JP2008011606A - Power converter and power conversion method - Google Patents

Power converter and power conversion method Download PDF

Info

Publication number
JP2008011606A
JP2008011606A JP2006177487A JP2006177487A JP2008011606A JP 2008011606 A JP2008011606 A JP 2008011606A JP 2006177487 A JP2006177487 A JP 2006177487A JP 2006177487 A JP2006177487 A JP 2006177487A JP 2008011606 A JP2008011606 A JP 2008011606A
Authority
JP
Japan
Prior art keywords
converter
inverter
voltage
neutral point
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006177487A
Other languages
Japanese (ja)
Other versions
JP4466618B2 (en
Inventor
Yoshitoshi Akita
佳稔 秋田
Masakane Shigyo
正謙 執行
Hiroshi Nagata
寛 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006177487A priority Critical patent/JP4466618B2/en
Priority to CN2007101262389A priority patent/CN101098108B/en
Priority to KR20070063724A priority patent/KR101093288B1/en
Publication of JP2008011606A publication Critical patent/JP2008011606A/en
Application granted granted Critical
Publication of JP4466618B2 publication Critical patent/JP4466618B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M5/4585Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only having a rectifier with controlled elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-level power converter which can surely suppress the variation of a DC neutral point voltage. <P>SOLUTION: In the three-level power converter arranged with resonance suppressing resistors at a converter side and an inverter side, respectively, on an intermediate potential busbar: intermediate resistors are individually arranged at the converter side and the inverter side; a DC neutral point voltage controller 55 which uses a DC neutral point voltage between the converter-side resonance suppressing resistor 24 and the converter-side intermediate resistor 27, and a DC neutral point voltage controller 65 which uses a DC neutral point voltage between and among a converter-side DC neutral point voltage controller for controlling, an inverter-side resonance suppressing resistor 34 and an inverter-side intermediate resistor 37 are arranged in the three-level power converter, and the switching and the simultaneous use of DC neutral point voltage control at the converter side and the inverter side are conducted depending on an operation state by using a switching determination part 67. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電力変換装置及び電力変換方法に係り、特に、いわゆる3レベル電力変換において、直流中性点電圧の変動を抑制するのに最適な電力変換装置及び電力変換方法に関する。   The present invention relates to a power conversion device and a power conversion method, and more particularly to a power conversion device and a power conversion method that are optimal for suppressing fluctuations in DC neutral point voltage in so-called three-level power conversion.

交流電動機などを駆動するために電力変換装置が用いられる。この電力変換装置として、特に大容量の用途では3レベル電力変換装置が用いられている。3レベル電力変換装置は、コンバータにより交流電源の電力を直流に変換し、インバータにより直流を交流に変換し、コンバータとインバータは直流母線で接続されている。   A power converter is used to drive an AC motor or the like. As this power conversion device, a three-level power conversion device is used particularly for large capacity applications. The three-level power conversion device converts the power of an AC power source into DC by a converter, converts DC into AC by an inverter, and the converter and the inverter are connected by a DC bus.

ここで、コンバータ側とインバータ側の直流部に各々平滑コンデンサが有り、直流母線で接続された場合、平滑コンデンサと直流母線のインダクタンス成分により共振現象が発生し、共振電流により直流母線および平滑コンデンサが温度上昇するという問題があった。   Here, when there is a smoothing capacitor in each of the DC part on the converter side and the inverter side, and the DC bus is connected, a resonance phenomenon occurs due to the inductance component of the smoothing capacitor and the DC bus, and the DC bus and the smoothing capacitor are caused by the resonance current. There was a problem that the temperature rose.

この問題を解決する方法として、例えば特開2001−238461号公報に示す3レベル電力変換装置では、正極電位母線,負極電位母線,中間電位母線の中で、該中間電位母線に共振を抑えるために抵抗器を介装し、共振電流を抑制するようにしている。   As a method for solving this problem, for example, in the three-level power converter shown in Japanese Patent Laid-Open No. 2001-238461, in order to suppress resonance in the intermediate potential bus among the positive potential bus, the negative potential bus, and the intermediate potential bus A resistor is interposed to suppress the resonance current.

特開2001−238461号公報JP 2001-238461 A

インバータ、特に3レベルインバータでは、スイッチング制御をした場合、インバータの直流中性点に電流が流れ、直流中性点電圧に変動が発生し、スイッチング素子に過大な電圧が印加される問題や、出力電圧が歪むことによる電動機の出力トルクに脈動が発生する問題がある。特に、電動機が高速で負荷電流が大きい時に直流中性点電圧の変動が大きくなり、そして、中間電位母線に抵抗器を設置した場合は、直流中性点電圧の変動により抵抗両端に電位差が生じ、抵抗に過大な電流が流れる問題もある。   Inverters, especially three-level inverters, when switching control is performed, current flows through the DC neutral point of the inverter, fluctuations occur in the DC neutral point voltage, and problems such as excessive voltage being applied to the switching element and output There is a problem that pulsation occurs in the output torque of the motor due to the distortion of the voltage. In particular, when the motor is high-speed and the load current is large, the DC neutral point voltage fluctuates greatly, and when a resistor is installed on the intermediate potential bus, a potential difference occurs across the resistor due to the DC neutral point voltage fluctuation. There is also a problem that an excessive current flows through the resistor.

本発明の目的は、直流中性点電圧の変動を確実に抑制できる電力変換装置及び電力変換方法を提供することにある。   The objective of this invention is providing the power converter device and power conversion method which can suppress the fluctuation | variation of direct-current neutral point voltage reliably.

上記目的を達成するために、本発明では、交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位に変換するコンバータと、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を交流に変換するインバータを有する電力変換装置において、前記中間電位導電体の電圧を所定に保つように前記コンバータを制御する制御系と、前記中間電位導電体の電圧を所定に保つように前記インバータを制御する制御系とを有するように構成した。あるいは、交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位に変換するコンバータと、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を交流に変換するインバータを有する電力変換装置において、前記コンバータとインバータのいずれもが、前記中間電位導電体の電圧を所定に保つように、制御可能に構成される。   In order to achieve the above object, in the present invention, a converter that converts alternating current into a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential; A low potential conductor to which a potential voltage is applied, a high potential conductor to which the high potential voltage is applied, and an intermediate potential conductor to which a voltage to be the intermediate potential is applied In a power converter having an inverter that converts the voltage supplied via AC into an alternating current, a control system that controls the converter so as to keep the voltage of the intermediate potential conductor at a predetermined level, and the voltage of the intermediate potential conductor And a control system for controlling the inverter so as to maintain a predetermined value. Alternatively, a converter that converts alternating current into a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential, and a voltage that is the low potential are applied. A low-potential conductor, a high-potential conductor to which a voltage that becomes a high potential is applied, and a voltage that is supplied via the intermediate-potential conductor to which a voltage that becomes a middle potential is applied to an alternating current In the power conversion apparatus having the inverter for conversion, both the converter and the inverter are configured to be controllable so as to keep the voltage of the intermediate potential conductor at a predetermined level.

或いは、直流中性点電圧制御系をコンバータ側とインバータ側の両方に設置し、運転状態によりコンバータ側とインバータ側の中性点電圧制御を切替るようにした。また、別の手段として中間電位母線に共振抑制用の抵抗をコンバータ側とインバータ側に各々設置し、そしてコンバータ側抵抗とインバータ側抵抗の間にもう一つの中間抵抗を設置し、コンバータ側抵抗と中間抵抗の間の中性点電圧を用いたコンバータ側中性点電圧制御系とインバータ側抵抗と中間抵抗の間の中性点電圧を用いたインバータ側中性点電圧制御系を設置し、同時併用できるようにした。   Alternatively, a DC neutral point voltage control system is installed on both the converter side and the inverter side, and the neutral point voltage control is switched between the converter side and the inverter side depending on the operating state. As another means, resonance suppression resistors are installed on the intermediate potential bus on the converter side and the inverter side, respectively, and another intermediate resistor is installed between the converter side resistor and the inverter side resistor. Installed the converter neutral point voltage control system using the neutral point voltage between the intermediate resistors and the inverter neutral point voltage control system using the neutral point voltage between the inverter side resistors and the intermediate resistor. It can be used together.

本発明によれば、直流中性点電圧の変動を確実に抑制することが可能となる。   According to the present invention, it is possible to reliably suppress fluctuations in the DC neutral point voltage.

以下図面を用いて発明を実施するための最良の形態を説明する。   The best mode for carrying out the invention will be described below with reference to the drawings.

図1は、本発明の全体構成図である。1は交流電源、2は前記交流電源1の交流電力を直流電力に変換するコンバータユニット、3は前記コンバータユニット2が出力する直流電力を所望の電力に変換するインバータユニット、4は前記インバータユニット3が出力する電力で駆動される電動機である。前記コンバータユニット2は、コンバータ部21とコンバータ側に設置された平滑コンデンサ22,23と共振抑制用の抵抗器24および直流電圧を検出し出力する直流電圧検出器25,26で構成されている。そして、前記インバータユニット3は、インバータ部31とインバータ側に設置された平滑コンデンサ32,33と共振抑制用の抵抗器34および直流電圧を検出し出力する直流電圧検出器35,36で構成されている。5は直流電力が所望の値となるように前記コンバータ部21を操作するコンバータ制御装置、6は前記電動機4の出力トルクや速度が所望の特性を満たすように前記インバータ部31を操作するインバータ制御装置である。7は電流検出器で前記コンバータユニット2の出力電流を検出し出力する。8は電動機4に直結された速度検出器で電動機の速度を検出し出力する。9は電流検出器で前記インバータユニット3の出力電流を検出し出力する。前記電流検出器7,直流電圧検出器25,26の出力信号は、コンバータ制御装置5に入力され、コンバータ制御装置5は、各種演算処理を行い、前記コンバータ部21を操作する信号を出力する。前記速度検出器8,電流検出器9,直流電圧検出器35,36の出力信号は、インバータ制御装置6に入力され、インバータ制御装置6は、各種演算処理を行い、前記インバータ部31を操作する信号を出力する。   FIG. 1 is an overall configuration diagram of the present invention. 1 is an AC power source, 2 is a converter unit that converts AC power of the AC power source 1 into DC power, 3 is an inverter unit that converts DC power output from the converter unit 2 into desired power, and 4 is the inverter unit 3 Is an electric motor driven by the electric power output. The converter unit 2 includes a converter unit 21, smoothing capacitors 22 and 23 installed on the converter side, a resistor 24 for suppressing resonance, and DC voltage detectors 25 and 26 for detecting and outputting a DC voltage. The inverter unit 3 includes an inverter unit 31, smoothing capacitors 32 and 33 installed on the inverter side, a resonance suppression resistor 34, and DC voltage detectors 35 and 36 that detect and output a DC voltage. Yes. 5 is a converter control device that operates the converter unit 21 so that the DC power becomes a desired value, and 6 is an inverter control that operates the inverter unit 31 so that the output torque and speed of the motor 4 satisfy desired characteristics. Device. A current detector 7 detects and outputs the output current of the converter unit 2. Reference numeral 8 denotes a speed detector directly connected to the motor 4 to detect and output the speed of the motor. A current detector 9 detects and outputs the output current of the inverter unit 3. Output signals of the current detector 7 and the DC voltage detectors 25 and 26 are input to the converter control device 5, and the converter control device 5 performs various arithmetic processes and outputs a signal for operating the converter unit 21. Output signals from the speed detector 8, current detector 9, and DC voltage detectors 35 and 36 are input to the inverter control device 6, and the inverter control device 6 performs various arithmetic processes and operates the inverter unit 31. Output a signal.

次に、各制御装置の主要動作について説明する。先ず、コンバータ制御装置5では、直流電圧指令発生器51から出力される直流電圧指令値と直流電圧検出器25,26から出力される直流電圧検出値が直流電圧制御器52に入力され、直流電圧制御器52では、直流電圧検出値が直流電圧指令値と一致するようにコンバータ出力電流指令値を演算し出力する。そして、前記コンバータ出力電流指令値と電流検出器7から出力されるコンバータ出力電流検出値が電流制御器53に入力され、電流制御器53では、コンバータ出力電流検出値がコンバータ出力電流指令値に一致するようにコンバータ電圧指令値を演算し出力する。そして、前記コンバータ電圧指令値はパルス生成器54に入力され、パルス生成器54では、コンバータ部21のコンバータ出力電圧がコンバータ出力電圧指令値に一致するようにコンバータ部21のスイッチング素子をオン・オフするパルス信号を演算し出力する。インバータ制御装置6では、速度指令発生器61から出力される速度指令値と速度検出器8から出力される速度検出値が速度制御器62に入力され、速度制御器62では、速度検出値が速度指令値と一致するようにインバータ出力電流指令値を演算し出力する。そして、前記インバータ出力電流指令値と電流検出器9から出力されるインバータ出力電流検出値が電流制御器63に入力され、電流制御器63では、インバータ出力電流検出値がインバータ出力電流指令値に一致するようにインバータ電圧指令値を演算し出力する。そして、前記インバータ電圧指令値はパルス生成器64に入力され、パルス生成器64では、インバータ部31のインバータ出力電圧がインバータ出力電圧指令値に一致するようにインバータ部31のスイッチング素子をオン・オフするパルス信号を演算し出力する。   Next, the main operation of each control device will be described. First, in the converter control device 5, the DC voltage command value output from the DC voltage command generator 51 and the DC voltage detection values output from the DC voltage detectors 25 and 26 are input to the DC voltage controller 52, and the DC voltage is output. The controller 52 calculates and outputs the converter output current command value so that the detected DC voltage value matches the DC voltage command value. The converter output current command value and the converter output current detection value output from the current detector 7 are input to the current controller 53. In the current controller 53, the converter output current detection value matches the converter output current command value. The converter voltage command value is calculated and output as described above. The converter voltage command value is input to the pulse generator 54. The pulse generator 54 turns on / off the switching element of the converter unit 21 so that the converter output voltage of the converter unit 21 matches the converter output voltage command value. Calculate and output the pulse signal. In the inverter control device 6, the speed command value output from the speed command generator 61 and the speed detection value output from the speed detector 8 are input to the speed controller 62. In the speed controller 62, the speed detection value is The inverter output current command value is calculated and output so as to match the command value. The inverter output current command value and the inverter output current detection value output from the current detector 9 are input to the current controller 63. In the current controller 63, the inverter output current detection value matches the inverter output current command value. Inverter voltage command value is calculated and output. The inverter voltage command value is input to the pulse generator 64. The pulse generator 64 turns on / off the switching element of the inverter unit 31 so that the inverter output voltage of the inverter unit 31 matches the inverter output voltage command value. Calculate and output the pulse signal.

次に、本発明における制御動作について説明する。先ず、コンバータ側に直流中性点電圧制御器55を設置し、直流中性点電圧制御器55では、直流電圧検出器25,26から出力される直流電圧検出値から直流中性点電圧検出値を演算し、前記直流中性点電圧検出値が零となるような補償量を演算し出力する。前記補償量は、電流制御器53への入力をオン・オフする切替器56を介して、電流制御器53に入力され、電流制御器53で演算されるコンバータ電圧指令値と合成する。一方、インバータ側にも同様に直流中性点電圧制御器65を設置し、直流中性点電圧制御器65では、直流電圧検出器35,36から出力される直流電圧検出値から直流中性点電圧検出値を演算し、前記直流中性点電圧検出値が零となるような補償量を演算し出力する。前記補償量は、電流制御器63への入力をオン・オフする切替器66を介して、電流制御器63に入力され、電流制御器63で演算されるインバータ電圧指令値と合成する。67は、コンバータ側とインバータ側の直流中性点電圧制御器が演算し出力する補償量を電流制御器に入力するか、しないかを切替える切替判断部である。切替判断部には、例えば電動機の速度検出値や電流検出値が入力され、判断条件に従って切替信号を出力する。   Next, the control operation in the present invention will be described. First, a DC neutral point voltage controller 55 is installed on the converter side. In the DC neutral point voltage controller 55, a DC neutral point voltage detection value is detected from the DC voltage detection values output from the DC voltage detectors 25 and 26. To calculate and output a compensation amount such that the detected DC neutral point voltage value becomes zero. The compensation amount is input to the current controller 53 via the switch 56 that turns on / off the input to the current controller 53 and is combined with the converter voltage command value calculated by the current controller 53. On the other hand, a DC neutral point voltage controller 65 is similarly installed on the inverter side, and the DC neutral point voltage controller 65 determines the DC neutral point from the DC voltage detection values output from the DC voltage detectors 35 and 36. A voltage detection value is calculated, and a compensation amount is calculated and outputted so that the DC neutral point voltage detection value becomes zero. The compensation amount is input to the current controller 63 via the switch 66 that turns on / off the input to the current controller 63 and is combined with the inverter voltage command value calculated by the current controller 63. Reference numeral 67 denotes a switching determination unit that switches whether the compensation amount calculated and output by the DC neutral point voltage controllers on the converter side and the inverter side is input to the current controller. For example, a speed detection value or a current detection value of the electric motor is input to the switching determination unit, and a switching signal is output according to the determination condition.

次に切替の必要性と方法について図を用いて説明する。図2は回路構成と直流中性点電圧の動作を示したものである。図2の中に示すコンバータ側の中性点電圧Vzcとインバータ側の中性点電圧Vziは、各変換器のスイッチングによって流れる中性点電流Izc,Iziとコンデンサ容量Cfc,Cfiにより(1),(2)式で表される。   Next, the necessity and method of switching will be described with reference to the drawings. FIG. 2 shows the circuit configuration and the operation of the DC neutral point voltage. The neutral point voltage Vzc on the converter side and the neutral point voltage Vzi on the inverter side shown in FIG. 2 are expressed as (1) by neutral point currents Izc and Izi and capacitor capacitances Cfc and Cfi flowing by switching of each converter. It is represented by the formula (2).

Figure 2008011606
Figure 2008011606

そして、共振抑制用のコンバータ側抵抗器24に流れる電流Irccと共振抑制用のインバータ側抵抗器34に流れる電流Irciは、前記直流中性点電圧Vzc,Vziと直流中性点電圧の共通の測定点Vzdの差電圧で流れ(3),(4)式で表される。   The current Ircc flowing through the resonance suppressing converter side resistor 24 and the current Irci flowing through the resonance suppressing inverter side resistor 34 are the common measurements of the DC neutral point voltages Vzc, Vzi and the DC neutral point voltage. The flow is represented by the difference voltage at the point Vzd and is expressed by the equations (3) and (4).

Figure 2008011606
Figure 2008011606

ここで、Ircc+Irci=0の関係より共通の測定点Vzdを(3),(4)式より求めると(5)式となり、簡単のためRcc=Rciとすると(6)式となる。   Here, when the common measurement point Vzd is obtained from the equations (3) and (4) from the relationship of Ircc + Irci = 0, the equation (5) is obtained. For simplicity, the equation (6) is obtained when Rcc = Rci.

Figure 2008011606
Figure 2008011606

(6)式より、Vzd=0が成立する条件は、Vzc=0かつVzi=0とVzc=
−Vziの2通りあることがわかる。即ち、直流中性点電圧の共通の測定点Vzdが零となるように、各変換器の電圧指令を操作することで中性点電流Izc,Iziを変化させ、そしてVzc,Vziを変化させて制御することをコンバータ側とインバータ側の両方で行う場合、図2が示すように測定点は零に制御しているがインバータ側の直流中性点電圧Vzi,コンバータ側の直流中性点電圧Vzcが変動してしまう恐れがあり、この時コンバータ側とインバータ側の素子に過電圧が印加されたり、コンバータ側とインバータ側の電位差により共振抑制用の抵抗器24,34に過大電流が流れてしまう問題がある。従って、直流中性点電圧制御系を同時に併用することができないため、切替えることが必要となる。図3は切替判断部67で行われる切替方法の一例を示したフローチャート図である。インバータ側が電動機制御のため可変電圧,可変周波数の制御を行うのに対して、コンバータ側は一定周波数制御であるので、直流中性点制御を行う時の影響が比較的小さい。一方、インバータ側のスイッチング周波数と電動機周波数の関係や負荷電流の大きさなどにより、インバータ側の特定の条件や範囲において直流中性点電圧が変動することがあり、この場合は変動要因であるインバータ側の直流中性点制御で変動抑制することが望ましい。そこで、図3に示すように通常はコンバータ側の直流中性点電圧制御系を使用し、直流中性点電圧の変動が大きくなる特定の範囲、例えば速度(周波数)がある設定レベルより大きいかを判断部102で判断し、そして負荷電流が設定レベルより大きいかを判断部103で判断し、102と103の判断部で条件を満たした場合は、処理部104でインバータ側の直流中性点電圧制御系を使用する信号を出力し、処理部105でインバータ側直流中性点電圧制御系を使用中はコンバータ側直流中性点電圧制御系を不使用とする信号を出力する。判断部102と103で条件が満たされなかった場合は、処理部106でインバータ側の直流中性点電圧制御系を不使用とする信号を出力し、処理部107でインバータ側直流中性点電圧制御系を不使用中はコンバータ側直流中性点電圧制御系を使用する信号を出力する。図3のフロー図に従うことで、インバータ側の直流中性点電圧を変動させる特定の条件や範囲においてインバータ側の中性点電圧制御系を使用でき、かつコンバータ側直流中性点電圧制御系との同時併用を防止することができる。
From the equation (6), the condition that Vzd = 0 is satisfied is that Vzc = 0, Vzi = 0, and Vzc =
It can be seen that there are two types of −Vzi. That is, the neutral point currents Izc and Izi are changed by operating the voltage command of each converter so that the common measurement point Vzd of the DC neutral point voltage becomes zero, and the Vzc and Vzi are changed. When the control is performed on both the converter side and the inverter side, the measurement point is controlled to zero as shown in FIG. 2, but the DC neutral point voltage Vzi on the inverter side and the DC neutral point voltage Vzc on the converter side are controlled. In this case, an overvoltage is applied to the elements on the converter side and the inverter side, or an excessive current flows through the resistors 24 and 34 for suppressing resonance due to a potential difference between the converter side and the inverter side. There is. Therefore, since the DC neutral point voltage control system cannot be used at the same time, switching is necessary. FIG. 3 is a flowchart illustrating an example of a switching method performed by the switching determination unit 67. While the inverter side controls variable voltage and variable frequency for motor control, the converter side performs constant frequency control, so the influence when performing DC neutral point control is relatively small. On the other hand, depending on the relationship between the switching frequency on the inverter side and the motor frequency, the magnitude of the load current, etc., the DC neutral point voltage may fluctuate under specific conditions and ranges on the inverter side. It is desirable to suppress fluctuations by DC neutral point control on the side. Therefore, as shown in FIG. 3, a DC neutral point voltage control system on the converter side is usually used, and a specific range where the fluctuation of the DC neutral point voltage becomes large, for example, whether the speed (frequency) is larger than a certain set level. Is determined by the determination unit 102, and it is determined by the determination unit 103 whether the load current is larger than the set level. If the determination units 102 and 103 satisfy the condition, the processing unit 104 causes the DC neutral point on the inverter side to be A signal that uses the voltage control system is output, and a signal that disables the converter-side DC neutral point voltage control system is output while the processing unit 105 is using the inverter-side DC neutral point voltage control system. When the conditions are not satisfied by the determination units 102 and 103, the processing unit 106 outputs a signal not to use the DC neutral point voltage control system on the inverter side, and the processing unit 107 outputs the inverter side DC neutral point voltage. When the control system is not used, a signal for using the converter side DC neutral point voltage control system is output. By following the flow chart of FIG. 3, the inverter-side neutral point voltage control system can be used under specific conditions and ranges that vary the inverter-side DC neutral point voltage, and the converter-side DC neutral point voltage control system and Can be prevented simultaneously.

このような電力変換装置を用いることで、直流中性点電圧の変動を確実に抑制し、スイッチング素子への過大な電圧印加や、出力電圧が歪むことによる電動機出力トルクの脈動発生や共振抑制用抵抗器へ過大電流が流れることを防止できる。   By using such a power converter, it is possible to reliably suppress fluctuations in the DC neutral point voltage, to apply excessive voltage to the switching elements, and to generate pulsation of the motor output torque due to distortion of the output voltage and resonance suppression. An excessive current can be prevented from flowing to the resistor.

図4は、本発明装置の他の実施例であって、中間電位母線の共振抑制用のコンバータ側抵抗器24とインバータ側抵抗器34の間に中間抵抗器27,37を設置し、コンバータ側抵抗器24と中間抵抗器27の間の直流中性点電圧を用いたコンバータ側直流中性点電圧制御系とインバータ側抵抗器34と中間抵抗器37の間の直流中性点電圧を用いたインバータ側直流中性点電圧制御系を同時併用できるようにし、コンバータ側の切替器56を無くした点が図1と異なる。図1では、コンバータ側とインバータ側の切替のため、インバータ制御装置6からコンバータ制御装置5へのデータ伝送を行う必要が有り、また切替時の条件設定や伝送遅れの影響等の検討が煩雑で好ましくない。そこで、図4では、中間抵抗器を新たに付加し、コンバータ側とインバータ側で制御する直流中性点電圧を分離,独立することで、同時併用を可能とした。次に同時併用の可能性について図を用いて説明する。図5は回路構成と直流中性点電圧の動作を示したものである。図5の中に示す共振抑制用のコンバータ側抵抗器24および中間抵抗器27に流れる電流Irccは、前記直流中性点電圧Vzcと直流中性点電圧のコンバータ側測定点Vzcd、共通の中性点電圧Vzhを用いて(7)式で表され、同様に共振抑制用のインバータ側抵抗器34および中間抵抗器37に流れる電流Irciは、前記直流中性点電圧Vziと直流中性点電圧のインバータ側測定点Vzid、共通の中性点電圧Vzhを用いて(8)式で表される。   FIG. 4 shows another embodiment of the device of the present invention, in which intermediate resistors 27 and 37 are installed between the converter side resistor 24 and the inverter side resistor 34 for suppressing resonance of the intermediate potential bus, and the converter side The DC neutral point voltage control system using the DC neutral point voltage between the resistor 24 and the intermediate resistor 27 and the DC neutral point voltage between the inverter side resistor 34 and the intermediate resistor 37 are used. The difference from FIG. 1 is that the inverter-side DC neutral point voltage control system can be used simultaneously and the converter-side switch 56 is eliminated. In FIG. 1, it is necessary to perform data transmission from the inverter control device 6 to the converter control device 5 for switching between the converter side and the inverter side, and it is complicated to examine the condition setting at the time of switching and the influence of transmission delay. It is not preferable. Therefore, in FIG. 4, an intermediate resistor is newly added, and the DC neutral point voltage controlled on the converter side and the inverter side is separated and independent to enable simultaneous use. Next, the possibility of simultaneous use will be described with reference to the drawings. FIG. 5 shows the circuit configuration and the operation of the DC neutral point voltage. The current Ircc flowing through the resonance suppressing converter side resistor 24 and the intermediate resistor 27 shown in FIG. 5 is the DC neutral point voltage Vzc and the DC neutral point voltage converter side measurement point Vzcd, the common neutrality. Using the point voltage Vzh, the current Irci flowing through the inverter side resistor 34 and the intermediate resistor 37 for suppressing resonance is expressed as the DC neutral point voltage Vzi and the DC neutral point voltage. Using the inverter side measurement point Vzid and the common neutral point voltage Vzh, it is expressed by equation (8).

Figure 2008011606
Figure 2008011606

ここで、Ircc+Irci=0の関係より共通の測定点Vzhを(7),(8)式より求めると(9)式となり、簡単のためRhc=Rhiとすると(10)式となる。   Here, when the common measurement point Vzh is obtained from the equations (7) and (8) from the relationship of Ircc + Irci = 0, the equation (9) is obtained. For simplicity, the equation (10) is obtained when Rhc = Rhi.

Figure 2008011606
Figure 2008011606

(10)式より、Vzh=0が成立する条件は、Vzcd=0かつVzid=0とVzcd=−Vzidの2通りあるが、図5が示すようにコンバータ側とインバータ側で分離,独立した個別の直流中性点電圧の測定点を制御することで、中間抵抗器27および37の両端電圧が零に制御されるため、中間抵抗器27および37に電流は流れない、従ってコンバータ側の抵抗器24とインバータ側抵抗器34にも電流は流れず、全ての直流中性点電圧が零に制御可能となり、同時に併用することができ、コンバータ側の切替器56を不要とできる。尚、前述のようにインバータ側の直流中性点電圧は、電動機制御への影響も考慮して必要な範囲のみ使用するように選択しても良い。従って、本実施例では、図3のフローチャート図において処理部105と107は不要となり、コンバータ側の直流中性点電圧制御系は常時オンとし、インバータ側直流中性点電圧制御系を必要な範囲でオンすればよい。    From equation (10), there are two conditions for establishing Vzh = 0, Vzcd = 0 and Vzid = 0 and Vzcd = −Vzid. However, as shown in FIG. By controlling the measurement point of the DC neutral point voltage, the voltage across the intermediate resistors 27 and 37 is controlled to zero, so that no current flows through the intermediate resistors 27 and 37. Therefore, the resistor on the converter side No current flows through the inverter 24 and the inverter-side resistor 34, and all DC neutral point voltages can be controlled to zero, and can be used simultaneously, and the converter-side switch 56 can be dispensed with. As described above, the DC neutral point voltage on the inverter side may be selected so as to use only a necessary range in consideration of the influence on the motor control. Therefore, in this embodiment, the processing units 105 and 107 are not required in the flowchart of FIG. 3, the DC neutral point voltage control system on the converter side is always turned on, and the DC neutral point voltage control system on the inverter side is in the necessary range. Just turn it on.

また、図6に示すように中間抵抗器27,37をユニット単位に配置せずに、ひとつにまとめた中間抵抗器71としても同等の効果が得られる。また、さらに共振抑制用の抵抗器と中間抵抗器を兼用させ図7に示すような構成としても同等の効果が得られる。この場合、抵抗器の数を減らすことができる。   Further, as shown in FIG. 6, the intermediate resistors 27 and 37 are not arranged in units, but the same effect can be obtained as the intermediate resistor 71 combined into one unit. Further, the same effect can be obtained by using a resonance suppression resistor and an intermediate resistor as shown in FIG. In this case, the number of resistors can be reduced.

このような電力変換装置を用いることで、切替の煩雑さを取り除くことができ、簡単に確実に直流中性点電圧の変動を抑制でき、図1と同等の効果を得ることができる。   By using such a power conversion device, the complexity of switching can be eliminated, and fluctuations in the DC neutral point voltage can be easily and reliably suppressed, and the same effects as in FIG. 1 can be obtained.

図8は、本発明の他の実施例であって、共通コンバータに複数のインバータが接続している点が図4と異なる。尚、このように複数のインバータを構成する場合は、中間抵抗器を各ユニットに配置する。図8のようにすることでコンバータ側と各インバータ側で制御する直流中性点電圧を分離,独立でき、また各インバータとインバータの間でも制御する直流中性点電圧を分離,独立できるため、全ての直流中性点電圧制御系の同時併用を可能とした。   FIG. 8 shows another embodiment of the present invention, which is different from FIG. 4 in that a plurality of inverters are connected to a common converter. In addition, when comprising a some inverter in this way, an intermediate resistor is arrange | positioned at each unit. The DC neutral point voltage controlled on the converter side and each inverter side can be separated and independent by doing as shown in FIG. 8, and the DC neutral point voltage controlled between each inverter and inverter can also be separated and independent. All DC neutral point voltage control systems can be used simultaneously.

このような電力変換装置を用いることで、共通コンバータに複数インバータを設置するシステム構成においても、切替の煩雑さを取り除くことができ、簡単に確実に直流中性点電圧の変動を抑制でき、図1と同等の効果を得ることができる。   By using such a power converter, even in a system configuration in which a plurality of inverters are installed in a common converter, the complexity of switching can be removed, and fluctuations in the DC neutral point voltage can be easily and reliably suppressed. An effect equivalent to 1 can be obtained.

図9は、本発明装置の他の実施例であって、中間抵抗器71や27,37を設置せずに直流電圧検出用の抵抗器28,29をコンバータ側の共振抑制用抵抗器24と並列に、そして直流電圧検出用の抵抗器38,39をインバータ側の共振抑制用抵抗器34と並列に接続し、直流電圧検出用抵抗器28と直流電圧検出用抵抗器29の間の直流中性点電圧を用いたコンバータ側直流中性点電圧制御系と直流電圧検出用抵抗器38と直流電圧検出用抵抗器39の間の直流中性点電圧を用いたインバータ側直流中性点電圧制御系を同時併用できるようにした点が図4と異なる。通常、共振抑制用に設置する抵抗器24,34は、通常時および短絡時の電流に耐えるように設計されるため容量が大きく、寸法もコストも大きい。従って、図4で追加設置する中間抵抗器も同様の設計となるため、設置場所やコストの面で好ましくない。そこで、図9では、電圧検出用の2つの抵抗器をコンバータ側とインバータ側に各々追加設置した。追加した抵抗器の抵抗値を大きくすることで追加抵抗器に流れる電流を小さくでき、設置場所やコスト面での問題を解決できる。一方、電圧の面では直流電圧検出用抵抗器28と直流電圧検出用抵抗器38の間に中間抵抗器(直流電圧検出用抵抗器29と直流電圧検出用抵抗器39の和)が設置されており、図4と同様にコンバータ側とインバータ側で制御する直流中性点電圧を分離,独立することで、同時併用を可能とできる。   FIG. 9 shows another embodiment of the device of the present invention, in which the resistors 28 and 29 for DC voltage detection are replaced with the resonance suppression resistor 24 on the converter side without installing the intermediate resistors 71, 27 and 37. In parallel, the DC voltage detection resistors 38 and 39 are connected in parallel with the resonance suppression resistor 34 on the inverter side, and the DC voltage is detected between the DC voltage detection resistor 28 and the DC voltage detection resistor 29. Converter side DC neutral point voltage control system using neutral point voltage and inverter side DC neutral point voltage control using DC neutral point voltage between DC voltage detecting resistor 38 and DC voltage detecting resistor 39 FIG. 4 is different from FIG. 4 in that the system can be used simultaneously. Normally, the resistors 24 and 34 installed for resonance suppression are designed to withstand currents during normal times and short-circuits, and thus have a large capacity, size and cost. Therefore, the intermediate resistor additionally installed in FIG. 4 has the same design, which is not preferable in terms of installation location and cost. Therefore, in FIG. 9, two resistors for voltage detection are additionally installed on the converter side and the inverter side, respectively. By increasing the resistance value of the added resistor, the current flowing through the additional resistor can be reduced, thereby solving problems in terms of installation location and cost. On the other hand, in terms of voltage, an intermediate resistor (the sum of the DC voltage detection resistor 29 and the DC voltage detection resistor 39) is installed between the DC voltage detection resistor 28 and the DC voltage detection resistor 38. As in FIG. 4, the DC neutral point voltage controlled on the converter side and the inverter side is separated and independent, so that simultaneous use can be made.

このような電力変換装置を用いることで、抵抗器の設置場所やコスト面での問題を解決でき、簡単に確実に直流中性点電圧の変動を抑制でき、図1,図4と同等の効果を得ることができる。   By using such a power conversion device, it is possible to solve the problems in the installation location and cost of the resistor, and to easily and reliably suppress fluctuations in the DC neutral point voltage, and the same effect as in FIGS. Can be obtained.

図10は、本発明の他の実施例であって、共通コンバータに複数のインバータが接続している点が図9と異なる。図10のようにすることでコンバータ側と各インバータ側で制御する直流中性点電圧を分離,独立でき、また各インバータとインバータの間でも制御する直流中性点電圧を分離,独立できるため、全ての直流中性点電圧制御系の同時併用を可能とした。   FIG. 10 shows another embodiment of the present invention, which is different from FIG. 9 in that a plurality of inverters are connected to the common converter. The DC neutral point voltage controlled on the converter side and each inverter side can be separated and independent by doing as shown in FIG. 10, and the DC neutral point voltage controlled between each inverter and inverter can also be separated and independent. All DC neutral point voltage control systems can be used simultaneously.

このような電力変換装置を用いることで、共通コンバータに複数インバータを設置するシステム構成においても、抵抗器の設置場所やコスト面での問題を解決でき、簡単に確実に直流中性点電圧の変動を抑制でき、図9と同等の効果を得ることができる。   By using such a power converter, even in a system configuration in which multiple inverters are installed in a common converter, it is possible to solve the problems of the resistor installation location and cost, and to easily and reliably change the DC neutral point voltage. Can be suppressed, and the same effect as in FIG. 9 can be obtained.

図11は、本発明の他の実施例であって、コンバータ盤41内のコンバータが複数のコンバータユニット2−1,2−2,2−3で構成され、各コンバータユニットの共振抑制用抵抗器24−1,24−2,24−3に並行にコンバータ側の直流電圧検出用の抵抗器28−1,28−2,28−3を接続し、前記抵抗器の結節点と抵抗器29の間の直流中性点電圧を測定する。また、インバータ側も同様に、インバータ盤42内のインバータが複数のインバータユニット3−1,3−2,3−3で構成され、各インバータユニットの共振抑制用抵抗器34−1,34−2,34−3に並行にインバータ側の直流電圧検出用の抵抗器38−1,38−2,38−3を接続し、前記抵抗器の結節点と抵抗器39の間の直流中性点電圧を測定する。そして、コンバータ側,インバータ側の直流電圧検出用の抵抗器と直流電圧検出器25,26,35,36をコンバータ盤41とインバータ盤42とは別の例えば共通盤43を設置し、その中に収納している点が、図5と異なる。通常、コンバータ盤41やインバータ盤42においては高電圧をスイッチング素子を用いてオン,オフすることで電圧制御を行っているためスイッチングノイズ等による測定環境の劣化の恐れがあり、特に高抵抗器を用いた微小信号の測定回路においては前記のような環境下での測定は望ましくない。そこで、図11では測定回路をコンバータ盤41とインバータ盤42とは別の盤内に設置した。このようにすることで測定環境の劣化による誤動作等を防止できる。   FIG. 11 shows another embodiment of the present invention, in which the converter in the converter panel 41 is composed of a plurality of converter units 2-1, 2-2, 2-3, and a resonance suppression resistor for each converter unit. The converter side DC voltage detecting resistors 28-1, 28-2, 28-3 are connected in parallel to 24-1, 24-2, 24-3, and the node of the resistor and the resistor 29 are connected to each other. Measure the DC neutral point voltage between. Similarly, on the inverter side, the inverter in the inverter panel 42 is composed of a plurality of inverter units 3-1, 3-2 and 3-3, and the resonance suppression resistors 34-1 and 34-2 of each inverter unit. , 34-3 are connected to the inverter side DC voltage detecting resistors 38-1, 38-2, 38-3 in parallel, and a DC neutral point voltage between the node of the resistor and the resistor 39 is connected. Measure. Further, for example, a common panel 43 different from the converter panel 41 and the inverter panel 42 is installed in the converter side and the inverter side DC voltage detecting resistors and the DC voltage detectors 25, 26, 35, and 36, and in the same. The storage is different from FIG. Normally, in the converter panel 41 and the inverter panel 42, voltage control is performed by turning on and off a high voltage by using a switching element. Therefore, there is a risk of deterioration of the measurement environment due to switching noise or the like. In the minute signal measurement circuit used, measurement under the above-mentioned environment is not desirable. Therefore, in FIG. 11, the measurement circuit is installed in a panel separate from the converter panel 41 and the inverter panel 42. By doing so, it is possible to prevent malfunction due to degradation of the measurement environment.

このような電力変換装置を用いることで、スイッチングノイズ等による測定環境の劣化を防止でき、簡単に確実に直流中性点電圧の変動を抑制できる。尚、この方式は図10のような共通コンバータ方式においても適用できる。   By using such a power conversion device, it is possible to prevent deterioration of the measurement environment due to switching noise or the like, and it is possible to easily and reliably suppress fluctuations in the DC neutral point voltage. This method can also be applied to the common converter method as shown in FIG.

本発明の第1の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 1st Embodiment of this invention. 第1の実施形態における直流中性点電圧の動作図。FIG. 3 is an operation diagram of a DC neutral point voltage in the first embodiment. 第1の実施形態における直流中性点電圧制御系の切替に関するフローチャート図。The flowchart figure regarding the switching of the DC neutral point voltage control system in 1st Embodiment. 本発明の第2の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 2nd Embodiment of this invention. 第2の実施形態における直流中性点電圧の動作図。The operation | movement figure of the DC neutral point voltage in 2nd Embodiment. 本発明の第2の実施形態を示す電力変換装置の別の構成図。The another block diagram of the power converter device which shows the 2nd Embodiment of this invention. 本発明の第2の実施形態を示す電力変換装置の別の構成図。The another block diagram of the power converter device which shows the 2nd Embodiment of this invention. 本発明の第3の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 3rd Embodiment of this invention. 本発明の第4の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 4th Embodiment of this invention. 本発明の第5の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 5th Embodiment of this invention. 本発明の第6の実施形態を示す電力変換装置の構成図。The block diagram of the power converter device which shows the 6th Embodiment of this invention.

符号の説明Explanation of symbols

1…交流電源、2…コンバータユニット、3…インバータユニット、4…電動機、5…コンバータ制御装置、6…インバータ制御装置、7,9…電流検出器、8…速度検出器、21…コンバータ部、22,23,32,33…平滑コンデンサ、24,34…共振抑制用抵抗器、25,26,35,36…直流電圧検出器、27,37,71…中間抵抗器、28,29,38,39…直流電圧検出用抵抗器、31…インバータ部、41…コンバータ盤、42…インバータ盤、43…共通盤、51…直流電圧指令発生器、52…直流電圧制御器、53,63…電流制御器、54,64…パルス生成器、55,65…直流中性点電圧制御器、56,66…切替器、61…速度指令発生器、62…速度制御器、67…切替判断部、72…共振抑制用と検出点分離用を兼用した抵抗器。
DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Converter unit, 3 ... Inverter unit, 4 ... Electric motor, 5 ... Converter control apparatus, 6 ... Inverter control apparatus, 7, 9 ... Current detector, 8 ... Speed detector, 21 ... Converter part, 22, 23, 32, 33 ... smoothing capacitor, 24, 34 ... resonance suppression resistor, 25, 26, 35, 36 ... DC voltage detector, 27, 37, 71 ... intermediate resistor, 28, 29, 38, DESCRIPTION OF SYMBOLS 39 ... Resistor for DC voltage detection, 31 ... Inverter part, 41 ... Converter board, 42 ... Inverter board, 43 ... Common board, 51 ... DC voltage command generator, 52 ... DC voltage controller, 53, 63 ... Current control , 54, 64 ... pulse generator, 55, 65 ... DC neutral point voltage controller, 56, 66 ... switch, 61 ... speed command generator, 62 ... speed controller, 67 ... switch judgment unit, 72 ... For resonance suppression Outlet point resistor also serves as a separation.

Claims (16)

交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位に変換するコンバータと、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を交流に変換するインバータを有する電力変換装置において、前記中間電位導電体の電圧を所定に保つように前記コンバータを制御する制御系と、前記中間電位導電体の電圧を所定に保つように前記インバータを制御する制御系とを有する、ことを特徴とする電力変換装置。   A converter that converts alternating current into a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential, and a low potential to which a voltage that becomes the low potential is applied A voltage supplied via a conductor, a high potential conductor to which a voltage that becomes the high potential is applied, and a medium potential conductor to which the voltage that becomes the intermediate potential is applied is converted into an alternating current. In a power converter having an inverter, a control system for controlling the converter so as to keep the voltage of the intermediate potential conductor at a predetermined level, and a control system for controlling the inverter so as to keep the voltage of the intermediate potential conductor at a predetermined level The power converter characterized by having. 交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位に変換するコンバータと、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を交流に変換するインバータを有する電力変換装置において、前記コンバータとインバータのいずれもが、前記中間電位導電体の電圧を所定に保つように、制御可能に構成されることを特徴とする電力変換装置。   A converter that converts alternating current into a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential, and a low potential to which a voltage that becomes the low potential is applied A voltage supplied via a conductor, a high potential conductor to which a voltage that becomes the high potential is applied, and a medium potential conductor to which the voltage that becomes the intermediate potential is applied is converted into an alternating current. In the power converter having an inverter, both the converter and the inverter are configured to be controllable so as to keep the voltage of the intermediate potential conductor at a predetermined level. 請求項1或いは2のいずれかにおいて、中間電位導電体に抵抗器を設置したことを特徴とする電力変換装置。   3. The power conversion device according to claim 1, wherein a resistor is installed on the intermediate potential conductor. 請求項2において、中間電位導電体に抵抗器を設置し、運転状態によりコンバータ側の中間電圧制御系とインバータ側の中間電圧制御系を切替ることを特徴とする電力変換装置。   3. The power conversion device according to claim 2, wherein a resistor is installed in the intermediate potential conductor, and the intermediate voltage control system on the converter side and the intermediate voltage control system on the inverter side are switched depending on the operating state. 請求項1において、中間電位導電体にあるコンバータ側の電圧制御系で制御する中間電位導電体の第1の電圧と、インバータ側の制御系で制御する中間電位導電体の第2の電圧の間に、抵抗器を少なくとも1個設置することを特徴とする電力変換装置。   2. The intermediate voltage conductor according to claim 1, wherein the first voltage of the intermediate potential conductor controlled by the converter side voltage control system in the intermediate potential conductor and the second voltage of the intermediate potential conductor controlled by the inverter side control system. Further, at least one resistor is installed. 交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位に変換するコンバータと、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を交流に変換するインバータを有する電力変換装置において、共振抑制用の抵抗器をコンバータ側とインバータ側に各々コンバータ側共振抑制用抵抗器とインバータ側共振抑制用抵抗器として設置し、前記コンバータ側共振抑制用抵抗器と前記インバータ側共振抑制用抵抗器の間に中間抵抗器を設置し、前記コンバータ側共振抑制用抵抗器と前記中間抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、前記インバータ側共振抑制用抵抗器と前記中間抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を設置することを特徴とする電力変換装置。   A converter that converts alternating current into a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential, and a low potential to which a voltage that becomes the low potential is applied A voltage supplied via a conductor, a high potential conductor to which a voltage that becomes the high potential is applied, and a medium potential conductor to which the voltage that becomes the intermediate potential is applied is converted into an alternating current. In a power converter having an inverter, a resonance suppression resistor is installed as a converter side resonance suppression resistor and an inverter side resonance suppression resistor on the converter side and the inverter side, respectively, and the converter side resonance suppression resistor, A converter in which an intermediate resistor is installed between the inverter-side resonance suppression resistor and a DC neutral point voltage between the converter-side resonance suppression resistor and the intermediate resistor is controlled. A DC neutral point voltage control system and an inverter side DC neutral point voltage control system for controlling a DC neutral point voltage between the inverter side resonance suppression resistor and the intermediate resistor are installed. Power conversion device. 請求項6において、中間抵抗器をコンバータ側とインバータ側に別々に設置し、コンバータ側共振抑制用抵抗器とコンバータ側中間抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、インバータ側共振抑制用抵抗器とインバータ側中間抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を設置することを特徴とする電力変換装置。   7. The converter-side DC neutral point that controls the DC neutral point voltage between the converter-side resonance suppression resistor and the converter-side intermediate resistor by installing the intermediate resistors separately on the converter side and the inverter side according to claim 6. A power converter comprising: a voltage control system; and an inverter-side DC neutral point voltage control system that controls a DC neutral point voltage between the inverter-side resonance suppression resistor and the inverter-side intermediate resistor. 交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位を出力する共通のコンバータと、前記コンバータの出力が、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧を変換する複数のインバータを有する電力変換装置において、前記それぞれの中間電位導電体の電圧を所定に保つように前記コンバータを制御する制御系と、前記それぞれの中間電位導電体の電圧を所定に保つように前記インバータを制御する制御系とを有することを特徴とする電力変換装置。   A common converter that outputs alternating current at a low potential, a high potential that is higher than the low potential, and an intermediate potential that is higher than the low potential and lower than the high potential, so that the output of the converter becomes the low potential. Supplied through a low-potential conductor to which a high voltage is applied, a high-potential conductor to which a voltage that is the high potential is applied, and an intermediate potential conductor to which a voltage that is the intermediate potential is applied In a power conversion device having a plurality of inverters for converting the voltage to be applied, a control system for controlling the converter so as to keep the voltage of each of the intermediate potential conductors at a predetermined level, and the voltage of each of the intermediate potential conductors And a control system that controls the inverter so as to keep the power constant. 共通のコンバータで変換した電圧を、複数のインバータで交流に電力変換する電力変換装置において、前記コンバータと前記インバータとを接続する中間電位母線にコンバータ側共振抑制用抵抗器とインバータ側共振抑制用抵抗器を別々に設置し、さらに、前記中間電位母線にコンバータ側中間抵抗器とインバータ側中間抵抗器を別々に設置し、前記コンバータ側共振抑制用抵抗器と前記コンバータ側中間抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、前記インバータ側共振抑制用抵抗器と前記インバータ側中間抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を各々のインバータに対して設けることを特徴とする電力変換装置。   In a power conversion device that converts voltage converted by a common converter into alternating current by a plurality of inverters, a converter-side resonance suppression resistor and an inverter-side resonance suppression resistor are connected to an intermediate potential bus connecting the converter and the inverter. And a converter side intermediate resistor and an inverter side intermediate resistor are separately installed on the intermediate potential bus, and a direct current between the converter side resonance suppression resistor and the converter side intermediate resistor is installed. Converter side DC neutral point voltage control system for controlling the neutral point voltage, and inverter side DC neutral point for controlling the DC neutral point voltage between the inverter side resonance suppression resistor and the inverter side intermediate resistor A power converter comprising a voltage control system for each inverter. コンバータで変換した電圧を、インバータで交流に電力変換する電力変換装置において、前記コンバータとインバータとを接続する中間電位母線にコンバータ側共振抑制用抵抗器とインバータ側共振抑制用抵抗器を設置し、前記コンバータ側共振抑制用抵抗器と並列に、コンバータ側直流中性点電圧を検出するための、コンバータ側直流中性点電圧検出用抵抗器とコンバータ中間側直流中性点電圧検出用抵抗器を設置し、インバータ側共振抑制用抵抗器と並列に、インバータ側直流中性点電圧検出用抵抗器とインバータ中間側直流中性点電圧検出用抵抗器を設置し、前記コンバータ側直流中性点電圧検出用抵抗器と前記コンバータ中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、前記インバータ側直流中性点電圧検出用抵抗器と前記インバータ中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を有することを特徴とする電力変換装置。   In the power conversion device that converts the voltage converted by the converter into alternating current by the inverter, a converter-side resonance suppression resistor and an inverter-side resonance suppression resistor are installed on an intermediate potential bus that connects the converter and the inverter. In parallel with the converter side resonance suppression resistor, a converter side DC neutral point voltage detection resistor and a converter intermediate side DC neutral point voltage detection resistor for detecting the converter side DC neutral point voltage are provided. Install an inverter side DC neutral point voltage detection resistor and an inverter intermediate side DC neutral point voltage detection resistor in parallel with the inverter side resonance suppression resistor, and the converter side DC neutral point voltage. A converter side DC neutral point voltage control system for controlling a DC neutral point voltage between the detection resistor and the converter intermediate side DC neutral point voltage detection resistor; An inverter side DC neutral point voltage control system for controlling a DC neutral point voltage between the inverter side DC neutral point voltage detection resistor and the inverter intermediate side DC neutral point voltage detection resistor is provided. A power converter. 共通のコンバータで変換した電圧を、複数のインバータで交流に電力変換する電力変換装置において、前記コンバータと前記インバータとを接続する中間電位母線に抵抗器を設置した電力変換装置において、コンバータ側共振抑制用抵抗器と並列に、コンバータ側直流中性点電圧を検出するため、コンバータ側直流中性点電圧検出用抵抗器とコンバータ中間側抵抗器を設置し、各インバータ側共振抑制用抵抗器と並列に、インバータ側直流中性点電圧を検出するために、インバータ側直流中性点電圧検出用抵抗器とインバータ中間側直流中性点電圧検出用抵抗器を各々設置し、前記コンバータ側直流中性点電圧検出用抵抗器と前記コンバータ中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、前記各々のインバータ側直流中性点電圧検出用抵抗器と前記各々のインバータ中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を各々に有することを特徴とする電力変換装置。   In a power conversion device that converts voltage converted by a common converter into alternating current by a plurality of inverters, in a power conversion device in which a resistor is installed on an intermediate potential bus that connects the converter and the inverter, converter side resonance suppression In order to detect the DC neutral point voltage on the converter side in parallel with the resistor for the converter, a converter side DC neutral point voltage detection resistor and a converter intermediate side resistor are installed in parallel with each inverter side resonance suppression resistor. In order to detect the inverter side DC neutral point voltage, an inverter side DC neutral point voltage detection resistor and an inverter intermediate side DC neutral point voltage detection resistor are installed respectively, A converter side DC neutral point voltage control for controlling a DC neutral point voltage between the point voltage detecting resistor and the converter intermediate side DC neutral point voltage detecting resistor. An inverter side DC neutral point for controlling a DC neutral point voltage between the inverter and each inverter side DC neutral point voltage detection resistor and each inverter intermediate side DC neutral point voltage detection resistor A power converter having a voltage control system for each. 複数の電力変換器ユニットを並列接続してコンバータとインバータを構成し、各電力変換器ユニットの中間電位母線に抵抗器を設置した電力変換装置において、コンバータ側の各ユニットの共振抑制用抵抗器と並列に、コンバータ側直流中性点電圧を検出するための抵抗器を、各ユニットのコンバータ側と中間側に設置し、インバータ側の各ユニットの共振抑制用抵抗器と並列に、インバータ側直流中性点電圧を検出するための抵抗器を、各ユニットのインバータ側と中間側に設置し、各ユニットのコンバータ側直流中性点電圧検出用抵抗器を接続した点と中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するコンバータ側直流中性点電圧制御系と、各ユニットのインバータ側直流中性点電圧検出用抵抗器を接続した点と中間側直流中性点電圧検出用抵抗器の間の直流中性点電圧を制御するインバータ側直流中性点電圧制御系を設置することを特徴とする電力変換装置。   In a power conversion device in which a plurality of power converter units are connected in parallel to constitute a converter and an inverter, and a resistor is installed on an intermediate potential bus of each power converter unit, a resonance suppression resistor for each unit on the converter side In parallel, a resistor for detecting the DC neutral point voltage on the converter side is installed on the converter side and the middle side of each unit, and in parallel with the resonance suppression resistor on each unit on the inverter side, The resistor for detecting the neutral point voltage is installed on the inverter side and the intermediate side of each unit, and the converter side DC neutral point voltage detection resistor of each unit is connected to the intermediate side DC neutral point voltage The converter side DC neutral point voltage control system that controls the DC neutral point voltage between the detection resistors and the point where the inverter side DC neutral point voltage detection resistors of each unit are connected Power conversion apparatus characterized by installing the inverter side DC neutral point voltage control system for controlling the DC neutral point voltage between the DC neutral point voltage detecting resistor. 請求項10乃至12のいずれかにおいて、コンバータ側直流中性点電圧検出用抵抗器とコンバータ側直流中性点電圧検出器をコンバータ盤とは異なる箇所に設置し、インバータ側直流中性点電圧検出用抵抗器とインバータ側直流中性点電圧検出器をインバータ盤とは異なる箇所に設置したことを特徴とする電力変換装置。   13. The inverter-side DC neutral point voltage detection according to claim 10, wherein the converter-side DC neutral point voltage detection resistor and the converter-side DC neutral point voltage detector are installed at a different location from the converter panel. The power converter characterized by having installed the resistor and the inverter side DC neutral point voltage detector in the place different from an inverter panel. 請求項6乃11のいずれかにおいて、運転状態によりインバータ側直流中性点電圧制御系をオン,オフすることを特徴とする電力変換装置。   12. The power conversion device according to claim 6, wherein the inverter-side DC neutral point voltage control system is turned on / off depending on the operation state. 交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位にコンバータで変換し、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧をインバータで交流に変換し、前記中間電位導電体の電圧を所定に保つように前記コンバータを制御し、前記中間電位導電体の電圧を所定に保つように前記インバータを制御する電力変換方法。   Low potential to which alternating voltage is converted by a converter into a low potential, a high potential higher than the low potential, and an intermediate potential higher than the low potential and lower than the high potential, and a voltage that becomes the low potential is applied. The inverter supplies the voltage supplied through the conductor, the high-potential conductor to which the voltage that becomes the high potential is applied, and the intermediate-potential conductor to which the voltage that becomes the intermediate potential is applied to the alternating current by the inverter A power conversion method of converting, controlling the converter to keep the voltage of the intermediate potential conductor at a predetermined value, and controlling the inverter to keep the voltage of the intermediate potential conductor at a predetermined value. 交流を低電位、前記低電位よりも高い高電位、及び、前記低電位よりも高く前記高電位よりも低い中間電位にコンバータで変換し、前記低電位となるような電圧が印加される低電位導電体、前記高電位となるような電圧が印加される高電位導電体、及び、前記中間電位となるような電圧が印加される中間電位導電体を介して供給される電圧をインバータで交流に変換し、前記コンバータとインバータのいずれもが、前記中間電位導電体の電圧を所定に保つように動作する電力変換方法。

Low potential to which alternating voltage is converted by a converter into a low potential, a high potential higher than the low potential, and an intermediate potential higher than the low potential and lower than the high potential, and a voltage that becomes the low potential is applied. The inverter supplies the voltage supplied through the conductor, the high-potential conductor to which the voltage that becomes the high potential is applied, and the intermediate-potential conductor to which the voltage that becomes the intermediate potential is applied to the alternating current by the inverter. A power conversion method in which both the converter and the inverter operate so as to keep the voltage of the intermediate potential conductor at a predetermined level.

JP2006177487A 2006-06-28 2006-06-28 Power conversion device and power conversion method Expired - Fee Related JP4466618B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006177487A JP4466618B2 (en) 2006-06-28 2006-06-28 Power conversion device and power conversion method
CN2007101262389A CN101098108B (en) 2006-06-28 2007-06-26 Electric power transformation device and method
KR20070063724A KR101093288B1 (en) 2006-06-28 2007-06-27 Power conversion device and power conversion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006177487A JP4466618B2 (en) 2006-06-28 2006-06-28 Power conversion device and power conversion method

Publications (2)

Publication Number Publication Date
JP2008011606A true JP2008011606A (en) 2008-01-17
JP4466618B2 JP4466618B2 (en) 2010-05-26

Family

ID=39011694

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006177487A Expired - Fee Related JP4466618B2 (en) 2006-06-28 2006-06-28 Power conversion device and power conversion method

Country Status (3)

Country Link
JP (1) JP4466618B2 (en)
KR (1) KR101093288B1 (en)
CN (1) CN101098108B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021052A1 (en) * 2008-08-22 2010-02-25 東芝三菱電機産業システム株式会社 Power converting apparatus
CN102005961A (en) * 2009-08-28 2011-04-06 Ls产电株式会社 Control device and control method of high voltage inverter
JP2013230027A (en) * 2012-04-26 2013-11-07 Fuji Electric Co Ltd Ac power supply system
JP2013247724A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Uninterruptible power supply and control method thereof
JP2018019492A (en) * 2016-07-27 2018-02-01 東芝三菱電機産業システム株式会社 Power conversion device and control method for the same
JP2018183006A (en) * 2017-04-21 2018-11-15 株式会社日立製作所 Power conversion device and abnormality detection method
JP2019193383A (en) * 2018-04-23 2019-10-31 株式会社日立製作所 Power converter and abnormality detection method
JP2019195231A (en) * 2018-05-01 2019-11-07 株式会社日立製作所 Electric power conversion system and abnormality detection method
WO2021014573A1 (en) * 2019-07-23 2021-01-28 東芝三菱電機産業システム株式会社 Multiple power conversion system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2748920A4 (en) * 2011-08-23 2016-04-27 Gen Electric Systems and methods for suppressing resonances in power converters
DE112011105707B4 (en) 2011-10-04 2022-03-24 Mitsubishi Electric Corporation elevator control device
US9231789B2 (en) * 2012-05-04 2016-01-05 Infineon Technologies Ag Transmitter circuit and method for operating thereof
US10340864B2 (en) 2012-05-04 2019-07-02 Infineon Technologies Ag Transmitter circuit and method for controlling operation thereof
KR101343428B1 (en) 2012-08-01 2013-12-19 아주대학교산학협력단 Neutral point voltage controller and method of three-level inverter using dpwm
JP6950604B2 (en) * 2018-03-26 2021-10-13 トヨタ自動車株式会社 Voltage converter, vehicle and voltage converter control method using voltage converter
US11228258B2 (en) * 2018-11-20 2022-01-18 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191656A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Multilevel power converter
JPH10191640A (en) * 1996-12-26 1998-07-21 Hitachi Ltd Controller for converter
JP2001238461A (en) * 2000-02-25 2001-08-31 Hitachi Ltd Three-level inverter device
JP2003070263A (en) * 2001-08-23 2003-03-07 Hitachi Ltd Three-level inverter device
JP2003169480A (en) * 2001-11-30 2003-06-13 Toshiba Corp Control apparatus for neutral point clamp system power converter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02299471A (en) * 1989-05-12 1990-12-11 Mitsubishi Electric Corp Controlling method for pwm converter
CN2444341Y (en) * 2000-08-04 2001-08-22 北京天宠电力技术有限公司 High voltage electric power changer with pulsewidth modulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09191656A (en) * 1996-01-09 1997-07-22 Hitachi Ltd Multilevel power converter
JPH10191640A (en) * 1996-12-26 1998-07-21 Hitachi Ltd Controller for converter
JP2001238461A (en) * 2000-02-25 2001-08-31 Hitachi Ltd Three-level inverter device
JP2003070263A (en) * 2001-08-23 2003-03-07 Hitachi Ltd Three-level inverter device
JP2003169480A (en) * 2001-11-30 2003-06-13 Toshiba Corp Control apparatus for neutral point clamp system power converter

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5463289B2 (en) * 2008-08-22 2014-04-09 東芝三菱電機産業システム株式会社 Power converter
KR101230743B1 (en) * 2008-08-22 2013-02-07 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power converting apparatus
US8400792B2 (en) 2008-08-22 2013-03-19 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion apparatus
WO2010021052A1 (en) * 2008-08-22 2010-02-25 東芝三菱電機産業システム株式会社 Power converting apparatus
CN102005961A (en) * 2009-08-28 2011-04-06 Ls产电株式会社 Control device and control method of high voltage inverter
JP2013230027A (en) * 2012-04-26 2013-11-07 Fuji Electric Co Ltd Ac power supply system
JP2013247724A (en) * 2012-05-24 2013-12-09 Hitachi Ltd Uninterruptible power supply and control method thereof
JP2018019492A (en) * 2016-07-27 2018-02-01 東芝三菱電機産業システム株式会社 Power conversion device and control method for the same
JP2018183006A (en) * 2017-04-21 2018-11-15 株式会社日立製作所 Power conversion device and abnormality detection method
JP2019193383A (en) * 2018-04-23 2019-10-31 株式会社日立製作所 Power converter and abnormality detection method
JP2019195231A (en) * 2018-05-01 2019-11-07 株式会社日立製作所 Electric power conversion system and abnormality detection method
WO2021014573A1 (en) * 2019-07-23 2021-01-28 東芝三菱電機産業システム株式会社 Multiple power conversion system
JPWO2021014573A1 (en) * 2019-07-23 2021-11-18 東芝三菱電機産業システム株式会社 Multiple power conversion system
JP7103524B2 (en) 2019-07-23 2022-07-20 東芝三菱電機産業システム株式会社 Multiple power conversion system

Also Published As

Publication number Publication date
CN101098108B (en) 2012-11-28
CN101098108A (en) 2008-01-02
KR101093288B1 (en) 2011-12-14
KR20080001642A (en) 2008-01-03
JP4466618B2 (en) 2010-05-26

Similar Documents

Publication Publication Date Title
JP4466618B2 (en) Power conversion device and power conversion method
KR101828225B1 (en) Power supply system
EP3159202B1 (en) Vehicle-use control device
US10569800B2 (en) Monitoring system for electric power assisted steering
KR101120757B1 (en) Regenerative braking device
JP5867297B2 (en) Power conversion system and its voltage detection device
JP2007244104A (en) Ground fault detecting method
JP2009141997A (en) Parallel operation control system for power conversion device
JP2010193646A (en) Inverter device and refrigeration cycle device mounted with this inverter device
CN110429844B (en) Power conversion device and abnormality detection method
JP2010041805A (en) Power supply device for electric rolling stock
KR101413625B1 (en) Zero harmonic filter equipped with intelligent controller
JP5242980B2 (en) Capacitor failure detection circuit and power supply device
JP2007135310A (en) Overcurrent detection circuit, and pwm inverter device and pwm cycloconverter device therewith
JP6287218B2 (en) Anomaly detection device
KR101623284B1 (en) Elevator control device
CN115208273A (en) Power conversion device and motor control method
JP2016059177A (en) Power supply
JP5530009B1 (en) Power supply
JP2005086948A (en) Switching power supply
KR101994549B1 (en) Ac output voltage parallel operation control device of aps in railway
JP2010285269A (en) Elevator control system
CN113508527A (en) Electronic switch as an attenuating element
US20240044949A1 (en) Voltage detection circuit
JP6575040B2 (en) Voltage detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R151 Written notification of patent or utility model registration

Ref document number: 4466618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130305

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees