JP2003169480A - Control apparatus for neutral point clamp system power converter - Google Patents

Control apparatus for neutral point clamp system power converter

Info

Publication number
JP2003169480A
JP2003169480A JP2001365926A JP2001365926A JP2003169480A JP 2003169480 A JP2003169480 A JP 2003169480A JP 2001365926 A JP2001365926 A JP 2001365926A JP 2001365926 A JP2001365926 A JP 2001365926A JP 2003169480 A JP2003169480 A JP 2003169480A
Authority
JP
Japan
Prior art keywords
neutral point
voltage command
phase
circuit
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001365926A
Other languages
Japanese (ja)
Other versions
JP3856689B2 (en
Inventor
Kentaro Suzuki
木 健太郎 鈴
Masafumi Nakamura
村 雅 史 中
Masahiko Tsukagoshi
越 昌 彦 塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001365926A priority Critical patent/JP3856689B2/en
Publication of JP2003169480A publication Critical patent/JP2003169480A/en
Application granted granted Critical
Publication of JP3856689B2 publication Critical patent/JP3856689B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rectifiers (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a variation in neutral point potential to a preset value or less over an entire operation state. <P>SOLUTION: An offset value where the voltage command of a phase that becomes the maximum value in three-phase voltage commands becomes the maximum value at a positive side is added to the voltage command of all three phases for obtaining a three-phase positive side shift voltage command. Additionally, an offset value where the voltage command of a phase that becomes the minimum value in three-phase voltage commands becomes the minimum value at a negative side is added to the voltage commands in all three phases to obtain a three-phase negative side shift voltage command. Each neutral point current that is generated when PWM control is performed by each of three kinds of voltage commands is calculated. When the potential of a neutral point exceeds a limit value, the three-phase voltage command for generating a neutral point current that can return the neutral point potential within a specified limit value at the highest speed is selected for carrying out three-level PWM control. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、中性点クランプ式
電力変換器の制御装置、特に中性点電位変動を抑制でき
る制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a neutral point clamp type power converter, and more particularly to a control device capable of suppressing a neutral point potential fluctuation.

【0002】[0002]

【従来の技術】中性点クランプ式電力変換器は公知であ
る。図14に公知の中性点クランプ式電力変換器の主回
路構成例を示す。図14において、中性点クランプ式電
力変換器3は、ゲートターンオフサイリスタ等のスイッ
チング素子とそれら個々のスイッチング素子に逆並列接
続されたダイオードで構成されるアーム素子、並びに各
相毎に一対のクランプダイオードを備えた中性点クラン
プ式3相ブリッジ回路として構成され、その直流端子は
直流電力の授受を行うための直流端子P,Nに接続さ
れ、交流端子は交流電力の授受を行うための3相交流端
子U,V,Wに接続されている。直流端子P,N間に
は、端子間の直流電圧を正側直流電圧Vcpと負側直流電
圧Vcnに分割するための直流コンデンサ1,2が直列に
接続されている。両コンデンサ1,2の接続点が中性点
Oを形成し、この中性点Oが中性点クランプ式電力変換
器3の各相における正負一対のクランプダイオードの中
間接続点に接続される。
Neutral point clamped power converters are known. FIG. 14 shows an example of the main circuit configuration of a known neutral point clamp type power converter. In FIG. 14, a neutral point clamp type power converter 3 includes a switching element such as a gate turn-off thyristor and an arm element composed of a diode inversely connected in parallel to each switching element, and a pair of clamps for each phase. It is configured as a neutral point clamp type three-phase bridge circuit equipped with a diode, and its DC terminal is connected to DC terminals P and N for exchanging DC power, and an AC terminal is for exchanging AC power. It is connected to the phase alternating current terminals U, V, and W. Between the DC terminals P and N, DC capacitors 1 and 2 for dividing the DC voltage between the terminals into a positive DC voltage Vcp and a negative DC voltage Vcn are connected in series. A connection point between the capacitors 1 and 2 forms a neutral point O, and the neutral point O is connected to an intermediate connection point between a pair of positive and negative clamp diodes in each phase of the neutral point clamp type power converter 3.

【0003】図14における中性点クランプ式電力変換
器3自体の構成と動作態様は良く知られているので、こ
こではその詳細説明を省略する。中性点クランプ式電力
変換器は、直流端子を直流電源に接続し、交流端子に接
続された負荷に交流電力を供給する中性点クランプ式イ
ンバータとして用いられる場合と、交流端子を交流電源
に接続し、直流端子に接続された負荷に直流電力を供給
する中性点クランプ式コンバータとして用いられる場合
とがある。しかし、両者は呼び方が異なるだけで、その
構成や動作は共通であり、解決しようとする課題も共通
しているため、本発明では両者を区別せずに中性点クラ
ンプ式電力変換器として扱う。また、図14の2組の直
流コンデンサ1,2の接続点である直流中性点Oも直流
端子として引き出し、2分割された直流電源あるいは直
流負荷に接続する場合もあるが、そのような構成のもの
も本発明の対象として含むものとする。
Since the configuration and operation mode of the neutral point clamp type power converter 3 itself in FIG. 14 are well known, detailed description thereof will be omitted here. The neutral point clamp type power converter is used as a neutral point clamp type inverter that connects the DC terminal to the DC power source and supplies AC power to the load connected to the AC terminal, and when the AC terminal is used as the AC power source. It may be used as a neutral point clamp type converter that is connected and supplies DC power to a load connected to a DC terminal. However, the two are different only in terms of their names, have the same configuration and operation, and have the same problem to be solved. Therefore, in the present invention, they are not distinguished from each other and are used as a neutral point clamp type power converter. deal with. In addition, a DC neutral point O, which is a connection point between the two sets of DC capacitors 1 and 2 in FIG. 14, may also be extracted as a DC terminal and connected to a DC power source or a DC load divided into two. Those included in the scope of the present invention are also included.

【0004】中性点クランプ式電力変換器の解決すべき
技術課題の一つに、直流中性点電位変動の抑制技術があ
る。中性点クランプ式電力変換器では、図14におい
て、直流中性点Oを流れる中性点電流Ioは交流側周波
数の3倍の周波数で正負に変動するという原理的な性質
を持っている。この中性点電流Ioは直流コンデンサ
1,2に分流し、一方の電圧を増加させ、他方の電圧を
減少させる作用を及ぼす。すなわち、中性点電流Ioは
両コンデンサの電圧をアンバランスにするように作用
し、中性点電位は交流側周波数の3倍の周波数で変動す
ることになる。中性点電位変動は正負コンデンサ電圧の
アンバランスとして構成部品の耐圧上の問題となるだけ
でなく、交流側電圧波形へも影響を及ぼし、交流側電流
の波形歪みの原因ともなる。
One of the technical problems to be solved by the neutral point clamp type power converter is a technique for suppressing DC neutral point potential fluctuation. In the neutral point clamp type power converter, in FIG. 14, the neutral point current Io flowing through the DC neutral point O has a principle property that it fluctuates positively and negatively at a frequency three times as high as the frequency on the AC side. This neutral point current Io is shunted to the DC capacitors 1 and 2 and has the effect of increasing the voltage of one and decreasing the voltage of the other. That is, the neutral point current Io acts to unbalance the voltages of both capacitors, and the neutral point potential fluctuates at a frequency three times the AC side frequency. The fluctuation of the neutral-point potential not only causes an imbalance in the voltage of the positive and negative capacitors, but also affects the withstand voltage of the components, and also affects the voltage waveform of the AC side, which causes waveform distortion of the AC side current.

【0005】中性点電位変動を抑制する方法として、正
負コンデンサ電圧の差を検出してフィードバック補正を
行う方式が知られている。図15は、フィードバック補
正による中性点電位変動抑制制御を実施する装置の構成
例(例えば、嶋村他「NPCインバータの直流入力コン
デンサ電圧の平衡化制御」電気学会半導体電力変換研究
会資料SPC−91−37、平成3年)を示すものであ
る。
As a method of suppressing the fluctuation of the neutral point potential, there is known a method of detecting a difference between positive and negative capacitor voltages and performing feedback correction. FIG. 15 shows an example of the configuration of an apparatus for performing neutral point potential fluctuation suppression control by feedback correction (for example, Shimamura et al., "Equilibration control of DC input capacitor voltage of NPC inverter", Institute of Electrical Engineers of Japan, Semiconductor Power Conversion Workshop Material SPC-91. -37, 1991).

【0006】図15の装置は、図14の装置と同様の主
回路構成の電力変換器3に中性点電位を抑制するための
制御回路部を付加したものである。正側直流コンデンサ
電圧Vcpおよび負側直流コンデンサ電圧Vcnをそれぞれ
電圧検出器10,11によって検出し、検出された直流
コンデンサ電圧Vcp,Vcnの差すなわち差電圧ΔVpn=
Vcp−Vcnを減算器12によって演算し、その差電圧
を、増幅器13を介して乗算器15の第1の入力端子に
入力する。他方、極性選択器14により、3相電圧指令
Vu,Vv,Vw、および電流検出器20,21,
22によって検出された3相の変換器交流電流Iu,I
v,Iwに基づいて、電力変換器3の電力の流れの方向す
なわち潮流方向を判断して、例えば電力が直流側から交
流側へと流れているときは+1の、その逆の場合は−1
の極性信号Spが求められ、乗算器15の第2の入力端
子に入力される。
The apparatus shown in FIG. 15 is obtained by adding a control circuit section for suppressing the neutral point potential to the power converter 3 having the same main circuit configuration as the apparatus shown in FIG. The positive DC capacitor voltage Vcp and the negative DC capacitor voltage Vcn are respectively detected by the voltage detectors 10 and 11, and the difference between the detected DC capacitor voltages Vcp and Vcn, that is, the difference voltage ΔVpn =
Vcp-Vcn is calculated by the subtracter 12, and the difference voltage is input to the first input terminal of the multiplier 15 via the amplifier 13. On the other hand, the polarity selector 14 causes the three-phase voltage commands Vu * , Vv * , Vw * , and the current detectors 20, 21,
Three-phase converter alternating current Iu, I detected by 22
Based on v and Iw, the direction of the power flow of the power converter 3, that is, the direction of the power flow is determined, and, for example, +1 when the power is flowing from the DC side to the AC side, and -1 when the power is flowing in the opposite direction.
Polarity signal Sp is obtained and input to the second input terminal of the multiplier 15.

【0007】乗算器15は、増幅器13からの差電圧Δ
Vpn相当の信号に極性信号Spの値を乗じて中性点電位
変動を抑制するための補正量Vcmp=ΔVpn・Spを生成
する。この補正量Vcmpは3相の電圧指令Vu,V
v,Vwに加算器16,17,18を介して加算さ
れ、補正された3相の電圧指令Vuc,Vvc,Vwc
が生成され、3レベルPWM制御回路19に送出され
る。3レベルPWM制御回路19は入力された電圧指令
Vuc,Vvc,Vwcに基づき公知のやり方に従って
パルス幅変調制御を行い中性点クランプ式電力変換器3
のスイッチング素子をオンオフ制御する。
The multiplier 15 receives the difference voltage Δ from the amplifier 13.
A signal corresponding to Vpn is multiplied by the value of the polarity signal Sp to generate a correction amount Vcmp = ΔVpn · Sp for suppressing the neutral point potential fluctuation. This correction amount Vcmp is a three-phase voltage command Vu * , V
Three-phase voltage commands Vuc * , Vvc * , Vwc * corrected and added to v * , Vw * via adders 16, 17, 18
Is generated and sent to the three-level PWM control circuit 19. The 3-level PWM control circuit 19 performs pulse width modulation control according to a known method based on the input voltage commands Vuc * , Vvc * , Vwc * , and the neutral point clamp type power converter 3
ON / OFF control the switching element.

【0008】[0008]

【発明が解決しようとする課題】図15の装置によって
中性点電位変動を抑制し得ることは確かであるが、中性
点電位変動を完全にゼロにするためには、理論上、増幅
器13のゲインを無限大にする必要があり、現実的には
不可能である。有限のゲインとした場合には、中性点電
位変動は運転力率等の電力変換器の運転状態によってそ
の大きさが変化することになるが、総ての運転状態で中
性点電位変動を許容値以下に抑制するためには、ゲイン
を大きくするか、直流コンデンサ1,2のキャパシタン
スを大きくしておく必要がある。しかし、ゲインを大き
くすると制御上の安定性を損なう虞があるだけでなく、
補正量が過大となり、補正後の3相電圧指令Vuc,V
vc,Vwcが可制御範囲を超えてしまうこともあり得
る。他方、直流コンデンサ1,2のキャパシタンスを大
きくすることは、電力変換装置としてコストアップにつ
ながる。
Although it is certain that the neutral point potential fluctuation can be suppressed by the device of FIG. 15, in order to completely eliminate the neutral point potential fluctuation, theoretically, the amplifier 13 is required. The gain of must be infinite, which is not possible in reality. When the gain is finite, the neutral point potential fluctuation will change in magnitude depending on the operating state of the power converter such as the driving power factor. In order to suppress it below the allowable value, it is necessary to increase the gain or increase the capacitance of the DC capacitors 1 and 2. However, increasing the gain not only impairs control stability, but also
The correction amount becomes excessive, and the corrected three-phase voltage commands Vuc * , V
It is possible that vc * and Vwc * may exceed the controllable range. On the other hand, increasing the capacitance of the DC capacitors 1 and 2 increases the cost of the power conversion device.

【0009】そこで本発明は、総ての運転状態において
中性点電位変動をある設定された値以下に抑制し得る、
中性点クランプ式電力変換器の制御装置を提供すること
を目的とする。
Therefore, the present invention is capable of suppressing the neutral point potential fluctuations below a certain set value in all operating conditions,
An object of the present invention is to provide a control device for a neutral point clamp type power converter.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に請求項1に係る発明の中性点クランプ式電力変換器の
制御装置は、電力変換器の直流端子間に直列に接続され
る一対の直流コンデンサの電圧差に基づいて両直流コン
デンサの直列接続点に形成される中性点の電位が所定の
リミット値を超えたかどうかを判定するリミット判定回
路と、3相電圧指令のうち三角波キャリア信号の特定の
位相点で最高となる相の電圧指令が正側の最高値になる
ようなオフセット値を3相総ての電圧指令に加算して3
相の正側シフト電圧指令を出力する正側シフト回路と、
3相電圧指令のうち三角波キャリア信号の特定の位相点
で最低となる相の電圧指令が負側の最低値になるような
オフセット値を3相総ての電圧指令に加算して3相の負
側シフト電圧指令を出力する負側シフト回路と、3相電
圧指令、正側シフト電圧指令、および負側シフト電圧指
令の各電圧指令に基づいてPWM制御を行ったと仮定し
た場合に発生する各中性点電流を3相電圧指令および3
相交流電流から演算する中性点電流演算回路と、リミッ
ト判定回路および各中性点電流演算回路の出力信号を元
に、中性点の電位がリミット値を超えてしまっている場
合に、その中性点電位を所定のリミット値内に最も速く
戻すことのできる中性点電流を発生する3相電圧指令を
選択する電圧指令選択回路と、この電圧指令選択回路に
よって選択された3相電圧指令に従って3レベルPWM
制御を行う3レベルPWM制御回路とを備えたことを特
徴とする。この発明によれば、中性点の電位変動を設定
されたリミット値以内に抑制することが可能となる。
In order to achieve the above object, a neutral point clamp type power converter control device according to a first aspect of the present invention is a pair of serially connected DC terminals of the power converter. Limit judgment circuit that judges whether the potential of the neutral point formed at the series connection point of both DC capacitors exceeds the predetermined limit value based on the voltage difference of the DC capacitor of 3 and the triangular wave carrier of the three-phase voltage command. Add an offset value such that the voltage command of the phase that becomes the highest at a specific phase point of the signal becomes the highest value on the positive side to the voltage commands of all three phases, and add 3
A positive shift circuit that outputs a positive shift voltage command for the phase,
Of the three-phase voltage commands, an offset value such that the voltage command of the phase that becomes the lowest at a specific phase point of the triangular wave carrier signal becomes the minimum value on the negative side is added to all the voltage commands of the three phases, and the negative voltage of the three phases is added. A negative side shift circuit that outputs a side shift voltage command, and a three-phase voltage command, a positive side shift voltage command, and a negative side shift voltage command. 3 point voltage command and 3 point current
If the potential of the neutral point exceeds the limit value based on the output signals of the neutral point current arithmetic circuit that calculates from the phase alternating current and the limit judgment circuit and each neutral point current arithmetic circuit, A voltage command selection circuit that selects a three-phase voltage command that generates a neutral-point current that can most quickly return the neutral-point potential to a predetermined limit value, and a three-phase voltage command selected by this voltage command selection circuit 3 level PWM according to
A three-level PWM control circuit for controlling is provided. According to the present invention, it is possible to suppress the potential fluctuation of the neutral point within the set limit value.

【0011】請求項2に係る発明は、請求項1に記載の
中性点クランプ式電力変換器の制御装置において、3レ
ベルPWM制御回路とともに2レベルPWM制御回路を
備え、中性点電位がリミット値を超えてしまっている場
合に、3相電圧指令、正側シフト電圧指令および負側シ
フト電圧指令の各電圧指令のどれを用いても中性点電位
をリミット値内に戻すことができない場合には、3レベ
ルPWM制御回路に代えて2レベルPWM制御回路に切
り換える手段を備えたことを特徴とする。2レベルPW
M制御では中性点電流が発生しないため、この発明によ
れば、中性点電位はそのままの状態に保たれ、結果とし
て設定されたリミット値近傍に保持することができる。
According to a second aspect of the present invention, in the control device for the neutral point clamp type power converter according to the first aspect, a three level PWM control circuit and a two level PWM control circuit are provided, and the neutral point potential is limited. When the value exceeds the value, the neutral point potential cannot be returned to within the limit value by using any of the three-phase voltage command, the positive side shift voltage command, and the negative side shift voltage command. Is equipped with means for switching to a 2-level PWM control circuit instead of the 3-level PWM control circuit. 2 level PW
Since the neutral point current is not generated in the M control, according to the present invention, the neutral point potential can be kept as it is, and as a result, it can be kept in the vicinity of the set limit value.

【0012】さらに、請求項3に係る発明は、請求項1
または請求項2に記載の中性点クランプ式電力変換器の
制御装置において、中性点電流演算回路は各中性点電流
を各3相電圧指令と3相交流電流指令から演算すること
を特徴とする。この発明によれば、交流電流指令を用い
て中性点電流を演算することにより、電流検出器を備え
る必要がなくなる。
Further, the invention according to claim 3 is the same as claim 1.
Alternatively, in the control device for the neutral point clamp type power converter according to claim 2, the neutral point current operation circuit calculates each neutral point current from each three-phase voltage command and three-phase AC current command. And According to the present invention, by calculating the neutral point current using the alternating current command, it is not necessary to provide a current detector.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照して説明する。本発明の実施の形態を示
す図面において、図15のものと同一の構成要素には同
一の符号を付してその個々の説明は省略する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In the drawings showing the embodiment of the present invention, the same components as those of FIG. 15 are designated by the same reference numerals, and the individual description thereof will be omitted.

【0014】<第1の実施の形態>図1は本発明による
中性点クランプ式電力変換器の制御装置の第1の実施の
形態を示すブロック図である。図1の装置には、図15
の装置に備えられていた増幅器13、極性選択器14、
乗算器15、および加算器16,17,18が省略さ
れ、新たにリミット判定回路23、正側シフト回路2
4、負側シフト回路25、中性点電流演算回路26,2
7,28、および電圧指令選択回路29を備えている。
<First Embodiment> FIG. 1 is a block diagram showing a first embodiment of a control device for a neutral point clamp type power converter according to the present invention. The device of FIG.
Amplifier 13 and polarity selector 14 provided in the device of
The multiplier 15 and the adders 16, 17, and 18 are omitted, and a new limit determination circuit 23 and positive shift circuit 2 are newly added.
4, negative side shift circuit 25, neutral point current calculation circuits 26, 2
7, 28 and a voltage command selection circuit 29.

【0015】電圧検出器10,11で検出された正負の
直流電圧Vcp,Vcnに基づいて減算器12により差電圧
ΔVpn=Vcp−Vcnを求め、その差電圧を中性点電位と
してリミット判定回路23に入力する。リミット判定回
路23では差電圧ΔVpnが、予め設定されたリミット値
±Vnplimの範囲を超えているかどうかの判定を行い、
超えている場合、その差電圧ΔVpnをリミット信号Sli
mとして出力する。すなわち、 ΔVpn<−Vnplim のとき、Slim=ΔVpn<0 −Vnplim≦ΔVpn≦+Vnplim のとき、Slim=0 ΔVpn>+Vnplim のとき、Slim=ΔVpn>0 である。
A subtracter 12 obtains a difference voltage ΔVpn = Vcp-Vcn based on the positive and negative DC voltages Vcp and Vcn detected by the voltage detectors 10 and 11, and the limit judgment circuit 23 uses the difference voltage as a neutral point potential. To enter. The limit determination circuit 23 determines whether the difference voltage ΔVpn exceeds a preset limit value ± Vnplim range,
When it exceeds the limit voltage Sli
Output as m. That is, when ΔVpn <−Vnplim, Slim = ΔVpn <0 −Vnplim ≦ ΔVpn ≦ + Vnplim, and when Slim = 0 ΔVpn> + Vnplim, Slim = ΔVpn> 0.

【0016】正側シフト回路24では、各パルス期間に
おいて、3相電圧指令Vu,Vv,Vwのうちで最
高値となる相、例えば図2に示す例ではU相電圧指令V
uが正側の最高値になるようなオフセット値ΔVp
(図2参照)を3相総ての電圧指令に加算して、図5
に示す3相正側シフト電圧指令Vpu,Vpv,Vpw
を出力する。同様にして負側シフト回路25では、3相
の電圧指令のうちで最低値となる相、図2に示す例では
W相電圧指令Vwが負側の最低値になるようなオフセ
ット値ΔVnを3相総ての電圧指令に加算して、図7
に示すような3相の負側シフト電圧指令Vnu,Vn
v,Vnwを出力する。
In the positive side shift circuit 24, the phase having the highest value among the three-phase voltage commands Vu * , Vv * , Vw * in each pulse period, for example, the U-phase voltage command V in the example shown in FIG.
Offset value ΔVp such that u * is the highest value on the positive side
* (See Fig. 2) is added to the voltage command for all three phases, and
3-phase positive side shift voltage command Vpu * , Vpv * , Vpw *
Is output. Similarly, in the negative side shift circuit 25, the offset value ΔVn * is set so that the phase having the lowest value among the three-phase voltage commands, that is, the W-phase voltage command Vw * in the example shown in FIG. Is added to the voltage command for all three phases,
3 phase negative side shift voltage commands Vnu * , Vn
Outputs v * and Vnw * .

【0017】図2は、元の3相電圧指令Vu,Vv
Vwを用いて3レベルPWM制御を行う場合の三角波
キャリア信号R1,R2と3相電圧指令Vu,Vv
Vw の関係を示したものである。ここでは各電圧指令
の谷および山のタイミングが同期した正および負の2つ
の三角波キャリア信号R1,R2を用いて、三角波キャ
リア信号の谷および山のタイミングで3相電圧指令をサ
ンプルホールドし、三角波キャリア信号の半周期毎に3
相電圧指令Vu,Vv,Vwに従って3レベルPW
M制御を行う。
FIG. 2 shows the original three-phase voltage command Vu.*, Vv*
Vw*Triangle wave when performing 3-level PWM control using
Carrier signals R1, R2 and three-phase voltage command Vu*, Vv*
Vw *It shows the relationship of. Here, each voltage command
Positive and negative with synchronized timing of valley and mountain
By using the triangular wave carrier signals R1 and R2 of
Support the three-phase voltage command at the timing of the valley and mountain of the rear signal.
And hold 3 times for each half cycle of the triangular wave carrier signal.
Phase voltage command Vu*, Vv*, Vw*3 level PW according to
M control is performed.

【0018】図3は図2の半周期間に発生する中性点電
流を各相の出力電圧レベルが異なる4つの期間〜毎
に示したものである。なお、ここでは期間〜の時間
をそれぞれt〜tと定義している。図3から3相電
圧指令Vu,Vv,Vwのうち出力電圧レベルがゼ
ロ、つまり中性点Oに接続される相がある場合にのみ中
性点電流が生じ、その大きさは中性点Oに接続される相
の電流の合計値(ベクトル和)となることが分かる。
FIG. 3 shows the neutral point current generated during the half cycle of FIG. 2 for each of four periods, which are different in the output voltage level of each phase. Here, we define a time period - the t 1 ~t 4 respectively. From FIG. 3, the neutral point current is generated only when the output voltage level is zero among the three-phase voltage commands Vu * , Vv * , Vw * , that is, when there is a phase connected to the neutral point O, and its magnitude is medium. It can be seen that it is the total value (vector sum) of the currents of the phases connected to the sex point O.

【0019】図4は空間ベクトル上における出力電圧ベ
クトルU,V,Wと期間〜の対応関係を表したもの
である。図3および図4から、期間とは空間ベクト
ル上での電圧ベクトルとしては同じであり、中性点電流
の極性のみが逆になっていることが分かる。
FIG. 4 shows the correspondence between the output voltage vectors U, V and W on the space vector and the period. From FIGS. 3 and 4, it can be seen that the period is the same as the voltage vector on the space vector, and only the polarity of the neutral point current is reversed.

【0020】図5は正側シフト回路24が出力する3相
正側シフト電圧指令Vpu,Vpv,Vpwを3相電圧
指令として3レベルPWM制御を行う場合の、三角波キ
ャリア信号R1,R2と3相電圧指令Vpu,Vpv
Vpwを示したものである。図6は図5に対応する各期
間毎に発生する中性点電流を示したものである。
FIG. 5 shows triangular wave carrier signals R1 and R2 when three-level PWM control is performed with the three-phase positive-side shift voltage commands Vpu * , Vpv * , Vpw * output from the positive-side shift circuit 24 as three-phase voltage commands. And three-phase voltage commands Vpu * , Vpv * ,
It shows Vpw * . FIG. 6 shows the neutral point current generated in each period corresponding to FIG.

【0021】図7は負側シフト回路25が発生する3相
負側シフト電圧指令Vnu,Vnv,Vnwを3相電圧
指令として3レベルPWM制御を行う場合の、三角波キ
ャリア信号R1,R2と3相電圧指令Vnu,Vnv
Vnwの関係を示し、図8は図7に対応する各期間毎に
発生する中性点電流を示している。
FIG. 7 shows triangular wave carrier signals R1 and R2 when three-level PWM control is performed with the three-phase negative-side shift voltage commands Vnu * , Vnv * , Vnw * generated by the negative-side shift circuit 25 as three-phase voltage commands. And three-phase voltage commands Vnu * , Vnv * ,
8 shows the relationship of Vnw * , and FIG. 8 shows the neutral point current generated in each period corresponding to FIG.

【0022】図6と図8の比較から、正側シフト電圧指
令Vpu,Vpv,Vpwと負側シフト電圧指令Vn
u,Vnv,Vnwのいずれかを用いることにより、
期間とで決まる電圧ベクトルのどちらか一方を選択
的に出力できることが分かる。これは空間ベクトル上の
電圧ベクトルとしての能力を変えることなく、中性点電
流の極性を選択できることを意味する。したがって、中
性点電位変動の状態に応じて正側シフト電圧指令か負側
シフト電圧指令を適切に選択することにより、中性点電
位変動を抑制することが可能となる。
From the comparison between FIG. 6 and FIG. 8, positive side shift voltage commands Vpu * , Vpv * , Vpw * and negative side shift voltage command Vn are obtained.
By using one of u * , Vnv * , and Vnw * ,
It can be seen that either one of the voltage vectors determined by the period and can be selectively output. This means that the polarity of the neutral point current can be selected without changing the ability as a voltage vector on the space vector. Therefore, the neutral point potential fluctuation can be suppressed by appropriately selecting the positive side shift voltage command or the negative side shift voltage command according to the state of the neutral point potential fluctuation.

【0023】中性点電流演算回路26は、電流検出器2
0,21,22によって検出された3相交流電流Iu,
Iv,Iw、および絶対値として1に正規化された3相電
圧指令Vu,Vv,Vwから、中性点電流Ioを、 Io=−|Vu|Iu−|Vv|Iv−|Vw|Iw なる式に従って演算する。
The neutral point current calculation circuit 26 is used for the current detector 2
3-phase AC current Iu detected by 0, 21, 22
From Iv, Iw, and the three-phase voltage commands Vu * , Vv * , Vw * normalized to 1 as an absolute value, the neutral point current Io is expressed as Io =-| Vu * | Iu- | Vv * | Iv- Calculation is performed according to the formula | Vw * | Iw.

【0024】同様に中性点電流演算回路27は、3相交
流電流Iu,Iv,Iw、および絶対値として1に正規化
された3相正側シフト電圧指令Vpu,Vpv,Vpw
から、中性点電流Ioを、 Io=−|Vpu|Iu−|Vpv|Iv−|Vpw|Iw なる式に従って演算する。
Similarly, the neutral point current calculation circuit 27 has the three-phase alternating currents Iu, Iv, Iw and the three-phase positive shift voltage commands Vpu * , Vpv * , Vpw * normalized to 1 as an absolute value .
Therefore, the neutral point current Io is calculated according to the following formula: Io =-| Vpu * | Iu- | Vpv * | Iv- | Vpw * | Iw.

【0025】さらに中性点電流演算回路28は、3相交
流電流Iu,Iv,Iw、および絶対値として1に正規化
された3相負側シフト電圧指令Vnu,Vnv,Vnw
から、中性点電流Ioを、 Io=−|Vnu|Iu−|Vnv|Iv−|Vnw|Iw なる式に従って演算する。
Further, the neutral point current calculation circuit 28 is provided with the three-phase alternating currents Iu, Iv, Iw and the three-phase negative side shift voltage commands Vnu * , Vnv * , Vnw * normalized to 1 as an absolute value .
Therefore, the neutral point current Io is calculated according to the following formula: Io =-| Vnu * | Iu- | Vnv * | Iv- | Vnw * | Iw.

【0026】これらの式から求められる中性点電流Io
は、三角波キャリア信号半周期間に発生する中性点電流
の平均値となる。演算された各中性点電流Ioとリミッ
ト判定回路23が出力するリミット信号Slimを元に、
電圧指令選択回路29は中性点電位を最も速くリミット
値内に戻すことのできる3相電圧指令を選択する。3レ
ベルPWM制御回路19は、選択された3相電圧指令に
従って中性点クランプ式電力変換器3の3レベルPWM
制御を行う。
Neutral point current Io obtained from these equations
Is the average value of the neutral point currents generated during the half cycle of the triangular wave carrier signal. Based on the calculated neutral point currents Io and the limit signal Slim output from the limit determination circuit 23,
The voltage command selection circuit 29 selects a three-phase voltage command capable of returning the neutral-point potential to the limit value fastest. The three-level PWM control circuit 19 controls the three-level PWM of the neutral point clamp type power converter 3 according to the selected three-phase voltage command.
Take control.

【0027】本実施の形態によれば、中性点クランプ式
電力変換器の中性点電位変動を設定値以下に抑えること
が可能となる。
According to the present embodiment, it is possible to suppress the neutral point potential fluctuation of the neutral point clamp type power converter to the set value or less.

【0028】<第2の実施の形態>図9は本発明による
中性点クランプ式電力変換器の制御装置の第2の実施の
形態を示すブロック図である。図1に示した第1の実施
の形態との違いは、電圧指令選択回路29の出力側に、
3レベルPWM制御回路19と2レベルPWM制御回路
30を併設するとともに、両PWM制御回路19,30
の出力側に電圧指令選択回路29からの信号Spwmに従
っていずれか一方に切り換えるPWM制御切換回路31
を設けた点にある。2レベルPWM制御回路30は、元
の3相電圧指令Vu,Vv,Vwに従って、図10
に示す2レベルPWM制御を行う。電圧指令選択回路2
9により3種の3相電圧指令のうちのいずれを用いて
も、中性点電位をリミット値内に戻すことができないと
判断された場合には、電圧指令選択回路29から切換信
号Spwmを出力し、その切換信号SpwmによりPWM制御
切換回路31は中性点クランプ式電力変換器3に与える
スイッチング信号を、3レベルPWM制御回路19の出
力から2レベルPWM制御回路30の出力に切り換え
る。図2の3レベルPWM制御の場合とは、三角波キャ
リア信号が正負別々ではなく、図10に示すように正か
ら負まで変化する単一のキャリア信号R0に変更されて
いる点が異なる。
<Second Embodiment> FIG. 9 is a block diagram showing a second embodiment of the control unit for the neutral point clamp type power converter according to the present invention. The difference from the first embodiment shown in FIG. 1 is that the output side of the voltage command selection circuit 29 is
The three-level PWM control circuit 19 and the two-level PWM control circuit 30 are provided side by side, and both PWM control circuits 19 and 30 are provided.
To the output side of the PWM control switching circuit 31 for switching to either one in accordance with the signal Spwm from the voltage command selection circuit 29.
There is a point. The two-level PWM control circuit 30 operates according to the original three-phase voltage commands Vu * , Vv * , Vw * as shown in FIG.
2 level PWM control shown in is performed. Voltage command selection circuit 2
When it is determined that the neutral point potential cannot be returned to the limit value by using any of the three kinds of three-phase voltage commands, the switching command Spwm is output from the voltage command selection circuit 29. Then, according to the switching signal Spwm, the PWM control switching circuit 31 switches the switching signal supplied to the neutral point clamp type power converter 3 from the output of the 3-level PWM control circuit 19 to the output of the 2-level PWM control circuit 30. This is different from the case of the three-level PWM control in FIG. 2 in that the triangular wave carrier signal is not separately positive and negative but is changed to a single carrier signal R0 that changes from positive to negative as shown in FIG.

【0029】図11は、図10に対応する各期間毎に発
生する中性点電流を示したものである。図11から、全
期間とも中性点電流は発生しないことが分かる。図12
は空間ベクトル上における出力電圧ベクトルU,V,W
と各期間の対応を表したものである。図4の3レベルP
WM制御の場合と比較すると、図12では中性点Oと外
側の正6角形の頂点からなる大三角形を用いてPWM制
御を行っており、大三角形の辺の中点に対応する電圧ベ
クトルを用いていないことが分かる。結果として、図1
1に示すように中性点電流は発生しない。したがって、
中性点電位変動がリミット値を超えた場合に、3種類の
3相電圧指令のうちのいずれを用いても中性点電位変動
が改善されない場合には、2レベルPWM制御回路30
に切り換えることにより、中性点電位変動をそれ以上悪
化させずにリミット値近傍に保つことができる。
FIG. 11 shows the neutral point current generated in each period corresponding to FIG. From FIG. 11, it can be seen that the neutral point current does not occur during the entire period. 12
Is the output voltage vector U, V, W on the space vector
And the correspondence of each period. 3 level P in FIG.
Compared with the case of the WM control, in FIG. 12, PWM control is performed using a large triangle composed of a neutral point O and an outer regular hexagonal vertex, and the voltage vector corresponding to the midpoint of the side of the large triangle is calculated. You can see that it is not used. As a result,
As shown in 1, the neutral point current does not occur. Therefore,
When the neutral point potential fluctuation exceeds the limit value and the neutral point potential fluctuation is not improved by using any of the three types of three-phase voltage commands, the two-level PWM control circuit 30
By switching to, it is possible to keep the neutral point potential fluctuation near the limit value without further aggravating it.

【0030】<第3の実施の形態>図13は、本発明に
よる中性点クランプ式電力変換器の制御装置における第
3の実施の形態を示すブロック図である。この実施の形
態は、図1に示す第1の実施の形態とは、中性点電流演
算回路26,27,28の演算に用いる3相交流電流I
u,Iv,Iwの代わりに、図示していない変換器制御装
置内で求められる3相交流電流指令Iu,Iv,Iw
を用いている点が異なる。中性点クランプ式電力変換
器では電流制御を行うのが一般的であり、その場合、3
相交流電流Iu,Iv,Iwは3相交流電流指令Iu,I
v,Iwに追従するように制御される。したがって、
本実施の形態に従って3相交流電流Iu,Iv,Iwの代
わりに3相交流電流指令Iu,Iv,Iwを用いて
も本発明の目的が十分に達成されることは明らかであ
る。なお、図9に示した第2の実施の形態においても3
相交流電流指令Iu,Iv,Iwを用いて中性点電
流の演算を行うことができる。
<Third Embodiment> FIG. 13 is a block diagram showing a third embodiment of the control device for the neutral point clamp type power converter according to the present invention. This embodiment is different from the first embodiment shown in FIG. 1 in that the three-phase AC current I used for the calculation of the neutral point current calculation circuits 26, 27, 28.
Instead of u, Iv, Iw, three-phase AC current commands Iu * , Iv * , Iw obtained in a converter controller (not shown)
The difference is that * is used. In the neutral point clamp type power converter, current control is generally performed. In that case, 3
The phase alternating currents Iu, Iv, Iw are three-phase alternating current commands Iu * , I
Controlled so as to follow v * and Iw * . Therefore,
It is apparent that the object of the present invention can be sufficiently achieved by using the three-phase AC current commands Iu * , Iv * , Iw * instead of the three-phase AC currents Iu, Iv, Iw according to the present embodiment. In addition, in the second embodiment shown in FIG.
The neutral point current can be calculated using the phase alternating current commands Iu * , Iv * , Iw * .

【0031】[0031]

【発明の効果】本発明によれば、中性点電位変動が、設
定されたリミット値を超えた場合に、中性点電位変動を
それ以上悪化させないように電力変換器を制御するの
で、電力変換器の運転状態にかかわらず中性点電位変動
をある設定された値以下に抑制することができる。
According to the present invention, when the neutral point potential fluctuation exceeds the set limit value, the power converter is controlled so as not to further deteriorate the neutral point potential fluctuation. Neutral point potential fluctuations can be suppressed below a certain set value regardless of the operating state of the converter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による中性点クランプ式電力変換器の制
御装置の第1の実施の形態を示すブロック図。
FIG. 1 is a block diagram showing a first embodiment of a control device for a neutral point clamp type power converter according to the present invention.

【図2】3相電圧指令を用いて3レベルPWM制御を行
う場合の三角波キャリア信号と電圧指令発生の関係を示
す説明図。
FIG. 2 is an explanatory diagram showing a relationship between a triangular wave carrier signal and voltage command generation when three-level PWM control is performed using a three-phase voltage command.

【図3】図2の各期間に対応する中性点電流を示す図
表。
FIG. 3 is a chart showing a neutral point current corresponding to each period of FIG.

【図4】図2の各期間に対応する空間ベクトル上の出力
電圧ベクトルを示すベクトル図。
FIG. 4 is a vector diagram showing an output voltage vector on a space vector corresponding to each period of FIG.

【図5】3相正側シフト電圧指令を用いて3レベルPW
M制御を行う場合の三角波キャリア信号と電圧指令の関
係を示す説明図。
FIG. 5 is a three-level PW using a three-phase positive shift voltage command.
Explanatory drawing which shows the relationship of a triangular wave carrier signal and voltage command at the time of performing M control.

【図6】図5の各期間に対応する中性点電流を示す図
表。
6 is a chart showing neutral point currents corresponding to respective periods of FIG. 5. FIG.

【図7】3相負側シフト電圧指令を用いて3レベルPW
M制御を行う場合の三角波キャリア信号と電圧指令の関
係を示す説明図。
FIG. 7 is a three-level PW using a three-phase negative shift voltage command.
Explanatory drawing which shows the relationship of a triangular wave carrier signal and voltage command at the time of performing M control.

【図8】図7の各期間に対応する中性点電流を示す図
表。
8 is a chart showing a neutral point current corresponding to each period of FIG. 7. FIG.

【図9】本発明による中性点クランプ式電力変換器の制
御装置の第2の実施の形態を示すブロック図。
FIG. 9 is a block diagram showing a second embodiment of a control device for a neutral point clamp type power converter according to the present invention.

【図10】3相電圧指令を用いて2レベルPWM制御を
行う場合の三角波キャリア信号と電圧指令の関係を示す
説明図。
FIG. 10 is an explanatory diagram showing a relationship between a triangular wave carrier signal and a voltage command when two-level PWM control is performed using a three-phase voltage command.

【図11】図10の各期間に対応する中性点電流を示す
図表。
11 is a chart showing a neutral point current corresponding to each period of FIG. 10. FIG.

【図12】図10の各期間に対応する空間ベクトル上の
出力電圧ベクトルを示すベクトル図。
12 is a vector diagram showing an output voltage vector on a space vector corresponding to each period of FIG.

【図13】本発明による中性点クランプ式電力変換器の
制御装置の第3の実施の形態を示すブロック図。
FIG. 13 is a block diagram showing a third embodiment of a control device for a neutral point clamp type power converter according to the present invention.

【図14】本発明が対象とする公知の中性点クランプ式
電力変換器の主回路構成を示す結線図。
FIG. 14 is a connection diagram showing a main circuit configuration of a known neutral point clamp type power converter which is a target of the present invention.

【図15】従来の中性点クランプ式電力変換器の制御装
置の一構成例を示すブロック図。
FIG. 15 is a block diagram showing a configuration example of a control device of a conventional neutral point clamp type power converter.

【符号の説明】[Explanation of symbols]

1,2 直流コンデンサ 3 中性点クランプ式電力変換器 10,11 電圧検出器 12 減算器 13 増幅器 14 極性選択器 15 乗算器 16,17,18 加算器 19 3レベルPWM制御回路 20,21,22 電流検出器 23 リミット判定回路 24 正側シフト回路 25 負側シフト回路 26,27,28 中性点電流演算回路 29 電圧指令選択回路 30 2レベルPWM制御回路 31 PWM制御切換回路 1,2 DC capacitors 3 Neutral point clamp type power converter 10, 11 Voltage detector 12 Subtractor 13 Amplifier 14 Polarity selector 15 Multiplier 16,17,18 adder 19 3-level PWM control circuit 20,21,22 Current detector 23 Limit judgment circuit 24 Positive shift circuit 25 Negative shift circuit 26, 27, 28 Neutral point current calculation circuit 29 Voltage command selection circuit 30 2 level PWM control circuit 31 PWM control switching circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚 越 昌 彦 東京都府中市東芝町1番地 株式会社東芝 府中事業所内 Fターム(参考) 5H006 AA07 CA01 CA05 CA12 CB01 CC02 CC08 DA04 DB01 5H007 AA08 CA01 CA05 CB02 CB05 CC03 DB02 DC02 DC05 EA02   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tsukasa Masahiko             No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation             Fuchu Office F-term (reference) 5H006 AA07 CA01 CA05 CA12 CB01                       CC02 CC08 DA04 DB01                 5H007 AA08 CA01 CA05 CB02 CB05                       CC03 DB02 DC02 DC05 EA02

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電力変換器の直流端子間に直列に接続され
る一対の直流コンデンサの電圧差に基づいて両直流コン
デンサの直列接続点に形成される中性点の電位が所定の
リミット値を超えたかどうかを判定するリミット判定回
路と、3相電圧指令のうち三角波キャリア信号の特定の
位相点で最高となる相の電圧指令が正側の最高値になる
ようなオフセット値を3相総ての電圧指令に加算して3
相の正側シフト電圧指令を出力する正側シフト回路と、
3相電圧指令のうち三角波キャリア信号の特定の位相点
で最低となる相の電圧指令が負側の最低値になるような
オフセット値を3相総ての電圧指令に加算して3相の負
側シフト電圧指令を出力する負側シフト回路と、前記3
相電圧指令、正側シフト電圧指令、および負側シフト電
圧指令の各電圧指令に基づいてPWM制御を行ったと仮
定した場合に発生する各中性点電流を前記3相電圧指令
および3相交流電流から演算する中性点電流演算回路
と、前記リミット判定回路および各中性点電流演算回路
の出力信号を元に、前記中性点の電位がリミット値を超
えてしまっている場合に、その中性点電位を前記所定の
リミット値内に最も速く戻すことのできる中性点電流を
発生する3相電圧指令を選択する電圧指令選択回路と、
この電圧指令選択回路によって選択された3相電圧指令
に従って3レベルPWM制御を行う3レベルPWM制御
回路とを備えたことを特徴とする中性点クランプ式電力
変換器の制御装置。
1. The potential of a neutral point formed at a series connection point of both DC capacitors based on a voltage difference between a pair of DC capacitors connected in series between the DC terminals of the power converter has a predetermined limit value. A limit judgment circuit for judging whether or not the voltage has exceeded, and an offset value for all three phases such that the voltage command of the phase that becomes the highest at a specific phase point of the triangular wave carrier signal among the three-phase voltage commands becomes the maximum value on the positive side. Add to the voltage command of 3
A positive shift circuit that outputs a positive shift voltage command for the phase,
Of the three-phase voltage commands, an offset value such that the voltage command of the phase that becomes the lowest at a specific phase point of the triangular wave carrier signal becomes the minimum value on the negative side is added to all the voltage commands of the three phases, and the negative voltage of the three phases is added. A negative shift circuit that outputs a side shift voltage command;
The neutral point currents generated when the PWM control is performed based on the voltage commands of the phase voltage command, the positive side shift voltage command, and the negative side shift voltage command are the three-phase voltage command and the three-phase AC current, respectively. If the potential of the neutral point exceeds the limit value based on the output signals of the neutral point current arithmetic circuit for calculating from the neutral point current arithmetic circuit, the limit determination circuit and each of the neutral point current arithmetic circuits, A voltage command selection circuit that selects a three-phase voltage command that generates a neutral-point current capable of returning the sex point potential within the predetermined limit value fastest.
A neutral point clamp type power converter control device comprising: a three-level PWM control circuit that performs three-level PWM control according to a three-phase voltage command selected by the voltage command selection circuit.
【請求項2】請求項1に記載の中性点クランプ式電力変
換器の制御装置において、前記3レベルPWM制御回路
とともに2レベルPWM制御回路を備え、中性点電位が
リミット値を超えてしまっている場合に、前記3相電圧
指令、正側シフト電圧指令および負側シフト電圧指令の
各電圧指令のどれを用いても中性点電位をリミット値内
に戻すことができない場合には、前記3レベルPWM制
御回路に代えて2レベルPWM制御回路に切り換える手
段を備えたことを特徴とする中性点クランプ式電力変換
器の制御装置。
2. The neutral point clamp type power converter control device according to claim 1, further comprising a two-level PWM control circuit together with the three-level PWM control circuit, and the neutral-point potential exceeds a limit value. If the neutral point potential cannot be returned to the limit value by using any of the voltage commands of the three-phase voltage command, the positive side shift voltage command and the negative side shift voltage command, A neutral point clamp type power converter control device comprising means for switching to a 2-level PWM control circuit instead of a 3-level PWM control circuit.
【請求項3】請求項1または請求項2に記載の中性点ク
ランプ式電力変換器の制御装置において、前記中性点電
流演算回路は各中性点電流を各3相電圧指令と3相交流
電流指令から演算することを特徴とする中性点クランプ
式電力変換器の制御装置。
3. The neutral point clamp type power converter control device according to claim 1 or 2, wherein the neutral point current calculation circuit outputs each neutral point current to each three-phase voltage command and three-phase voltage command. A control device for a neutral point clamp type power converter characterized by being calculated from an alternating current command.
JP2001365926A 2001-11-30 2001-11-30 Neutral point clamp type power converter controller Expired - Lifetime JP3856689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001365926A JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001365926A JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Publications (2)

Publication Number Publication Date
JP2003169480A true JP2003169480A (en) 2003-06-13
JP3856689B2 JP3856689B2 (en) 2006-12-13

Family

ID=19175897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001365926A Expired - Lifetime JP3856689B2 (en) 2001-11-30 2001-11-30 Neutral point clamp type power converter controller

Country Status (1)

Country Link
JP (1) JP3856689B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238694A (en) * 2005-02-24 2006-09-07 Schneider Electric Industries Sas Device and method for controlling converter, and electric converter having such a device
JP2008011606A (en) * 2006-06-28 2008-01-17 Hitachi Ltd Power converter and power conversion method
JP2008224142A (en) * 2007-03-13 2008-09-25 Railway Technical Res Inst Valve control device for pulse tube refrigerator
JP2012517786A (en) * 2009-02-11 2012-08-02 エー ビー ビー リサーチ リミテッド Method, control device, and computer program product performed in cascade-connected two-level converter
CN103138591A (en) * 2011-11-24 2013-06-05 深圳古瑞瓦特新能源有限公司 Voltage balance control method and device for three-level conversion neutral point, and three-level converter
JP2013240262A (en) * 2012-04-19 2013-11-28 Meidensha Corp Device for controlling three-level inverter
JP2014033609A (en) * 2012-07-31 2014-02-20 General Electric Co <Ge> Intelligent level transition systems and methods for transformerless uninterruptible power supply
JP2014107931A (en) * 2012-11-27 2014-06-09 Fuji Electric Co Ltd Method for operating inverter device, and inverter device
JP2015006055A (en) * 2013-06-20 2015-01-08 株式会社豊田中央研究所 Neutral point clamp type power conversion system
KR101561001B1 (en) 2015-02-12 2015-10-16 성균관대학교산학협력단 Forming Method Of Control Signal for 3-Level NPC Inverter, Apparatus of Forming Control Signal for 3-Level NPC Inverter Using Thereof
JP6131360B1 (en) * 2016-03-28 2017-05-17 三菱電機エンジニアリング株式会社 Power converter
JP2018148734A (en) * 2017-03-08 2018-09-20 田淵電機株式会社 Flyback converter
JP2019106874A (en) * 2017-12-08 2019-06-27 台達電子企業管理(上海)有限公司 Balance control method of three-level circuit neutral point voltage and three-level circuit using balance control method of three-level circuit neutral point voltage
WO2020171110A1 (en) * 2019-02-22 2020-08-27 サンデンホールディングス株式会社 Inverter device
JPWO2021192288A1 (en) * 2020-03-27 2021-09-30
US11863098B2 (en) 2018-09-18 2024-01-02 Borgwarner Engineering Services Switzerland Ag Multi-level inverter

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006238694A (en) * 2005-02-24 2006-09-07 Schneider Electric Industries Sas Device and method for controlling converter, and electric converter having such a device
JP2008011606A (en) * 2006-06-28 2008-01-17 Hitachi Ltd Power converter and power conversion method
JP2008224142A (en) * 2007-03-13 2008-09-25 Railway Technical Res Inst Valve control device for pulse tube refrigerator
JP2012517786A (en) * 2009-02-11 2012-08-02 エー ビー ビー リサーチ リミテッド Method, control device, and computer program product performed in cascade-connected two-level converter
CN103138591A (en) * 2011-11-24 2013-06-05 深圳古瑞瓦特新能源有限公司 Voltage balance control method and device for three-level conversion neutral point, and three-level converter
JP2013240262A (en) * 2012-04-19 2013-11-28 Meidensha Corp Device for controlling three-level inverter
JP2014033609A (en) * 2012-07-31 2014-02-20 General Electric Co <Ge> Intelligent level transition systems and methods for transformerless uninterruptible power supply
JP2014107931A (en) * 2012-11-27 2014-06-09 Fuji Electric Co Ltd Method for operating inverter device, and inverter device
JP2015006055A (en) * 2013-06-20 2015-01-08 株式会社豊田中央研究所 Neutral point clamp type power conversion system
KR101561001B1 (en) 2015-02-12 2015-10-16 성균관대학교산학협력단 Forming Method Of Control Signal for 3-Level NPC Inverter, Apparatus of Forming Control Signal for 3-Level NPC Inverter Using Thereof
JP6131360B1 (en) * 2016-03-28 2017-05-17 三菱電機エンジニアリング株式会社 Power converter
JP2017184309A (en) * 2016-03-28 2017-10-05 三菱電機エンジニアリング株式会社 Electric power conversion system
JP2018148734A (en) * 2017-03-08 2018-09-20 田淵電機株式会社 Flyback converter
JP2019106874A (en) * 2017-12-08 2019-06-27 台達電子企業管理(上海)有限公司 Balance control method of three-level circuit neutral point voltage and three-level circuit using balance control method of three-level circuit neutral point voltage
US11863098B2 (en) 2018-09-18 2024-01-02 Borgwarner Engineering Services Switzerland Ag Multi-level inverter
WO2020171110A1 (en) * 2019-02-22 2020-08-27 サンデンホールディングス株式会社 Inverter device
JP2020137329A (en) * 2019-02-22 2020-08-31 サンデンホールディングス株式会社 Inverter device
JP7221726B2 (en) 2019-02-22 2023-02-14 サンデン株式会社 Inverter device
JPWO2021192288A1 (en) * 2020-03-27 2021-09-30
WO2021192288A1 (en) * 2020-03-27 2021-09-30 三菱電機株式会社 3-level power conversion device and method for controlling intermediate potential of dc power supply unit
JP7214040B2 (en) 2020-03-27 2023-01-27 三菱電機株式会社 3-level power conversion device and method for controlling intermediate potential of DC power supply

Also Published As

Publication number Publication date
JP3856689B2 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
US5016158A (en) Parallel multi-inverter system and motor drive system using the same
EP0571755B1 (en) Power converter for converting DC voltage into AC phase voltage having three levels of positive, zero and negative voltage
KR100240905B1 (en) Npc inverter control system
JP3841282B2 (en) PWM inverter device
JP3856689B2 (en) Neutral point clamp type power converter controller
WO2004036755A2 (en) Space vector pwm modulator for permanent magnet motor drive
JP2015201996A (en) Power conversion device, control device for power conversion device, and control method for power conversion device
JP6225418B2 (en) 3-level inverter controller
JP6178433B2 (en) Power converter
JP2013255317A (en) Control device for three-level inverter
JP5192258B2 (en) Clamp type power converter
JP2004266884A (en) Switching power supply type power supply equipment and nuclear magnetic resonance imaging apparatus using the same
JP2004120979A (en) Power converter
JP2012029384A (en) Control circuit for power conversion system
JP4147373B2 (en) Inverter control method
WO2016114330A1 (en) Five-level power conversion device and control method
JP3903429B2 (en) Power converter
US5151853A (en) Cycloconverter and the method of controlling the same
Oh et al. Dead-time compensation of a current controlled inverter using the space vector modulation method
JP2000102257A (en) Pwm pulse generator and generating method for inverter
JPH06319263A (en) Inverter apparatus
WO2018179234A1 (en) H-bridge converter and power conditioner
JP6480290B2 (en) Power converter
JP7109670B2 (en) POWER CONVERSION DEVICE AND METHOD FOR DRIVING POWER CONVERSION DEVICE
JPH0937592A (en) Pwm controller and control method for three level inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Ref document number: 3856689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term