接続されていることを特徴とする。
In order to solve the above problems, the leakage monitoring and protection system according to claim 1 is configured as follows.
That is, as shown in FIG. 1, the leakage monitoring and protection system according to the present invention is connected to the secondary side of the distribution transformer B whose primary side is connected to the power system A via the main switching means C and is branched from each other. The first line D 1 and the second line D 2 , the first opening / closing means E 1 installed on the first line D 1 and opening when a leakage occurs, and the second line D 2 The second opening / closing means E 2 that is installed and opens when leakage occurs, the active power calculating means H that calculates the active power from the voltage and current of the first line D 1 , and this active power is the first opening / closing. A direction discriminating means I for discriminating that it is a reverse power flow toward the branch point of the first line D 1 and the second line D 2 via the means E 1 and outputting an operation delay command S TD ; the command S TD, open the first opening operation of the opening and closing means E 1 of the second switching means E 2 And a delay means J for delaying a predetermined time than work, the first line D 1, the first and the load F 1 fed from the electric power system A through the first switching means E 1, the a dispersion type power source G for interconnection to the power system a through the first switching means E 1, is connected to the second line D 2, power from the electric power system a through the second switching means E 2 second load F 2 is characterized in that it is connected to be.

また、請求項2に係る漏電監視保護システムは、請求項1において、前記主開閉手段Cが、この主開閉手段Cと、第1の線路D及び第2の線路Dの分岐点と、の間の線路の漏電発生時に開動作するものである。 Further, leakage monitoring protection system according to claim 2, in claim 1, said main switching means C is, the main switching means C, a branching point of the first line D 1 and the second line D 2, It opens when a line leakage occurs between the two.

請求項3に係る漏電監視保護システムは、請求項1または2における有効電力演算手段H及び方向判別手段Iが、第1の線路Dの電力を監視する電力監視装置の一部を構成することを特徴とする。 Leakage monitoring protection system according to claim 3, the effective power computing means H and the direction determining means I in claim 1 or 2, constitutes a part of a power monitoring device for monitoring a first power line D 1 It is characterized by.

請求項4に係る漏電監視保護システムは、請求項1または2における遅延手段Jが、第1の線路Dの漏電を検出して第1の開閉手段Eを遮断するための漏電リレーの一部を構成することを特徴とする。 Leakage monitoring protection system according to claim 4, the delay unit J in claim 1 or 2, leakage relay for interrupting the first switching means E 1 by detecting the leakage of the first line D 1 one It comprises the part.

本発明によれば、零相電圧を検出する方法によらず、分散型電源が接続された自己の線路の有効電力が逆潮流電力であることを判別して他の線路における漏電発生を検出し、自己の線路の開閉手段の動作を遅延させて不要な遮断動作を防止することができる。このため、零相電圧検出器や非接地系統における接地用変圧器が不要であり、接地、非接地を問わずに簡単な回路構成によって不要な遮断動作の解消が可能である。
また、有効電力の演算やその方向判別による逆潮流電力の検出は、線路の有効電力、無効電力等を監視する既存の電力監視装置がもともと有する機能を利用して容易に実現できるから、低コストにて提供することができる。
According to the present invention, regardless of the method of detecting the zero-phase voltage, it is determined that the effective power of the own line to which the distributed power source is connected is reverse power flow, and the occurrence of leakage in the other line is detected. The operation of the opening / closing means for the own line can be delayed to prevent unnecessary blocking operation. This eliminates the need for a zero-phase voltage detector or a grounding transformer in a non-grounded system, and can eliminate an unnecessary breaking operation with a simple circuit configuration regardless of grounding or non-grounding.
In addition, the detection of reverse power flow by calculating active power and determining its direction can be easily realized by using the functions originally possessed by existing power monitoring devices that monitor active power, reactive power, etc. of the line. Can be provided.

本発明の請求項1に対応する構成図である。It is a block diagram corresponding to claim 1 of the present invention. 本発明の実施形態に係る漏電監視保護システムの構成図である。1 is a configuration diagram of a leakage monitoring and protection system according to an embodiment of the present invention. 図2の主要部の構成図である。It is a block diagram of the principal part of FIG. 図2における漏電発生時の動作説明図である。It is operation | movement explanatory drawing at the time of the electric leakage generation | occurrence | production in FIG. 図2における漏電発生時の動作説明図である。It is operation | movement explanatory drawing at the time of the electric leakage generation | occurrence | production in FIG. 低圧配電系統における従来の漏電監視保護方式の説明図である。It is explanatory drawing of the conventional electric leakage monitoring protection system in a low voltage | pressure distribution system. 低圧配電系統における従来の漏電監視保護方式の説明図である。It is explanatory drawing of the conventional electric leakage monitoring protection system in a low voltage | pressure distribution system. 特許文献1に記載された漏電検出保護装置の構成図である。It is a block diagram of the earth-leakage detection protection apparatus described in patent document 1. 特許文献2に記載された絶縁監視装置の構成図である。It is a block diagram of the insulation monitoring apparatus described in patent document 2.

以下、図に沿って本発明の実施形態を説明する。
図2は、図1に示した漏電監視保護システムを具体化した本発明の実施形態の構成図であり、図7における各部と同一の機能を有するものには同一の参照符号を付してある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 is a configuration diagram of an embodiment of the present invention that embodies the leakage monitoring and protection system shown in FIG. 1. Components having the same functions as those in FIG. 7 are denoted by the same reference numerals. .

図2において、図7との相違点を中心に説明すると、配電変圧器10に接続された配線用遮断器20の負荷側には零相変流器43が設けられ、その検出信号は配線用遮断器20を動作させるための漏電リレー20Rに入力されている。
また、線路31の配線用遮断器21を動作させる漏電リレー110、及び線路31の有効電力、無効電力等を監視する電力監視装置120は、図7に示した漏電リレー21R及び電力監視装置71に、後述する機能をそれぞれ追加して構成されている。なお、電力監視装置120には、線路31の電圧を検出する電圧検出器44と、同じく電流を検出する電流検出器45が接続されている。
ここで、電圧検出器44は必要不可欠なものではなく、線路31の電圧を電力監視装置120に直接入力できる場合には不要であり、場合によっては、電圧検出器44の代わりに計器用変圧器(PT)を用いて線路31の電圧を電力監視装置120に入力しても良い。
In FIG. 2, the difference from FIG. 7 will be mainly described. A zero-phase current transformer 43 is provided on the load side of the circuit breaker 20 connected to the distribution transformer 10, and its detection signal is used for wiring. It is input to a leakage relay 20R for operating the circuit breaker 20.
Further, the leakage relay 110 that operates the circuit breaker 21 for the line 31 and the power monitoring device 120 that monitors the active power, reactive power, etc. of the line 31 are connected to the leakage relay 21R and the power monitoring device 71 shown in FIG. Each of the functions to be described later is added. The power monitoring device 120 is connected to a voltage detector 44 that detects the voltage of the line 31 and a current detector 45 that similarly detects a current.
Here, the voltage detector 44 is not indispensable, and is not necessary when the voltage of the line 31 can be directly input to the power monitoring device 120. In some cases, an instrument transformer is used instead of the voltage detector 44. The voltage of the line 31 may be input to the power monitoring device 120 using (PT).

ここで、図2の配電変圧器10は図1における配電変圧器Bに、配線用遮断器20,零相変流器43及び漏電リレー20Rは同じく主開閉手段Cに、線路31,32は同じく第1,第2の線路D,Dに、配線用遮断器21,零相変流器41及び漏電リレー110は同じく第1の開閉手段Eに、配線用遮断器22,零相変流器42及び漏電リレー22Rは同じく第2の開閉手段Eに、負荷51,52は同じく第1,第2の負荷F,Fにそれぞれ対応している。また、図2の漏電リレー110及び電力監視装置120は、図1における有効電力演算手段H、方向判別手段I及び遅延手段Jとしても機能する。 Here, the distribution transformer 10 in FIG. 2 is the same as the distribution transformer B in FIG. 1, the circuit breaker 20, the zero-phase current transformer 43 and the earth leakage relay 20R are the same as the main switching means C, and the lines 31 and 32 are the same. first, to the second line D 1, D 2, circuit breaker 21, zero-phase current transformer 41 and the earth leakage relay 110 in the same first switching means E 1, circuit breaker 22, zero-phase the Nagareki 42 and earth leakage relay 22R is also second switching means E 2, the load 51 and 52 correspond similarly each of the first, the second load F 1, F 2. 2 also functions as the active power calculation means H, the direction determination means I, and the delay means J in FIG.

次に、図3は、上記漏電リレー110及び電力監視装置120を備えた漏電監視保護装置100の構成図であり、この漏電監視保護装置100は、図1の有効電力演算手段H、方向判別手段I及び遅延手段Jを実現するものである。   Next, FIG. 3 is a configuration diagram of a leakage monitoring and protection device 100 including the leakage relay 110 and the power monitoring device 120. The leakage monitoring and protection device 100 includes the active power calculation means H and the direction determination means of FIG. I and delay means J are realized.

図3において、漏電リレー110は、零相変流器41に接続された漏洩電流検出部111と、漏洩電流検出値が設定レベルを超えた時に漏電検出信号を出力するレベル判定部112と、漏電検出信号を動作遅延指令STDにより一定時間(遅延時間)遅延させるタイマ113と、その出力信号に基づいて配線用遮断器21に対する遮断指令SCBを出力する出力部114と、を備えている。ここで、タイマ113に設定される上記の遅延時間は、図2の線路32に漏電が発生してから漏電リレー22Rの動作により配線用遮断器22が遮断動作するまでの時間よりも長くなっている。 In FIG. 3, a leakage relay 110 includes a leakage current detection unit 111 connected to the zero-phase current transformer 41, a level determination unit 112 that outputs a leakage detection signal when a leakage current detection value exceeds a set level, a timer 113 for a predetermined time (delay time) delays the detection signal by the operation delay command S TD, and includes an output section 114 for outputting an opening command S CB for circuit breaker 21 based on the output signal. Here, the delay time set in the timer 113 is longer than the time from when the leakage occurs in the line 32 of FIG. 2 to when the circuit breaker 22 is disconnected by the operation of the leakage relay 22R. Yes.

また、電力監視装置120は、電圧検出器44の出力信号により線路31の電圧を検出する電圧検出部121と、電流検出器45の出力信号により線路31の電流を検出する電流検出部122と、これらの検出部121,122による各検出値を用いて線路31の有効電力を演算する有効電力演算部123と、有効電力の方向(極性)が負荷51側でなく逆方向(図2における配線用遮断器21から分岐点aに向かう方向)であり、いわゆる逆潮流電力が発生していることを検出する方向判別部124と、を備えている。ここで、逆潮流電力の発生は、周知のように、ベクトルとしての電流,電圧を用いて演算される有効電力の極性に基づいて、容易に検出可能である。なお、電圧検出器44が必要不可欠なものではない点は、前述したとおりである。
上記の有効電力演算部123及び方向判別部124には、線路31の有効電力、無効電力等を監視する電力監視装置がもともと有する機能を利用することができる。
In addition, the power monitoring device 120 includes a voltage detector 121 that detects the voltage of the line 31 based on the output signal of the voltage detector 44, a current detector 122 that detects the current of the line 31 based on the output signal of the current detector 45, The active power calculation unit 123 that calculates the effective power of the line 31 using the detection values of these detection units 121 and 122, and the direction (polarity) of the active power is not the load 51 side but the reverse direction (for wiring in FIG. 2) And a direction discriminating unit 124 for detecting that so-called reverse power flow is generated. Here, the occurrence of reverse flow power can be easily detected based on the polarity of active power calculated using current and voltage as vectors, as is well known. Note that the voltage detector 44 is not indispensable as described above.
The active power calculation unit 123 and the direction determination unit 124 can use functions originally included in a power monitoring device that monitors active power, reactive power, and the like of the line 31.

次に、この実施形態の動作を図4,図5を参照しつつ説明する。
図4に示すように、配線用遮断器20,21,22が全て投入されている状態で、負荷52に近い線路32上の地点Fで漏電が発生した場合を想定する。この場合、図7と同様に配電変圧器10から線路32及び地点Fを介した実線の経路で漏洩電流Ig1が流れるため、配線用遮断器22が動作して線路32及び負荷52が系統から遮断される。
Next, the operation of this embodiment will be described with reference to FIGS.
As shown in FIG. 4, a case is assumed in which leakage occurs at a point F on the line 32 close to the load 52 in a state where all the circuit breakers 20, 21, and 22 are turned on. In this case, since the leakage current Ig1 flows from the distribution transformer 10 through the line 32 and the point F in the same manner as in FIG. 7, the circuit breaker 22 for wiring operates and the line 32 and the load 52 are disconnected from the system. Blocked.

このとき、線路31の分散型電源60が発電中であると、配線用遮断器22が遮断されるまでの期間は、線路31,32から地点Fを介した経路で漏洩電流が流れる。従って、図3,図4の電力監視装置120では、図3における有効電力演算部123が演算した有効電力の極性を方向判別部124が判別することにより、逆潮流電力Pが発生していることを検出可能である。 At this time, if the distributed power source 60 of the line 31 is generating power, a leakage current flows from the lines 31 and 32 through the point F during the period until the circuit breaker 22 is cut off. Thus, FIG. 3, the power monitoring device 120 of FIG. 4, by the direction determination unit 124 the polarity of the effective power effective power calculating unit 123 in FIG. 3 is computed is determined, the backward flow power P R is generated Can be detected.

これにより、方向判別部124からタイマ113に向けて動作遅延指令STDが出力され、タイマ113は、線路31を流れる漏洩電流によりレベル判定部112から出力された漏電検出信号を、前記遅延時間だけ遅延させて漏電リレー110内の出力部114に送出する。このため、出力部114からは、漏電を検出してから前記遅延時間を経過した後に遮断指令SCBが出力されることになるが、遅延時間を経過する以前に線路32の配線用遮断器22が遮断動作することにより、線路31の漏洩電流すなわち逆潮流電力Pが消失するので、レベル判定部112の出力や動作遅延指令STDがリセットされ、出力部114から遮断指令SCBが出力されることはない。
従って、漏電が発生した線路32のみを配線用遮断器22が電力系統から切り離し、漏電が発生していない線路31については、配線用遮断器21を動作させずに電力系統から引き続き負荷51に給電することが可能になる。
As a result, the operation delay command S TD is output from the direction determination unit 124 to the timer 113, and the timer 113 outputs the leakage detection signal output from the level determination unit 112 due to the leakage current flowing through the line 31 for the delay time. The output is delayed and sent to the output unit 114 in the leakage relay 110. For this reason, the output unit 114 outputs the interruption command SCB after the delay time has elapsed since the leakage was detected. However, before the delay time elapses, the wiring breaker 22 for the line 32 is output. by but the cutoff operation, since leakage current or backward flow power P R of the line 31 disappears, the output and operation delay command S TD of level determination unit 112 is reset, it shuts off command S CB is output from the output unit 114 Never happen.
Therefore, the circuit breaker 22 for wiring disconnects only the line 32 in which leakage has occurred from the power system, and the line 31 in which leakage does not occur continues to feed the load 51 from the power system without operating the circuit breaker 21. It becomes possible to do.

次に、図5に示すように、線路31,32の分岐点aと配線用遮断器22との間で漏電が発生した場合を想定する。
この場合、配電変圧器10から配線用遮断器20及び線路32を介して地点Fを経由する漏洩電流Ig3が流れるので、漏電リレー20Rが動作して配線用遮断器20が遮断される。これにより、電力系統から負荷51,52側に給電されることはない。
Next, as shown in FIG. 5, a case is assumed where a leakage occurs between the branch point a of the lines 31 and 32 and the circuit breaker 22 for wiring.
In this case, since the leakage current Ig3 passing through the point F flows from the distribution transformer 10 via the wiring breaker 20 and the line 32, the leakage relay 20R is operated and the wiring breaker 20 is cut off. As a result, power is not supplied from the power system to the loads 51 and 52 side.

一方、分散型電源60が発電中であると、線路31、配線用遮断器21及び線路32を介して地点Fを経由する漏洩電流Ig4が流れる。この漏洩電流Ig4は逆潮流電力Pを発生させるため、前述したように、図3の有効電力演算部123及び方向判別部124が動作して動作遅延指令STDを発生させ、その後に出力される遮断指令SCBにより配線用遮断器21が遮断されることになる。
この場合には、地点Fでの漏電発生から線路31の配線用遮断器21が遮断されるまでに時間遅れが生じるが、漏電リレー110内のタイマ113による遅延時間を必要最小限に設定しておけば、運用上の不都合は特に生じない。
On the other hand, when the distributed power source 60 is generating power, a leakage current Ig4 that passes through the point F flows through the line 31, the circuit breaker 21 for wiring, and the line 32. Since this leakage current I g4 is generating the backward flow power P R, as described above, to generate the operation delay command S TD active power calculation unit 123 and the direction determination unit 124 of FIG. 3 is operated, then the output The circuit breaker 21 for wiring is cut off by the cut-off command SCB .
In this case, there is a time delay from the occurrence of leakage at the point F until the circuit breaker 21 for the line 31 is cut off, but the delay time by the timer 113 in the leakage relay 110 is set to the minimum necessary. If this is the case, there will be no inconvenience in operation.

なお、本発明は、図2において線路31が更に分岐してその分岐先の線路に配線用遮断器,負荷,分散型電源,漏電リレー,電力監視装置が接続される場合のように、電力系統から見て複数の階層の負荷に給電する低圧配電系統にも適用することができる。この場合には、最下層から最上層に向かうに従って漏電リレー内のタイマに設定する遅延時間を長くすれば良い。これにより、例えば、図4に示した線路32側の地点Fにおける漏電発生時にも、線路31側の最上層の配線用遮断器21が真っ先に遮断されるような事態を回避することができ、電力系統から各階層の負荷に対して継続的に給電することができる。   In the present invention, the line 31 further branches in FIG. 2, and a power breaker, a load, a distributed power source, a leakage relay, and a power monitoring device are connected to the branch destination line. Therefore, the present invention can also be applied to a low voltage distribution system that supplies power to a plurality of loads. In this case, what is necessary is just to lengthen the delay time set to the timer in an earth-leakage relay as it goes from the lowest layer to the highest layer. Thereby, for example, even when leakage occurs at the point F on the line 32 side shown in FIG. 4, it is possible to avoid the situation where the uppermost circuit breaker 21 on the line 31 side is cut off first. It is possible to continuously supply power from the power system to the loads on each level.

本発明は、配電変圧器の二次側の接地、非接地を問わず、一部の線路に負荷及び分散型電源が並列的に接続されているような配電系統に利用可能である。   The present invention is applicable to a distribution system in which a load and a distributed power source are connected in parallel to some lines regardless of whether the secondary side of the distribution transformer is grounded or ungrounded.

A:電力系統
B:配電変圧器
C:主開閉手段
:第1の線路
:第2の線路
:第1の開閉手段
:第2の開閉手段
:第1の負荷
:第2の負荷
G:分散型電源
H:有効電力演算手段
I:方向判別手段
J:遅延手段
10:配電変圧器
20,21,22:配線用遮断器
20R,21R,22R:漏電リレー
31,32:線路
41,42,43:零相変流器
44:電圧検出器
45:電流検出器
51,52:負荷
60:分散型電源
71A,72:電力監視装置
100:漏電監視保護装置
110:漏電リレー
111:漏洩電流検出部
112:レベル判定部
113;タイマ
114:出力部
120:電力監視装置
121:電圧検出部
122:電流検出部
123:有効電力演算部
124:方向判別部
A: Power system B: Distribution transformer C: Main switching means D 1 : First line D 2 : Second line E 1 : First switching means E 2 : Second switching means F 1 : First Load F 2 : Second load G: Distributed power source H: Active power calculation means I: Direction determination means J: Delay means 10: Distribution transformers 20, 21, 22: Circuit breakers 20R, 21R, 22R: Electric leakage Relays 31, 32: Lines 41, 42, 43: Zero-phase current transformer 44: Voltage detector 45: Current detector 51, 52: Load 60: Distributed power source 71A, 72: Power monitoring device 100: Leakage monitoring and protection device 110: Leakage relay 111: Leakage current detection unit 112: Level determination unit 113; Timer 114: Output unit 120: Power monitoring device 121: Voltage detection unit 122: Current detection unit 123: Active power calculation unit 124: Direction determination unit

Claims (4)

一次側が電力系統に接続された配電変圧器の二次側に主開閉手段を介して接続され、かつ、互いに分岐している第1の線路及び第2の線路と、
前記第1の線路に設置されて漏電発生時に開動作する第1の開閉手段と、
前記第2の線路に設置されて漏電発生時に開動作する第2の開閉手段と、
前記第1の線路の電圧及び電流から有効電力を演算する有効電力演算手段と、
前記有効電力が、前記第1の開閉手段を介して前記第1の線路及び第2の線路の分岐点に向かう逆潮流電力であることを判別して動作遅延指令を出力する方向判別手段と、
前記動作遅延指令により、前記第1の開閉手段の開動作を前記第2の開閉手段の開動作よりも一定時間遅延させる遅延手段と、
を備え、
前記第1の線路には、前記第1の開閉手段を介して前記電力系統から給電される第1の負荷と、前記第1の開閉手段を介して前記電力系統に連系する分散型電源と、が接続され、
前記第2の線路には、前記第2の開閉手段を介して前記電力系統から給電される第2の負荷が接続されていることを特徴とする漏電監視保護システム。
A first line and a second line that are connected to the secondary side of the distribution transformer, the primary side of which is connected to the power system, via the main switching means and are branched from each other;
A first opening / closing means that is installed in the first line and opens when an electric leakage occurs;
A second opening / closing means that is installed in the second line and opens when a leakage occurs;
Active power calculation means for calculating active power from the voltage and current of the first line;
Direction determining means for determining that the active power is reverse power flowing toward the branch point of the first line and the second line via the first opening / closing means and outputting an operation delay command;
Delay means for delaying the opening operation of the first opening / closing means by a certain time from the opening operation of the second opening / closing means by the operation delay command;
With
The first line includes a first load fed from the power system via the first switching means, and a distributed power source linked to the power system via the first switching means. , Is connected,
A leakage monitoring and protection system, wherein a second load fed from the power system is connected to the second line via the second switching means.
請求項1に記載した漏電監視保護システムにおいて、
前記主開閉手段が、この主開閉手段と、前記第1の線路及び前記第2の線路の分岐点と、の間の線路の漏電発生時に開動作することを特徴とする漏電監視保護システム。
In the leakage monitoring and protection system according to claim 1,
The leakage monitoring and protection system, wherein the main switching means opens when a leakage occurs in the line between the main switching means and the branch point of the first line and the second line.
請求項1または2に記載した漏電監視保護システムにおいて、
前記有効電力演算手段及び前記方向判別手段が、前記第1の線路の電力を監視する電力監視装置の一部を構成していることを特徴とする漏電監視保護システム。
In the leakage monitoring and protection system according to claim 1 or 2,
The leakage monitoring and protection system, wherein the active power calculation means and the direction determination means constitute a part of a power monitoring device that monitors the power of the first line.
請求項1または2に記載した漏電監視保護システムにおいて、
前記遅延手段が、前記第1の線路の漏電を検出して前記第1の開閉手段を遮断するための漏電リレーの一部を構成していることを特徴とする漏電監視保護システム。
In the leakage monitoring and protection system according to claim 1 or 2,
The leakage monitoring and protection system according to claim 1, wherein the delay means constitutes a part of a leakage relay for detecting leakage of the first line and interrupting the first switching means.
JP2013245871A 2013-11-28 2013-11-28 Earth leakage monitoring and protection system Active JP6210299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013245871A JP6210299B2 (en) 2013-11-28 2013-11-28 Earth leakage monitoring and protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013245871A JP6210299B2 (en) 2013-11-28 2013-11-28 Earth leakage monitoring and protection system

Publications (2)

Publication Number Publication Date
JP2015104297A true JP2015104297A (en) 2015-06-04
JP6210299B2 JP6210299B2 (en) 2017-10-11

Family

ID=53379560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013245871A Active JP6210299B2 (en) 2013-11-28 2013-11-28 Earth leakage monitoring and protection system

Country Status (1)

Country Link
JP (1) JP6210299B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135535A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Static-type reactive power compensator
JP2001224129A (en) * 1999-11-29 2001-08-17 Canon Inc Generation system and its installation method
JP2003158820A (en) * 2001-11-16 2003-05-30 Togami Electric Mfg Co Ltd Device and method of controlling load switch driving

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09135535A (en) * 1995-11-06 1997-05-20 Matsushita Electric Ind Co Ltd Static-type reactive power compensator
JP2001224129A (en) * 1999-11-29 2001-08-17 Canon Inc Generation system and its installation method
JP2003158820A (en) * 2001-11-16 2003-05-30 Togami Electric Mfg Co Ltd Device and method of controlling load switch driving

Also Published As

Publication number Publication date
JP6210299B2 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
KR101571213B1 (en) fault clearing system and its method for microgrid
EP2862252B1 (en) A power bay protection device and a method for protecting power bays
KR20220118368A (en) Apparatus and method detecting direction of fault current
KR100920113B1 (en) OCGR protection algorithm for preventing mal-operation by Reverse power
TW202008694A (en) Power supply system
Meskin et al. Enhancement of overcurrent protection in active medium voltage distribution networks
JP2012075250A (en) Insulation ground fault monitoring device with adoption lock
JP2010164514A (en) Fault point locator
JP6210299B2 (en) Earth leakage monitoring and protection system
JP5208684B2 (en) Ground fault protection relay system
KR20180087508A (en) Appatus for protecting of microgrid using superimposed reactive energy and method thereof
JP6834334B2 (en) Arc failure detection system
JP2018007465A (en) Seismic breaking device and distribution panel for housing
JP2010166769A (en) Ground distance relay device
JP6701019B2 (en) Overcurrent prevention device and power supply device
US8755159B2 (en) System of current protection of a primary electrical distribution box
JP6797073B2 (en) Operation control device and power generation equipment
RU2639295C2 (en) Current protection device
KR20120104879A (en) Automatic recovery type circuit breaker for checking short circuit in real time
JP2014192953A (en) Transmission line protection device, and transmission line protection system
RU2611059C2 (en) Method of measurement for detecting fault of three-phase network
JP2633150B2 (en) Method and device for detecting state of reverse charging from private power generation facility to power supply system side
RU168130U1 (en) DEVICE FOR PROTECTING LINES WITH INSULATED NEUTRAL
JP2009254036A (en) Ground fault protecting relay system
JP2017034909A (en) Seismic interruption system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20161014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170830

R150 Certificate of patent or registration of utility model

Ref document number: 6210299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250