WO2018179234A1 - H-bridge converter and power conditioner - Google Patents

H-bridge converter and power conditioner Download PDF

Info

Publication number
WO2018179234A1
WO2018179234A1 PCT/JP2017/013268 JP2017013268W WO2018179234A1 WO 2018179234 A1 WO2018179234 A1 WO 2018179234A1 JP 2017013268 W JP2017013268 W JP 2017013268W WO 2018179234 A1 WO2018179234 A1 WO 2018179234A1
Authority
WO
WIPO (PCT)
Prior art keywords
leg
phase
output
voltage
circuit
Prior art date
Application number
PCT/JP2017/013268
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 森島
大輔 兒嶋
涼夫 齋藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2019508019A priority Critical patent/JPWO2018179234A1/en
Priority to PCT/JP2017/013268 priority patent/WO2018179234A1/en
Publication of WO2018179234A1 publication Critical patent/WO2018179234A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Definitions

  • Embodiments of the present invention relate to an H-type bridge converter and a power conditioner using the H-type bridge converter.
  • PWM control is used to obtain an AC current waveform with a low current ripple. It is common.
  • the switching device constituting the positive arm or the negative arm cuts off the full load current at the switching frequency, the switching loss is increased and the apparatus may be increased in size.
  • one of the two legs of the H-type bridge converter is a high-frequency switching leg (hereinafter referred to as HF leg) that performs PWM control of the switching frequency f PWM , and the other is the output fundamental frequency f 0 .
  • HF leg high-frequency switching leg
  • LF leg low-frequency switching leg
  • switching devices specifically MOSFETs
  • switching devices specifically power transistors
  • the multiphase interleave method can be applied to a converter in which the input and output may be direct current or alternating current, and there is a proposal that adjusts the current balance. It is made.
  • a clear control method is not necessarily proposed for current balance control in the interleave method of the H-type bridge converter, for example, current balance control when operating the power conditioner with output voltage control.
  • An object of the present invention is to provide an H-type bridge converter and a power conditioner using the H-type bridge converter that can be easily realized as hardware.
  • the H-bridge converter includes an HF leg in which a plurality of sub-legs including a pair of switching devices connected in series between a DC positive voltage bus and a DC negative voltage bus are connected in parallel; and the DC positive voltage A pair of switching devices are connected in series between the bus and the DC negative voltage bus, and are electrically connected to the LF leg connected in parallel to the HF leg and each of the pair of switching devices.
  • the HF leg is controlled based on a multiphase interleaving method in which conduction phases of the plurality of AC output terminals and the plurality of sub-leg switching devices are shifted, and the output is switched every half cycle of the output fundamental frequency. And a control circuit for controlling the LF leg.
  • FIG. 1 is a block diagram illustrating a configuration example of an H-type bridge converter and a power conditioner according to the first embodiment.
  • FIG. 2 is a diagram showing an example of a voltage reference to be generated by the H-bridge converter shown in FIG.
  • FIG. 3 is a diagram showing a configuration example of a control circuit that performs voltage control of the H-bridge converter according to the voltage reference shown in FIG.
  • FIG. 4 is a waveform diagram for schematically explaining an example of an operation in which the HF leg of the H-type bridge converter performs PWM control to generate a gate signal in the control circuit of FIG.
  • FIG. 5 is a block diagram illustrating a configuration example of the H-type bridge converter and the power conditioner according to the second embodiment.
  • FIG. 6 is a block diagram illustrating a configuration example of the control circuit of the power conditioner according to the second embodiment.
  • FIG. 7 is a diagram illustrating a configuration example of a PCS current control circuit that performs current control in the control circuit of the power conditioner illustrated in FIG. 6.
  • FIG. 1 is a block diagram illustrating a configuration example of an H-type bridge converter and a power conditioner according to the first embodiment.
  • the power conditioner of this embodiment is a power conditioner connected between the DC power source 11 and the single-phase AC system 12, and includes an LF leg 15, an HF leg 13, reactors L1, L2, and L3, and a control. Circuit CTR.
  • the H-type bridge converter of this embodiment includes an LF leg 15, an HF leg 13, and a control circuit CTR.
  • the power conditioner of the present embodiment is configured to generate a line voltage v 0 to be supplied to the single-phase AC system 12, and the line voltage v 0 is obtained from the phase voltage v h of the HF leg 13 to the phase of the LF leg 15. is a value obtained by subtracting the voltage v L.
  • the phase voltage v h and the phase voltage v L are potentials based on the intermediate voltage point O of the DC power supply 11.
  • the HF leg 13 includes a plurality of sub-legs connected in parallel and AC output terminals H1 to H3, and includes a pair of switching devices in which each of the plurality of sub-legs is connected in series. In each of the plurality of sub-legs of the HF leg 13, the pair of switching devices and the AC output terminals H1 to H3 are electrically connected.
  • the LF leg 15 includes a pair of switching devices connected in series and an AC output terminal L0, and is connected to the HF leg 13 in parallel. The pair of switching devices of the LF leg 15 and the AC output terminal L0 are electrically connected.
  • the HF leg 13 is a K-phase interleave circuit that performs PWM control at, for example, the switching frequency f PWM .
  • the switching frequency f PWM is, for example, 13333 Hz (1/3 of 40 kHz).
  • the HF leg 13 includes a first subleg, a second subleg, and a third subleg. The first subleg, the second subleg, and the third subleg are connected in parallel to each other.
  • the first subleg includes an upper arm and a lower arm connected in series with each other.
  • the upper arm includes a switching device 131 connected between the DC positive voltage bus P and the AC output terminal H1, and an antiparallel diode 131a.
  • the lower arm includes a switching device 132 connected between the AC output terminal H1 and the DC negative voltage bus N, and an antiparallel diode 132a.
  • the second subleg has an upper arm and a lower arm connected in series with each other.
  • the upper arm includes a switching device 133 connected between the DC positive voltage bus P and the AC output terminal H2, and an antiparallel diode 133a.
  • the lower arm includes a switching device 134 connected between the AC output terminal H2 and the DC negative voltage bus N, and an antiparallel diode 134a.
  • the third subleg has an upper arm and a lower arm connected in series with each other.
  • the upper arm includes a switching device 135 connected between the DC positive voltage bus P and the AC output terminal H3, and an antiparallel diode 135a.
  • the lower arm includes a switching device 136 connected between the AC output terminal H3 and the DC negative voltage bus N, and an antiparallel diode 136a.
  • the AC output terminal H1 connected to the first subleg is electrically connected to the AC terminal H0 via the reactor L1.
  • the AC output terminal H2 connected to the second sub-leg is electrically connected to the AC terminal H0 via the reactor L2.
  • the AC output terminal H3 connected to the third subleg is electrically connected to the AC terminal H0 via the reactor L3.
  • AC terminal H ⁇ b> 0 is electrically connected to one terminal of single-phase AC system 12.
  • an alternating current output from the AC output terminals H1 and i 1 the alternating current output from the AC output terminal H2 and i 2
  • an alternating current output from the AC output terminal H3 i 3 and then, the AC current output from the AC terminal H0 to single phase AC system 12 and the i 0.
  • the alternating current i 0 is the sum of the alternating currents i 1 , i 2 , i 3 .
  • the LF leg 15 is for operating to switch the output every half cycle of the output fundamental frequency f 0, and a upper arm and the lower arm connected in series with each other.
  • the fundamental frequency f 0 is, for example, 50 Hz.
  • the upper arm includes a switching device 151 that is connected between the direct current positive voltage bus P and the alternating current output terminal L0 and incorporates an antiparallel diode.
  • the lower arm includes a switching device 152 that is connected between the AC output terminal L0 and the DC negative voltage bus N and incorporates an antiparallel diode.
  • the AC output terminal L0 is electrically connected to one terminal of the single-phase AC system 12.
  • the reactor L1, the reactor L2, and the reactor L3 are described as separate circuit elements, but the three reactors are magnetically coupled to increase the operating frequency as one reactor having three windings.
  • control method for the H-bridge converter of the power conditioner there are a method of controlling a single-phase AC voltage as an output voltage to a sine wave (voltage control method), and an AC current flowing through a single-phase AC system as an output current And a method for controlling the current to a sine wave (current control method).
  • the voltage control method of the H-bridge converter will be described with reference to the drawings. Although only the voltage control method will be described in the present embodiment, the present invention is not limited to this, and it is not excluded to control the H-bridge converter of the present embodiment by the current control method. .
  • FIG. 2 is a diagram showing an example of a voltage reference to be generated by the H-bridge converter shown in FIG.
  • the single-phase AC voltage reference v 0 * the voltage reference v H * of the HF leg 13, and the voltage reference v L * of the LF leg 15 are shown.
  • the voltage reference v H * to be generated in the HF leg 13 is a voltage obtained by viewing the AC output terminals H1, H2, and H3 of the HF leg 13 with reference to the intermediate voltage point O of the DC power supply 11, and the HF leg phase voltage and It is called voltage.
  • the voltage reference v L * to be generated in the LF leg 15 indicates a voltage when the AC output terminal L0 of the LF leg 15 is viewed with reference to the intermediate voltage point O of the DC power supply 11, and is a voltage called an LF leg phase voltage. .
  • the HF leg 13 generates the actual voltage v H corresponding to the voltage reference v H * by PWM control, and the LF leg 15 corresponds to the one-pulse actual voltage corresponding to the rectangular wave voltage reference v L *. v L and thus the may be generated.
  • FIG. 3 is a diagram showing a configuration example of a control circuit that performs voltage control of the H-bridge converter according to the voltage reference shown in FIG.
  • the control circuit CTR includes a line voltage reference generation circuit 21, an HF leg phase voltage reference generation circuit 22, an LF leg phase voltage reference generation circuit 23, a 120 ° phase difference triangular wave carrier wave generation circuit 24, and a PWM waveform generation circuit 251.
  • 252, 253, negation circuits 261, 262, 263, phase average current difference detection circuits 271, 272, current detectors 281, 282, 283 (shown in FIG. 1), subtracters 291, 292, current Control circuits 301 and 302, adders 311 and 312, and a negation circuit 32 are provided.
  • a sine wave line voltage reference v 0 * is generated.
  • the HF leg phase voltage reference generation circuit 22 receives the line voltage reference v 0 * from the line voltage reference generation circuit 21 and generates the HF leg phase voltage reference v H * .
  • the LF leg phase voltage reference generation circuit 23 receives the line voltage reference v 0 * from the line voltage reference generation circuit 21 and generates the LF leg phase voltage reference v L * .
  • the LF leg phase voltage reference v L * is output as the positive voltage bus potential (+ E / 2) or the negative voltage bus potential (-E / 2) of the DC voltage E. If the DC voltage E is determined, the actual voltage v L is determined. Therefore, in the LF leg phase voltage reference generation circuit 23, the amplitude of the LF leg phase voltage reference v L * is a waveform that is originally determined by the DC voltage E. On the other hand, the HF leg phase voltage reference generation circuit 22 calculates a waveform that changes the amplitude of the HF leg phase voltage reference v H * in accordance with the change in the amplitude of the line voltage reference v 0 * .
  • the phase voltage reference v H1 * in the first sub-leg of the HF leg 13 is equal to the HF leg phase voltage reference v H * .
  • the PWM waveform generation circuit 251 receives the phase voltage reference v H1 * in the first subleg as a modulation wave, and receives the carrier voltage v T1 in the first subleg from the 120 ° phase difference triangular wave carrier generation circuit 24.
  • the gate signals G Q11 and G Q12 to be supplied to the upper arm switching device 131 and the lower arm switching device 132 are generated.
  • the output signal of the PWM waveform generation circuit 251 is a gate signal GQ11 to be given to the switching device 131.
  • the output signal of the PWM waveform generation circuit 251 becomes a gate signal GQ12 to be supplied to the switching device 132 via the negation circuit 261. Therefore, the gate signal GQ11 and the gate signal GQ12 have waveforms inverted from each other.
  • FIG. 4 is a waveform diagram for schematically explaining an example of an operation in which the HF leg of the H-type bridge converter performs PWM control to generate a gate signal in the control circuit of FIG.
  • the 120 ° phase difference triangular wave carrier wave generation circuit 24 generates a carrier voltage v T1 in the first sub-leg, a carrier voltage v T2 in the second sub-leg, and a carrier voltage v T3 in the third sub-leg.
  • the carrier is a continuous triangular wave PWM control frequency f PWM.
  • the bold line indicates the carrier voltage v T1 in the first sub-leg
  • the thin line indicates the carrier voltage v T2 in the second sub-leg
  • the broken line indicates the carrier voltage v T3 in the third sub-leg.
  • the HF leg since the HF leg includes three sub-legs, the triangular waves (carrier wave voltages) v T1 , v T2 , and v T3 have a phase difference of 120 ° from each other, but the triangular wave (carrier wave voltage) And the phase difference thereof are appropriately changed according to the number of sub-legs.
  • FIG. 4 shows the phase voltage reference v H1 * and the carrier voltage v T1 , the gate signal G Q11 applied to the upper arm switching device 131 of the first sub-leg of the HF leg, and the gate signal applied to the lower arm switching device 132.
  • GQ12 An example with GQ12 is shown.
  • the PWM waveform generation circuit 251 compares the phase voltage reference v H1 * and the carrier voltage v T1 in the first subleg, generates a gate signal G Q11 based on the comparison result, and outputs it. That is, the gate signal GQ11 supplied to the switching device 131 is turned on during the phase voltage reference v H1 * > carrier voltage v T1 and turned off during the phase voltage reference v H1 * ⁇ carrier voltage v T1 .
  • the gate signal GQ21 given to the switching device 132 is a signal obtained by inverting the gate signal GQ11 , and is turned on in the period of the phase voltage reference v H1 * ⁇ carrier voltage v T1 and the phase voltage reference v H1 * > carrier. It turned off for a period of voltage v T1.
  • the PWM waveform generation circuit 252 receives the phase voltage reference v H2 * of the second sub-leg as a modulation wave, and has a phase of 120 ° with respect to the carrier voltage v T1 in the first sub-leg from the 120 ° phase difference triangular wave carrier generation circuit 24.
  • the second sub-leg carrier voltage v T2 is received.
  • the PWM waveform generation circuit 252 and the NOT circuit 262 generates and outputs the gate signal G Q22 when applied to the gate signal G Q12 and the switching device 134 of the lower arm to be given to switching device 133 of the upper arm of second Saburegu.
  • the PWM waveform generation circuit 253 receives the phase voltage reference v H3 * of the third sub-leg as a modulation wave, and is phased by 120 ° with respect to the carrier voltage v T2 in the second sub-leg from the 120 ° phase difference triangular wave carrier generation circuit 24.
  • the carrier voltage v T3 of the third sub-leg delayed is received.
  • the PWM waveform generation circuit 253 and the negation circuit 263 generate and output a gate signal G Q13 to be supplied to the switching device 135 of the upper arm of the third subleg and a gate signal G Q23 to be supplied to the switching device 136 of the lower arm.
  • the instantaneous alternating currents i 1 , i 2 , i 3 of the first sub-leg, the second sub-leg, and the third sub-leg are expressed as current waveforms having ripples that increase / decrease at the frequency f PWM.
  • the pulse of the gate signal applied to the switching devices of the first sub-leg, the second sub-leg, and the third sub-leg has a conduction phase of 120 ° because the carrier voltages v T1 , v T2 , and v T3 are shifted by 120 °. It's off.
  • the instantaneous alternating current i 0 obtained by adding the instantaneous alternating currents i 1 , i 2 , and i 3 becomes a current waveform having a ripple that increases and decreases at a PWM frequency (3 ⁇ f PWM ) that is three times the frequency.
  • the switching frequency can be tripled.
  • the inverter is reduced in size by balancing the average alternating currents i 1AVE , i 2AVE , and i 3AVE by control.
  • the phase average current difference detection circuits 271 and 272 receive the instantaneous alternating currents i 1 , i 2 , and i 3 , calculate the difference between the output alternating current of each phase and the three-phase current average value, and output it.
  • the average current difference detection circuit 272 receives the instantaneous alternating currents i 1 , i 2 , i 3 detected by the current detectors 281, 282, 283, and receives the average alternating current i 1AVE of the first subleg and the second subleg.
  • I mean and alternating current i 2AVE of mean and alternating current i 3AVE third Saburegu, by using the sum i 0AVE average alternating current ( i 1AVE + i 2AVE + i 3AVE), the average AC current i 2AVE second Saburegu
  • the subtractor 291 subtracts the reference value from the current difference ⁇ i 1AVE output from the average current difference detection circuit 271 and outputs the result. In this embodiment, the reference value is zero.
  • the subtractor 292 subtracts the reference value from the current difference ⁇ i 2AVE output from the average current difference detection circuit 272 and outputs the result. In this embodiment, the reference value is zero.
  • the current control circuit 301 is a control circuit including at least an integration element, and amplifies the value output from the subtractor 291 to generate and output the phase voltage reference correction signal v Had1 * in the first subleg.
  • the current control circuit 302 is a control circuit including at least an integration element, and amplifies the value output from the subtractor 292 to generate and output the phase voltage reference correction signal v Had2 * in the second subleg.
  • the current control circuits 301 and 302 perform proportional integral (PI) control.
  • the adder 311 adds the phase voltage reference correction signal v Had1 * and the HF leg phase voltage reference v H *, and outputs the result as the phase voltage reference v H1 * of the first subleg.
  • the adder 312 adds the phase voltage reference correction signal v Had2 * and the HF leg phase voltage reference v H *, and outputs the result as the phase voltage reference v H2 * of the second sub-leg.
  • the HF leg 13 of this embodiment is a three-phase interleave system
  • the current balance of the third phase can be obtained by controlling the current balance of two of the three phases. Therefore, for the third sub-leg, it is not necessary to correct the HF leg phase voltage reference v H * by the correction signal in the same way as the first leg and the second leg, and the phase voltage reference in the third sub-leg is the HF leg. Use phase voltage reference v H * .
  • the LF leg phase voltage reference generation circuit 23 receives the line voltage reference v 0 * generated by the line voltage reference generation circuit 21 and generates an LF leg phase voltage reference v L * .
  • the LF leg voltage reference v L * is output by switching the potentials of the DC positive voltage bus and the DC negative voltage bus according to the frequency f 0 of the single-phase AC system. That is, the LF leg phase voltage reference generation circuit 23 only needs to generate one pulse of the actual voltage v L , and the LF leg voltage reference v L * is a rectangular wave signal.
  • the LF leg voltage reference v L * output from the LF leg phase voltage reference generation circuit 23 is a gate signal G Q3 provided to the switching device 153.
  • the negation circuit 32 inverts the LF leg voltage reference v L * and outputs a gate signal G Q4 to be supplied to the switching device 152. That is, when the LF leg voltage reference v L * is ⁇ E / 2, the switching device 152 is turned on.
  • the LF leg 15 is switched at the same PWM frequency as the switching frequency of normal PWM control, an equivalent switching in an AC current waveform is performed.
  • the frequency is 1.5 times, and the ripple can be further reduced, leading to improvement of the waveform near the zero cross of the AC waveform, especially total harmonic distortion (THD) or electromagnetic interference (EMI). Can be reduced.
  • TDD total harmonic distortion
  • EMI electromagnetic interference
  • the HF leg 13 includes three-phase sub-legs, and an IGBT (Insulated Gate-Bipolar-Transistor) having a current capacity of 1/3 is used as the switching devices 131, 132, 133, 134, 135, 136 constituting the sub-legs. Can do.
  • IGBT Insulated Gate-Bipolar-Transistor
  • the interleaving method is applied to the HF leg 13, so that the ratio of switching loss is relatively reduced by reducing the switching frequency to 1/3 of the necessary frequency, and the characteristic of low conduction loss is achieved.
  • the IGBT that is also included. Note that the six IGBTs used in the HF leg 13 may be configured as one package.
  • the LF leg 15 has one leg including switching devices 151 and 152 connected in series.
  • the switching devices 151 and 152 are MOSFETs (Metal-Oxide-Semiconductor-Field-Effect-Transistors) or Super- Junction MOSFETs can be used.
  • the present embodiment when an alternating current waveform having the same current ripple is obtained, the power conversion efficiency is improved, the size is small, and the main circuit and the control circuit can be easily realized as hardware. It is possible to provide an H-type bridge converter and a power conditioner using the H-type bridge converter.
  • FIG. 5 is a block diagram illustrating a configuration example of an H-type bridge converter according to the second embodiment and a power conditioner using the H-type bridge converter.
  • a power conditioner including the H-bridge converter of the first embodiment will be described below with reference to the drawings.
  • the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
  • the power conditioner of the present embodiment is configured such that the power conditioner of the first embodiment described above is connected to the single-phase AC system 12 so that single-phase AC system interconnection operation is possible.
  • the power conditioner of the present embodiment switches the connection from the single-phase AC system 12 to the AC load 41 when a power failure occurs in the single-phase AC system 12 and supplies the AC load 41 with power.
  • the power supply operation (generally called self-sustained operation) is configured to be possible.
  • the first subleg is electrically connected to the AC terminal H0 via the reactor L1
  • the second subleg is electrically connected to the AC terminal H0 via the reactor L2
  • the third subleg is connected to the AC terminal H0 via the reactor L3. And is electrically connected.
  • the first subleg, the second subleg, and the third subleg are connected in parallel to the AC terminal H0.
  • the AC terminal H0 When performing the single-phase AC system interconnection operation, the AC terminal H0 is connected to one terminal of the single-phase AC system 12 on the a side of the switching circuit 421. At this time, when a power failure or the like occurs in the single-phase AC system 12, the switching circuit 421 is switched from the a side to the b side, and the AC terminal H0 is connected to one terminal of the AC load 41.
  • FIG. 6 is a block diagram illustrating a configuration example of the control circuit of the power conditioner according to the second embodiment.
  • the control circuit CTR switches the output current control so as to perform the output voltage control during the single-phase AC grid connection operation and performs the output voltage control during the AC load power supply operation, thereby controlling the H-type bridge converter.
  • the control circuit CTR includes a single-phase AC grid connection operation command circuit 43, a PCS current control circuit 44, a switching circuit a side input command circuit 45, an AC load power supply operation command circuit 46, and a PCS voltage control circuit 47. , A switching circuit b-side input command circuit 48, switches 431 and 432, and a switching circuit 421 (shown in FIG. 5) and 422.
  • the single-phase AC system interconnection operation command circuit 43 determines, for example, whether or not the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside. When the AC system 12 is normal, the single-phase AC system interconnection operation signal SGC is output.
  • the AC load power supply operation command circuit 46 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside, and When the AC system 12 is normal, the AC load power supply operation command circuit 46 does not output the AC load power supply operation signal SLC .
  • the switch 431 is turned on by a single-phase AC grid interconnection operation signal SGC .
  • PCS current control circuit 44, the single-phase AC system interconnection operation command circuit 43 receives single-phase AC system interconnection operation signal S GC to perform output current control.
  • the PCS current control circuit 44 gives an output current command value I 0 * for commanding the magnitude of the AC current from the outside via the switch 431 input by the single-phase AC grid connection operation signal S GC . It is done. Further, the PCS current control circuit 44 includes the voltage v 0 of the single-phase AC system 12 detected by the voltage detector 53, the first subleg, the second subleg, and the third subleg detected by the current detectors 281, 282, and 283. Gate currents G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 of the current alternating currents i 1 , i 2 , i 3. Is generated and output.
  • gate signals G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 are connected to the switching devices 131, 133, 135, via the a side of the switching circuit 422. 132, 134, 136, 151, 152.
  • the operation in which the PCS current control circuit 44 performs output current control will be described in detail later with reference to FIG.
  • Switching circuit a side closing command circuit 45 the single-phase AC system interconnection operation command circuit 43 receives a single-phase AC system interconnection operation signal S GC, the switching circuit of the switching circuit 421 and the control circuit of the main circuit 422 In response to this, a command is output to switch to the a side.
  • the gate signal G Q11 output from the PCS current control circuit 44, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, G Q4 is, the control circuit CTR Are output to the switching devices 31, 133, 135, 132, 134, 136, 151, and 152.
  • the single-phase AC system interconnection operation command circuit 43 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside. When an abnormality such as a power failure occurs in the single-phase AC system 12, the single-phase AC system interconnection operation command circuit 43 does not output the single-phase AC system interconnection operation signal SGC .
  • the AC load power supply operation command circuit 46 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside, and When an abnormality such as a power failure occurs in the AC system 12 (when it is not normal), the AC load power supply operation command circuit 46 outputs an AC load power supply operation signal SLC .
  • the switch 432 is turned on by an AC load power supply operation signal SLC .
  • PCS voltage control circuit 47 receives the AC load power supply operation signals S LC from the AC load power supply operation command circuit 46 performs output voltage control.
  • the PCS voltage control circuit 47 is given an output voltage command value V 0 * for commanding the magnitude of the AC voltage from the outside via the switch 432 input by the AC load power supply operation signal S LC . Further, the PCS voltage control circuit 47 receives the AC currents i 1 , i 2 , and i 3 of the first subleg, the second subleg, and the third subleg detected by the current detectors 281, 282, and 283, and performs voltage control. the gate signal G Q11 of the results, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, to generate a G Q4 output.
  • gate signals G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 are connected to the switching devices 131, 133, 135, via the b side of the switching circuit 422. 132, 134, 136, 151, 152.
  • the operation of the PCS voltage control circuit 47 is the same as that of the control circuit CTR of the first embodiment described above, and thus the description thereof is omitted in this embodiment.
  • Switching circuit b side closing command circuit 48 receives the AC load power supply operation signals S LC from the AC load power supply operation command circuit 46 for the switching circuit 422 of the switching circuit 421 and the control circuit of the main circuit, b-side Command to switch to.
  • PCS voltage control circuit 47 a gate signal G Q11 output from, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, G Q4 is, the control circuit CTR Are output to the switching devices 31, 133, 135, 132, 134, 136, 151, and 152.
  • FIG. 7 is a diagram illustrating a configuration example of a PCS current control circuit that performs current control in the control circuit of the power conditioner illustrated in FIG. 6.
  • the PCS current control circuit 44 includes a 1/3 multiplier 51, a multiplier 52, a line voltage peak value detection circuit 54, a divider 55, subtracters 561, 562, and 563, and current control circuits 571 and 572. 573, positive / negative polarity discrimination circuit 58, 120 ° phase difference triangular wave carrier wave generation circuit 24, PWM waveform generation circuits 251, 252, 253, and negation circuits 261, 262, 263.
  • the 1/3 multiplier 51 receives an output current command value I 0 * for commanding the magnitude of the AC current from the outside, and outputs the AC current magnitude command value I 0 * / 3.
  • the multiplier 52 receives and multiplies the AC current magnitude command value I 0 * / 3 and the output signal v 0 / V 0 of the divider 55 (power factor 1, sine wave of magnitude 1). To obtain and output current references i 1 * , i 2 * , i 3 * of each sub-leg of the three-phase interleave.
  • the line voltage peak value detection circuit 54 receives the voltage v 0 of the single-phase AC system 12 detected by the voltage detector 53 shown in FIG. 5, obtains the AC voltage peak value V 0 from the voltage v 0 and outputs it.
  • Divider 55 receives the voltages v 0 and AC voltage peak value V 0, and outputs the operation signal v 0 / V 0 to the multiplier 52 and the positive and negative determination circuit 58. That is, the signal v 0 / V 0 is a sine wave having a power factor of 1 and a magnitude of 1 input to the multiplier 52.
  • the subtractor 561 subtracts the actual current i 1 detected by the current detector 281 from the current reference i 1 * and outputs the result to the current control circuit 571.
  • the subtractor 562 subtracts the actual current i 2 detected by the current detector 282 from the current reference i 2 * and outputs the result to the current control circuit 572.
  • the subtractor 563 subtracts the actual current i 3 detected by the current detector 283 from the current reference i 3 * and outputs the result to the current control circuit 573.
  • the current control circuit 571 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 561 becomes zero, and generates and outputs the phase voltage reference v H1 * in the first subleg. In the present embodiment, the current control circuit 571 performs proportional-integral control.
  • the current control circuit 572 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 562 becomes zero, and generates and outputs the phase voltage reference v H2 * in the second subleg. In the present embodiment, the current control circuit 572 performs proportional-integral control.
  • the current control circuit 573 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 563 becomes zero, and generates and outputs the phase voltage reference v H3 * in the third subleg. In the present embodiment, the current control circuit 573 performs proportional-integral control.
  • the 120 ° phase difference triangular wave carrier wave generation circuit 24, the PWM waveform generation circuits 251, 252, and 253, and the negation circuits 261, 262, and 263 are the same as those described in the first embodiment.
  • the 120 ° phase difference triangular wave carrier wave generation circuit 24 generates the carrier voltage v T1 in the first sub-leg, the carrier voltage v T2 in the second sub-leg, and the carrier voltage v T3 in the third sub-leg.
  • the carrier is a continuous triangular wave PWM control frequency f PWM.
  • the PWM waveform generation circuit 251 receives the phase voltage reference v H1 * as a modulation wave, and outputs a gate signal G Q11 to be supplied to the switching device 131 to the switching device 131 and the negation circuit 261.
  • NOT circuit 261 inverts the gate signal G Q11, and generates and outputs a gate signal G Q21 to be supplied to the switching device 132.
  • the PWM waveform generation circuit 252 receives the phase voltage reference v H2 * as a modulation wave, and outputs a gate signal G Q12 to be supplied to the switching device 133 to the switching device 133 and the negative circuit 262.
  • NOT circuit 262 inverts the gate signal G Q12, and generates and outputs a gate signal G Q22 to be supplied to the switching device 134.
  • the PWM waveform generation circuit 253 receives the phase voltage reference v H3 * as a modulation wave, and outputs a gate signal G Q13 to be supplied to the switching device 135 to the switching device 135 and the negation circuit 263.
  • the negation circuit 263 inverts the gate signal G Q13 to generate and output a gate signal G Q23 to be supplied to the switching device 136.
  • the phase of the output signal v 0 / V 0 of the divider 55 is an AC voltage phase, it can be used to control the LF leg 15 as in the case of output voltage control.
  • the potential of the DC positive voltage bus and the DC negative voltage bus may be switched and output in accordance with the frequency f 0 of the single-phase AC system.
  • LF leg-phase voltage reference generation circuit of the control circuit CTR shown in FIG. 3 23 is for generating and outputting a LF leg-phase voltage reference v L * and receive line voltage reference v 0 *.
  • the positive / negative polarity discrimination circuit 58 receives the signal v 0 / V 0 , generates a one-pulse rectangular wave signal (gate signal G Q4 ), and outputs it to the switching device 152 and the negative circuit 32. To do.
  • NOT circuit 32 receives the gate signal G Q4 output from a polarity discriminating circuit 58, and outputs a gate signal G Q3 obtained by inverting the value.
  • the switching device 152 is turned on by the gate signal G Q4 and the switching device 151 is turned off by the gate signal G Q3 .
  • the switching device 152 is turned off by the gate signal G Q4 and the switching device 151 is turned on by the gate signal G Q3 .
  • the types of switching devices that can be used for the H-type bridge converter are the same as those in the first embodiment.
  • the power conversion efficiency is improved, the size is small, and the main circuit and the control circuit can be easily realized as hardware.
  • An H-type bridge converter and a power conditioner can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

The H-bridge converter according to an embodiment is provided with: an HF-leg 13 having a plurality of sub-legs connected in parallel, said sub-legs each including a pair of switching devices connected in series between a DC positive voltage bus line P and a DC negative voltage bus line N; an LF-leg 15 connected in parallel with the HF-leg 13 and having a pair of switching devices connected in series between the DC positive voltage bus line P and the DC negative voltage bus line N; a plurality of AC output terminals H1-H3, L0 electrically connected to between the pairs of switching devices, respectively; and a control circuit CTR controlling the HF-leg 13 on the basis of a multiphase interleaving method in which the conducting phases of the switching devices of the sub-legs are shifted to each other and controlling the LF-leg 15 to switch the output every half cycle of an output fundamental frequency f0.

Description

H型ブリッジ変換器およびパワーコンディショナH-bridge converter and power conditioner
 本発明の実施形態は、H型ブリッジ変換器およびそのH型ブリッジ変換器を使用したパワーコンディショナに関する。 Embodiments of the present invention relate to an H-type bridge converter and a power conditioner using the H-type bridge converter.
 従来、例えばH型ブリッジ変換器を使用して、電池などの直流電源と単相交流系統を接続するパワーコンディショナにおいて、低電流リップルの交流電流波形を得るためには、PWM制御を用いることが一般的である。H型ブリッジ変換器には、直流正電圧母線と交流出力端子の間の正アームと、交流出力端子と直流負電圧母線の間の負アームとを直列接続したレグが2つあり、一般のPWM制御では、この2つのレグをそれぞれスイッチング周波数fPWMでPWM制御することにより、等価的なスイッチング周波数が2倍のPWM周波数(=2×fPWM)の低電流リップルの交流電流波形を得ている。 Conventionally, in a power conditioner that connects a DC power source such as a battery and a single-phase AC system using, for example, an H-type bridge converter, PWM control is used to obtain an AC current waveform with a low current ripple. It is common. The H-bridge converter has two legs in which a positive arm between a DC positive voltage bus and an AC output terminal and a negative arm between an AC output terminal and a DC negative voltage bus are connected in series. In the control, the two legs are subjected to PWM control with the switching frequency f PWM , thereby obtaining an alternating current waveform with a low current ripple having a PWM frequency (= 2 × f PWM ) equivalent to the equivalent switching frequency. .
 しかしながら、正アームあるいは負アームを構成するスイッチングデバイスがスイッチング周波数で全負荷電流を遮断することから、スイッチング損失が大きくなり、装置が大型化する可能性があった。 However, since the switching device constituting the positive arm or the negative arm cuts off the full load current at the switching frequency, the switching loss is increased and the apparatus may be increased in size.
 これに対して、H型ブリッジ変換器の2つのレグの内、一方をスイッチング周波数fPWMのPWM制御を行う高周波スイッチングレグ(以降、HFレグと呼ぶ)とし、他方を出力基本波周波数fの半サイクルごとに切り替える低周波スイッチングレグ(以降、LFレグと呼ぶ)として、交流電圧を出力する方法が提案されている。 On the other hand, one of the two legs of the H-type bridge converter is a high-frequency switching leg (hereinafter referred to as HF leg) that performs PWM control of the switching frequency f PWM , and the other is the output fundamental frequency f 0 . A method of outputting an alternating voltage has been proposed as a low-frequency switching leg (hereinafter referred to as LF leg) that is switched every half cycle.
 上記の提案に加えて、HFレグにはスイッチング損失が少ない種類のスイッチングデバイス(具体的にはMOSFET)を適用し、LFレグには導通損の少ないスイッチングデバイス(具体的にはパワートランジスタ)を適用することによって、損失を低減する方法が知られていて、これを応用した単相インバータも提案されている。 In addition to the above proposals, switching devices (specifically MOSFETs) with low switching loss are applied to the HF leg, and switching devices (specifically power transistors) with low conduction loss are applied to the LF leg. By doing so, a method for reducing the loss is known, and a single-phase inverter applying this method has also been proposed.
 さらに、電流リップルを低減する方法として、DC/DCコンバータを例としたコンバータにおいて、複数K個のサブコンバータを並列接続して一つのコンバータとするK相インターリーブ方式があり、それぞれのサブコンバータの駆動パルスを(2π/K)[rad]だけずらして運転することで電流リップルを低減する方法が提案されている。 Furthermore, as a method for reducing current ripple, there is a K-phase interleave method in which a plurality of K sub-converters are connected in parallel to form a single converter in a DC / DC converter as an example. A method has been proposed in which the current ripple is reduced by shifting the pulse by (2π / K) [rad].
 また、多相インターリーブ方式をDC/DCコンバータのみならず、入力と出力は直流であっても交流であっても構わないとする変換器に適用できて、その電流バランスを調整するとしている提案も成されている。 In addition to the DC / DC converter, the multiphase interleave method can be applied to a converter in which the input and output may be direct current or alternating current, and there is a proposal that adjusts the current balance. It is made.
特開昭60-200770号公報Japanese Patent Laid-Open No. 60-2000770 特開平5-38155号公報Japanese Patent Laid-Open No. 5-38155 特開昭61-142961号公報JP 61-142961 A 特開2015-220976号公報JP2015-220976A
 H型ブリッジ変換器において、より小さな電流リップルの交流電流波形を得ようとすると、PWM制御のスイッチング周波数fPWMをより上昇させる必要があり、スイッチング損失が大きくなって、電力変換効率が低下したり、スイッチングデバイスの発熱、温度を抑制するために装置を大型化したりしなければならない課題があった。 In the H-bridge converter, if an AC current waveform with a smaller current ripple is to be obtained, it is necessary to increase the switching frequency f PWM of the PWM control, resulting in an increase in switching loss and a decrease in power conversion efficiency. In order to suppress the heat generation and temperature of the switching device, there is a problem that the apparatus must be enlarged.
 また、H型ブリッジ変換器全体を、すなわちHFレグとLFレグとの両方ともインターリーブ方式で実現すると、部品数が多くなってやはり装置が大型になったり、また、制御が複雑になったりするなどの課題があった。 In addition, if the entire H-bridge converter, that is, both the HF leg and the LF leg, are realized by the interleave method, the number of parts increases, the apparatus becomes large, and the control becomes complicated. There was a problem.
 また、H型ブリッジ変換器のインターリーブ方式における電流バランス制御、例えば、パワーコンディショナを出力電圧制御で動作させる際の電流バランス制御については必ずしも明確な制御方法が提案されてない。 Also, a clear control method is not necessarily proposed for current balance control in the interleave method of the H-type bridge converter, for example, current balance control when operating the power conditioner with output voltage control.
 本発明の実施形態は、上記事情を鑑みて成されたものであって、同じ電流リップルの交流電流波形を得る場合には電力変換効率を向上し、小型であって、主回路および制御回路をハードウエアとして実現することが容易である、H型ブリッジ変換器およびそのH型ブリッジ変換器を使用したパワーコンディショナを提供することを目的とする。 The embodiment of the present invention has been made in view of the above circumstances, and in the case of obtaining an alternating current waveform having the same current ripple, improves the power conversion efficiency, is small, and has a main circuit and a control circuit. An object of the present invention is to provide an H-type bridge converter and a power conditioner using the H-type bridge converter that can be easily realized as hardware.
 実施形態によるH型ブリッジ変換器は、直流正電圧母線と直流負電圧母線との間において直列に接続した一対のスイッチングデバイスを含むサブレグが並列に複数接続されているHFレグと、前記直流正電圧母線と前記直流負電圧母線との間において一対のスイッチングデバイスが直列に接続されており、前記HFレグと並列に接続されているLFレグと、前記一対のスイッチングデバイス間のそれぞれと電気的に接続した複数の交流出力端子と、前記複数のサブレグのスイッチングデバイスの導通位相をずらした多相インターリーブ方式に基づいて前記HFレグを制御し、出力基本波周波数の半サイクルごとに出力を切替えるように前記LFレグを制御する制御回路と、を備える。 The H-bridge converter according to the embodiment includes an HF leg in which a plurality of sub-legs including a pair of switching devices connected in series between a DC positive voltage bus and a DC negative voltage bus are connected in parallel; and the DC positive voltage A pair of switching devices are connected in series between the bus and the DC negative voltage bus, and are electrically connected to the LF leg connected in parallel to the HF leg and each of the pair of switching devices. The HF leg is controlled based on a multiphase interleaving method in which conduction phases of the plurality of AC output terminals and the plurality of sub-leg switching devices are shifted, and the output is switched every half cycle of the output fundamental frequency. And a control circuit for controlling the LF leg.
図1は、第1実施形態のH型ブリッジ変換器およびパワーコンディショナの一構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of an H-type bridge converter and a power conditioner according to the first embodiment. 図2は、図1に示すH型ブリッジ変換器が発生すべき電圧基準の一例を示す図である。FIG. 2 is a diagram showing an example of a voltage reference to be generated by the H-bridge converter shown in FIG. 図3は、図2に示す電圧基準に従ってH型ブリッジ変換器の電圧制御を行う制御回路の一構成例を示す図である。FIG. 3 is a diagram showing a configuration example of a control circuit that performs voltage control of the H-bridge converter according to the voltage reference shown in FIG. 図4は、図3の制御回路において、H型ブリッジ変換器のHFレグがPWM制御を行ってゲート信号を発生する動作の一例を概略的に説明するための波形図である。FIG. 4 is a waveform diagram for schematically explaining an example of an operation in which the HF leg of the H-type bridge converter performs PWM control to generate a gate signal in the control circuit of FIG. 図5は、第2実施形態のH型ブリッジ変換器およびパワーコンディショナの一構成例を示すブロック図である。FIG. 5 is a block diagram illustrating a configuration example of the H-type bridge converter and the power conditioner according to the second embodiment. 図6は、第2実施形態のパワーコンディショナの制御回路の一構成例を示すブロック図である。FIG. 6 is a block diagram illustrating a configuration example of the control circuit of the power conditioner according to the second embodiment. 図7は、図6に示すパワーコンディショナの制御回路において、電流制御を行うPCS電流制御回路の一構成例を示す図である。FIG. 7 is a diagram illustrating a configuration example of a PCS current control circuit that performs current control in the control circuit of the power conditioner illustrated in FIG. 6.
実施形態Embodiment
 以下、実施形態のH型ブリッジ変換器およびそのH型ブリッジ変換器を使用したパワーコンディショナについて、図面を参照して詳細に説明する。 Hereinafter, the H-type bridge converter of the embodiment and the power conditioner using the H-type bridge converter will be described in detail with reference to the drawings.
 図1は、第1実施形態のH型ブリッジ変換器およびパワーコンディショナの一構成例を示すブロック図である。
 本実施形態のパワーコンディショナは、直流電源11と単相交流系統12との間に接続したパワーコンディショナであって、LFレグ15と、HFレグ13と、リアクトルL1、L2、L3と、制御回路CTRと、を備えている。本実施形態のH型ブリッジ変換器は、LFレグ15と、HFレグ13と、制御回路CTRと、を備えている。
 本実施形態のパワーコンディショナは、単相交流系統12へ供給する線間電圧v発生する構成であって、線間電圧vは、HFレグ13の相電圧vからLFレグ15の相電圧vを引いた値である。相電圧vと相電圧vとは、直流電源11の中間電圧点Oを基準とした電位である。
FIG. 1 is a block diagram illustrating a configuration example of an H-type bridge converter and a power conditioner according to the first embodiment.
The power conditioner of this embodiment is a power conditioner connected between the DC power source 11 and the single-phase AC system 12, and includes an LF leg 15, an HF leg 13, reactors L1, L2, and L3, and a control. Circuit CTR. The H-type bridge converter of this embodiment includes an LF leg 15, an HF leg 13, and a control circuit CTR.
The power conditioner of the present embodiment is configured to generate a line voltage v 0 to be supplied to the single-phase AC system 12, and the line voltage v 0 is obtained from the phase voltage v h of the HF leg 13 to the phase of the LF leg 15. is a value obtained by subtracting the voltage v L. The phase voltage v h and the phase voltage v L are potentials based on the intermediate voltage point O of the DC power supply 11.
 HFレグ13は並列に接続した複数のサブレグと交流出力端子H1~H3と、を備え、複数のサブレグの夫々が直列に接続した一対のスイッチングデバイスを含む。HFレグ13の複数のサブレグのそれぞれにおいて、一対のスイッチングデバイス間と交流出力端子H1~H3とは電気的に接続している。LFレグ15は、直列に接続した一対のスイッチングデバイスを1組と、交流出力端子L0と、を備え、HFレグ13と並列に接続している。LFレグ15の一対のスイッチングデバイス間と交流出力端子L0とは電気的に接続している。 The HF leg 13 includes a plurality of sub-legs connected in parallel and AC output terminals H1 to H3, and includes a pair of switching devices in which each of the plurality of sub-legs is connected in series. In each of the plurality of sub-legs of the HF leg 13, the pair of switching devices and the AC output terminals H1 to H3 are electrically connected. The LF leg 15 includes a pair of switching devices connected in series and an AC output terminal L0, and is connected to the HF leg 13 in parallel. The pair of switching devices of the LF leg 15 and the AC output terminal L0 are electrically connected.
 HFレグ13は、例えばスイッチング周波数fPWMにてPWM制御を行うK相インターリーブ回路であって、本実施形態ではK=3のときの例を示している。本実施形態において、スイッチング周波数fPWMは、例えば13333Hz(40kHzの1/3)である。HFレグ13は、第1サブレグと、第2サブレグと、第3サブレグと、を備えている。第1サブレグと第2サブレグと第3サブレグとは、互いに並列に接続している。 The HF leg 13 is a K-phase interleave circuit that performs PWM control at, for example, the switching frequency f PWM . In the present embodiment, an example when K = 3 is shown. In the present embodiment, the switching frequency f PWM is, for example, 13333 Hz (1/3 of 40 kHz). The HF leg 13 includes a first subleg, a second subleg, and a third subleg. The first subleg, the second subleg, and the third subleg are connected in parallel to each other.
 第1サブレグは、互いに直列に接続した上アームと下アームとを備えている。上アームは、直流正電圧母線Pと交流出力端子H1との間に接続したスイッチングデバイス131と、逆並列ダイオード131aと、を備えている。下アームは、交流出力端子H1と直流負電圧母線Nとの間に接続したスイッチングデバイス132と、逆並列ダイオード132aと、を備えている。 The first subleg includes an upper arm and a lower arm connected in series with each other. The upper arm includes a switching device 131 connected between the DC positive voltage bus P and the AC output terminal H1, and an antiparallel diode 131a. The lower arm includes a switching device 132 connected between the AC output terminal H1 and the DC negative voltage bus N, and an antiparallel diode 132a.
 第2サブレグは、互いに直列に接続した上アームと下アームとを備えている。上アームは、直流正電圧母線Pと交流出力端子H2との間に接続したスイッチングデバイス133と、逆並列ダイオード133aと、を備えている。下アームは、交流出力端子H2と直流負電圧母線Nとの間に接続したスイッチングデバイス134と、逆並列ダイオード134aと、を備えている。 The second subleg has an upper arm and a lower arm connected in series with each other. The upper arm includes a switching device 133 connected between the DC positive voltage bus P and the AC output terminal H2, and an antiparallel diode 133a. The lower arm includes a switching device 134 connected between the AC output terminal H2 and the DC negative voltage bus N, and an antiparallel diode 134a.
 第3サブレグは、互いに直列に接続した上アームと下アームとを備えている。上アームは、直流正電圧母線Pと交流出力端子H3との間に接続したスイッチングデバイス135と、逆並列ダイオード135aと、を備えている。下アームは、交流出力端子H3と直流負電圧母線Nとの間に接続したスイッチングデバイス136と、逆並列ダイオード136aと、を備えている。 The third subleg has an upper arm and a lower arm connected in series with each other. The upper arm includes a switching device 135 connected between the DC positive voltage bus P and the AC output terminal H3, and an antiparallel diode 135a. The lower arm includes a switching device 136 connected between the AC output terminal H3 and the DC negative voltage bus N, and an antiparallel diode 136a.
 第1サブレグが接続した交流出力端子H1は、リアクトルL1を介して交流端子H0と電気的に接続している。第2サブレグが接続した交流出力端子H2は、リアクトルL2を介して交流端子H0と電気的に接続している。第3サブレグが接続した交流出力端子H3は、リアクトルL3を介して交流端子H0と電気的に接続している。交流端子H0は、単相交流系統12の一端子と電気的に接続される。 The AC output terminal H1 connected to the first subleg is electrically connected to the AC terminal H0 via the reactor L1. The AC output terminal H2 connected to the second sub-leg is electrically connected to the AC terminal H0 via the reactor L2. The AC output terminal H3 connected to the third subleg is electrically connected to the AC terminal H0 via the reactor L3. AC terminal H <b> 0 is electrically connected to one terminal of single-phase AC system 12.
 なお、本実施形態では、交流出力端子H1から出力される交流電流をiとし、交流出力端子H2から出力される交流電流をiとし、交流出力端子H3から出力される交流電流をiとし、交流端子H0から単相交流系統12へ出力される交流電流をiとしている。交流電流iは、交流電流i、i、iの和である。 In the present embodiment, an alternating current output from the AC output terminals H1 and i 1, the alternating current output from the AC output terminal H2 and i 2, an alternating current output from the AC output terminal H3 i 3 and then, the AC current output from the AC terminal H0 to single phase AC system 12 and the i 0. The alternating current i 0 is the sum of the alternating currents i 1 , i 2 , i 3 .
 LFレグ15は、出力基本波周波数fの半サイクルごとに出力を切替えるように動作するものであって、互いに直列に接続した上アームと下アームとを備えている。なお、本実施形態において、基本波周波数fは、例えば50Hzである。上アームは、直流正電圧母線Pと交流出力端子L0との間に接続し、逆並列ダイオードを内蔵するスイッチングデバイス151を備えている。下アームは、交流出力端子L0と直流負電圧母線Nの間に接続し、逆並列ダイオードを内蔵するスイッチングデバイス152を備えている。交流出力端子L0は、単相交流系統12の一端子と電気的に接続される。 LF leg 15 is for operating to switch the output every half cycle of the output fundamental frequency f 0, and a upper arm and the lower arm connected in series with each other. In the present embodiment, the fundamental frequency f 0 is, for example, 50 Hz. The upper arm includes a switching device 151 that is connected between the direct current positive voltage bus P and the alternating current output terminal L0 and incorporates an antiparallel diode. The lower arm includes a switching device 152 that is connected between the AC output terminal L0 and the DC negative voltage bus N and incorporates an antiparallel diode. The AC output terminal L0 is electrically connected to one terminal of the single-phase AC system 12.
 なお、図1の例ではリアクトルL1、リアクトルL2、リアクトルL3が別々の回路要素として記載されているが、3つのリアクトルを磁気結合して、3つの巻線を持つ1つのリアクトルとして動作周波数を上げるように構成してもよい。すなわち、交流出力端子H1~H3と交流端子H0との間に少なくとも1つのリアクトルが設けられ、交流出力端子H1が1つのリアクトルの巻線を介して交流端子H0と電気的に接続し、交流出力端子H2が1つのリアクトルの他の巻線を介して交流端子H0と電気的に接続し、交流出力端子H3が1つのリアクトルのさらに他の巻線を介して交流端子H0と電気的に接続する構成としてもよい。構成要素を減らすことにより、パワーコンディショナを小型化することができる。 In the example of FIG. 1, the reactor L1, the reactor L2, and the reactor L3 are described as separate circuit elements, but the three reactors are magnetically coupled to increase the operating frequency as one reactor having three windings. You may comprise as follows. In other words, at least one reactor is provided between the AC output terminals H1 to H3 and the AC terminal H0, and the AC output terminal H1 is electrically connected to the AC terminal H0 via the winding of one reactor, and the AC output Terminal H2 is electrically connected to AC terminal H0 via the other winding of one reactor, and AC output terminal H3 is electrically connected to AC terminal H0 via the other winding of one reactor. It is good also as a structure. By reducing the number of components, the inverter can be reduced in size.
 上記パワーコンディショナのH型ブリッジ変換器の制御方法としては、出力電圧である単相交流電圧を正弦波に制御する方法(電圧制御方法)と、出力電流である単相交流系統に流す交流電流を正弦波に制御する方法(電流制御方法)とを採用することができる。 As a control method for the H-bridge converter of the power conditioner, there are a method of controlling a single-phase AC voltage as an output voltage to a sine wave (voltage control method), and an AC current flowing through a single-phase AC system as an output current And a method for controlling the current to a sine wave (current control method).
 以下に、H型ブリッジ変換器の電圧制御方法について、図面を参照して説明する。なお、本実施形態にて電圧制御方法についてのみ説明をするが、これに限定されるものではなく、電流制御方法により本実施形態のH型ブリッジ変換器を制御することは排除されるものではない。 Hereinafter, the voltage control method of the H-bridge converter will be described with reference to the drawings. Although only the voltage control method will be described in the present embodiment, the present invention is not limited to this, and it is not excluded to control the H-bridge converter of the present embodiment by the current control method. .
 図2は、図1に示すH型ブリッジ変換器が発生すべき電圧基準の一例を示す図である。
 ここでは、単相交流電圧基準v と、HFレグ13の電圧基準v と、LFレグ15の電圧基準v と、を示している。
FIG. 2 is a diagram showing an example of a voltage reference to be generated by the H-bridge converter shown in FIG.
Here, the single-phase AC voltage reference v 0 * , the voltage reference v H * of the HF leg 13, and the voltage reference v L * of the LF leg 15 are shown.
 HFレグ13で発生すべき電圧基準v は、直流電源11の中間電圧点Oを基準として、HFレグ13の交流出力端子H1、H2、H3を見た電圧を示し、HFレグ相電圧と呼ばれる電圧である。 The voltage reference v H * to be generated in the HF leg 13 is a voltage obtained by viewing the AC output terminals H1, H2, and H3 of the HF leg 13 with reference to the intermediate voltage point O of the DC power supply 11, and the HF leg phase voltage and It is called voltage.
 LFレグ15で発生すべき電圧基準v は、直流電源11の中間電圧点Oを基準として、LFレグ15の交流出力端子L0を見た電圧を示し、LFレグ相電圧と呼ばれる電圧である。 The voltage reference v L * to be generated in the LF leg 15 indicates a voltage when the AC output terminal L0 of the LF leg 15 is viewed with reference to the intermediate voltage point O of the DC power supply 11, and is a voltage called an LF leg phase voltage. .
 単相交流電圧基準v は、HFレグ13で発生すべき電圧基準v とLFレグ15で発生すべき電圧基準v との差(v =v -v )であって、HFレグ13とLFレグ15とにより生成される線間電圧基準と呼ばれる電圧である。 The single-phase AC voltage reference v 0 * is the difference between the voltage reference v H * to be generated in the HF leg 13 and the voltage reference v L * to be generated in the LF leg 15 (v 0 * = v H * −v L * ) And is a voltage called a line voltage reference generated by the HF leg 13 and the LF leg 15.
 したがって、電圧制御法において、HFレグ13ではPWM制御によって電圧基準v に対応した実電圧vを発生し、LFレグ15では矩形波の電圧基準v に対応した1パルスの実電圧vを発生させればよいこととなる。 Therefore, in the voltage control method, the HF leg 13 generates the actual voltage v H corresponding to the voltage reference v H * by PWM control, and the LF leg 15 corresponds to the one-pulse actual voltage corresponding to the rectangular wave voltage reference v L *. v L and thus the may be generated.
 図3は、図2に示す電圧基準に従ってH型ブリッジ変換器の電圧制御を行う制御回路の一構成例を示す図である。
 制御回路CTRは、線間電圧基準発生回路21と、HFレグ相電圧基準発生回路22と、LFレグ相電圧基準発生回路23と、120°位相差三角波搬送波発生回路24と、PWM波形発生回路251、252、253と、否定回路261、262、263と、相平均電流差分検出回路271、272と、電流検出器281、282、283(図1に示す)と、減算器291、292と、電流制御回路301、302と、加算器311、312と、否定回路32と、を備えている。
FIG. 3 is a diagram showing a configuration example of a control circuit that performs voltage control of the H-bridge converter according to the voltage reference shown in FIG.
The control circuit CTR includes a line voltage reference generation circuit 21, an HF leg phase voltage reference generation circuit 22, an LF leg phase voltage reference generation circuit 23, a 120 ° phase difference triangular wave carrier wave generation circuit 24, and a PWM waveform generation circuit 251. 252, 253, negation circuits 261, 262, 263, phase average current difference detection circuits 271, 272, current detectors 281, 282, 283 (shown in FIG. 1), subtracters 291, 292, current Control circuits 301 and 302, adders 311 and 312, and a negation circuit 32 are provided.
 線間電圧基準発生回路21は、交流電圧の大きさを指令する出力電圧指令値V を外部から受信し、単相交流の周波数(出力基本波周波数)f(=ω/2π)を持つ正弦波の線間電圧基準v を発生する。 The line voltage reference generation circuit 21 receives an output voltage command value V 0 * for commanding the magnitude of the AC voltage from the outside, and a single-phase AC frequency (output fundamental wave frequency) f 0 (= ω 0 / 2π). A sine wave line voltage reference v 0 * is generated.
 HFレグ相電圧基準発生回路22は、線間電圧基準発生回路21から線間電圧基準v を受信して、HFレグ相電圧基準v を生成する。
 LFレグ相電圧基準発生回路23は、線間電圧基準発生回路21から線間電圧基準v を受信して、LFレグ相電圧基準v を生成する。
The HF leg phase voltage reference generation circuit 22 receives the line voltage reference v 0 * from the line voltage reference generation circuit 21 and generates the HF leg phase voltage reference v H * .
The LF leg phase voltage reference generation circuit 23 receives the line voltage reference v 0 * from the line voltage reference generation circuit 21 and generates the LF leg phase voltage reference v L * .
 LFレグ相電圧基準v は直流電圧Eの正電圧母線の電位(+E/2)あるいは負電圧母線の電位(-E/2)がそのまま出力されるので、直流電圧Eが決まれば実電圧vが決まるということである。したがって、LFレグ相電圧基準発生回路23では、LFレグ相電圧基準v の振幅は直流電圧Eにより元々決まっている波形とする。一方、HFレグ相電圧基準発生回路22は、線間電圧基準v の振幅の変化に応じてHFレグ相電圧基準v の振幅を変化させる波形を演算する。 The LF leg phase voltage reference v L * is output as the positive voltage bus potential (+ E / 2) or the negative voltage bus potential (-E / 2) of the DC voltage E. If the DC voltage E is determined, the actual voltage v L is determined. Therefore, in the LF leg phase voltage reference generation circuit 23, the amplitude of the LF leg phase voltage reference v L * is a waveform that is originally determined by the DC voltage E. On the other hand, the HF leg phase voltage reference generation circuit 22 calculates a waveform that changes the amplitude of the HF leg phase voltage reference v H * in accordance with the change in the amplitude of the line voltage reference v 0 * .
 ここで、3相インターリーブ回路を構成する第1サブレグ、第2サブレグ、および、第3サブレグの所定期間の平均交流電流i1AVE、i2AVE、i3AVEにアンバランスがなければ、電流バランスをとるための電圧基準補正分がないため、HFレグ13の第1サブレグにおける相電圧基準vH1 はHFレグ相電圧基準v と等しくなる。 Here, if there is no unbalance in the average AC currents i 1AVE , i 2AVE , i 3AVE in a predetermined period of the first sub-leg, the second sub-leg, and the third sub-leg constituting the three-phase interleave circuit, the current balance is obtained. Therefore, the phase voltage reference v H1 * in the first sub-leg of the HF leg 13 is equal to the HF leg phase voltage reference v H * .
 この場合には、PWM波形発生回路251は、第1サブレグにおける相電圧基準vH1 を変調波として受信し、120°位相差三角波搬送波発生回路24から第1サブレグにおける搬送波電圧vT1を受信し、上アームのスイッチングデバイス131と下アームのスイッチングデバイス132とに与えるゲート信号GQ11、GQ12を発生させる。 In this case, the PWM waveform generation circuit 251 receives the phase voltage reference v H1 * in the first subleg as a modulation wave, and receives the carrier voltage v T1 in the first subleg from the 120 ° phase difference triangular wave carrier generation circuit 24. The gate signals G Q11 and G Q12 to be supplied to the upper arm switching device 131 and the lower arm switching device 132 are generated.
 具体的には、PWM波形発生回路251の出力信号は、スイッチングデバイス131に与えるゲート信号GQ11となる。PWM波形発生回路251の出力信号は、否定回路261を介して、スイッチングデバイス132に与えるゲート信号GQ12となる。したがって、ゲート信号GQ11とゲート信号GQ12とは互いに反転した波形となる。 Specifically, the output signal of the PWM waveform generation circuit 251 is a gate signal GQ11 to be given to the switching device 131. The output signal of the PWM waveform generation circuit 251 becomes a gate signal GQ12 to be supplied to the switching device 132 via the negation circuit 261. Therefore, the gate signal GQ11 and the gate signal GQ12 have waveforms inverted from each other.
 図4は、図3の制御回路において、H型ブリッジ変換器のHFレグがPWM制御を行ってゲート信号を発生する動作の一例を概略的に説明するための波形図である。
 120°位相差三角波搬送波発生回路24は、第1サブレグにおける搬送波電圧vT1と、第2サブレグにおける搬送波電圧vT2と、第3サブレグにおける搬送波電圧vT3とを発生する。図4に示すように、搬送波はPWM制御周波数fPWMの連続した三角波である。3つの三角波(搬送波電圧)vT1、vT2、vT3は、PWM制御周波数fPWMのレベルで、それぞれ120°(=2π/K[rad])(本実施形態においてK=3)だけ位相がずれている。図4上段では、太線が第1のサブレグにおける搬送波電圧vT1を、細線が第2サブレグにおける搬送波電圧vT2を、破線が第3サブレグにおける搬送波電圧vT3を示す。
FIG. 4 is a waveform diagram for schematically explaining an example of an operation in which the HF leg of the H-type bridge converter performs PWM control to generate a gate signal in the control circuit of FIG.
The 120 ° phase difference triangular wave carrier wave generation circuit 24 generates a carrier voltage v T1 in the first sub-leg, a carrier voltage v T2 in the second sub-leg, and a carrier voltage v T3 in the third sub-leg. As shown in FIG. 4, the carrier is a continuous triangular wave PWM control frequency f PWM. The three triangular waves (carrier voltages) v T1 , v T2 , and v T3 are at the level of the PWM control frequency f PWM and each have a phase of 120 ° (= 2π / K [rad]) (K = 3 in this embodiment). It's off. In the upper part of FIG. 4, the bold line indicates the carrier voltage v T1 in the first sub-leg, the thin line indicates the carrier voltage v T2 in the second sub-leg, and the broken line indicates the carrier voltage v T3 in the third sub-leg.
 なお、本実施形態では、HFレグが3つのサブレグを備えているため、三角波(搬送波電圧)vT1、vT2、vT3は、互いに位相が120°異なるものであるが、三角波(搬送波電圧)の数とその位相差はサブレグの数に応じて適宜変更されるものである。 In the present embodiment, since the HF leg includes three sub-legs, the triangular waves (carrier wave voltages) v T1 , v T2 , and v T3 have a phase difference of 120 ° from each other, but the triangular wave (carrier wave voltage) And the phase difference thereof are appropriately changed according to the number of sub-legs.
 さらに、図4は、相電圧基準vH1 および搬送波電圧vT1と、HFレグの第1サブレグの上アームのスイッチングデバイス131に与えるゲート信号GQ11と、下アームのスイッチングデバイス132に与えるゲート信号GQ12との一例を示す。 Further, FIG. 4 shows the phase voltage reference v H1 * and the carrier voltage v T1 , the gate signal G Q11 applied to the upper arm switching device 131 of the first sub-leg of the HF leg, and the gate signal applied to the lower arm switching device 132. An example with GQ12 is shown.
 PWM波形発生回路251は、第1サブレグにおける相電圧基準vH1 と搬送波電圧vT1の大きさを比較し、比較結果に基づいてゲート信号GQ11を生成して出力する。すなわち、スイッチングデバイス131に与えるゲート信号GQ11は、相電圧基準vH1 >搬送波電圧vT1の期間でオンとなり、相電圧基準vH1 <搬送波電圧vT1の期間でオフとなる。また、スイッチングデバイス132に与えるゲート信号GQ21は、ゲート信号GQ11を反転した信号であって、相電圧基準vH1 <搬送波電圧vT1の期間でオンとなり、相電圧基準vH1 >搬送波電圧vT1の期間でオフとなる。 The PWM waveform generation circuit 251 compares the phase voltage reference v H1 * and the carrier voltage v T1 in the first subleg, generates a gate signal G Q11 based on the comparison result, and outputs it. That is, the gate signal GQ11 supplied to the switching device 131 is turned on during the phase voltage reference v H1 * > carrier voltage v T1 and turned off during the phase voltage reference v H1 * <carrier voltage v T1 . The gate signal GQ21 given to the switching device 132 is a signal obtained by inverting the gate signal GQ11 , and is turned on in the period of the phase voltage reference v H1 * <carrier voltage v T1 and the phase voltage reference v H1 * > carrier. It turned off for a period of voltage v T1.
 PWM波形発生回路252は、第2サブレグの相電圧基準vH2 を変調波として受信し、120°位相差三角波搬送波発生回路24から、第1サブレグにおける搬送波電圧vT1に対して120°だけ位相の遅れた第2サブレグの搬送波電圧vT2を受信する。 The PWM waveform generation circuit 252 receives the phase voltage reference v H2 * of the second sub-leg as a modulation wave, and has a phase of 120 ° with respect to the carrier voltage v T1 in the first sub-leg from the 120 ° phase difference triangular wave carrier generation circuit 24. The second sub-leg carrier voltage v T2 is received.
 PWM波形発生回路252と否定回路262とは、第2サブレグの上アームのスイッチングデバイス133に与えるゲート信号GQ12と下アームのスイッチングデバイス134に与えるとゲート信号GQ22とを生成して出力する。 The PWM waveform generation circuit 252 and the NOT circuit 262 generates and outputs the gate signal G Q22 when applied to the gate signal G Q12 and the switching device 134 of the lower arm to be given to switching device 133 of the upper arm of second Saburegu.
 PWM波形発生回路253は、第3サブレグの相電圧基準vH3 を変調波として受信し、120°位相差三角波搬送波発生回路24から、第2サブレグにおける搬送波電圧vT2に対して120°だけ位相の遅れた第3サブレグの搬送波電圧vT3を受信する。 The PWM waveform generation circuit 253 receives the phase voltage reference v H3 * of the third sub-leg as a modulation wave, and is phased by 120 ° with respect to the carrier voltage v T2 in the second sub-leg from the 120 ° phase difference triangular wave carrier generation circuit 24. The carrier voltage v T3 of the third sub-leg delayed is received.
 PWM波形発生回路253と否定回路263とは、第3サブレグの上アームのスイッチングデバイス135に与えるゲート信号GQ13と、下アームのスイッチングデバイス136に与えるゲート信号GQ23とを生成して出力する。 The PWM waveform generation circuit 253 and the negation circuit 263 generate and output a gate signal G Q13 to be supplied to the switching device 135 of the upper arm of the third subleg and a gate signal G Q23 to be supplied to the switching device 136 of the lower arm.
 上記のようにPWM制御を行うことにより、第1サブレグ、第2サブレグ、および、第3サブレグの瞬時交流電流i、i、iは、周波数fPWMで増減するリップルを持つ電流波形となる。ただし、第1サブレグ、第2サブレグ、および、第3サブレグのスイッチングデバイスに与えられるゲート信号のパルスは、搬送波電圧vT1、vT2、vT3が120°ずれているために導通位相も120°ずれている。このため、瞬時交流電流i、i、iを合計した瞬時交流電流iは、周波数が3倍のPWM周波数(3×fPWM)で増減するリップルを持つ電流波形となり、等価的にスイッチング周波数を3倍とすることができる。 By performing the PWM control as described above, the instantaneous alternating currents i 1 , i 2 , i 3 of the first sub-leg, the second sub-leg, and the third sub-leg are expressed as current waveforms having ripples that increase / decrease at the frequency f PWM. Become. However, the pulse of the gate signal applied to the switching devices of the first sub-leg, the second sub-leg, and the third sub-leg has a conduction phase of 120 ° because the carrier voltages v T1 , v T2 , and v T3 are shifted by 120 °. It's off. For this reason, the instantaneous alternating current i 0 obtained by adding the instantaneous alternating currents i 1 , i 2 , and i 3 becomes a current waveform having a ripple that increases and decreases at a PWM frequency (3 × f PWM ) that is three times the frequency. The switching frequency can be tripled.
 ここまで、第1サブレグ、第2サブレグ、および、第3サブレグから出力される所定期間の平均交流電流i1AVE、i2AVE、i3AVEにアンバランスがない場合について、第1サブレグ、第2サブレグ、および、第3サブレグのゲート信号を生成する動作の一例について説明した。 Up to this point, when there is no imbalance in the average AC currents i 1AVE , i 2AVE , i 3AVE for a predetermined period output from the first sub-leg, the second sub-leg, and the third sub-leg, the first sub-leg, the second sub-leg, An example of the operation for generating the gate signal of the third subleg has been described.
 しかしながら、たとえば実際に製作した各サブレグ回路のハードウエアに不均一などがあれば、それによって平均交流電流i1AVE、i2AVE、i3AVEにアンバランスが生じる。そこで、本実施形態では、制御により平均交流電流i1AVE、i2AVE、i3AVEをバランスさせることにより、パワーコンディショナの小型化を実現している。 However, for example, if there is non-uniformity in the hardware of each sub-leg circuit actually manufactured, this causes an imbalance in the average alternating currents i 1AVE , i 2AVE , i 3AVE . Therefore, in this embodiment, the inverter is reduced in size by balancing the average alternating currents i 1AVE , i 2AVE , and i 3AVE by control.
 相平均電流差分検出回路271、272は、瞬時交流電流i、i、iを受信し、各相の出力交流電流と3相電流平均値との差を演算して出力する。
 すなわち、相平均電流差分検出回路271は、電流検出器281、282、283にて検出された瞬時交流電流i、i、iを受信し、第1サブレグの平均交流電流i1AVEと、第2サブレグの平均交流電流i2AVEと、第3サブレグの平均交流電流i3AVEと、平均交流電流の合計i0AVE(=i1AVE+i2AVE+i3AVE)とを用いて、第1サブレグの平均交流電流i1AVEと3相電流平均値(平均交流電流の合計i0AVEの平均値)との差Δi1AVE=i1AVE-(1/3)i0AVEを演算して出力する。
The phase average current difference detection circuits 271 and 272 receive the instantaneous alternating currents i 1 , i 2 , and i 3 , calculate the difference between the output alternating current of each phase and the three-phase current average value, and output it.
That is, the phase average current difference detection circuit 271 receives the instantaneous alternating currents i 1 , i 2 , i 3 detected by the current detectors 281, 282, and 283, and receives the average alternating current i 1AVE of the first subleg, mean and alternating current i 2AVE second Saburegu, mean and alternating current i 3AVE third Saburegu total i 0AVE average alternating current (= i 1AVE + i 2AVE + i 3AVE) and with an average alternating current of the first Saburegu A difference Δi 1AVE = i 1AVE − (1/3) i 0AVE between i 1AVE and the three-phase current average value (average value of the total average AC current i 0AVE ) is calculated and output.
 平均電流差分検出回路272は、電流検出器281、282、283にて検出された瞬時交流電流i、i、iを受信し、第1サブレグの平均交流電流i1AVEと、第2サブレグの平均交流電流i2AVEと、第3サブレグの平均交流電流i3AVEと、平均交流電流の合計i0AVE(=i1AVE+i2AVE+i3AVE)とを用いて、第2サブレグの平均交流電流i2AVEと3相電流平均値(平均交流電流の合計i0AVEの平均値)との差Δi2AVE=i2AVE-(1/3)i0AVEを演算して出力する。 The average current difference detection circuit 272 receives the instantaneous alternating currents i 1 , i 2 , i 3 detected by the current detectors 281, 282, 283, and receives the average alternating current i 1AVE of the first subleg and the second subleg. I mean and alternating current i 2AVE of mean and alternating current i 3AVE third Saburegu, by using the sum i 0AVE average alternating current (= i 1AVE + i 2AVE + i 3AVE), the average AC current i 2AVE second Saburegu The difference Δi 2AVE = i 2AVE- (1/3) i 0AVE from the three-phase current average value (average value of the total average AC current i 0AVE ) is calculated and output.
 減算器291は、平均電流差分検出回路271から出力された電流差Δi1AVEから基準値を減算して出力する。本実施形態では、基準値をゼロとしている。
 減算器292は、平均電流差分検出回路272から出力された電流差Δi2AVEから基準値を減算して出力する。本実施形態では、基準値をゼロとしている。
The subtractor 291 subtracts the reference value from the current difference Δi 1AVE output from the average current difference detection circuit 271 and outputs the result. In this embodiment, the reference value is zero.
The subtractor 292 subtracts the reference value from the current difference Δi 2AVE output from the average current difference detection circuit 272 and outputs the result. In this embodiment, the reference value is zero.
 電流制御回路301は、少なくとも積分要素を含む制御回路であって、減算器291から出力された値を増幅して、第1サブレグにおける相電圧基準補正信号vHad1 を生成して出力する。 The current control circuit 301 is a control circuit including at least an integration element, and amplifies the value output from the subtractor 291 to generate and output the phase voltage reference correction signal v Had1 * in the first subleg.
 電流制御回路302は、少なくとも積分要素を含む制御回路であって、減算器292から出力された値を増幅して、第2サブレグにおける相電圧基準補正信号vHad2 を生成して出力する。
 なお、本実施形態では、電流制御回路301、302は、比例積分(PI)制御を行うものである。
The current control circuit 302 is a control circuit including at least an integration element, and amplifies the value output from the subtractor 292 to generate and output the phase voltage reference correction signal v Had2 * in the second subleg.
In the present embodiment, the current control circuits 301 and 302 perform proportional integral (PI) control.
 加算器311は、相電圧基準補正信号vHad1 と、HFレグ相電圧基準v とを加算して、第1サブレグの相電圧基準vH1 として出力する。
 加算器312は、相電圧基準補正信号vHad2 と、HFレグ相電圧基準v とを加算して、第2サブレグの相電圧基準vH2 として出力する。
The adder 311 adds the phase voltage reference correction signal v Had1 * and the HF leg phase voltage reference v H *, and outputs the result as the phase voltage reference v H1 * of the first subleg.
The adder 312 adds the phase voltage reference correction signal v Had2 * and the HF leg phase voltage reference v H *, and outputs the result as the phase voltage reference v H2 * of the second sub-leg.
 なお、本実施形態のHFレグ13は3相インターリーブ方式であるので、3相の内2相の電流バランスをとる制御をすることにより3相目の電流バランスもとれることとなる。したがって、第3サブレグに対しては、第1レグおよび第2レグと同じように補正信号によりHFレグ相電圧基準v を補正する必要はなく、第3サブレグにおける相電圧基準としてはHFレグ相電圧基準v を使用する。 In addition, since the HF leg 13 of this embodiment is a three-phase interleave system, the current balance of the third phase can be obtained by controlling the current balance of two of the three phases. Therefore, for the third sub-leg, it is not necessary to correct the HF leg phase voltage reference v H * by the correction signal in the same way as the first leg and the second leg, and the phase voltage reference in the third sub-leg is the HF leg. Use phase voltage reference v H * .
 次に、LFレグ15の制御動作の一例について説明する。 
 LFレグ相電圧基準発生回路23は、線間電圧基準発生回路21にて発生した線間電圧基準v を受信して、LFレグ相電圧基準v を生成する。LFレグ電圧基準v は、例えば図2に示すように、単相交流系統の周波数fに合わせて直流正電圧母線と直流負電圧母線の電位を切り換えて出力する。すなわち、LFレグ相電圧基準発生回路23は、1パルスの実電圧vを生成すればよく、LFレグ電圧基準v は、矩形波の信号となる。LFレグ相電圧基準発生回路23から出力されるLFレグ電圧基準v は、スイッチングデバイス153に与えられるゲート信号GQ3である。
Next, an example of the control operation of the LF leg 15 will be described.
The LF leg phase voltage reference generation circuit 23 receives the line voltage reference v 0 * generated by the line voltage reference generation circuit 21 and generates an LF leg phase voltage reference v L * . For example, as shown in FIG. 2, the LF leg voltage reference v L * is output by switching the potentials of the DC positive voltage bus and the DC negative voltage bus according to the frequency f 0 of the single-phase AC system. That is, the LF leg phase voltage reference generation circuit 23 only needs to generate one pulse of the actual voltage v L , and the LF leg voltage reference v L * is a rectangular wave signal. The LF leg voltage reference v L * output from the LF leg phase voltage reference generation circuit 23 is a gate signal G Q3 provided to the switching device 153.
 否定回路32は、LFレグ電圧基準v を反転して、スイッチングデバイス152に与えるゲート信号GQ4を出力する。すなわち、LFレグ電圧基準v が-E/2のときには、スイッチングデバイス152がオンされる。 The negation circuit 32 inverts the LF leg voltage reference v L * and outputs a gate signal G Q4 to be supplied to the switching device 152. That is, when the LF leg voltage reference v L * is −E / 2, the switching device 152 is turned on.
 通常のH型ブリッジ変換器において、2つのレグを同じPWM周波数でスイッチングする通常のPWM制御では、交流電流波形の等価的なスイッチング周波数は2倍になる。これに対し、上述した本実施形態のH型ブリッジ変換器およびその制御方法を採用すると、等価的なスイッチング周波数は、HFレグのスイッチング周波数が支配的であるので、ほぼ3倍になる。したがって、同じ等価スイッチング周波数とするために、通常のPWM制御に用いるPWM周波数の2/3の周波数で動作させることが可能であり、スイッチング損失を低減することができる。 In an ordinary H-bridge converter, in an ordinary PWM control in which two legs are switched at the same PWM frequency, the equivalent switching frequency of the alternating current waveform is doubled. On the other hand, when the above-described H-type bridge converter of the present embodiment and its control method are employed, the equivalent switching frequency is almost tripled because the switching frequency of the HF leg is dominant. Therefore, in order to obtain the same equivalent switching frequency, it is possible to operate at a frequency that is 2/3 of the PWM frequency used for normal PWM control, and switching loss can be reduced.
 また、上述した本実施形態のH型ブリッジ変換器およびその制御方法を採用して、もしLFレグ15を通常のPWM制御のスイッチング周波数と同じPWM周波数でスイッチングすると、交流電流波形における等価的なスイッチング周波数が1.5倍となり、リップル分をさらに小さくすることができ、特に交流波形のゼロクロス付近の波形改善につながり、全高調波歪(THD:total harmonic distortion)あるいは電磁障害(EMI:electromagnetic interference)の低減が可能となる。 Further, by adopting the above-described H-type bridge converter of the present embodiment and its control method, if the LF leg 15 is switched at the same PWM frequency as the switching frequency of normal PWM control, an equivalent switching in an AC current waveform is performed. The frequency is 1.5 times, and the ripple can be further reduced, leading to improvement of the waveform near the zero cross of the AC waveform, especially total harmonic distortion (THD) or electromagnetic interference (EMI). Can be reduced.
 次に、上述のH型ブリッジ変換器に用いることができるスイッチングデバイスの種類について説明する。 Next, the types of switching devices that can be used in the above-described H-type bridge converter will be described.
 HFレグ13は3相のサブレグを備え、サブレグのそれぞれを構成するスイッチングデバイス131、132、133、134、135、136として、1/3の電流容量のIGBT(Insulated Gate Bipolar Transistor)を使用することができる。 The HF leg 13 includes three-phase sub-legs, and an IGBT (Insulated Gate-Bipolar-Transistor) having a current capacity of 1/3 is used as the switching devices 131, 132, 133, 134, 135, 136 constituting the sub-legs. Can do.
 HFレグ13のスイッチングデバイスとしては、スイッチング損失が少ないデバイスとしてMOSFETを使用することが知られている。しかし、本実施形態ではHFレグ13にインターリーブ方式が適用されることにより、スイッチング周波数を必要な周波数の1/3に低減することで相対的にスイッチング損失の割合が低減し、少ない導通損失の特性もあわせて持つIGBTの使用が可能になったものである。なお、HFレグ13に用いられる6つのIGBTは、1つのパッケージとして構成されていてもよい。 As a switching device of the HF leg 13, it is known to use a MOSFET as a device having a small switching loss. However, in this embodiment, the interleaving method is applied to the HF leg 13, so that the ratio of switching loss is relatively reduced by reducing the switching frequency to 1/3 of the necessary frequency, and the characteristic of low conduction loss is achieved. In addition, it is possible to use the IGBT that is also included. Note that the six IGBTs used in the HF leg 13 may be configured as one package.
 また、LFレグ15は、直列に接続したスイッチングデバイス151、152を備えた1つのレグを有し、スイッチングデバイス151、152は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)、あるいは、Super-Junction MOSFETを使用することができる。 The LF leg 15 has one leg including switching devices 151 and 152 connected in series. The switching devices 151 and 152 are MOSFETs (Metal-Oxide-Semiconductor-Field-Effect-Transistors) or Super- Junction MOSFETs can be used.
 LFレグ15のスイッチングデバイスとしては、スイッチング損失が低いだけでなく、デバイスの容量の選定によっては、MOSFET、特に、Super-Junction MOSFETを使用することで、大きな導通損失の低減が期待できる。 As a switching device of the LF leg 15, not only the switching loss is low, but depending on the selection of the capacitance of the device, a large reduction in conduction loss can be expected by using a MOSFET, in particular, a super-junction MOSFET.
 以上より、HFレグ13にはIGBTを、LFレグ15にはMOSFETあるいはSuper-Junction MOSFETを使用することにより、スイッチング損失を低減するとともに、導通損失を低減するH型ブリッジ変換器を提供することが可能となる。 As described above, by using an IGBT for the HF leg 13 and a MOSFET or a super-junction MOSFET for the LF leg 15, it is possible to provide an H-bridge converter that reduces switching loss and reduces conduction loss. It becomes possible.
 上記のように、本実施形態によれば、同じ電流リップルの交流電流波形を得る場合には電力変換効率を向上し、小型であって、主回路および制御回路をハードウエアとして実現することが容易である、H型ブリッジ変換器およびそのH型ブリッジ変換器を使用したパワーコンディショナを提供することができる。 As described above, according to the present embodiment, when an alternating current waveform having the same current ripple is obtained, the power conversion efficiency is improved, the size is small, and the main circuit and the control circuit can be easily realized as hardware. It is possible to provide an H-type bridge converter and a power conditioner using the H-type bridge converter.
 図5は、第2実施形態のH型ブリッジ変換器およびそのH型ブリッジ変換器を使用したパワーコンディショナの一構成例を示すブロック図である。
 本実施形態では、上記第1実施形態のH型ブリッジ変換器を含むパワーコンディショナについて、図面を参照して以下に説明する。なお、以下の説明において、上述の第1実施形態と同様の構成については同一の符号を付して説明を省略する。
FIG. 5 is a block diagram illustrating a configuration example of an H-type bridge converter according to the second embodiment and a power conditioner using the H-type bridge converter.
In the present embodiment, a power conditioner including the H-bridge converter of the first embodiment will be described below with reference to the drawings. In the following description, the same components as those in the first embodiment described above are denoted by the same reference numerals and description thereof is omitted.
 本実施形態のパワーコンディショナは、上述の第1実施形態のパワーコンディショナが、単相交流系統12と接続されて単相交流系統連系運転が可能に構成されたものである。また、本実施形態のパワーコンディショナは、単相交流系統12で停電などが発生したときに、単相交流系統12から交流負荷41に接続を切り替えて、交流負荷41へ電力を供給する交流負荷電力供給運転(一般には自立運転と呼ばれる)が可能に構成されたものである。 The power conditioner of the present embodiment is configured such that the power conditioner of the first embodiment described above is connected to the single-phase AC system 12 so that single-phase AC system interconnection operation is possible. The power conditioner of the present embodiment switches the connection from the single-phase AC system 12 to the AC load 41 when a power failure occurs in the single-phase AC system 12 and supplies the AC load 41 with power. The power supply operation (generally called self-sustained operation) is configured to be possible.
 第1サブレグはリアクトルL1を介して交流端子H0と電気的に接続し、第2サブレグはリアクトルL2を介して交流端子H0と電気的に接続し、第3サブレグはリアクトルL3を介して交流端子H0と電気的に接続している。換言すると、第1サブレグと第2サブレグと第3サブレグとは、交流端子H0に並列に接続している。 The first subleg is electrically connected to the AC terminal H0 via the reactor L1, the second subleg is electrically connected to the AC terminal H0 via the reactor L2, and the third subleg is connected to the AC terminal H0 via the reactor L3. And is electrically connected. In other words, the first subleg, the second subleg, and the third subleg are connected in parallel to the AC terminal H0.
 単相交流系統連系運転を行うときには、交流端子H0は、切替回路421のa側で単相交流系統12の一端子と接続される。このときに、単相交流系統12で停電などが発生すると、切替回路421はa側からb側に切り替わり、交流端子H0は交流負荷41の一端子と接続される。 When performing the single-phase AC system interconnection operation, the AC terminal H0 is connected to one terminal of the single-phase AC system 12 on the a side of the switching circuit 421. At this time, when a power failure or the like occurs in the single-phase AC system 12, the switching circuit 421 is switched from the a side to the b side, and the AC terminal H0 is connected to one terminal of the AC load 41.
 図6は、第2実施形態のパワーコンディショナの制御回路の一構成例を示すブロック図である。
 本実施形態では、制御回路CTRは、例えば、単相交流系統連系運転時には出力電流制御を、交流負荷電力供給運転時には出力電圧制御をするように切り替えて、H型ブリッジ変換器を制御する。
FIG. 6 is a block diagram illustrating a configuration example of the control circuit of the power conditioner according to the second embodiment.
In the present embodiment, for example, the control circuit CTR switches the output current control so as to perform the output voltage control during the single-phase AC grid connection operation and performs the output voltage control during the AC load power supply operation, thereby controlling the H-type bridge converter.
 制御回路CTRは、単相交流系統連系運転指令回路43と、PCS電流制御回路44と、切替回路a側投入指令回路45と、交流負荷電力供給運転指令回路46と、PCS電圧制御回路47と、切替回路b側投入指令回路48と、スイッチ431、432と、切替回路421(図5に示す)、422と、を備えている。 The control circuit CTR includes a single-phase AC grid connection operation command circuit 43, a PCS current control circuit 44, a switching circuit a side input command circuit 45, an AC load power supply operation command circuit 46, and a PCS voltage control circuit 47. , A switching circuit b-side input command circuit 48, switches 431 and 432, and a switching circuit 421 (shown in FIG. 5) and 422.
 単相交流系統連系運転指令回路43は、例えば、単相交流系統12が正常か否かを判断し(或いは単相交流系統12が正常である旨の信号を外部から受信し)、単相交流系統12が正常であるときに単相交流系統連系運転信号SGCを出力する。 The single-phase AC system interconnection operation command circuit 43 determines, for example, whether or not the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside. When the AC system 12 is normal, the single-phase AC system interconnection operation signal SGC is output.
 また、交流負荷電力供給運転指令回路46は、例えば、単相交流系統12が正常か否かを判断し(或いは単相交流系統12が正常である旨の信号を外部から受信し)、単相交流系統12が正常であるときには、交流負荷電力供給運転指令回路46は、交流負荷電力供給運転信号SLCを出力しない。 The AC load power supply operation command circuit 46 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside, and When the AC system 12 is normal, the AC load power supply operation command circuit 46 does not output the AC load power supply operation signal SLC .
 スイッチ431は、単相交流系統連系運転信号SGCによって投入される。
 PCS電流制御回路44は、単相交流系統連系運転指令回路43から、単相交流系統連系運転信号SGCを受信して出力電流制御を行う。
The switch 431 is turned on by a single-phase AC grid interconnection operation signal SGC .
PCS current control circuit 44, the single-phase AC system interconnection operation command circuit 43 receives single-phase AC system interconnection operation signal S GC to perform output current control.
 すなわち、PCS電流制御回路44は、上記の単相交流系統連系運転信号SGCによって投入されるスイッチ431を介して、交流電流の大きさを指令する出力電流指令値I が外部より与えられる。さらに、PCS電流制御回路44は、電圧検出器53で検出した単相交流系統12の電圧v、電流検出器281、282、283で検出した第1サブレグ、第2サブレグ、および、第3サブレグの瞬時交流電流i、i、iが入力され、電流制御をした結果のゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4を生成して出力する。これらのゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4は、切替回路422のa側を介して、スイッチングデバイス131、133、135、132、134、136、151、152に与えられる。
 なお、PCS電流制御回路44が出力電流制御を行う動作については、図7を用いて後に詳細に説明する。
That is, the PCS current control circuit 44 gives an output current command value I 0 * for commanding the magnitude of the AC current from the outside via the switch 431 input by the single-phase AC grid connection operation signal S GC . It is done. Further, the PCS current control circuit 44 includes the voltage v 0 of the single-phase AC system 12 detected by the voltage detector 53, the first subleg, the second subleg, and the third subleg detected by the current detectors 281, 282, and 283. Gate currents G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 of the current alternating currents i 1 , i 2 , i 3. Is generated and output. These gate signals G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 are connected to the switching devices 131, 133, 135, via the a side of the switching circuit 422. 132, 134, 136, 151, 152.
The operation in which the PCS current control circuit 44 performs output current control will be described in detail later with reference to FIG.
 切替回路a側投入指令回路45は、単相交流系統連系運転指令回路43から、単相交流系統連系運転信号SGCを受信して、主回路の切替回路421および制御回路の切替回路422に対して、a側に切り替えるように指令を出力する。切替回路422が切り替わることにより、PCS電流制御回路44から出力されたゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4が、制御回路CTRの出力信号としてスイッチングデバイス31、133、135、132、134、136、151、152に供給される。 Switching circuit a side closing command circuit 45, the single-phase AC system interconnection operation command circuit 43 receives a single-phase AC system interconnection operation signal S GC, the switching circuit of the switching circuit 421 and the control circuit of the main circuit 422 In response to this, a command is output to switch to the a side. By switching circuit 422 is switched, the gate signal G Q11 output from the PCS current control circuit 44, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, G Q4 is, the control circuit CTR Are output to the switching devices 31, 133, 135, 132, 134, 136, 151, and 152.
 一方、単相交流系統連系運転指令回路43は、例えば、単相交流系統12が正常か否かを判断し(或いは単相交流系統12が正常である旨の信号を外部から受信し)、単相交流系統12で停電などの異常が発生したとき(正常でないとき)には、単相交流系統連系運転指令回路43は単相交流系統連系運転信号SGCを出力しない。 On the other hand, the single-phase AC system interconnection operation command circuit 43 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside. When an abnormality such as a power failure occurs in the single-phase AC system 12, the single-phase AC system interconnection operation command circuit 43 does not output the single-phase AC system interconnection operation signal SGC .
 また、交流負荷電力供給運転指令回路46は、例えば、単相交流系統12が正常か否かを判断し(或いは単相交流系統12が正常である旨の信号を外部から受信し)、単相交流系統12で停電などの異常が発生したとき(正常でないとき)には、交流負荷電力供給運転指令回路46は、交流負荷電力供給運転信号SLCを出力する。 The AC load power supply operation command circuit 46 determines, for example, whether the single-phase AC system 12 is normal (or receives a signal indicating that the single-phase AC system 12 is normal) from the outside, and When an abnormality such as a power failure occurs in the AC system 12 (when it is not normal), the AC load power supply operation command circuit 46 outputs an AC load power supply operation signal SLC .
 スイッチ432は、交流負荷電力供給運転信号SLCによって投入される。
 PCS電圧制御回路47は、交流負荷電力供給運転指令回路46から交流負荷電力供給運転信号SLCを受信し、出力電圧制御を行う。
The switch 432 is turned on by an AC load power supply operation signal SLC .
PCS voltage control circuit 47 receives the AC load power supply operation signals S LC from the AC load power supply operation command circuit 46 performs output voltage control.
 すなわち、PCS電圧制御回路47は、交流負荷電力供給運転信号SLCによって投入されるスイッチ432を介して、交流電圧の大きさを指令する出力電圧指令値V が外部より与えられる。さらに、PCS電圧制御回路47は、電流検出器281、282、283で検出した第1サブレグ、第2サブレグ、および、第3サブレグの交流電流i、i、iを受信し、電圧制御をした結果のゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4を生成して出力する。これらのゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4は、切替回路422のb側を介して、スイッチングデバイス131、133、135、132、134、136、151、152に与えられる。なお、PCS電圧制御回路47の動作は、上述の第1実施形態の制御回路CTRと同様であるため、本実施形態では説明を省略する。 That is, the PCS voltage control circuit 47 is given an output voltage command value V 0 * for commanding the magnitude of the AC voltage from the outside via the switch 432 input by the AC load power supply operation signal S LC . Further, the PCS voltage control circuit 47 receives the AC currents i 1 , i 2 , and i 3 of the first subleg, the second subleg, and the third subleg detected by the current detectors 281, 282, and 283, and performs voltage control. the gate signal G Q11 of the results, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, to generate a G Q4 output. These gate signals G Q11 , G Q12 , G Q13 , G Q21 , G Q22 , G Q23 , G Q13 , G Q3 , G Q4 are connected to the switching devices 131, 133, 135, via the b side of the switching circuit 422. 132, 134, 136, 151, 152. The operation of the PCS voltage control circuit 47 is the same as that of the control circuit CTR of the first embodiment described above, and thus the description thereof is omitted in this embodiment.
 切替回路b側投入指令回路48は、交流負荷電力供給運転指令回路46から交流負荷電力供給運転信号SLCを受信し、主回路の切替回路421および制御回路の切替回路422に対して、b側に切り替えるように指令を発生する。切替回路422が切り替わることにより、PCS電圧制御回路47から出力されたゲート信号GQ11、GQ12、GQ13、GQ21、GQ22、GQ23、GQ13、GQ3、GQ4が、制御回路CTRの出力信号としてスイッチングデバイス31、133、135、132、134、136、151、152に供給される。 Switching circuit b side closing command circuit 48 receives the AC load power supply operation signals S LC from the AC load power supply operation command circuit 46 for the switching circuit 422 of the switching circuit 421 and the control circuit of the main circuit, b-side Command to switch to. By switching circuit 422 is switched, PCS voltage control circuit 47 a gate signal G Q11 output from, G Q12, G Q13, G Q21, G Q22, G Q23, G Q13, G Q3, G Q4 is, the control circuit CTR Are output to the switching devices 31, 133, 135, 132, 134, 136, 151, and 152.
 図7は、図6に示すパワーコンディショナの制御回路において、電流制御を行うPCS電流制御回路の一構成例を示す図である。
 PCS電流制御回路44は、1/3乗算器51と、乗算器52と、線間電圧波高値検出回路54と、除算器55と、減算器561、562、563と、電流制御回路571、572、573と、正負極性判別回路58と、120°位相差三角波搬送波発生回路24と、PWM波形発生回路251、252、253と、否定回路261、262、263と、を備えている。
FIG. 7 is a diagram illustrating a configuration example of a PCS current control circuit that performs current control in the control circuit of the power conditioner illustrated in FIG. 6.
The PCS current control circuit 44 includes a 1/3 multiplier 51, a multiplier 52, a line voltage peak value detection circuit 54, a divider 55, subtracters 561, 562, and 563, and current control circuits 571 and 572. 573, positive / negative polarity discrimination circuit 58, 120 ° phase difference triangular wave carrier wave generation circuit 24, PWM waveform generation circuits 251, 252, 253, and negation circuits 261, 262, 263.
 1/3乗算器51は、交流電流の大きさを指令する出力電流指令値I を外部から受信し、交流電流の大きさ指令値I /3を出力する。
 乗算器52は、交流電流の大きさ指令値I /3と、除算器55の出力信号v/V(力率1、大きさ1の正弦波)とを受信し、乗算することにより、3相インターリーブの各サブレグの電流基準i 、i 、i を得て、出力する。
The 1/3 multiplier 51 receives an output current command value I 0 * for commanding the magnitude of the AC current from the outside, and outputs the AC current magnitude command value I 0 * / 3.
The multiplier 52 receives and multiplies the AC current magnitude command value I 0 * / 3 and the output signal v 0 / V 0 of the divider 55 (power factor 1, sine wave of magnitude 1). To obtain and output current references i 1 * , i 2 * , i 3 * of each sub-leg of the three-phase interleave.
 線間電圧波高値検出回路54は、図5に示す電圧検出器53で検出した単相交流系統12の電圧vを受信し、電圧vから交流電圧波高値Vを求めて出力する。 The line voltage peak value detection circuit 54 receives the voltage v 0 of the single-phase AC system 12 detected by the voltage detector 53 shown in FIG. 5, obtains the AC voltage peak value V 0 from the voltage v 0 and outputs it.
 除算器55は、電圧vと交流電圧波高値Vとを受信し、信号v/Vを演算して乗算器52および正負極性判別回路58へ出力する。すなわち、信号v/Vは、乗算器52に入力される力率1、大きさ1の正弦波である。 Divider 55 receives the voltages v 0 and AC voltage peak value V 0, and outputs the operation signal v 0 / V 0 to the multiplier 52 and the positive and negative determination circuit 58. That is, the signal v 0 / V 0 is a sine wave having a power factor of 1 and a magnitude of 1 input to the multiplier 52.
 減算器561は、電流基準i から電流検出器281で検出された実際の電流iを減算して、電流制御回路571へ出力する。
 減算器562は、電流基準i から電流検出器282で検出された実際の電流iを減算して、電流制御回路572へ出力する。
 減算器563は、電流基準i から電流検出器283で検出された実際の電流iを減算して、電流制御回路573へ出力する。
The subtractor 561 subtracts the actual current i 1 detected by the current detector 281 from the current reference i 1 * and outputs the result to the current control circuit 571.
The subtractor 562 subtracts the actual current i 2 detected by the current detector 282 from the current reference i 2 * and outputs the result to the current control circuit 572.
The subtractor 563 subtracts the actual current i 3 detected by the current detector 283 from the current reference i 3 * and outputs the result to the current control circuit 573.
 電流制御回路571は、少なくとも積分要素を含み、減算器561から入力された値がゼロとなるように増幅演算を行い、第1サブレグにおける相電圧基準vH1 を生成して出力する。なお、本実施形態では、電流制御回路571は、比例積分制御を行うものである。 The current control circuit 571 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 561 becomes zero, and generates and outputs the phase voltage reference v H1 * in the first subleg. In the present embodiment, the current control circuit 571 performs proportional-integral control.
 電流制御回路572は、少なくとも積分要素を含み、減算器562から入力された値がゼロとなるように増幅演算を行い、第2サブレグにおける相電圧基準vH2 を生成して出力する。なお、本実施形態では、電流制御回路572は、比例積分制御を行うものである。 The current control circuit 572 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 562 becomes zero, and generates and outputs the phase voltage reference v H2 * in the second subleg. In the present embodiment, the current control circuit 572 performs proportional-integral control.
 電流制御回路573は、少なくとも積分要素を含み、減算器563から入力された値がゼロとなるように増幅演算を行い、第3サブレグにおける相電圧基準vH3 を生成して出力する。なお、本実施形態では、電流制御回路573は、比例積分制御を行うものである。 The current control circuit 573 includes at least an integration element, performs an amplification operation so that the value input from the subtractor 563 becomes zero, and generates and outputs the phase voltage reference v H3 * in the third subleg. In the present embodiment, the current control circuit 573 performs proportional-integral control.
 120°位相差三角波搬送波発生回路24と、PWM波形発生回路251、252、253と、否定回路261、262、263とは、上述の第1実施形態にて説明をした回路と同様である。 The 120 ° phase difference triangular wave carrier wave generation circuit 24, the PWM waveform generation circuits 251, 252, and 253, and the negation circuits 261, 262, and 263 are the same as those described in the first embodiment.
 すなわち、120°位相差三角波搬送波発生回路24は、第1サブレグにおける搬送波電圧vT1と、第2サブレグにおける搬送波電圧vT2と、第3サブレグにおける搬送波電圧vT3とを発生する。例えば、図4に示すように、搬送波はPWM制御周波数fPWMの連続した三角波である。3つの三角波(搬送波電圧)vT1、vT2、vT3は、PWM制御周波数fPWMのレベルで、それぞれ120°(=2π/K[rad])(本実施形態においてK=3)だけ位相がずれている。 That is, the 120 ° phase difference triangular wave carrier wave generation circuit 24 generates the carrier voltage v T1 in the first sub-leg, the carrier voltage v T2 in the second sub-leg, and the carrier voltage v T3 in the third sub-leg. For example, as shown in FIG. 4, the carrier is a continuous triangular wave PWM control frequency f PWM. The three triangular waves (carrier voltages) v T1 , v T2 , and v T3 are at the level of the PWM control frequency f PWM and each have a phase of 120 ° (= 2π / K [rad]) (K = 3 in this embodiment). It's off.
 PWM波形発生回路251は、相電圧基準vH1 を変調波として受信し、スイッチングデバイス131に与えるゲート信号GQ11をスイッチングデバイス131および否定回路261へ出力する。否定回路261は、ゲート信号GQ11を反転して、スイッチングデバイス132に与えるゲート信号GQ21を生成して出力する。 The PWM waveform generation circuit 251 receives the phase voltage reference v H1 * as a modulation wave, and outputs a gate signal G Q11 to be supplied to the switching device 131 to the switching device 131 and the negation circuit 261. NOT circuit 261 inverts the gate signal G Q11, and generates and outputs a gate signal G Q21 to be supplied to the switching device 132.
 PWM波形発生回路252は、相電圧基準vH2 を変調波として受信し、スイッチングデバイス133に与えるゲート信号GQ12をスイッチングデバイス133および否定回路262へ出力する。否定回路262は、ゲート信号GQ12を反転して、スイッチングデバイス134に与えるゲート信号GQ22を生成して出力する。 The PWM waveform generation circuit 252 receives the phase voltage reference v H2 * as a modulation wave, and outputs a gate signal G Q12 to be supplied to the switching device 133 to the switching device 133 and the negative circuit 262. NOT circuit 262 inverts the gate signal G Q12, and generates and outputs a gate signal G Q22 to be supplied to the switching device 134.
 PWM波形発生回路253は、相電圧基準vH3 を変調波として受信し、スイッチングデバイス135に与えるゲート信号GQ13をスイッチングデバイス135および否定回路263へ出力する。否定回路263は、ゲート信号GQ13を反転して、スイッチングデバイス136に与えるゲート信号GQ23を生成して出力する。 The PWM waveform generation circuit 253 receives the phase voltage reference v H3 * as a modulation wave, and outputs a gate signal G Q13 to be supplied to the switching device 135 to the switching device 135 and the negation circuit 263. The negation circuit 263 inverts the gate signal G Q13 to generate and output a gate signal G Q23 to be supplied to the switching device 136.
 一方、上述の除算器55の出力信号v/Vの位相は交流電圧の位相であるので、出力電圧制御の場合と同様に、LFレグ15の制御に利用できる。すなわち、単相交流系統の周波数fに合わせて直流正電圧母線と直流負電圧母線との電位を切り換えて出力すればよい。 On the other hand, since the phase of the output signal v 0 / V 0 of the divider 55 is an AC voltage phase, it can be used to control the LF leg 15 as in the case of output voltage control. In other words, the potential of the DC positive voltage bus and the DC negative voltage bus may be switched and output in accordance with the frequency f 0 of the single-phase AC system.
 例えば、図3に示す制御回路CTRのLFレグ相電圧基準発生回路23は、線間電圧基準v を受信してLFレグ相電圧基準v を生成して出力するものである。これと同様に、正負極性判別回路58は、信号v/Vを受信して、1パルスの矩形波の信号(ゲート信号GQ4)を生成して、スイッチングデバイス152および否定回路32へ出力する。 For example, LF leg-phase voltage reference generation circuit of the control circuit CTR shown in FIG. 3 23 is for generating and outputting a LF leg-phase voltage reference v L * and receive line voltage reference v 0 *. Similarly, the positive / negative polarity discrimination circuit 58 receives the signal v 0 / V 0 , generates a one-pulse rectangular wave signal (gate signal G Q4 ), and outputs it to the switching device 152 and the negative circuit 32. To do.
 否定回路32は、正負極性判別回路58から出力されたゲート信号GQ4を受信し、値を反転したゲート信号GQ3を出力する。(v/V)>0のときには、ゲート信号GQ4によりスイッチングデバイス152をオンとなり、ゲート信号GQ3によりスイッチングデバイス151はオフとなる。(v/V)<0のときには、ゲート信号GQ4によりスイッチングデバイス152はオフとなり、ゲート信号GQ3によりスイッチングデバイス151はオンとなる。
 なお、本実施形態において、H型ブリッジ変換器に用いることができるスイッチングデバイスの種類は上述の第1実施形態と同様である。
NOT circuit 32 receives the gate signal G Q4 output from a polarity discriminating circuit 58, and outputs a gate signal G Q3 obtained by inverting the value. When (v 0 / V 0 )> 0, the switching device 152 is turned on by the gate signal G Q4 and the switching device 151 is turned off by the gate signal G Q3 . When (v 0 / V 0 ) <0, the switching device 152 is turned off by the gate signal G Q4 and the switching device 151 is turned on by the gate signal G Q3 .
In this embodiment, the types of switching devices that can be used for the H-type bridge converter are the same as those in the first embodiment.
 上記のように、本実施形態によれば、同じ電流リップルの交流電流波形を得る場合には電力変換効率を向上し、小型であって、主回路および制御回路をハードウエアとして実現することが容易である、H型ブリッジ変換器およびパワーコンディショナを提供することができる。 As described above, according to the present embodiment, when an alternating current waveform having the same current ripple is obtained, the power conversion efficiency is improved, the size is small, and the main circuit and the control circuit can be easily realized as hardware. An H-type bridge converter and a power conditioner can be provided.
 さらに、本実施形態によれば、単相交流系統連系運転と交流負荷電力供給運転とを切り替え可能とし、汎用性の高いH型ブリッジ変換器およびパワーコンディショナを提供することができる。 Furthermore, according to the present embodiment, it is possible to switch between the single-phase AC grid interconnection operation and the AC load power supply operation, and it is possible to provide a highly versatile H-bridge converter and power conditioner.
 本発明の一つの実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although one embodiment of the present invention has been described, this embodiment is presented as an example and is not intended to limit the scope of the invention. The novel embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. This embodiment and its modifications are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

Claims (3)

  1.  直流正電圧母線と直流負電圧母線との間において直列に接続した一対のスイッチングデバイスを含むサブレグが並列に複数接続されているHFレグと、
     前記直流正電圧母線と前記直流負電圧母線との間において一対のスイッチングデバイスが直列に接続されており、前記HFレグと並列に接続されているLFレグと、
     前記一対のスイッチングデバイス間のそれぞれと電気的に接続した複数の交流出力端子と、
     前記複数のサブレグのスイッチングデバイスの導通位相をずらした多相インターリーブ方式に基づいて前記HFレグを制御し、出力基本波周波数の半サイクルごとに出力を切替えるように前記LFレグを制御する制御回路と、を備えるH型ブリッジ変換器。
    An HF leg in which a plurality of sub-legs including a pair of switching devices connected in series between a DC positive voltage bus and a DC negative voltage bus are connected in parallel;
    A pair of switching devices are connected in series between the DC positive voltage bus and the DC negative voltage bus, and an LF leg connected in parallel with the HF leg;
    A plurality of AC output terminals electrically connected to each of the pair of switching devices;
    A control circuit for controlling the LF leg to control the HF leg based on a multi-phase interleaving method in which conduction phases of the switching devices of the plurality of sub-legs are shifted, and to switch the output every half cycle of the output fundamental frequency; An H-type bridge converter comprising:
  2.  前記HFレグの前記スイッチングデバイスはIGBTであり、前記LFレグの前記スイッチングデバイスはMOSFETあるいはSuper-Junction MOSFETである請求項1記載のH型ブリッジ変換器。 The H-bridge converter according to claim 1, wherein the switching device of the HF leg is an IGBT, and the switching device of the LF leg is a MOSFET or a super-junction MOSFET.
  3.  請求項1又は請求項2記載のH型ブリッジ変換器と、
     前記HFレグの複数の交流出力端子と電気的に接続した1つの交流端子と、
     前記HFレグの複数の交流出力端子と前記交流端子との間に設けられた少なくとも1つのリアクトルと、
     前記交流端子の電気的接続を、負荷に接続した端子と単相交流系統に接続した端子とのいずれかに切替える切替回路と、を備え、
     前記制御回路は、前記切替回路により前記交流端子と前記単相交流系統とが電気的に接続されているときに、前記H型ブリッジ変換器の出力電流が正弦波となるように前記HFレグおよび前記LFレグを制御し、前記切替回路により前記交流端子と前記負荷とが電気的に接続されているときに、前記H型ブリッジ変換器の出力電圧を正弦波とするように前記HFレグおよび前記LFレグを制御するパワーコンディショナ。
    The H-type bridge converter according to claim 1 or 2,
    One AC terminal electrically connected to a plurality of AC output terminals of the HF leg;
    At least one reactor provided between a plurality of AC output terminals of the HF leg and the AC terminal;
    A switching circuit that switches the electrical connection of the AC terminal to either a terminal connected to a load or a terminal connected to a single-phase AC system,
    The control circuit includes the HF leg and the HF leg so that the output current of the H-type bridge converter becomes a sine wave when the AC terminal and the single-phase AC system are electrically connected by the switching circuit. When the LF leg is controlled and the AC terminal and the load are electrically connected by the switching circuit, the HF leg and the HF leg are set so that the output voltage of the H-type bridge converter is a sine wave. A power conditioner that controls the LF leg.
PCT/JP2017/013268 2017-03-30 2017-03-30 H-bridge converter and power conditioner WO2018179234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019508019A JPWO2018179234A1 (en) 2017-03-30 2017-03-30 H-type bridge converter and power conditioner
PCT/JP2017/013268 WO2018179234A1 (en) 2017-03-30 2017-03-30 H-bridge converter and power conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/013268 WO2018179234A1 (en) 2017-03-30 2017-03-30 H-bridge converter and power conditioner

Publications (1)

Publication Number Publication Date
WO2018179234A1 true WO2018179234A1 (en) 2018-10-04

Family

ID=63674439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013268 WO2018179234A1 (en) 2017-03-30 2017-03-30 H-bridge converter and power conditioner

Country Status (2)

Country Link
JP (1) JPWO2018179234A1 (en)
WO (1) WO2018179234A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112821792A (en) * 2021-02-23 2021-05-18 湖南大学 Double-frequency staggered hybrid half-bridge circuit and control method thereof
CN113411005A (en) * 2020-03-16 2021-09-17 西门子交通有限公司 Vehicle, in particular rail vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130070504A1 (en) * 2011-09-15 2013-03-21 Fsp-Powerland Technology Inc. Non-isolated inverter and related control manner thereof and application using the same
JP2013529457A (en) * 2011-10-17 2013-07-18 ▲ホア▼▲ウェイ▼技術有限公司 Inverter topology circuit, inverse conversion method, and inverter
JP2016073204A (en) * 2014-09-24 2016-05-09 田淵電機株式会社 Abnormality detector for system interconnection relay, and power conditioner
JP2016518809A (en) * 2013-08-30 2016-06-23 華為技術有限公司Huawei Technologies Co.,Ltd. Power conversion circuit and power conversion system
JP2017011929A (en) * 2015-06-24 2017-01-12 田淵電機株式会社 System interconnection inverter device and system interconnection operation starting method of system interconnection inverter device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130070504A1 (en) * 2011-09-15 2013-03-21 Fsp-Powerland Technology Inc. Non-isolated inverter and related control manner thereof and application using the same
JP2013529457A (en) * 2011-10-17 2013-07-18 ▲ホア▼▲ウェイ▼技術有限公司 Inverter topology circuit, inverse conversion method, and inverter
JP2016518809A (en) * 2013-08-30 2016-06-23 華為技術有限公司Huawei Technologies Co.,Ltd. Power conversion circuit and power conversion system
JP2016073204A (en) * 2014-09-24 2016-05-09 田淵電機株式会社 Abnormality detector for system interconnection relay, and power conditioner
JP2017011929A (en) * 2015-06-24 2017-01-12 田淵電機株式会社 System interconnection inverter device and system interconnection operation starting method of system interconnection inverter device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113411005A (en) * 2020-03-16 2021-09-17 西门子交通有限公司 Vehicle, in particular rail vehicle
EP3883116A1 (en) * 2020-03-16 2021-09-22 Siemens Mobility GmbH Vehicle, in particular rail vehicle
CN112821792A (en) * 2021-02-23 2021-05-18 湖南大学 Double-frequency staggered hybrid half-bridge circuit and control method thereof

Also Published As

Publication number Publication date
JPWO2018179234A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
US9013906B2 (en) Power system-interconnected inverter device
US20120147639A1 (en) Hybrid space vector pwm schemes for interleaved three-phase converters
US10128739B2 (en) Power conversion device
EP2528221A2 (en) Multi-phase active rectifier
JP5549697B2 (en) Current source power converter
US9755551B2 (en) Power conversion device
US7433216B2 (en) Voltage control and harmonic minimization of multi-level converter
JP2010187431A (en) Uninterruptible power supply
KR20160122922A (en) Apparatus and method for generating offset voltage of 3-phase inverter
US11218079B2 (en) Power conversion device
JP2016163406A (en) Active filter, motor drive device employing the same, and refrigeration device
CN110832769A (en) Power conversion device and electric power steering device
JP3856689B2 (en) Neutral point clamp type power converter controller
Hakami et al. Dual-carrier-based PWM method for DC-link capacitor lifetime extension in three-level hybrid ANPC inverters
JP5516107B2 (en) Three-phase power converter
US11277077B2 (en) Power conversion device suppressing waveform distortion in an output voltage
JP5147624B2 (en) Inverter device
WO2018179234A1 (en) H-bridge converter and power conditioner
JP2010220382A (en) Power conversion apparatus
JP3276135B2 (en) Power converter
Davis et al. Enhanced floating capacitor voltage balancing schemes for single-source seven-level inverters with capacitor fed H-bridge units
Han et al. Dead-time effect compensation of a 5-level ANPC WBG inverter for high power density aviation applications
Song et al. Circulating current elimination scheme for parallel operation of common dc bus inverters
Gopakumar et al. Neutral-point balancing of neutral-point-clamped three-level inverter with a front end switched rectifier DC source for the full modulation range
Nishizawa et al. Reduction of dc-link current harmonics over wide power-factor range for three-phase VSI using single-carrier-comparison continuous PWM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019508019

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903977

Country of ref document: EP

Kind code of ref document: A1