WO2020171110A1 - Inverter device - Google Patents

Inverter device Download PDF

Info

Publication number
WO2020171110A1
WO2020171110A1 PCT/JP2020/006457 JP2020006457W WO2020171110A1 WO 2020171110 A1 WO2020171110 A1 WO 2020171110A1 JP 2020006457 W JP2020006457 W JP 2020006457W WO 2020171110 A1 WO2020171110 A1 WO 2020171110A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
switching element
arm switching
voltage
motor
Prior art date
Application number
PCT/JP2020/006457
Other languages
French (fr)
Japanese (ja)
Inventor
辰樹 柏原
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Priority to CN202080014357.9A priority Critical patent/CN113454899A/en
Publication of WO2020171110A1 publication Critical patent/WO2020171110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter device in which an AC voltage is applied to a motor by an inverter circuit to drive the motor.
  • an inverter device for driving a motor has a three-phase inverter circuit composed of a plurality of switching elements, PWM (Pulse Width Modulation) control of the switching elements of each UVW phase, and a voltage waveform close to a sine wave to the motor.
  • PWM Pulse Width Modulation
  • this common mode noise is generated by the common mode current leaking through the stray capacitance between the casing of the compressor and the ground. I was satisfied.
  • the present invention has been made in consideration of such a conventional situation, and an object thereof is to provide an inverter device that can effectively eliminate or suppress common mode noise.
  • an upper arm switching element and a lower arm switching element are connected in series for each phase between the upper arm power supply line and the lower arm power supply line, and the voltage at the connection point of the upper and lower arm switching elements of each phase is connected.
  • the switching timings of the upper and lower arm switching elements of each phase are synchronized, and the change of the phase voltage is canceled by the change of the other phase voltage. It is characterized by generating a voltage command value and controlling the inverter circuit.
  • the control device is such that the switching timings of the upper and lower arm switching elements are synchronized according to the direction of the current flowing through the motor, and the change in the phase voltage is different from that of the other phase voltage. It is characterized in that the voltage command value is changed so as to be canceled by the change.
  • the control device specifies switching from a state in which the lower arm switching element of one phase is turned on and the upper arm switching elements of the other two phases are turned on. It is characterized by starting a section.
  • the lower arm switching element of any two phases is turned on and the upper arm switching element of another one phase is turned on. It is characterized in that the specified section of switching is started from the state in which it is in the open state.
  • the upper arm switching element and the lower arm switching element are connected in series for each phase, and the voltage at the connection point of the upper and lower arm switching elements for each phase is
  • the control device controls the upper and lower arm switching elements of each phase. Since the switching timing is synchronized and the change in the phase voltage applied to the motor is canceled by the change in the other phase voltage, the fluctuation of the neutral point potential of the motor is eliminated by the switching timing of the switching element, or , Can be significantly suppressed. This makes it possible to effectively eliminate or suppress the occurrence of common mode noise.
  • control device controls the phase of each phase in which the switching timings of the upper and lower arm switching elements of each phase are synchronized and the change of the phase voltage is canceled by the change of the other phase voltage.
  • the voltage command value is generated to control the inverter circuit.
  • the phase voltage at the dead time considered when switching the switching element changes according to the direction of the current flowing through the motor. Therefore, in the control device according to the invention of claim 3, the switching timings of the upper and lower arm switching elements are synchronized according to the direction of the current flowing through the motor, and the change of the phase voltage is canceled by the change of the other phase voltage. By changing the voltage command value to 1, it is possible to eliminate or suppress the fluctuation of the neutral point potential regardless of the direction of the current flowing through the motor.
  • control device starts the specified section of switching from a state in which the lower arm switching element of any one phase is turned on and the upper arm switching elements of the other two phases are turned on
  • control device starts the specified section of switching from a state in which the lower arm switching element of any two phases is turned on and the upper arm switching element of the other one phase is turned on. In this case, the change in the phase voltage can be smoothly canceled by the change in the other phase voltage.
  • FIG. 1 It is an electric circuit diagram of the inverter device of one example of the present invention. It is the figure which showed collectively the voltage vectors V1-V6 which drive the motor of FIG. It is a figure explaining the production
  • the inverter device 1 of the embodiment is mounted on a so-called inverter-integrated electric compressor in which a compression mechanism is driven by a motor 8, and the electric compressor constitutes, for example, a refrigerant circuit of a vehicle air conditioner.
  • the inverter device 1 includes a three-phase inverter circuit (three-phase inverter circuit) 28 and a control device 21.
  • the inverter circuit 28 is a circuit that converts a DC voltage of a DC power supply (battery of the vehicle: 300 V, for example) 29 into a three-phase AC voltage and applies it to the motor 8.
  • the inverter circuit 28 has a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W, and the respective phase half-bridge circuits 19U-19W are respectively upper arm switching elements 18A-18C. And individual lower arm switching elements 18D to 18F. Further, a flywheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F.
  • each of the switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion in the embodiment.
  • IGBT insulated gate bipolar transistor
  • the upper end sides of the upper arm switching elements 18A to 18C of the inverter circuit 28 are connected to the DC power supply 29 and the upper arm power supply line (positive electrode side bus line) 10 of the smoothing capacitor 32.
  • the lower end sides of the lower arm switching elements 18D to 18F of the inverter circuit 28 are connected to the DC power supply 29 and the lower arm power supply line (negative electrode side bus line) 15 of the smoothing capacitor 32.
  • the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U are connected in series
  • the upper arm switching element 18B and the lower arm switching element 18E of the V phase half bridge circuit 19V are connected in series.
  • An upper arm switching element 18C and a lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
  • connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is connected to the U-phase armature coil 2 of the motor 8, and the upper arm switching element of the V-phase half bridge circuit 19V.
  • connection point between 18B and the lower arm switching element 18E is connected to the V-phase armature coil 3 of the motor 8
  • the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W is the motor. 8 is connected to the W-phase armature coil 4.
  • the control device 21 is composed of a microcomputer having a processor, and in the embodiment, a rotation speed command value is input from the vehicle ECU and a phase current is input from the motor 8 and based on these.
  • the ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 28 is controlled. Specifically, the gate voltage applied to the gate terminals of the switching elements 18A to 18F is controlled.
  • the control device 21 of the embodiment includes the phase voltage command calculator 33, the PWM signal generator 36, the gate driver 37, and the U phase currents iu and V that are the motor currents (phase currents) of the respective phases flowing through the motor 8. It has current sensors 26A and 26B formed of current transformers for measuring the current iv and the W-phase current iw, and the current sensors 26A and 26B are connected to the phase voltage command calculator 33.
  • the current sensor 26A measures the U-phase current iu
  • the current sensor 26B measures the V-phase current iv.
  • the W-phase current iw is calculated from these.
  • the current value of the lower arm power supply line 15 is detected and the phase voltage command is calculated from the current value and the operating state of the motor 8.
  • the method of detecting/estimating each phase current is not particularly limited.
  • the phase voltage command calculation unit 33 applies the U phase voltage Vu, V phase voltage Vv, W applied to the armature coils 2 to 4 of each phase of the motor 8 based on the electric angle of the motor 8, the current command value and the phase current.
  • Three-phase modulation voltage command value Vu′ (hereinafter, U-phase voltage command value Vu′), Vv′ (hereinafter, V-phase voltage command value Vv′), Vw′ (hereinafter, W-phase voltage) for generating the phase voltage Vw
  • the command value Vw' is calculated and generated.
  • the PWM signal generation unit 36 compares the three-phase modulation voltage command values Vu′, Vv′, Vw′ calculated by the phase voltage command calculation unit 33 with the triangular carrier (carrier triangular wave) to determine whether the inverter circuit
  • the gate driver 37 based on the PWM signal output from the PWM signal generation unit 36, outputs the gate voltage of the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U and the V-phase half bridge circuit 19V.
  • the gate voltages of the arm switching element 18B and the lower arm switching element 18E and the gate voltages of the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W are generated.
  • the switching elements 18A to 18F of the inverter circuit 28 are ON/OFF driven based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in the ON state (predetermined voltage value), the switching element is ON, and when the gate voltage is in the OFF state (zero), the switching element is OFF.
  • the gate driver 37 is a circuit for applying a gate voltage to the IGBT based on the PWM signal when the switching elements 18A to 18F are the above-described IGBTs, and is composed of a photocoupler, a logic IC, a transistor, and the like. It
  • the voltage at the connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is applied (output) to the U-phase armature coil 2 of the motor 8 as the U-phase voltage Vu (phase voltage).
  • the voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half bridge circuit 19V is applied (output) to the V-phase armature coil 3 of the motor 8 as the V-phase voltage Vv (phase voltage).
  • the voltage at the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W is applied (output) to the W-phase armature coil 4 of the motor 8 as the W-phase voltage Vw (phase voltage). To be done.
  • the phase voltage command calculation unit 33 of the control device 21 of the inverter device 1 according to the present invention has a U-phase voltage command value Vu′, a V-phase voltage command value Vv′, and a V-phase voltage command value Vv′ that eliminate the fluctuation of the neutral point potential Vc of the motor 8.
  • W-phase voltage command value Vw′ (three-phase modulation voltage command value) is calculated, and voltage vectors V0 to V6 for driving the motor 8 are generated (collectively shown in FIG. 2). Then, one of the voltage vectors V0 to V6 is selected according to the above-described rotation speed command value, and the motor 8 is operated.
  • the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing through the motor 8 are also shown on the right side. There are six combinations of the directions of the phase currents, and the direction flowing into the motor 8 is indicated by + and the direction flowing out from the motor 8 is indicated by ⁇ .
  • the example of FIG. 3 is the case of the uppermost stage, and shows the case where the U-phase current iu and the V-phase current iv flow into the motor 8 and the W-phase current iw flows out of the motor 8.
  • the triangular carrier is composed of two ascending X1 and X2 and two descending X3 and X4 in order to make a dead time.
  • Uphill X2 is ahead of uphill X1
  • downhill X4 is ahead of downhill X3.
  • the PWM signal generation unit 36 compares the rising X1 of the triangular carrier with the respective voltage command values Vu′, Vv′, and Vw′ to determine whether the U-phase lower arm switching elements 18D and V-phase are A PWM signal for turning ON/OFF the upper arm switching element 18B and the W-phase upper arm switching element 18C is generated, and the rising X2 of the triangular carrier is compared with each voltage command value Vu′, Vv′, Vw′, A PWM signal for turning ON/OFF the U-phase upper arm switching element 18A, the V-phase lower arm switching element 18E, and the W-phase lower arm switching element 18F is generated.
  • the PWM signal generation unit 36 compares the downward X3 of the triangular carrier with the voltage command values Vu′, Vv′, Vw′, and the U-phase upper arm switching element 18A, the V-phase lower arm.
  • a PWM signal for turning ON/OFF the switching element 18E and the lower arm switching element 18F of the W phase is generated, and the downward X4 of the triangular carrier is compared with each voltage command value Vu′, Vv′, Vw′, and the U phase is compared.
  • a PWM signal for turning ON/OFF the lower arm switching element 18D, the V-phase upper arm switching element 18B, and the W-phase upper arm switching element 18C is generated.
  • the U-phase lower arm switching element 18D is ON, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are ON. The specified section of switching starts from.
  • the upper arm switching element 18A When the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8 as in the embodiment, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes “H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period.
  • the sum of the widths of the "H” periods is the magnitude of the voltage of each phase, and the voltage vector V0 has the magnitude of "medium” for all three phases.
  • the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” and changes the U phase voltage Vu.
  • the voltage command values Vu′, Vv′, and Vw′ that are canceled by the changes in the V-phase voltage Vv and the W-phase voltage Vw are generated.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that common mode noise is eliminated.
  • FIG. 4 is also the case of the uppermost stage, and shows the case where the U-phase current iu and the V-phase current iv flow into the motor 8 and the W-phase current iw flows out of the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the upper arm switching element 18A When the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8 as in the embodiment, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes “H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period.
  • the sum of the widths of the “H” periods is the magnitude of each phase voltage, and the U-phase voltage Vu is “large” and the V-phase voltage Vv and the W-phase voltage Vw are “medium” in the voltage vector V1.
  • the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” even at the voltage vector V1, and the U phase voltage Vu.
  • voltage command values Vu′, Vv′, and Vw′ that cancel the changes of V phase voltage Vv and W phase voltage Vw.
  • the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown, but in the case of FIG. 5, the U-phase current iu flows into the motor 8.
  • the V-phase current iv, and the W-phase current iw are in the direction of flowing out from the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the phase voltage becomes “H” when the upper arm switching element is ON in the direction in which the phase current flows into the motor 8, and the lower arm switching element is ON in the direction in which the phase current flows out from the motor 8.
  • the phase voltage becomes “H” when it is on. Therefore, when the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow out of the motor 8, switching is performed at the same timing as in FIG. 4 to generate the voltage vector V1. Then, since the V-phase current iv is directed to flow out from the motor 8, a current flows to the flywheel diode 31 connected to the upper arm switching element 18B during the dead time before the V-phase lower arm switching element 18E is turned on. 4 and the V-phase voltage Vv remains “H” as indicated by the broken line Z1 in FIG. 4, and the neutral point potential Vc fluctuates as indicated by the broken line Z2 in FIG. Become.
  • the phase voltage command calculation unit 33 causes the voltage command values Vu′, Vv′, Vw′ to switch the switching elements 18A to 18F at the timings shown in FIG. To generate. That is, in the case of FIG. 5, since the U-phase current iu flows into the motor 8 and the V-phase current iv and the W-phase current iw flow out of the motor 8, the upper arm switching element 18A is turned on in the U-phase. The U-phase voltage Vu becomes "H" during the V phase, the V-phase voltage Vv becomes "H” while the lower arm switching element 18E is OFF during the V phase, and the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period.
  • the sum of the widths of the “H” periods is the magnitude of each phase voltage, and in this case as well, the voltage vector V1 is such that the U phase voltage Vu is “large” and the V phase voltage Vv and the W phase voltage Vw are “medium”. It becomes
  • the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” according to the direction of the phase current, and The change of the U-phase voltage Vu is changed to the voltage command values Vu′, Vv′, and Vw′ that are canceled by the change of the V-phase voltage Vv and the W-phase voltage Vw, and output.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw in the voltage vector V1 is always constant and does not change, so that common mode noise is eliminated. become.
  • the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′ and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
  • the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown.
  • the U-phase current iu and the V-phase current iv flow in the motor 8
  • the W-phase current iw flows out of the motor 8
  • the U-phase current iu flows in the motor 8.
  • V-phase current iv and W-phase current iw are shown in the direction in which they flow out from the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the upper arm switching element 18A when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes "H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period.
  • the upper arm switching element 18A When the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow in the motor 8, the upper arm switching element 18A is turned on in the U-phase.
  • the U-phase voltage Vu is "H” during the V phase
  • the V-phase voltage Vv is “H” during the V phase while the lower arm switching element 18E is OFF
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period
  • the V-phase voltage command value Vv′ is fixed at the maximum value, and therefore the V-phase voltage Vv does not change regardless of the direction of the current.
  • the voltage vector V2 has a U-phase voltage Vu and a V-phase voltage Vv of “large” and a W-phase voltage Vw of “small”.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
  • the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown.
  • the U-phase current iu and the V-phase current iv flow in the motor 8
  • the W-phase current iw flows out of the motor 8
  • the U-phase current iu flows in the motor 8.
  • V-phase current iv and W-phase current iw are shown in the direction in which they flow out from the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the upper arm switching element 18A when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes "H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period.
  • the upper arm switching element 18A When the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow in the motor 8, the upper arm switching element 18A is turned on in the U-phase.
  • the U-phase voltage Vu is "H” during the V phase
  • the V-phase voltage Vv is “H” during the V phase while the lower arm switching element 18E is OFF
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period
  • the V-phase voltage command value Vv′ is fixed at the maximum value, and therefore the V-phase voltage Vv does not change regardless of the direction of the current.
  • the voltage vector V3 has a U-phase voltage Vu of “medium”, a V-phase voltage Vv of “large”, and a W-phase voltage Vw of “medium”.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the U-phase voltage command value Vu', the V-phase voltage command value Vv', and the W-phase voltage command value Vw' are all fixed at the highest values, the U-phase voltage Vu and the V-phase voltage Vv are irrespective of the direction of the current. , W-phase voltage Vw does not change.
  • the voltage vector V4 is such that the U-phase voltage Vu is “small” and the V-phase voltage Vv and the W-phase voltage Vw are “large”.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
  • the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
  • FIG. 9 shows a case where the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the upper arm switching element 18A when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes “H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period
  • the W-phase voltage command value Vw′ is fixed at the maximum value, so that the W-phase voltage Vw does not change regardless of the direction of the current.
  • the U-phase voltage command value Vu' is fixed to a medium value
  • the V-phase voltage command value Vv' is fixed to a medium value higher than the U-phase.
  • the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
  • FIG. 9 shows a case where the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8.
  • the operation of the PWM signal generator 36 is the same as described above.
  • the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on.
  • the specified section of switching is started from the state in which it is present.
  • the upper arm switching element 18A when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase.
  • the U-phase voltage Vu becomes “H” during the period when the upper arm switching element 18B is ON even in the V phase
  • the V-phase voltage Vv becomes “H” during the period when the upper arm switching element 18B is ON
  • the lower arm switching element 18F is OFF during the W phase.
  • the W-phase voltage Vw becomes “H” during the period
  • the W-phase voltage command value Vw′ is fixed at the maximum value, so that the W-phase voltage Vw does not change regardless of the direction of the current.
  • the U-phase voltage command value Vu' is fixed to a small value
  • the V-phase voltage command value Vv' is a small value but fixed to a value higher than the U-phase.
  • These values are values in which the U-phase voltage Vu and the V-phase voltage Vw are synchronized with each other in consideration of the dead time and change in a direction in which they cancel each other.
  • the voltage vector V6 has a U-phase voltage Vu of “large”, a V-phase voltage Vv of “small”, and a W-phase voltage Vw of “large”.
  • the neutral point potential Vc which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
  • the control device 21 synchronizes the switching timings of the upper and lower arm switching elements 18A to 18F for each phase, and changes the phase voltages Vu, Vv, Vw applied to the motor 8 to other values. Since the voltage command values Vu′, Vv′, and Vw′ that are canceled by the change in the phase voltage of are generated, the fluctuation of the neutral point potential Vc of the motor 8 is eliminated by the switching timing of the switching elements 18A to 18F. Alternatively, it becomes possible to remarkably suppress it. This makes it possible to effectively eliminate or suppress the occurrence of common mode noise.
  • control device 21 synchronizes the switching timings of the upper and lower arm switching elements 18A to 18F according to the directions of the currents iu, iv, and iw flowing in the motor 8, and changes in the phase voltages Vu, Vv, Vw.
  • the voltage command values Vu′, Vv′, and Vw′ are changed so as to be canceled by the change in the other phase voltage, so that the fluctuation of the neutral point potential Vc can be eliminated without any problem regardless of the direction of the current flowing through the motor 8. Or, it becomes possible to suppress.
  • control device 21 turns on one of the lower arm switching elements (18D in the embodiment) of one phase and turns on the other upper arm switching elements of the two phases (18B and 18C in the embodiment). Since the specified section of switching is started from the state in which it is present, changes in each phase voltage Vu, Vv, Vw can be smoothly canceled by changes in other phase voltages.
  • control device 21 starts the specified section of switching from a state in which the lower arm switching element of any two phases is turned on and the upper arm switching element of another one phase is turned on. Even in this case, the change in each phase voltage Vu, Vv, Vw can be smoothly canceled by the change in the other phase voltage as in the embodiment.
  • the PWM signal generation unit 36 causes each of the half bridge circuits 19U to be different depending on the magnitude of the current flowing through the switching element and the characteristics of the switching element used.
  • the output timing of the gate signal may be finely adjusted every 19W. The magnitude of the current flowing through the switching element used for the calculation for this fine adjustment can be obtained from the detected and estimated value of the current flowing through the motor 8.
  • the voltage vectors V0 to V6 shown in the embodiment are not limited to those, and can be changed without departing from the spirit of the present invention.
  • the present invention is applied to the inverter device that drives and controls the motor of the electric compressor in the embodiment, the present invention is not limited to this, and the present invention is effective for drive control of the motor of various devices.
  • Inverter device 8 Motor 10 Upper arm power supply line 15 Lower arm power supply line 18A-18F Upper and lower arm switching element 19U U phase half bridge circuit 19V V phase half bridge circuit 19W W phase half bridge circuit 21 Control device 26A, 26B Current sensor 28 Three Phase inverter circuit 33 Phase voltage command calculator 36 PWM signal generator 37 Gate driver

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

Provided is an inverter device that makes it possible to effectively eliminate or reduce common mode noise. An inverter device 1 comprises an inverter circuit 28 and a control device 21. The inverter circuit connects upper arm switching elements 18A–18C and lower arm switching elements 18D–18F of respective phases in series between an upper arm power supply line 10 and a lower arm power supply line 15, and applies the voltages at the contact points between the upper and lower arm switching elements of the phases to a motor 8 as three-phase alternating-current output. The control device synchronizes the switching timing of the upper and lower arm switching elements of the phases and, by means of changes in the other phase voltages, cancels changes in the phase voltage applied to the motor.

Description

インバータ装置Inverter device
 本発明は、インバータ回路により交流電圧をモータに印加して駆動するインバータ装置に関するものである。 The present invention relates to an inverter device in which an AC voltage is applied to a motor by an inverter circuit to drive the motor.
 従来よりモータを駆動するためのインバータ装置は、複数のスイッチング素子により三相インバータ回路を構成すると共に、UVW各相のスイッチング素子をPWM(Pulse Width Modulation)制御し、正弦波に近い電圧波形をモータに印加して駆動するものであるが、モータの中性点電位の変動により発生するコモンモードノイズが問題となっていた。 Conventionally, an inverter device for driving a motor has a three-phase inverter circuit composed of a plurality of switching elements, PWM (Pulse Width Modulation) control of the switching elements of each UVW phase, and a voltage waveform close to a sine wave to the motor. However, the common mode noise generated by the fluctuation of the neutral point potential of the motor has been a problem.
 このコモンモードノイズは、例えば電動コンプレッサを構成するモータの場合、コンプレッサの筐体と接地間の浮遊容量を通して漏洩するコモンモード電流によって発生するものであるが、従来ではノイズフィルタを設置して規制を満足させていた。 In the case of a motor that constitutes an electric compressor, for example, this common mode noise is generated by the common mode current leaking through the stray capacitance between the casing of the compressor and the ground. I was satisfied.
特許第4276097号公報Japanese Patent No. 4276097 特許第5093452号公報Japanese Patent No. 5093452
 しかしながら、係るノイズフィルタの設置は装置の大型化を招き、コストも高騰する問題がある。一方、モータの中性点電位は各相電圧の平均から求められるので、スイッチング素子のスイッチングによる相電圧の変化を調整して、モータの中性点電位の変動を抑制する方式も提案されている(例えば、特許文献1、特許文献2参照)。 However, the installation of such a noise filter causes the device to become large in size, and the cost also rises. On the other hand, since the neutral point potential of the motor is obtained from the average of each phase voltage, a method of adjusting the variation of the phase voltage due to the switching of the switching element to suppress the variation of the neutral point potential of the motor is also proposed. (For example, see Patent Document 1 and Patent Document 2).
 本発明は、係る従来の状況を考慮して成されたものであり、コモンモードノイズを効果的に解消、若しくは、抑制することができるインバータ装置を提供することを目的とする。 The present invention has been made in consideration of such a conventional situation, and an object thereof is to provide an inverter device that can effectively eliminate or suppress common mode noise.
 本発明のインバータ装置は、上アーム電源ライン及び下アーム電源ライン間に、各相毎に上アームスイッチング素子と下アームスイッチング素子を直列接続し、これら各相の上下アームスイッチング素子の接続点の電圧を三相交流出力としてモータに印加するインバータ回路と、このインバータ回路の各相の上下アームスイッチング素子のスイッチングを制御する制御装置を備えたものであって、制御装置は、各相の上下アームスイッチング素子のスイッチングタイミングを同期させ、且つ、モータに印加される相電圧の変化を、他の相電圧の変化で打ち消すことを特徴とする。 In the inverter device of the present invention, an upper arm switching element and a lower arm switching element are connected in series for each phase between the upper arm power supply line and the lower arm power supply line, and the voltage at the connection point of the upper and lower arm switching elements of each phase is connected. Is provided as a three-phase AC output to the motor, and a controller for controlling the switching of the upper and lower arm switching elements of each phase of this inverter circuit. It is characterized in that the switching timings of the elements are synchronized and changes in the phase voltage applied to the motor are canceled by changes in other phase voltages.
 請求項2の発明のインバータ装置は、上記発明において制御装置は、各相の上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、相電圧の変化が他の相電圧の変化で打ち消される各相の電圧指令値を生成してインバータ回路を制御することを特徴とする。 In the inverter device according to a second aspect of the present invention, in the control device according to the above aspect, the switching timings of the upper and lower arm switching elements of each phase are synchronized, and the change of the phase voltage is canceled by the change of the other phase voltage. It is characterized by generating a voltage command value and controlling the inverter circuit.
 請求項3の発明のインバータ装置は、上記各発明において制御装置は、モータに流れる電流の向きに応じて上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、相電圧の変化が他の相電圧の変化で打ち消されるように電圧指令値を変更することを特徴とする。 In the inverter device of the invention of claim 3, in each of the above inventions, the control device is such that the switching timings of the upper and lower arm switching elements are synchronized according to the direction of the current flowing through the motor, and the change in the phase voltage is different from that of the other phase voltage. It is characterized in that the voltage command value is changed so as to be canceled by the change.
 請求項4の発明のインバータ装置は、上記各発明において制御装置は、何れか一相の下アームスイッチング素子がONし、他の二相の上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始することを特徴とする。 In the inverter device of the invention according to claim 4, in each of the above inventions, the control device specifies switching from a state in which the lower arm switching element of one phase is turned on and the upper arm switching elements of the other two phases are turned on. It is characterized by starting a section.
 請求項5の発明のインバータ装置は、上記請求項1乃至請求項3の発明において制御装置は、何れか二相の下アームスイッチング素子がONし、他の一相の上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始することを特徴とする。 In the inverter device according to a fifth aspect of the present invention, in the control device according to the first aspect of the present invention, the lower arm switching element of any two phases is turned on and the upper arm switching element of another one phase is turned on. It is characterized in that the specified section of switching is started from the state in which it is in the open state.
 本発明によれば、上アーム電源ライン及び下アーム電源ライン間に、各相毎に上アームスイッチング素子と下アームスイッチング素子を直列接続し、これら各相の上下アームスイッチング素子の接続点の電圧を三相交流出力としてモータに印加するインバータ回路と、このインバータ回路の各相の上下アームスイッチング素子のスイッチングを制御する制御装置を備えたインバータ装置において、制御装置が、各相の上下アームスイッチング素子のスイッチングタイミングを同期させ、且つ、モータに印加される相電圧の変化を、他の相電圧の変化で打ち消すようにしたので、スイッチング素子のスイッチングタイミングによりモータの中性点電位の変動を解消、若しくは、著しく抑制することができるようになる。これにより、コモンモードノイズの発生を効果的に解消、若しくは、抑制することが可能となる。 According to the present invention, between the upper arm power supply line and the lower arm power supply line, the upper arm switching element and the lower arm switching element are connected in series for each phase, and the voltage at the connection point of the upper and lower arm switching elements for each phase is In an inverter device equipped with an inverter circuit that applies a three-phase AC output to a motor and a control device that controls the switching of the upper and lower arm switching elements of each phase of the inverter circuit, the control device controls the upper and lower arm switching elements of each phase. Since the switching timing is synchronized and the change in the phase voltage applied to the motor is canceled by the change in the other phase voltage, the fluctuation of the neutral point potential of the motor is eliminated by the switching timing of the switching element, or , Can be significantly suppressed. This makes it possible to effectively eliminate or suppress the occurrence of common mode noise.
 この場合、実際には請求項2の発明の如く制御装置が、各相の上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、相電圧の変化が他の相電圧の変化で打ち消される各相の電圧指令値を生成してインバータ回路を制御することになる。 In this case, in practice, the control device according to the second aspect of the present invention controls the phase of each phase in which the switching timings of the upper and lower arm switching elements of each phase are synchronized and the change of the phase voltage is canceled by the change of the other phase voltage. The voltage command value is generated to control the inverter circuit.
 ここで、スイッチング素子をスイッチングする際に考慮するデッドタイムでの相電圧はモータに流れる電流の向きに応じて変化する。そこで、請求項3の発明の如く制御装置が、モータに流れる電流の向きに応じて上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、相電圧の変化が他の相電圧の変化で打ち消されるように電圧指令値を変更するようにすれば、モータに流れる電流の向きに関わらず、支障無く中性点電位の変動を解消、若しくは、抑制することができるようになる。 ▽ Here, the phase voltage at the dead time considered when switching the switching element changes according to the direction of the current flowing through the motor. Therefore, in the control device according to the invention of claim 3, the switching timings of the upper and lower arm switching elements are synchronized according to the direction of the current flowing through the motor, and the change of the phase voltage is canceled by the change of the other phase voltage. By changing the voltage command value to 1, it is possible to eliminate or suppress the fluctuation of the neutral point potential regardless of the direction of the current flowing through the motor.
 また、請求項4の発明の如く制御装置が、何れか一相の下アームスイッチング素子がONし、他の二相の上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始し、或いは、請求項5の発明の如く制御装置が、何れか二相の下アームスイッチング素子がONし、他の一相の上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始するようにすれば、相電圧の変化を他の相電圧の変化で円滑に打ち消すことができるようになる。 Further, the control device according to the invention of claim 4 starts the specified section of switching from a state in which the lower arm switching element of any one phase is turned on and the upper arm switching elements of the other two phases are turned on, Alternatively, the control device according to the invention of claim 5 starts the specified section of switching from a state in which the lower arm switching element of any two phases is turned on and the upper arm switching element of the other one phase is turned on. In this case, the change in the phase voltage can be smoothly canceled by the change in the other phase voltage.
本発明の一実施例のインバータ装置の電気回路図である。It is an electric circuit diagram of the inverter device of one example of the present invention. 図1のモータを運転する電圧ベクトルV1~V6を纏めて示した図である。It is the figure which showed collectively the voltage vectors V1-V6 which drive the motor of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV0の生成を説明する図である。It is a figure explaining the production|generation of the voltage vector V0 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV1の生成を説明する図である。It is a figure explaining the production|generation of the voltage vector V1 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置によるもう一つの電圧ベクトルV1の生成を説明する図である。It is a figure explaining the production|generation of another voltage vector V1 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV2の生成を説明する図である。It is a figure explaining generation|occurrence|production of the voltage vector V2 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV3の生成を説明する図である。It is a figure explaining the production|generation of the voltage vector V3 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV4の生成を説明する図である。It is a figure explaining generation|occurrence|production of the voltage vector V4 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV5の生成を説明する図である。It is a figure explaining generation|occurrence|production of the voltage vector V5 by the control apparatus of the inverter apparatus of FIG. 図1のインバータ装置の制御装置による電圧ベクトルV6の生成を説明する図である。It is a figure explaining the production|generation of the voltage vector V6 by the control apparatus of the inverter apparatus of FIG.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。実施例のインバータ装置1は、モータ8により圧縮機構を駆動する所謂インバータ一体型の電動コンプレッサに搭載されるものであり、電動コンプレッサは例えば車両用空気調和装置の冷媒回路を構成するものである。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The inverter device 1 of the embodiment is mounted on a so-called inverter-integrated electric compressor in which a compression mechanism is driven by a motor 8, and the electric compressor constitutes, for example, a refrigerant circuit of a vehicle air conditioner.
 (1)インバータ装置1の構成
 図1においてインバータ装置1は、三相のインバータ回路(三相インバータ回路)28と、制御装置21を備えている。インバータ回路28は、直流電源(車両のバッテリ:例えば、300V)29の直流電圧を三相交流電圧に変換してモータ8に印加する回路である。このインバータ回路28は、U相ハーフブリッジ回路19U、V相ハーフブリッジ回路19V、W相ハーフブリッジ回路19Wを有しており、各相ハーフブリッジ回路19U~19Wは、それぞれ上アームスイッチング素子18A~18Cと、下アームスイッチング素子18D~18Fを個別に有している。更に、各スイッチング素子18A~18Fには、それぞれフライホイールダイオード31が逆並列に接続されている。
(1) Configuration of Inverter Device 1 In FIG. 1, the inverter device 1 includes a three-phase inverter circuit (three-phase inverter circuit) 28 and a control device 21. The inverter circuit 28 is a circuit that converts a DC voltage of a DC power supply (battery of the vehicle: 300 V, for example) 29 into a three-phase AC voltage and applies it to the motor 8. The inverter circuit 28 has a U-phase half-bridge circuit 19U, a V-phase half-bridge circuit 19V, and a W-phase half-bridge circuit 19W, and the respective phase half-bridge circuits 19U-19W are respectively upper arm switching elements 18A-18C. And individual lower arm switching elements 18D to 18F. Further, a flywheel diode 31 is connected in antiparallel to each of the switching elements 18A to 18F.
 尚、各スイッチング素子18A~18Fは、実施例ではMOS構造をゲート部に組み込んだ絶縁ゲートバイポーラトランジスタ(IGBT)等から構成されている。 Incidentally, each of the switching elements 18A to 18F is composed of an insulated gate bipolar transistor (IGBT) or the like in which a MOS structure is incorporated in the gate portion in the embodiment.
 そして、インバータ回路28の上アームスイッチング素子18A~18Cの上端側は、直流電源29及び平滑コンデンサ32の上アーム電源ライン(正極側母線)10に接続されている。一方、インバータ回路28の下アームスイッチング素子18D~18Fの下端側は、直流電源29及び平滑コンデンサ32の下アーム電源ライン(負極側母線)15に接続されている。 The upper end sides of the upper arm switching elements 18A to 18C of the inverter circuit 28 are connected to the DC power supply 29 and the upper arm power supply line (positive electrode side bus line) 10 of the smoothing capacitor 32. On the other hand, the lower end sides of the lower arm switching elements 18D to 18F of the inverter circuit 28 are connected to the DC power supply 29 and the lower arm power supply line (negative electrode side bus line) 15 of the smoothing capacitor 32.
 この場合、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dが直列に接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eが直列に接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fが直列に接続されている。 In this case, the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U are connected in series, and the upper arm switching element 18B and the lower arm switching element 18E of the V phase half bridge circuit 19V are connected in series. An upper arm switching element 18C and a lower arm switching element 18F of the W-phase half bridge circuit 19W are connected in series.
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点は、モータ8のU相の電機子コイル2に接続され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点は、モータ8のV相の電機子コイル3に接続され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点は、モータ8のW相の電機子コイル4に接続されている。 The connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is connected to the U-phase armature coil 2 of the motor 8, and the upper arm switching element of the V-phase half bridge circuit 19V. The connection point between 18B and the lower arm switching element 18E is connected to the V-phase armature coil 3 of the motor 8, and the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W is the motor. 8 is connected to the W-phase armature coil 4.
 (2)制御装置21の構成
 制御装置21はプロセッサを有するマイクロコンピュータから構成されており、実施例では車両ECUから回転数指令値を入力し、モータ8から相電流を入力して、これらに基づき、インバータ回路28の各スイッチング素子18A~18FのON/OFF状態(スイッチング)を制御する。具体的には、各スイッチング素子18A~18Fのゲート端子に印加するゲート電圧を制御する。
(2) Configuration of Control Device 21 The control device 21 is composed of a microcomputer having a processor, and in the embodiment, a rotation speed command value is input from the vehicle ECU and a phase current is input from the motor 8 and based on these. The ON/OFF state (switching) of each switching element 18A to 18F of the inverter circuit 28 is controlled. Specifically, the gate voltage applied to the gate terminals of the switching elements 18A to 18F is controlled.
 実施例の制御装置21は、相電圧指令演算部33と、PWM信号生成部36と、ゲートドライバ37と、モータ8に流れる各相のモータ電流(相電流)であるU相電流iu、V相電流iv、W相電流iwを測定するためのカレントトランスから成る電流センサ26A、26Bを有しており、各電流センサ26A、26Bは相電圧指令演算部33に接続されている。尚、電流センサ26AはU相電流iuを測定し、電流センサ26BはV相電流ivを測定する。そして、W相電流iwはこれらから計算により求める。また、実施例のように各相のモータ電流を電流センサ26A、26Bで測定する以外に、下アーム電源ライン15の電流値を検出し、その電流値とモータ8の運転状態から相電圧指令演算部33が推定するなど、各相電流を検出・推定する方法に関しては、特に、限定しない。 The control device 21 of the embodiment includes the phase voltage command calculator 33, the PWM signal generator 36, the gate driver 37, and the U phase currents iu and V that are the motor currents (phase currents) of the respective phases flowing through the motor 8. It has current sensors 26A and 26B formed of current transformers for measuring the current iv and the W-phase current iw, and the current sensors 26A and 26B are connected to the phase voltage command calculator 33. The current sensor 26A measures the U-phase current iu, and the current sensor 26B measures the V-phase current iv. Then, the W-phase current iw is calculated from these. Besides measuring the motor current of each phase with the current sensors 26A and 26B as in the embodiment, the current value of the lower arm power supply line 15 is detected and the phase voltage command is calculated from the current value and the operating state of the motor 8. The method of detecting/estimating each phase current, such as estimation by the unit 33, is not particularly limited.
 この相電圧指令演算部33は、モータ8の電気角、電流指令値と相電流に基づいてモータ8の各相の電機子コイル2~4に印加するU相電圧Vu、V相電圧Vv、W相電圧Vwを生成するための三相変調電圧指令値Vu’(以下、U相電圧指令値Vu’)、Vv’(以下、V相電圧指令値Vv’)、Vw’(以下、W相電圧指令値Vw’)を演算し、生成する。 The phase voltage command calculation unit 33 applies the U phase voltage Vu, V phase voltage Vv, W applied to the armature coils 2 to 4 of each phase of the motor 8 based on the electric angle of the motor 8, the current command value and the phase current. Three-phase modulation voltage command value Vu′ (hereinafter, U-phase voltage command value Vu′), Vv′ (hereinafter, V-phase voltage command value Vv′), Vw′ (hereinafter, W-phase voltage) for generating the phase voltage Vw The command value Vw') is calculated and generated.
 PWM信号生成部36は、相電圧指令演算部33により演算された三相変調電圧指令値Vu’、Vv’、Vw’と、三角キャリア(キャリア三角波)との大小を比較することにより、インバータ回路28のU相ハーフブリッジ回路19U、V相ハーフブリッジ回路19V、W相ハーフブリッジ回路19Wの駆動指令信号となるPWM信号を発生させる。 The PWM signal generation unit 36 compares the three-phase modulation voltage command values Vu′, Vv′, Vw′ calculated by the phase voltage command calculation unit 33 with the triangular carrier (carrier triangular wave) to determine whether the inverter circuit The U-phase half-bridge circuit 19U, the V-phase half-bridge circuit 19V, and the W-phase half-bridge circuit 19W, which are 28 U-phase half-bridge circuits, generate a PWM signal as a drive command signal.
 ゲートドライバ37は、PWM信号生成部36から出力されるPWM信号に基づき、U相ハーフブリッジ回路19Uの上アームスイッチング素子18A、下アームスイッチング素子18Dのゲート電圧と、V相ハーフブリッジ回路19Vの上アームスイッチング素子18B、下アームスイッチング素子18Eのゲート電圧と、W相ハーフブリッジ回路19Wの上アームスイッチング素子18C、下アームスイッチング素子18Fのゲート電圧を発生させる。 The gate driver 37, based on the PWM signal output from the PWM signal generation unit 36, outputs the gate voltage of the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U and the V-phase half bridge circuit 19V. The gate voltages of the arm switching element 18B and the lower arm switching element 18E and the gate voltages of the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W are generated.
 そして、インバータ回路28の各スイッチング素子18A~18Fは、ゲートドライバ37から出力されるゲート電圧に基づき、ON/OFF駆動される。即ち、ゲート電圧がON状態(所定の電圧値)となるとスイッチング素子がON動作し、ゲート電圧がOFF状態(零)となるとスイッチング素子がOFF動作する。このゲートドライバ37は、スイッチング素子18A~18Fが前述したIGBTである場合には、PWM信号に基づいてゲート電圧をIGBTに印加するための回路であり、フォトカプラやロジックIC、トランジスタ等から構成される。 The switching elements 18A to 18F of the inverter circuit 28 are ON/OFF driven based on the gate voltage output from the gate driver 37. That is, when the gate voltage is in the ON state (predetermined voltage value), the switching element is ON, and when the gate voltage is in the OFF state (zero), the switching element is OFF. The gate driver 37 is a circuit for applying a gate voltage to the IGBT based on the PWM signal when the switching elements 18A to 18F are the above-described IGBTs, and is composed of a photocoupler, a logic IC, a transistor, and the like. It
 そして、U相ハーフブリッジ回路19Uの上アームスイッチング素子18Aと下アームスイッチング素子18Dの接続点の電圧がU相電圧Vu(相電圧)としてモータ8のU相の電機子コイル2に印加(出力)され、V相ハーフブリッジ回路19Vの上アームスイッチング素子18Bと下アームスイッチング素子18Eの接続点の電圧がV相電圧Vv(相電圧)としてモータ8のV相の電機子コイル3に印加(出力)され、W相ハーフブリッジ回路19Wの上アームスイッチング素子18Cと下アームスイッチング素子18Fの接続点の電圧がW相電圧Vw(相電圧)としてモータ8のW相の電機子コイル4に印加(出力)される。 Then, the voltage at the connection point between the upper arm switching element 18A and the lower arm switching element 18D of the U-phase half bridge circuit 19U is applied (output) to the U-phase armature coil 2 of the motor 8 as the U-phase voltage Vu (phase voltage). The voltage at the connection point between the upper arm switching element 18B and the lower arm switching element 18E of the V-phase half bridge circuit 19V is applied (output) to the V-phase armature coil 3 of the motor 8 as the V-phase voltage Vv (phase voltage). The voltage at the connection point between the upper arm switching element 18C and the lower arm switching element 18F of the W-phase half bridge circuit 19W is applied (output) to the W-phase armature coil 4 of the motor 8 as the W-phase voltage Vw (phase voltage). To be done.
 (3)制御装置21の動作
 次に、図2~図10を参照しながら、制御装置21の実際の制御動作について説明する。本発明のインバータ装置1の制御装置21の相電圧指令演算部33は、モータ8の中性点電位Vcの変動が無くなるようなU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’(三相変調電圧指令値)を演算し、モータ8を運転する電圧ベクトルV0~V6を生成する(図2に纏めて示す)。そして、前述した回転数指令値に応じて何れかの電圧ベクトルV0~V6を選択し、モータ8を運転する。
(3) Operation of Control Device 21 Next, the actual control operation of the control device 21 will be described with reference to FIGS. 2 to 10. The phase voltage command calculation unit 33 of the control device 21 of the inverter device 1 according to the present invention has a U-phase voltage command value Vu′, a V-phase voltage command value Vv′, and a V-phase voltage command value Vv′ that eliminate the fluctuation of the neutral point potential Vc of the motor 8. , W-phase voltage command value Vw′ (three-phase modulation voltage command value) is calculated, and voltage vectors V0 to V6 for driving the motor 8 are generated (collectively shown in FIG. 2). Then, one of the voltage vectors V0 to V6 is selected according to the above-described rotation speed command value, and the motor 8 is operated.
 (3-1)電圧ベクトルV0
 先ず、図3を用いて図2の電圧ベクトルV0の生成について説明する。図3の最上段は制御装置21の相電圧指令演算部33が生成するU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-1) Voltage vector V0
First, the generation of the voltage vector V0 of FIG. 2 will be described with reference to FIG. 3, the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4 generated by the phase voltage command calculation unit 33 of the control device 21 are shown in the uppermost stage. The second stage from the top shows the ON/OFF state of each switching element 18A to 18F, and the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage. Indicates the neutral point potential Vc of the motor 8, respectively.
 また、右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。各相電流の向きの組み合わせは6つあり、モータ8に流入する方向を+、モータ8から流出する方向を-で示している。図3の例は最上段の場合であり、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きの場合を示している。 The directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing through the motor 8 are also shown on the right side. There are six combinations of the directions of the phase currents, and the direction flowing into the motor 8 is indicated by + and the direction flowing out from the motor 8 is indicated by −. The example of FIG. 3 is the case of the uppermost stage, and shows the case where the U-phase current iu and the V-phase current iv flow into the motor 8 and the W-phase current iw flows out of the motor 8.
 尚、実施例ではデッドタイムを作るために三角キャリアは二つの上りX1、X2と二つの下りX3、X4から成る。上りX2は上りX1より進み、下りX4は下りX3より進む位相である。そして、1キャリア周期の前半では、PWM信号生成部36が三角キャリアの上りX1と各電圧指令値Vu’、Vv’、Vw’を比較して、U相の下アームスイッチング素子18D、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CをON/OFFするPWM信号を生成し、三角キャリアの上りX2と各電圧指令値Vu’、Vv’、Vw’を比較して、U相の上アームスイッチング素子18A、V相の下アームスイッチング素子18E、及び、W相の下アームスイッチング素子18FをON/OFFするPWM信号を生成する。 Incidentally, in the embodiment, the triangular carrier is composed of two ascending X1 and X2 and two descending X3 and X4 in order to make a dead time. Uphill X2 is ahead of uphill X1, and downhill X4 is ahead of downhill X3. Then, in the first half of one carrier cycle, the PWM signal generation unit 36 compares the rising X1 of the triangular carrier with the respective voltage command values Vu′, Vv′, and Vw′ to determine whether the U-phase lower arm switching elements 18D and V-phase are A PWM signal for turning ON/OFF the upper arm switching element 18B and the W-phase upper arm switching element 18C is generated, and the rising X2 of the triangular carrier is compared with each voltage command value Vu′, Vv′, Vw′, A PWM signal for turning ON/OFF the U-phase upper arm switching element 18A, the V-phase lower arm switching element 18E, and the W-phase lower arm switching element 18F is generated.
 1キャリア周期の後半では、PWM信号生成部36が三角キャリアの下りX3と各電圧指令値Vu’、Vv’、Vw’を比較して、U相の上アームスイッチング素子18A、V相の下アームスイッチング素子18E、及び、W相の下アームスイッチング素子18FをON/OFFするPWM信号を生成し、三角キャリアの下りX4と各電圧指令値Vu’、Vv’、Vw’を比較して、U相の下アームスイッチング素子18D、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CをON/OFFするPWM信号を生成する。 In the latter half of one carrier cycle, the PWM signal generation unit 36 compares the downward X3 of the triangular carrier with the voltage command values Vu′, Vv′, Vw′, and the U-phase upper arm switching element 18A, the V-phase lower arm. A PWM signal for turning ON/OFF the switching element 18E and the lower arm switching element 18F of the W phase is generated, and the downward X4 of the triangular carrier is compared with each voltage command value Vu′, Vv′, Vw′, and the U phase is compared. A PWM signal for turning ON/OFF the lower arm switching element 18D, the V-phase upper arm switching element 18B, and the W-phase upper arm switching element 18C is generated.
 また、相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 Further, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is ON, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are ON. The specified section of switching starts from.
 実施例の如くU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となる。この「H」の期間の幅の総和が各相電圧の大きさとなり、電圧ベクトルV0では三相全て「中」の大きさとなる。 When the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8 as in the embodiment, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. The W-phase voltage Vw becomes “H” during the period. The sum of the widths of the "H" periods is the magnitude of the voltage of each phase, and the voltage vector V0 has the magnitude of "medium" for all three phases.
 また、この図から明らかな如く、相電圧指令演算部33は各相電圧を「H」とするスイッチング素子のスイッチングタイミング(ON/OFFタイミング)を同期させ、且つ、U相電圧Vuの変化を、V相電圧VvとW相電圧Vwの変化で打ち消すような電圧指令値Vu’、Vv’、Vw’を生成する。これにより、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 Further, as is apparent from this figure, the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” and changes the U phase voltage Vu. The voltage command values Vu′, Vv′, and Vw′ that are canceled by the changes in the V-phase voltage Vv and the W-phase voltage Vw are generated. As a result, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that common mode noise is eliminated.
 (3-2)電圧ベクトルV1(その1)
 次に、図4を用いて図2の電圧ベクトルV1の生成について説明する。図4でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-2) Voltage vector V1 (1)
Next, the generation of the voltage vector V1 of FIG. 2 will be described with reference to FIG. Also in FIG. 4, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′ and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。図4の例も最上段の場合であり、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きの場合を示している。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown. The example of FIG. 4 is also the case of the uppermost stage, and shows the case where the U-phase current iu and the V-phase current iv flow into the motor 8 and the W-phase current iw flows out of the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 実施例の如くU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となる。この「H」の期間の幅の総和が各相電圧の大きさとなり、電圧ベクトルV1ではU相電圧Vuが「大」、V相電圧VvとW相電圧Vwが「中」の大きさとなる。 When the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8 as in the embodiment, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. The W-phase voltage Vw becomes “H” during the period. The sum of the widths of the “H” periods is the magnitude of each phase voltage, and the U-phase voltage Vu is “large” and the V-phase voltage Vv and the W-phase voltage Vw are “medium” in the voltage vector V1.
 また、この図から明らかな如く、電圧ベクトルV1でも相電圧指令演算部33は各相電圧を「H」とするスイッチング素子のスイッチングタイミング(ON/OFFタイミング)を同期させ、且つ、U相電圧Vuの変化を、V相電圧VvとW相電圧Vwの変化で打ち消すような電圧指令値Vu’、Vv’、Vw’を生成する。これにより、電圧ベクトルV1でも、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 Further, as is apparent from this figure, the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” even at the voltage vector V1, and the U phase voltage Vu. Of voltage command values Vu′, Vv′, and Vw′ that cancel the changes of V phase voltage Vv and W phase voltage Vw. As a result, even in the voltage vector V1, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 (3-3)電圧ベクトルV1(その2)
 次に、図5を用いてもう一つの電圧ベクトルV1の生成について説明する。図5でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-3) Voltage vector V1 (2)
Next, generation of another voltage vector V1 will be described with reference to FIG. Also in FIG. 5, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示しているが、図5の場合には、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwはモータ8から流出する向きの場合である。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown, but in the case of FIG. 5, the U-phase current iu flows into the motor 8. Direction, the V-phase current iv, and the W-phase current iw are in the direction of flowing out from the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 前述した如く相電流がモータ8に流入する向きでは上アームスイッチング素子がONしているときに相電圧は「H」となり、相電流がモータ8から流出する向きでは下アームスイッチング素子がONしているときに相電圧は「H」となる。そのため、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwがモータ8から流出する向きの場合、電圧ベクトルV1を生成するために図4と同じタイミングでスイッチングすると、V相電流ivはモータ8から流出する向きであるため、V相の下アームスイッチング素子18EがONする前のデッドタイムに、上アームスイッチング素子18Bに接続されているフライホイールダイオード31に電流が流れ、図4中に破線Z1で示すようにV相電圧Vvが「H」のままとなってしまい、図4中に破線Z2で示すように中性点電位Vcが変動してしまうことになる。 As described above, the phase voltage becomes “H” when the upper arm switching element is ON in the direction in which the phase current flows into the motor 8, and the lower arm switching element is ON in the direction in which the phase current flows out from the motor 8. The phase voltage becomes "H" when it is on. Therefore, when the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow out of the motor 8, switching is performed at the same timing as in FIG. 4 to generate the voltage vector V1. Then, since the V-phase current iv is directed to flow out from the motor 8, a current flows to the flywheel diode 31 connected to the upper arm switching element 18B during the dead time before the V-phase lower arm switching element 18E is turned on. 4 and the V-phase voltage Vv remains “H” as indicated by the broken line Z1 in FIG. 4, and the neutral point potential Vc fluctuates as indicated by the broken line Z2 in FIG. Become.
 そこで、図5のような電流の向きの場合、相電圧指令演算部33は図5のようなタイミングで各スイッチング素子18A~18Fがスイッチングされるような電圧指令値Vu’、Vv’、Vw’を生成する。即ち、図5の場合はU相電流iuがモータ8に流入する向き、V相電流ivとW相電流iwがモータ8から流出する向きであるので、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相では下アームスイッチング素子18EがOFFしている期間にV相電圧Vvが「H」となり、W相でも下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となる。この「H」の期間の幅の総和が各相電圧の大きさとなり、この場合も電圧ベクトルV1はU相電圧Vuが「大」、V相電圧VvとW相電圧Vwが「中」の大きさとなる。 Therefore, in the case of the current direction as shown in FIG. 5, the phase voltage command calculation unit 33 causes the voltage command values Vu′, Vv′, Vw′ to switch the switching elements 18A to 18F at the timings shown in FIG. To generate. That is, in the case of FIG. 5, since the U-phase current iu flows into the motor 8 and the V-phase current iv and the W-phase current iw flow out of the motor 8, the upper arm switching element 18A is turned on in the U-phase. The U-phase voltage Vu becomes "H" during the V phase, the V-phase voltage Vv becomes "H" while the lower arm switching element 18E is OFF during the V phase, and the lower arm switching element 18F is OFF during the W phase. The W-phase voltage Vw becomes “H” during the period. The sum of the widths of the “H” periods is the magnitude of each phase voltage, and in this case as well, the voltage vector V1 is such that the U phase voltage Vu is “large” and the V phase voltage Vv and the W phase voltage Vw are “medium”. It becomes
 そして、この場合の電圧ベクトルV1では相電流の向きに応じて、相電圧指令演算部33が各相電圧を「H」とするスイッチング素子のスイッチングタイミング(ON/OFFタイミング)を同期させ、且つ、U相電圧Vuの変化を、V相電圧VvとW相電圧Vwの変化で打ち消すような電圧指令値Vu’、Vv’、Vw’に変更して出力する。これにより、この場合の電流の向きでも、電圧ベクトルV1で各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 In the voltage vector V1 in this case, the phase voltage command calculation unit 33 synchronizes the switching timing (ON/OFF timing) of the switching element that sets each phase voltage to “H” according to the direction of the phase current, and The change of the U-phase voltage Vu is changed to the voltage command values Vu′, Vv′, and Vw′ that are canceled by the change of the V-phase voltage Vv and the W-phase voltage Vw, and output. As a result, even in the direction of the current in this case, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw in the voltage vector V1, is always constant and does not change, so that common mode noise is eliminated. become.
 (3-4)電圧ベクトルV2
 次に、図6を用いて図2の電圧ベクトルV2の生成について説明する。図6でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-4) Voltage vector V2
Next, the generation of the voltage vector V2 in FIG. 2 will be described with reference to FIG. Also in FIG. 6, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′ and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。図6の例は、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向き、或いは、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwはモータ8から流出する向きの場合を示している。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown. In the example of FIG. 6, the U-phase current iu and the V-phase current iv flow in the motor 8, the W-phase current iw flows out of the motor 8, or the U-phase current iu flows in the motor 8. , V-phase current iv and W-phase current iw are shown in the direction in which they flow out from the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 この実施例でもU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となる。また、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwがモータ8から流出する向きである場合には、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相では下アームスイッチング素子18EがOFFしている期間にV相電圧Vvが「H」となり、W相でも下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となるが、V相電圧指令値Vv’は最高値で固定なので、電流の向きに関係なくV相電圧Vvには変化がなくなる。 Also in this embodiment, when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. The W-phase voltage Vw becomes “H” during the period. When the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow in the motor 8, the upper arm switching element 18A is turned on in the U-phase. The U-phase voltage Vu is "H" during the V phase, the V-phase voltage Vv is "H" during the V phase while the lower arm switching element 18E is OFF, and the lower arm switching element 18F is OFF during the W phase. While the W-phase voltage Vw becomes “H” during the period, the V-phase voltage command value Vv′ is fixed at the maximum value, and therefore the V-phase voltage Vv does not change regardless of the direction of the current.
 一方、U相電圧指令値Vu’とW相電圧指令値Vw’は低い値で固定なので、U相電圧VuとW相電圧Vwは同期して、且つ、相互に打ち消す方向に変化することになる。尚、電圧ベクトルV2はU相電圧VuとV相電圧Vvが「大」、W相電圧Vwが「小」の大きさとなる。これにより、電圧ベクトルV2でも、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 On the other hand, since the U-phase voltage command value Vu' and the W-phase voltage command value Vw' are fixed at low values, the U-phase voltage Vu and the W-phase voltage Vw change in a mutually canceling direction. .. The voltage vector V2 has a U-phase voltage Vu and a V-phase voltage Vv of “large” and a W-phase voltage Vw of “small”. As a result, even in the voltage vector V2, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 (3-5)電圧ベクトルV3
 次に、図7を用いて図2の電圧ベクトルV3の生成について説明する。図7でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-5) Voltage vector V3
Next, the generation of the voltage vector V3 shown in FIG. 2 will be described with reference to FIG. Also in FIG. 7, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′ and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。図7の例は、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向き、或いは、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwはモータ8から流出する向きの場合を示している。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown. In the example of FIG. 7, the U-phase current iu and the V-phase current iv flow in the motor 8, the W-phase current iw flows out of the motor 8, or the U-phase current iu flows in the motor 8. , V-phase current iv and W-phase current iw are shown in the direction in which they flow out from the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 この実施例でもU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となる。また、U相電流iuがモータ8に流入する向き、V相電流iv、及び、W相電流iwがモータ8から流出する向きである場合には、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相では下アームスイッチング素子18EがOFFしている期間にV相電圧Vvが「H」となり、W相でも下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となるが、V相電圧指令値Vv’は最高値で固定なので、電流の向きに関係なくV相電圧Vvには変化がなくなる。 Also in this embodiment, when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. The W-phase voltage Vw becomes “H” during the period. When the U-phase current iu flows in the motor 8 and the V-phase current iv and the W-phase current iw flow in the motor 8, the upper arm switching element 18A is turned on in the U-phase. The U-phase voltage Vu is "H" during the V phase, the V-phase voltage Vv is "H" during the V phase while the lower arm switching element 18E is OFF, and the lower arm switching element 18F is OFF during the W phase. While the W-phase voltage Vw becomes “H” during the period, the V-phase voltage command value Vv′ is fixed at the maximum value, and therefore the V-phase voltage Vv does not change regardless of the direction of the current.
 一方、U相電圧指令値Vu’とW相電圧指令値Vw’は中程度の値で固定なので、U相電圧VuとW相電圧Vwは同期して、且つ、相互に打ち消す方向に変化することになる。尚、電圧ベクトルV3はU相電圧Vuが「中」、V相電圧Vvが「大」、W相電圧Vwが「中」の大きさとなる。これにより、電圧ベクトルV3でも、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 On the other hand, since the U-phase voltage command value Vu′ and the W-phase voltage command value Vw′ are fixed at medium values, the U-phase voltage Vu and the W-phase voltage Vw should change in a mutually canceling direction. become. The voltage vector V3 has a U-phase voltage Vu of “medium”, a V-phase voltage Vv of “large”, and a W-phase voltage Vw of “medium”. As a result, even in the voltage vector V3, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 (3-6)電圧ベクトルV4
 次に、図8を用いて図2の電圧ベクトルV4の生成について説明する。図8でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-6) Voltage vector V4
Next, generation of the voltage vector V4 of FIG. 2 will be described with reference to FIG. Also in FIG. 8, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 この実施例ではU相電圧指令値Vu’、V相電圧指令値Vv’、W相電圧指令値Vw’が全て最高値で固定なので、電流の向きに関係なくU相電圧Vu、V相電圧Vv、W相電圧Vwには変化がなくなる。そして、電圧ベクトルV4はU相電圧Vuが「小」、V相電圧VvとW相電圧Vwが「大」の大きさとなる。この場合にも各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 In this embodiment, since the U-phase voltage command value Vu', the V-phase voltage command value Vv', and the W-phase voltage command value Vw' are all fixed at the highest values, the U-phase voltage Vu and the V-phase voltage Vv are irrespective of the direction of the current. , W-phase voltage Vw does not change. Then, the voltage vector V4 is such that the U-phase voltage Vu is “small” and the V-phase voltage Vv and the W-phase voltage Vw are “large”. Also in this case, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 (3-7)電圧ベクトルV5
 次に、図9を用いて図2の電圧ベクトルV5の生成について説明する。図9でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-7) Voltage vector V5
Next, generation of the voltage vector V5 of FIG. 2 will be described with reference to FIG. Also in FIG. 9, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。図9の例は、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きの場合を示している。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown. The example of FIG. 9 shows a case where the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 この実施例でもU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となるが、W相電圧指令値Vw’は最高値で固定なので、電流の向きに関係なくW相電圧Vwには変化がなくなる。 Also in this embodiment, when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. While the W-phase voltage Vw becomes “H” during the period, the W-phase voltage command value Vw′ is fixed at the maximum value, so that the W-phase voltage Vw does not change regardless of the direction of the current.
 一方、U相電圧指令値Vu’は中程度の値で固定、V相電圧指令値Vv’はU相よりも高い中程度の値で固定である。これらの値は、デッドタイムを考慮してU相電圧VuとV相電圧Vwが同期し、且つ、相互に打ち消す方向に変化する値とされる。尚、電圧ベクトルV5はU相電圧Vuが「中」、V相電圧Vvが「中」、W相電圧Vwが「大」の大きさとなる。これにより、電圧ベクトルV5でも、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 On the other hand, the U-phase voltage command value Vu' is fixed to a medium value, and the V-phase voltage command value Vv' is fixed to a medium value higher than the U-phase. These values are values in which the U-phase voltage Vu and the V-phase voltage Vw are synchronized with each other in consideration of the dead time and change in a direction in which they cancel each other. The voltage vector V5 has a U-phase voltage Vu of “medium”, a V-phase voltage Vv of “medium”, and a W-phase voltage Vw of “large”. As a result, even in the voltage vector V5, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 (3-8)電圧ベクトルV6
 次に、図10を用いて図2の電圧ベクトルV6の生成について説明する。図10でも最上段はU相電圧指令値Vu’、V相電圧指令値Vv’、及び、W相電圧指令値Vw’と三角キャリアX1~X4を示し、上から二段目は各スイッチング素子18A~18FのON/OFF状態、下から二段目はモータ8に印加されるU相電圧Vu、V相電圧Vv、W相電圧Vw、最下段はモータ8の中性点電位Vcをそれぞれ示している。
(3-8) Voltage vector V6
Next, generation of the voltage vector V6 of FIG. 2 will be described with reference to FIG. Also in FIG. 10, the uppermost stage shows the U-phase voltage command value Vu′, the V-phase voltage command value Vv′, the W-phase voltage command value Vw′, and the triangular carriers X1 to X4, and the second stage from the top shows each switching element 18A. 18F ON/OFF state, the second stage from the bottom shows the U-phase voltage Vu, V-phase voltage Vv, W-phase voltage Vw applied to the motor 8, and the bottom stage shows the neutral point potential Vc of the motor 8. There is.
 また、同様に右側にモータ8に流れるU相電流iu、V相電流iv、及び、W相電流iwの向きを示している。図9の例は、U相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きの場合を示している。 Similarly, on the right side, the directions of the U-phase current iu, the V-phase current iv, and the W-phase current iw flowing in the motor 8 are shown. The example of FIG. 9 shows a case where the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8.
 尚、PWM信号生成部36の動作については前述と同様である。また、同様に相電圧指令演算部33は、実施例ではU相の下アームスイッチング素子18DがONし、V相の上アームスイッチング素子18B、及び、W相の上アームスイッチング素子18CがONしている状態からスイッチングの規定区間を開始する。 The operation of the PWM signal generator 36 is the same as described above. Similarly, in the phase voltage command calculation unit 33, in the embodiment, the U-phase lower arm switching element 18D is turned on, and the V-phase upper arm switching element 18B and the W-phase upper arm switching element 18C are turned on. The specified section of switching is started from the state in which it is present.
 この実施例でもU相電流iu、及び、V相電流ivがモータ8に流入する向き、W相電流iwはモータ8から流出する向きである場合、U相では上アームスイッチング素子18AがONしている期間にU相電圧Vuが「H」となり、V相でも上アームスイッチング素子18BがONしている期間にV相電圧Vvが「H」となり、W相では下アームスイッチング素子18FがOFFしている期間にW相電圧Vwが「H」となるが、W相電圧指令値Vw’は最高値で固定なので、電流の向きに関係なくW相電圧Vwには変化がなくなる。 Also in this embodiment, when the U-phase current iu and the V-phase current iv flow in the motor 8 and the W-phase current iw flows in the motor 8, the upper arm switching element 18A is turned on in the U phase. The U-phase voltage Vu becomes "H" during the period when the upper arm switching element 18B is ON even in the V phase, and the V-phase voltage Vv becomes "H" during the period when the upper arm switching element 18B is ON, and the lower arm switching element 18F is OFF during the W phase. While the W-phase voltage Vw becomes “H” during the period, the W-phase voltage command value Vw′ is fixed at the maximum value, so that the W-phase voltage Vw does not change regardless of the direction of the current.
 一方、U相電圧指令値Vu’は小さい値で固定、V相電圧指令値Vv’は小さい値であるがU相よりも高い値で固定である。これらの値は、デッドタイムを考慮してU相電圧VuとV相電圧Vwが同期し、且つ、相互に打ち消す方向に変化する値とされる。尚、電圧ベクトルV6はU相電圧Vuが「大」、V相電圧Vvが「小」、W相電圧Vwが「大」の大きさとなる。これにより、電圧ベクトルV6でも、各相電圧Vu、Vv、Vwの平均である中性点電位Vcは常に一定となり、変化しなくなるので、コモンモードノイズが解消されることになる。 On the other hand, the U-phase voltage command value Vu' is fixed to a small value, and the V-phase voltage command value Vv' is a small value but fixed to a value higher than the U-phase. These values are values in which the U-phase voltage Vu and the V-phase voltage Vw are synchronized with each other in consideration of the dead time and change in a direction in which they cancel each other. The voltage vector V6 has a U-phase voltage Vu of “large”, a V-phase voltage Vv of “small”, and a W-phase voltage Vw of “large”. As a result, even in the voltage vector V6, the neutral point potential Vc, which is the average of the phase voltages Vu, Vv, and Vw, is always constant and does not change, so that the common mode noise is eliminated.
 以上詳述した如く本発明では制御装置21が、各相の上下アームスイッチング素子18A~18Fのスイッチングタイミングを同期させ、且つ、モータ8に印加される相電圧Vu、Vv、Vwの変化を、他の相電圧の変化で打ち消すような電圧指令値Vu’、Vv’、Vw’を生成するようにしたので、スイッチング素子18A~18Fのスイッチングタイミングによりモータ8の中性点電位Vcの変動を解消、若しくは、著しく抑制することができるようになる。これにより、コモンモードノイズの発生を効果的に解消、若しくは、抑制することが可能となる。 As described above in detail, in the present invention, the control device 21 synchronizes the switching timings of the upper and lower arm switching elements 18A to 18F for each phase, and changes the phase voltages Vu, Vv, Vw applied to the motor 8 to other values. Since the voltage command values Vu′, Vv′, and Vw′ that are canceled by the change in the phase voltage of are generated, the fluctuation of the neutral point potential Vc of the motor 8 is eliminated by the switching timing of the switching elements 18A to 18F. Alternatively, it becomes possible to remarkably suppress it. This makes it possible to effectively eliminate or suppress the occurrence of common mode noise.
 また、実施例では制御装置21がモータ8に流れる電流iu、iv、iwの向きに応じて上下アームスイッチング素子18A~18Fのスイッチングタイミングが同期し、且つ、相電圧Vu、Vv、Vwの変化が、他の相電圧の変化で打ち消されるように電圧指令値Vu’、Vv’、Vw’を変更するので、モータ8に流れる電流の向きに関わらず、支障無く中性点電位Vcの変動を解消、若しくは、抑制することができるようになる。 Further, in the embodiment, the control device 21 synchronizes the switching timings of the upper and lower arm switching elements 18A to 18F according to the directions of the currents iu, iv, and iw flowing in the motor 8, and changes in the phase voltages Vu, Vv, Vw. , The voltage command values Vu′, Vv′, and Vw′ are changed so as to be canceled by the change in the other phase voltage, so that the fluctuation of the neutral point potential Vc can be eliminated without any problem regardless of the direction of the current flowing through the motor 8. Or, it becomes possible to suppress.
 また、実施例では制御装置21が、何れか一相の下アームスイッチング素子(実施例では18D)がONし、他の二相の上アームスイッチング素子(実施例では18B、18C)がONしている状態からスイッチングの規定区間を開始するので、各相電圧Vu、Vv、Vwの変化を他の相電圧の変化で円滑に打ち消すことができるようになる。 In the embodiment, the control device 21 turns on one of the lower arm switching elements (18D in the embodiment) of one phase and turns on the other upper arm switching elements of the two phases (18B and 18C in the embodiment). Since the specified section of switching is started from the state in which it is present, changes in each phase voltage Vu, Vv, Vw can be smoothly canceled by changes in other phase voltages.
 尚、実施例とは逆に、制御装置21が、何れか二相の下アームスイッチング素子がONし、他の一相の上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始するようにしても、実施例と同様に各相電圧Vu、Vv、Vwの変化を他の相電圧の変化で円滑に打ち消すことができるようになる。 Contrary to the embodiment, the control device 21 starts the specified section of switching from a state in which the lower arm switching element of any two phases is turned on and the upper arm switching element of another one phase is turned on. Even in this case, the change in each phase voltage Vu, Vv, Vw can be smoothly canceled by the change in the other phase voltage as in the embodiment.
 また、流れる電流の大きさとスイッチング素子の特性によって、ゲート信号からスイッチング動作までの遅延時間及びスイッチング速度が変化する。そのため、より正確に中性点電位Vcの変動を解消、若しくは、抑制するために、スイッチング素子に流れる電流の大きさと使用するスイッチング素子の特性により、PWM信号生成部36が各ハーフブリッジ回路19U~19W毎にゲート信号の出力タイミングを微調整してもよい。この微調整のための演算に使用するスイッチング素子に流れる電流の大きさは、検出及び推定したモータ8に流れる電流の値により求めることができる。 Also, the delay time from the gate signal to the switching operation and the switching speed change depending on the magnitude of the flowing current and the characteristics of the switching element. Therefore, in order to eliminate or suppress the fluctuation of the neutral point potential Vc more accurately, the PWM signal generation unit 36 causes each of the half bridge circuits 19U to be different depending on the magnitude of the current flowing through the switching element and the characteristics of the switching element used. The output timing of the gate signal may be finely adjusted every 19W. The magnitude of the current flowing through the switching element used for the calculation for this fine adjustment can be obtained from the detected and estimated value of the current flowing through the motor 8.
 更に、実施例で示した電圧ベクトルV0~V6はそれに限られるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能である。また、実施例では電動コンプレッサのモータを駆動制御するインバータ装置に本発明を適用したが、それに限らず、各種機器のモータの駆動制御に本発明は有効である。 Furthermore, the voltage vectors V0 to V6 shown in the embodiment are not limited to those, and can be changed without departing from the spirit of the present invention. Further, although the present invention is applied to the inverter device that drives and controls the motor of the electric compressor in the embodiment, the present invention is not limited to this, and the present invention is effective for drive control of the motor of various devices.
 1 インバータ装置
 8 モータ
 10 上アーム電源ライン
 15 下アーム電源ライン
 18A~18F 上下アームスイッチング素子
 19U U相ハーフブリッジ回路
 19V V相ハーフブリッジ回路
 19W W相ハーフブリッジ回路
 21 制御装置
 26A、26B 電流センサ
 28 三相インバータ回路
 33 相電圧指令演算部
 36 PWM信号生成部
 37 ゲートドライバ
1 Inverter device 8 Motor 10 Upper arm power supply line 15 Lower arm power supply line 18A-18F Upper and lower arm switching element 19U U phase half bridge circuit 19V V phase half bridge circuit 19W W phase half bridge circuit 21 Control device 26A, 26B Current sensor 28 Three Phase inverter circuit 33 Phase voltage command calculator 36 PWM signal generator 37 Gate driver

Claims (5)

  1.  上アーム電源ライン及び下アーム電源ライン間に、各相毎に上アームスイッチング素子と下アームスイッチング素子を直列接続し、これら各相の上下アームスイッチング素子の接続点の電圧を三相交流出力としてモータに印加するインバータ回路と、
     該インバータ回路の前記各相の上下アームスイッチング素子のスイッチングを制御する制御装置を備えたインバータ装置において、
     前記制御装置は、前記各相の上下アームスイッチング素子のスイッチングタイミングを同期させ、且つ、前記モータに印加される相電圧の変化を、他の相電圧の変化で打ち消すことを特徴とするインバータ装置。
    An upper arm switching element and a lower arm switching element are connected in series for each phase between the upper arm power line and the lower arm power line, and the voltage at the connection point of the upper and lower arm switching elements for each phase is used as a three-phase AC output for the motor. An inverter circuit for applying to
    In an inverter device comprising a control device for controlling switching of the upper and lower arm switching elements of each phase of the inverter circuit,
    The said control apparatus synchronizes the switching timing of the upper-and-lower arm switching element of each said phase, and cancels the change of the phase voltage applied to the said motor by the change of another phase voltage, The inverter apparatus characterized by the above-mentioned.
  2.  前記制御装置は、前記各相の上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、前記相電圧の変化が前記他の相電圧の変化で打ち消される前記各相の電圧指令値を生成して前記インバータ回路を制御することを特徴とする請求項1に記載のインバータ装置。 The control device generates the voltage command value of each phase in which the switching timings of the upper and lower arm switching elements of each phase are synchronized, and the change in the phase voltage is canceled by the change in the other phase voltage. The inverter device according to claim 1, which controls an inverter circuit.
  3.  前記制御装置は、前記モータに流れる電流の向きに応じて前記上下アームスイッチング素子のスイッチングタイミングが同期し、且つ、前記相電圧の変化が前記他の相電圧の変化で打ち消されるように前記電圧指令値を変更することを特徴とする請求項1又は請求項2に記載のインバータ装置。 The control device synchronizes the switching timings of the upper and lower arm switching elements in accordance with the direction of the current flowing through the motor, and changes the phase voltage by canceling the change in the other phase voltage. The value is changed, The inverter apparatus of Claim 1 or Claim 2 characterized by the above-mentioned.
  4.  前記制御装置は、何れか一相の前記下アームスイッチング素子がONし、他の二相の前記上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始することを特徴とする請求項1乃至請求項3のうちの何れかに記載のインバータ装置。 The control device starts a specified section of switching from a state in which the lower arm switching element of any one phase is turned on and the upper arm switching elements of the other two phases are turned on. The inverter device according to any one of claims 1 to 3.
  5.  前記制御装置は、何れか二相の前記下アームスイッチング素子がONし、他の一相の前記上アームスイッチング素子がONしている状態からスイッチングの規定区間を開始することを特徴とする請求項1乃至請求項3のうちの何れかに記載のインバータ装置。 The control device starts a specified section of switching from a state in which the lower arm switching element of any two phases is turned on and the upper arm switching element of another one phase is turned on. The inverter device according to any one of claims 1 to 3.
PCT/JP2020/006457 2019-02-22 2020-02-19 Inverter device WO2020171110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080014357.9A CN113454899A (en) 2019-02-22 2020-02-19 Inverter device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019030478A JP7221726B2 (en) 2019-02-22 2019-02-22 Inverter device
JP2019-030478 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020171110A1 true WO2020171110A1 (en) 2020-08-27

Family

ID=72144000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/006457 WO2020171110A1 (en) 2019-02-22 2020-02-19 Inverter device

Country Status (3)

Country Link
JP (1) JP7221726B2 (en)
CN (1) CN113454899A (en)
WO (1) WO2020171110A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022112158A (en) * 2021-01-21 2022-08-02 サンデン株式会社 Inverter device
JP2023014917A (en) * 2021-07-19 2023-01-31 サンデン株式会社 Inverter device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169480A (en) * 2001-11-30 2003-06-13 Toshiba Corp Control apparatus for neutral point clamp system power converter
JP2012010596A (en) * 2006-03-31 2012-01-12 Fujitsu General Ltd Power converter
JP2015061381A (en) * 2013-09-18 2015-03-30 株式会社デンソー Power conversion apparatus, and electric power steering device using the same
JP2016010278A (en) * 2014-06-26 2016-01-18 富士電機株式会社 Control device for inverter
JP2016208664A (en) * 2015-04-22 2016-12-08 株式会社日本自動車部品総合研究所 Inverter controller

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169480A (en) * 2001-11-30 2003-06-13 Toshiba Corp Control apparatus for neutral point clamp system power converter
JP2012010596A (en) * 2006-03-31 2012-01-12 Fujitsu General Ltd Power converter
JP2015061381A (en) * 2013-09-18 2015-03-30 株式会社デンソー Power conversion apparatus, and electric power steering device using the same
JP2016010278A (en) * 2014-06-26 2016-01-18 富士電機株式会社 Control device for inverter
JP2016208664A (en) * 2015-04-22 2016-12-08 株式会社日本自動車部品総合研究所 Inverter controller

Also Published As

Publication number Publication date
CN113454899A (en) 2021-09-28
JP2020137329A (en) 2020-08-31
JP7221726B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
US10128739B2 (en) Power conversion device
JP5521914B2 (en) Power conversion device and electric power steering device using the same
CN104578810A (en) Matrix converter
US11489474B2 (en) Driving device for rotating electric machine
TW200924366A (en) Matrix converter
WO2020171110A1 (en) Inverter device
WO2014020884A1 (en) Motor drive apparatus
WO2021020231A1 (en) Inverter device
WO2019171856A1 (en) Power conversion device
JP2008154431A (en) Motor controller
WO2020246355A1 (en) Power conversion device
US20230006594A1 (en) Rotary electric machine control apparatus
JP2005124305A (en) Two-phase modulation control type inverter device
JP7394619B2 (en) inverter device
WO2022158195A1 (en) Inverter device
JP2013135516A (en) Electric power conversion system and air conditioner
CN113366756A (en) Drive device for rotating electric machine
WO2023136340A1 (en) Power conversion device
JP7144903B1 (en) Power conversion device, generator motor control device, and electric power steering device
JP2003209999A (en) Motor controller
JP7148463B2 (en) Control devices, electric vehicles
JP2010206983A (en) Railway-vehicle drive controller
JP6477397B2 (en) Power control method and power control apparatus
JP2023081503A (en) power converter
KR20180137994A (en) Power transforming apparatus and air conditioner including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20759330

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20759330

Country of ref document: EP

Kind code of ref document: A1