WO2017086609A1 - Porous carbon structure using intrinsically microporous polymer, and battery electrode including same - Google Patents

Porous carbon structure using intrinsically microporous polymer, and battery electrode including same Download PDF

Info

Publication number
WO2017086609A1
WO2017086609A1 PCT/KR2016/011579 KR2016011579W WO2017086609A1 WO 2017086609 A1 WO2017086609 A1 WO 2017086609A1 KR 2016011579 W KR2016011579 W KR 2016011579W WO 2017086609 A1 WO2017086609 A1 WO 2017086609A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
porous
polymer
present
electrode
Prior art date
Application number
PCT/KR2016/011579
Other languages
French (fr)
Korean (ko)
Inventor
전준우
한재희
김병각
김태호
원종찬
김용석
유영재
홍영택
이장용
윤상준
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2017086609A1 publication Critical patent/WO2017086609A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous carbon structure using an intrinsic microporosity polymer, a manufacturing method thereof, and a battery electrode using the same.
  • the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent A porous structure forming step of forming a porous structure from the polymer homogeneous solution through non-solvent induced phase separation (NIPS); And a carbonization step of carbonizing the porous structure, while having an asymmetric macro-pore structure and an intrinsic microporous polymer carbonized in the cross section prepared through the method.
  • the present invention relates to a porous carbon structure including a formed meso-pore structure and an intrinsic micro-pore structure, and a battery electrode including the same.
  • the porous carbon material has a high surface area and structural characteristics, and thus is widely used in energy fields such as fuel cells, batteries, and supercapacitors such as catalyst carriers, electrode materials, and electric double layer materials.
  • Korean Patent No. 10-0927718 describes a technique for a porous carbon structure that can be used as an electrode catalyst for a fuel cell
  • Korean Patent No. 10-1092327 describes a porous structure used as a thermoelectric material.
  • a technique for carbon nanotube film is disclosed.
  • PIMs intrinsic microporosity
  • the porous carbon material is used as an electrochemical catalyst and an electrode material
  • the carbon of macropores should be produced in the form of a carbon material having a two-dimensional structure or a carbon structure having a three-dimensional structure using a binder.
  • Structural structures are facing limitations in various fields such as limited use, film forming contact area, dispersion, and electrical resistance.
  • the polymer binder generally used in the slurry process which is a conventional electrode manufacturing method, must be improved as one factor that hinders the performance of the electrode.
  • An object of the present invention is to provide a three-dimensional carbon structure having a further improved porosity, a method of manufacturing the same and a battery electrode using the same.
  • an intrinsic microporosity polymer to form a porous structure having an asymmetric macro-pore structure in the cross-section and carbonization of the meso pores formed by carbonization of the intrinsic microporous polymer It is to provide a three-dimensional carbon structure having a more improved porosity, characterized in that it comprises a -pore) structure and an intrinsic micro-pore structure and a carbon electrode for a battery manufactured using the same.
  • the present invention is to improve the performance of the electrode by producing a porous carbon electrode without a polymer binder generally used in the slurry process which is a conventional electrode manufacturing method.
  • the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent A porous structure forming step of forming a porous structure through non-solvent induced phase separation from the polymer homogeneous solution; And a carbonization step of carbonizing the porous structure.
  • the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (1).
  • X is selected from the group consisting of X1, X2, X3 and X4, and Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .
  • the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (2).
  • Z is selected from the group consisting of Z1, Z2, Z3, Z4, and Z5.
  • the porous structure forming step may include a non-solvent contact step of contacting the polymer uniform solution with the non-solvent.
  • the forming of the porous structure may include a precursor manufacturing step of preparing a precursor using a polymer homogeneous solution and a nonsolvent contacting step of contacting the precursor with a nonsolvent.
  • the good solvent and non-solvent may be a single solvent or a mixed solvent.
  • the precursor may be any one of gel-like particles, fibers, films or three-dimensional shapes in which both good solvents are not removed.
  • the porous structure may include an asymmetric macro-pore structure in the cross section.
  • porous carbon structure according to the present invention is prepared according to the manufacturing method, an asymmetric macro-pore structure in the cross-section, the meso-pore structure (meso-pore) structure and intrinsic formed while the intrinsic microporous polymer is carbonized It may include an intrinsic micro-pore structure.
  • an asymmetric macro-pore structure, a meso-pore structure and an intrinsic micro-pore structure formed while the intrinsic microporous polymer is carbonized in the cross section according to the present invention Porous carbon structure is a battery electrode, the effect is very excellent.
  • Non-solvent induced phase separation using the intrinsic microporous polymer according to the present invention can produce a carbon structure having a three-dimensional porous structure.
  • the porous carbon structure using the intrinsic microporous polymer according to the present invention has an asymmetric macropore structure in the cross section, a meso-pore structure and an intrinsic micropore formed while the intrinsic microporous polymer is carbonized. micro-pore) structure.
  • the battery electrode using a porous carbon structure according to the present invention has a very large specific capacitance, so has a very excellent performance as a battery electrode.
  • FIG. 1 is a photograph of an intrinsic microporous polymer membrane prepared by non-solvent induction phase separation according to an embodiment of the present invention and an electrode prepared by carbonizing it.
  • FIG. 2 is a scanning electron microscope (SEM) photograph showing a dense membrane cross section of an intrinsic microporous polymer membrane and an intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to an embodiment of the present invention.
  • SEM scanning electron microscope
  • Figure 4 is a scanning electron microscope showing the surface change of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method according to the content of tetrahydrofuran (THF) in the mixed solvent according to an embodiment of the present invention (SEM) picture.
  • THF tetrahydrofuran
  • Figure 5 is a graph showing the BET measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by another non-solvent induction phase separation method in an embodiment of the present invention.
  • FIG. 6 is a graph illustrating CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by non-solvent induction phase separation according to an embodiment of the present invention, and an electrode having a compact carbonized structure.
  • FIG. 7 is a graph showing the results of CV measurement according to the scanning speed of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by the non-solvent induction phase separation method according to an embodiment of the present invention.
  • FIG. 8 is a graph illustrating CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to THF content according to an embodiment of the present invention.
  • the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent A porous structure forming step of forming a porous structure through non-solvent induced phase separation from the polymer homogeneous solution; And a carbonization step of carbonizing the porous structure.
  • the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (1).
  • X is selected from the group consisting of X1, X2, X3 and X4, and Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .
  • the intrinsic microporous polymer of Chemical Formula 1 may be a polymer prepared through Scheme 1 below.
  • X in Scheme 1 is selected from the group consisting of X1, X2, X3 and X4, Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .
  • Tables 1 and 2 below describe combinations of monomers X and Y necessary for the preparation of more preferred intrinsic microporous polymers according to the present invention.
  • Polymer 1 Polymer 2 Polymer 3 Polymer 4 Polymer 5 Polymer 6 Polymer 7 Polymer 8 Polymer 9 Polymer 10 X1 + Y1 X1 + Y2 X1 + Y3 X2 + Y1 X2 + Y2 X3 + Y2 X1 + Y4 X4 + Y4 X1 + Y5 X4 + Y5
  • the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (2).
  • Z is selected from the group consisting of Z1, Z2, Z3, X4 and Z5.
  • the intrinsic microporous polymer of Chemical Formula 2 may be prepared through the following Scheme 2. That is, various functional groups may be provided through chemical modification of the nitrile group (-CN) in the repeating unit structure of the polymer 1 of Table 1 above.
  • the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (3).
  • the porous structure forming step may include a non-solvent contact step of contacting the polymer uniform solution with the non-solvent.
  • the good solvent and non-solvent may be a single solvent or a mixed solvent.
  • the good solvent may be a single solvent or a mixed solvent.
  • the good solvent of the intrinsic microporous polymer according to the present invention is tetrahydrofuran (THF), chloroform (CHCl 3 ), meta-cresol (m-cresol), dichlorobenzene, N-methyl-2-pyrrolidone (NMP), dimethyl Sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (MDF), methyl ethyl ketone (MEK), acetone, triethyl phosphate (TEP), dichloromethane (DCM), triethyl glycol (TEG) , Caprolactam, butyrolactone, cyclohexane, toluene, dioxane, butyl acetate (n-BA), methyl chloride, hexafluoroisopropanol (HFIP), chlorobenzene, etc.
  • THFIP hexafluoroisopropan
  • Ethanol lithium chloride (LiCl), polyvinylpyrrolidone (PVP), diethyl glycol (DEG), butanol (1-butanol), ethyl acetate (AA), Naproxen, methanol, calcium chloride (CaCl 2 ), Single solvent or mixed solvent selected from the group consisting of glycerol Can.
  • the good solvent according to the present invention is preferably tetrahydrofuran (THF), chloroform (CHCl 3 ), meta-cresol, dichlorobenzene and a mixed solvent thereof.
  • the good solvent of the polymer 1 shown in Table 1 is more preferably a mixed solvent of tetrahydrofuran (THF) and chloroform (CHCl 3 ), and more preferably the good solvent of the polymers 2 to 6 is tetrahydrofuran (FHF).
  • the good solvent of the polymers 7 to 9 is more preferably chloroform (CHCl 3 ), and the good solvent of the polymer 10 is more preferably meta-cresol.
  • the non-solvent is cyclohexanone, isophorone, ⁇ -butyrolactone, methylyi, which are alcohols such as methanol, ethanol, isopropyl alcohol, and poor solvents. It may be one or more mixtures selected from the group consisting of pediatric milk ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, acetone, water, and glycerol triacetate. More preferably, the nonsolvent is an alcohol such as methanol, ethanol or isopropyl alcohol.
  • the forming of the porous structure may include a precursor manufacturing step of preparing a precursor using a polymer homogeneous solution and a nonsolvent contacting step of contacting the precursor with a nonsolvent.
  • the precursor may be any one of gel-like particles, fibers, films or three-dimensional shapes in which both good solvents are not removed.
  • the homogeneous solution of the intrinsic microporous polymer dissolved in the good solvent may be molded into any desired form.
  • a known molding method using a solution may be used, and the shape to be molded is not limited.
  • the shape of the molding can be formed into a porous structure through the non-solvent induced phase separation method in the form of gel particles, fibrous, film and three-dimensional form of them are all possible.
  • the three-dimensional precursor is more preferably in a state in which both good solvents are not removed.
  • the uniform solution may be prepared to have a variety of sizes from several nm to several cm while having a variety of forms, such as full sphere, hemispherical, etc. through various spray methods, precipitation methods.
  • fibrous precursor it can be produced in various lengths without limitation and various widths from several nm to several cm through the spinning method, printing method, etc. used in the manufacture of various fibers including electrospinning.
  • film forming methods such as a blade (doctor blade), printing, etc., it can be manufactured with a thickness of several um to several cm without limit.
  • a microporous polymer solution may be introduced onto a three-dimensional substrate made of various materials such as a metal net, or stacked with particles having insoluble properties in a used solvent in a three-dimensional structure and then introduced into the polymer solution.
  • the homogeneous solution is prepared in the form of a precipitate by adding an excessive amount to the non-solvent.
  • Non-solvent Induced Phase Separation is a process in which the solvent is extracted by contacting the polymer solution with the non-solvent and causes phase separation. It is to use.
  • the polymer solution formed by dissolving the polymer in a suitable solvent is molded and then immersed in a coagulation bath containing a non-solvent, the solvent in the polymer solution is extracted, the polymer forms a matrix, and the solvent is removed to form pores.
  • the precursor is non-solvent induced by immersing the gel-like particles, fibers, films, and polymerized three-dimensional precursors thereof in a state in which all of the good solvents according to the present invention are not removed.
  • the porous structure is formed by phase separation.
  • the porous structure according to the non-solvent induced phase separation method according to the present invention can be manufactured in various forms, including symmetric cellular structure, bicontinuous type structure, asymmetric cellular structure, and nodular ( It can be produced in the form of nodular, finger structure (finger type) or a three-dimensional porous structure of the hydrogel (hydrogel) form.
  • a structure in the form of a hydrogel having a three-dimensional porous structure is most preferable.
  • the porous structure according to the method of manufacturing a porous carbon structure according to the present invention may be an asymmetric porous structure thereof. More specifically, the gel-like particles, fibers, films, and polymerized three-dimensional precursors thereof, in which both good solvents are not removed by non-solvent induced phase separation, are contacted with the non-solvent when immersed in the non-solvent. From the start of the solidification of the polymer, the mixture of the good solvent and the non-solvent can form a porous structure of the porous structure of the cross-section of the asymmetric porous structure in the form of fine pores toward the inside toward the inside from the large pores. Representatively, the form may comprise a sponge like structure. Finger-like or sponge-like structures can be prepared from nonsolvent-induced phase separation and, when properly mixed with solvents, also form sponge-like structures. can do.
  • the phase separation method is not limited to the non-solvent induced phase separation method (NIPS), but the vapor-induced phase separation method (VIPS), Various phase separation methods such as reaction-induced phase separation (RIPS) and thermal induced phase separation (TIPS) may be used to prepare porous structures having the same or similar structure.
  • NIPS non-solvent induced phase separation method
  • VIPS vapor-induced phase separation method
  • RIPS reaction-induced phase separation
  • TIPS thermal induced phase separation
  • the porous carbon structure according to the present invention is a carbonized intrinsic microporous polymer precursor having a porous structure through a phase separation method.
  • the carbonization of the porous structure used in the present invention is performed at high temperature in the presence of high purity hydrogen, nitrogen, or a mixed gas thereof. It can be carried out by heating using.
  • some of the active gas such as carbon dioxide or oxygen may be used to increase the carbonization effect. Heating temperature and time can be variously adjusted.
  • the porous structure may include an asymmetric macro-pore structure in the cross section.
  • porous carbon structure according to the present invention is prepared according to the manufacturing method, an asymmetric macro-pore structure in the cross-section, the meso-pore structure (meso-pore) structure and intrinsic formed while the intrinsic microporous polymer is carbonized It may include an intrinsic micro-pore structure.
  • an asymmetric macro-pore structure, a meso-pore structure and an intrinsic micro-pore structure formed while the intrinsic microporous polymer is carbonized in the cross section according to the present invention is a battery electrode, and the effect is very excellent.
  • Electrode prepared from the non-solvent induced phase separation method of the present invention is a macro-pore, meso-pore, micro-pore appropriately formed to exhibit a three-dimensional porous structure characteristics Therefore, it is easy to access the electrolyte ions into the electrode, and as a result, it is possible to accumulate a lot of charges, which is excellent as a battery electrode.
  • the porous structure electrode manufactured as described above has a high electrical conductivity and excellent stability because it is a monolith type electrode that does not use a binder for electrode production, which causes resistance increase and affects electrochemical stability.
  • the porous structure electrode of the present invention can be used as an electrode for a supercapacitor using an aqueous system and an electrolyte, and can exhibit high capacitance and high output.
  • the porous structure electrode of the present invention may be utilized as an electrode of various secondary batteries such as lithium ion battery, sodium ion battery, lithium sulfur battery, sodium sulfur battery, and lithium air battery.
  • TTSBI 3,3,3 ', 3'-tetramethyl-1,1'-spirobisindane
  • TFTPN -tetrafluoroterephthalonitrile
  • the dense polymer membrane used as a comparative example uses dichlorobenzene as a solvent, uniformly dissolves the polymer powder (polymer 1, 1 g of the actual amount used) by 4 wt% of solid contents, and removes the doctor blade. Cast to a thickness of 300 um and dried at 80 ° C. under a nitrogen atmosphere to produce a dense membrane.
  • Polymer powder (polymer 1, 1 g) was dissolved in a mixed solvent (dichlorobenzene / THF) to make a homogeneous solution.
  • a homogeneous solution was prepared under the same conditions as a dense membrane at 4 wt% of solid contents.
  • the homogeneous solution was cast to a thickness of 300 um using a doctor blade and simultaneously precipitated in a non-solvent to prepare a porous precursor.
  • methanol at room temperature was used as the non-solvent used.
  • a porous precursor was prepared by varying the mass ratio of THF in the mixed solvent under the same conditions as described above.
  • Carbonization of the porous structure used in the present invention is a high-purity hydrogen (H 2) in a condition that excludes any carbon dioxide and oxygen (CO 2 or O 2 ) Into the furnace (furnace) at 100cc / min and the temperature was raised to 1100 o C to carbonize the porous precursor and dense membrane for about 30 minutes to 3 hours to prepare a carbonized three-dimensional porous structure electrode.
  • H 2 high-purity hydrogen
  • the specific surface area, pore size, and pore volume of the carbonized electrode with actual three-dimensional porous structure were confirmed by BET analysis using N 2 gas at 77 K.
  • the pore size was measured using the Horvath-Kawazoe plot, and mesopores and macropores below 300 nm were measured using BET.
  • the electrochemical properties of the carbonized porous electrode prepared from the phase separation method according to the present invention were confirmed. Carbonized porous electrodes and dense membranes were used as the electrodes, and the electrolytes were measured from a 3-electrode method (half-cell test) using an aqueous electrolyte (1.0 MH 2 SO 4 aqueous solution). At this time, the temperature conditions were all analyzed at room temperature.
  • Figure 1 (a) shows the intrinsic microporous polymer membrane prepared by non-solvent induction phase separation method according to an embodiment of the present invention
  • Figure 1 (b) shows an electrode prepared by carbonizing it. No cracking was observed in the carbonized porous structure electrode, and it was confirmed that the electrode could be used as a monolith type electrode without any polymer binder.
  • Figure 2 (a) is a scanning electron microscope (SEM) photograph showing a cross-section of the dense membrane of the intrinsic microporous polymer membrane
  • Figure 2 (b) is a cross-sectional view of the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method.
  • the cross section of the film is a dense structure
  • the intrinsic micromachine produced by the non-solvent induced phase separation method It can be seen that the cross section of the porous polymer membrane is a sponge-like structure of micropores.
  • the porous structure showing the sponge-like structure of micropores may improve the electrochemical properties by facilitating the movement of electrolyte ions relative to the dense membrane.
  • Figure 3 (a) is a scanning electron microscope (SEM) photograph of the surface of the electrode prepared by carbonizing the intrinsic microporous polymer membrane (cNPIM-8) prepared by a non-solvent induction phase separation method according to an embodiment of the present invention
  • Figure 3 (b) shows a scanning electron microscope (SEM) picture of the cross section of the electrode.
  • the dense membrane without the non-solvent induced phase separation shows a dense membrane even after carbonization
  • the porous structure showing the sponge structure characteristics of the microporous prepared from the non-solvent induced phase separation method also has no crushing or breaking of chain-chain after carbonization. It showed a microporous sponge structure.
  • Figure 4 is a scanning electron microscope showing the surface change of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method according to the content of tetrahydrofuran (THF) in the mixed solvent according to an embodiment of the present invention (SEM) picture.
  • THF tetrahydrofuran
  • Figure 5 is a graph showing the BET measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induction phase separation method according to an embodiment of the present invention.
  • cNPIM-0 is the data of dense membrane and cNPIM-7 is the electrode of 80% carbonization.
  • Table 3 shows the results of measuring the specific surface area of the carbonized electrode having a porous structure according to the present invention. Dense film (cNPIM-0) is 2086.7 m 2 / g, the carbonized porous electrode (cNPIM-7) was characterized by a very high specific surface area of 2101.1 m 2 / g. Also, macro-pores, meso-pores, and micro-pores were observed in the carbonized porous electrode compared to the dense membrane.
  • FIG. 6 is a graph showing CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by a non-solvent induced phase separation method and an electrode in the form of a carbonized dense membrane according to an embodiment of the present invention.
  • the porous electrode according to the present invention showed a larger current value than the electrode having a compact form. This is a result of the carbonized porous electrode having a porous structure has easy access of the electrolyte ions because it contains pores of various sizes.
  • FIG 7 is a graph showing the results of CV measurement according to the scanning speed of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by the non-solvent induction phase separation method according to an embodiment of the present invention
  • Figure 8 is an embodiment of the present invention It is a graph showing the CV measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to the THF content change according to the example.
  • the porous electrode according to the present invention showed very stable capacitor behavior by showing a CV graph of a nearly rectangular shape. That is, it could be confirmed that it is suitable for use as an electrode material for EDLC.
  • the current value of CV increased as the THF content increased. That is, the specific capacitance of the electrode was increased because the pore size in the electrode was increased as the THF content was increased as shown in the SEM result of FIG. 4.
  • cNPIM-8 TNF content ratio of the porous precursor prepared from the phase separation method 8 when the current density is 100 mA / g, 405.8 F / g showed a very large specific capacitance, which means that the electrode prepared from the phase separation method has the proper formation of macro-pore, meso-pore, and micro-pore, resulting in three-dimensional porosity. It is interpreted that this is because it shows structural characteristics, thereby facilitating accessibility of electrolyte ions into the electrode and consequently allowing a large amount of charge accumulation.
  • the method for preparing a porous carbon structure using the non-solvent induced phase separation method of the intrinsic microporous polymer of the present invention and the porous carbon structure prepared according to the present invention have a three-dimensional porous structure having an asymmetric cross section.
  • Battery electrode using the porous carbon structure according to it has a very large specific capacitance, it can be seen that has a very excellent performance as a battery electrode.
  • the non-solvent induced phase separation method using the intrinsic microporous polymer according to the present invention has a very large specific capacitance when manufacturing a carbon structure having a three-dimensional porous structure and a battery electrode using the same, and thus, a battery electrode manufacturing technology and a battery-related industry Very versatile, the porous structure electrode of the present invention can be used as an electrode of various secondary batteries, such as lithium ion battery, sodium ion battery, lithium sulfur battery, sodium sulfur battery, lithium air battery.

Abstract

The present invention relates to a porous carbon structure which uses an intrinsically microporous polymer, a method for manufacturing same, and to a battery electrode using same. More particularly, the present invention relates to a method for manufacturing a porous carbon structure, the method comprising: a homogeneous solution preparation step for dissolving an intrinsically microporous polymer in a good solvent; a precursor preparation step for using the homogeneous solution to prepare a precursor; a porous structure formation step for using the precursor to form a porous structure through non-solvent induced phase separation; and a carbonization step for carbonizing the porous structure. The present invention also relates to a porous carbon structure, manufactured through such methods, having a cross section with an asymmetrical porous structure, and a battery electrode using same.

Description

내재적 미세기공성 고분자를 이용한 다공성 탄소구조체 및 이를 포함하는 전지용 전극Porous carbon structure using intrinsic microporous polymer and battery electrode including same
본 발명은 내재적 미세기공성(intrinsic microporosity)고분자를 이용한 다공성 탄소구조체, 이의 제조 방법 및 이를 이용한 전지용 전극에 대한 것이다.The present invention relates to a porous carbon structure using an intrinsic microporosity polymer, a manufacturing method thereof, and a battery electrode using the same.
보다 상세하게는 내재적 미세기공성 고분자를 양용매(good solvent)에 용해시키는 고분자 균일용액 제조단계; 상기 고분자 균일용액으로부터 비용매 유도 상분리법(non-solvent induced phase separation: NIPS)을 통하여 다공성 구조를 형성하는 다공성 구조체 형성단계; 및 상기 다공성 구조체를 탄화시키는 탄화단계를 포함하는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법과 이러한 방법을 통하여 제조되는 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함하는 다공성 탄소 구조체와 이를 포함하는 전지용 전극에 대한 것이다.More specifically, the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent; A porous structure forming step of forming a porous structure from the polymer homogeneous solution through non-solvent induced phase separation (NIPS); And a carbonization step of carbonizing the porous structure, while having an asymmetric macro-pore structure and an intrinsic microporous polymer carbonized in the cross section prepared through the method. The present invention relates to a porous carbon structure including a formed meso-pore structure and an intrinsic micro-pore structure, and a battery electrode including the same.
본 출원은 2015년 11월 19일에 출원된 한국 특허출원 제10-2015-0162284호에 기초한 우선권을 주장하며, 해당 출원의 명세서 및 도면에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Patent Application No. 10-2015-0162284 filed on November 19, 2015, and all the contents disclosed in the specification and drawings of the application are incorporated in this application.
일반적으로 다공성 탄소재료(porous carbon material)는 높은 표면적과 구조적 특성으로 인해 촉매의 담지체, 전극재료, 전기 이중층 재료 등 연료전지와 배터리, 수퍼커패시터 등의 에너지 분야에 있어 그 활용도가 매우 높다. 이와 관련한 종래의 기술로는 한국 등록특허 10-0927718호에는 연료 전지용 전극 촉매로 사용될 수 있는 다공성 탄소 구조체에 관한 기술이 기재되어있고, 한국 등록특허 10-1092327호에는 열전재료로 사용되는 다공성 구조체의 탄소나노튜브 필름에 대한 기술이 개시되어 있다.In general, the porous carbon material has a high surface area and structural characteristics, and thus is widely used in energy fields such as fuel cells, batteries, and supercapacitors such as catalyst carriers, electrode materials, and electric double layer materials. In the related art, Korean Patent No. 10-0927718 describes a technique for a porous carbon structure that can be used as an electrode catalyst for a fuel cell, and Korean Patent No. 10-1092327 describes a porous structure used as a thermoelectric material. A technique for carbon nanotube film is disclosed.
내재적 미세기공성 고분자(Polymers of intrinsic microporosity, PIMs)는 분자 내의 화학구조적으로 미세기공성을 가지는 고분자로 센서, 기체분리막, 등에 널리 사용되고 있는 소재이고 이러한 내재적 미세기공성 고분자를 이용한 다공성 탄소 구조체 및 이의 제조방법에 대하여는 한국 등록특허 제10-1485867호 및 한국 공개특허 제2015-0034972호에 기재되어 있다. 그러나 이러한 다공성 탄소재료를 전기화학 촉매 및 전극재료로써 사용할 때에는 2차원 구조의 필름형태로 탄소재료를 제조해야 하거나 또는 바인더(binder)를 이용한 3차원 구조의 탄소구조체를 형성하여야 하는 등 매크로 기공의 탄소 구조체는 사용용도의 한정성과 필름형성 접촉면적과 분산도, 전기저항 등 다양한 분야에서 한계에 부딪히고 있다. 특히, 기존의 전극제조법인 슬러리 공정에서 일반적으로 사용되는 고분자 바인더는 전극의 성능을 저해하는 하나의 요인으로 반드시 개선해야 하는 상황이다.Polymers of intrinsic microporosity (PIMs) are polymers that have chemically microporous properties in their molecules and are widely used in sensors, gas separation membranes, and the like, and are used in porous carbon structures and methods for manufacturing the same. It is described in Korean Patent Registration No. 10-1485867 and Korean Patent Publication No. 2015-0034972. However, when the porous carbon material is used as an electrochemical catalyst and an electrode material, the carbon of macropores should be produced in the form of a carbon material having a two-dimensional structure or a carbon structure having a three-dimensional structure using a binder. Structural structures are facing limitations in various fields such as limited use, film forming contact area, dispersion, and electrical resistance. In particular, the polymer binder generally used in the slurry process, which is a conventional electrode manufacturing method, must be improved as one factor that hinders the performance of the electrode.
본원 발명은 더욱 향상된 다공성을 가지는 3차원 탄소구조체, 이를 제조하는 방법 및 이를 이용한 전지용 전극을 제공하는 것을 목적으로 한다.An object of the present invention is to provide a three-dimensional carbon structure having a further improved porosity, a method of manufacturing the same and a battery electrode using the same.
보다 구체적으로는 내재적 미세기공성(intrinsic microporosity) 고분자를 이용하여 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조를 가지는 다공성 구조체를 형성하고 이를 탄화함으로써 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함하는 것을 특징으로 하는 더욱 향상된 다공성을 가지는 3차원 탄소구조체와 이를 이용하여 제조되는 전지용 탄소 전극을 제공하고자 한다.More specifically, by using an intrinsic microporosity polymer to form a porous structure having an asymmetric macro-pore structure in the cross-section and carbonization of the meso pores formed by carbonization of the intrinsic microporous polymer It is to provide a three-dimensional carbon structure having a more improved porosity, characterized in that it comprises a -pore) structure and an intrinsic micro-pore structure and a carbon electrode for a battery manufactured using the same.
또한, 본원 발명에서는 기존의 전극 제법인 슬러리 공정에서 일반적으로 사용되는 고분자 바인더 없이 다공성 탄소 전극을 제조하여 전극의 성능을 향상시키고자 한다.In addition, the present invention is to improve the performance of the electrode by producing a porous carbon electrode without a polymer binder generally used in the slurry process which is a conventional electrode manufacturing method.
본원 발명에서는 상기 과제를 해결하기 위하여, 내재적 미세기공성 고분자를 양용매(good solvent)에 용해시키는 고분자 균일용액 제조단계; 상기 고분자 균일용액으로부터 비용매 유도 상분리법(non-solvent induced phase separation)을 통하여 다공성 구조를 형성하는 다공성 구조체 형성단계; 및 상기 다공성 구조체를 탄화시키는 탄화단계를 포함하는 다공성 탄소 구조체의 제조방법을 제공한다.In the present invention, in order to solve the above problems, the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent; A porous structure forming step of forming a porous structure through non-solvent induced phase separation from the polymer homogeneous solution; And a carbonization step of carbonizing the porous structure.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 내재적 미세기공성 고분자는 하기 화학식 1의 화학구조를 가지는 고분자일 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (1).
<화학식 1><Formula 1>
Figure PCTKR2016011579-appb-I000001
Figure PCTKR2016011579-appb-I000001
(상기 화학식 1에서 X는 하기 X1, X2, X3 및 X4로 이루어진 군에서 선택되고, Y는 하기 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 및 Y10으로 이루어진 군에서 선택된다.)(In Formula 1, X is selected from the group consisting of X1, X2, X3 and X4, and Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .)
Figure PCTKR2016011579-appb-I000002
Figure PCTKR2016011579-appb-I000002
Figure PCTKR2016011579-appb-I000003
Figure PCTKR2016011579-appb-I000003
또한, 본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 내재적 미세기공성 고분자는 하기 화학식 2의 화학구조를 가지는 고분자일 수 있다.In addition, in the method of manufacturing a porous carbon structure according to the present invention, the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (2).
<화학식 2><Formula 2>
Figure PCTKR2016011579-appb-I000004
Figure PCTKR2016011579-appb-I000004
(상기 화학식 2에서 Z는 하기 Z1, Z2, Z3, Z4, 및 Z5로 이루어진 군에서 선택된다.)(In Formula 2, Z is selected from the group consisting of Z1, Z2, Z3, Z4, and Z5.)
Figure PCTKR2016011579-appb-I000005
Figure PCTKR2016011579-appb-I000005
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체 형성단계는 고분자 균일용액을 비용매와 접촉시키는 비용매 접촉단계를 포함할 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the porous structure forming step may include a non-solvent contact step of contacting the polymer uniform solution with the non-solvent.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체 형성단계는 고분자 균일용액을 이용하여 전구체를 제조하는 전구체 제조단계 및 상기 전구체를 비용매와 접촉시키는 비용매 접촉단계를 포함할 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the forming of the porous structure may include a precursor manufacturing step of preparing a precursor using a polymer homogeneous solution and a nonsolvent contacting step of contacting the precursor with a nonsolvent. .
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 양용매(good solvent) 및 비용매(non-solvent)는 단일용매 또는 혼합용매일 수 있다.In the method for producing a porous carbon structure according to the present invention, the good solvent and non-solvent may be a single solvent or a mixed solvent.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 전구체는 양용매가 모두 제거되지 않은 젤-형태(gel-like)의 입자, 섬유, 필름 또는 3차원 형상 중 어느 하나일 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the precursor may be any one of gel-like particles, fibers, films or three-dimensional shapes in which both good solvents are not removed.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체는 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조를 포함할 수 있다.In the method for producing a porous carbon structure according to the present invention, the porous structure may include an asymmetric macro-pore structure in the cross section.
또한, 본원 발명에 따른 다공성 탄소 구조체는 상기 제조방법에 따라 제조되어, 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함할 수 있다.In addition, the porous carbon structure according to the present invention is prepared according to the manufacturing method, an asymmetric macro-pore structure in the cross-section, the meso-pore structure (meso-pore) structure and intrinsic formed while the intrinsic microporous polymer is carbonized It may include an intrinsic micro-pore structure.
또한, 본원 발명에 따른 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함하는 다공성 탄소 구조체는 전지용 전극으로 그 효과가 매우 우수하다.In addition, an asymmetric macro-pore structure, a meso-pore structure and an intrinsic micro-pore structure formed while the intrinsic microporous polymer is carbonized in the cross section according to the present invention. Porous carbon structure is a battery electrode, the effect is very excellent.
본원 발명에 따른 내재적 미세기공성 고분자를 이용한 비용매 유도 상분리법은 3차원 다공성 구조를 가지는 탄소구조체를 제조할 수 있다.Non-solvent induced phase separation using the intrinsic microporous polymer according to the present invention can produce a carbon structure having a three-dimensional porous structure.
본원 발명에 따른 내재적 미세기공성 고분자를 이용한 다공성 탄소구조체는 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 가진다.The porous carbon structure using the intrinsic microporous polymer according to the present invention has an asymmetric macropore structure in the cross section, a meso-pore structure and an intrinsic micropore formed while the intrinsic microporous polymer is carbonized. micro-pore) structure.
또한, 본원 발명에 따른 다공성 탄소구조체를 이용한 전지용 전극은 매우 큰 비 정전용량을 가지므로 전지용 전극으로 매우 우수한 성능을 가진다.In addition, the battery electrode using a porous carbon structure according to the present invention has a very large specific capacitance, so has a very excellent performance as a battery electrode.
도 1은 본원 발명의 일 구현예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막과 이를 탄화시켜 제조된 전극의 사진이다.1 is a photograph of an intrinsic microporous polymer membrane prepared by non-solvent induction phase separation according to an embodiment of the present invention and an electrode prepared by carbonizing it.
도 2는 본 발명의 일 구현예에 따른 내재적 미세기공성 고분자 막의 치밀한 막 단면과 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막의 단면을 나타낸 주사전자현미경(SEM) 사진이다.FIG. 2 is a scanning electron microscope (SEM) photograph showing a dense membrane cross section of an intrinsic microporous polymer membrane and an intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to an embodiment of the present invention.
도 3은 본원 발명의 일 실시예에 따라 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 표면과 단면의 주사전자현미경(SEM) 사진이다.3 is a scanning electron microscope (SEM) photograph of the surface and cross-section of an electrode prepared by carbonizing an intrinsic microporous polymer membrane prepared by non-solvent induction phase separation according to an embodiment of the present invention.
도 4는 본원 발명의 일 실시예에 따른 혼합용매에서 테트라하이드로퓨란(THF)의 함량에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 표면 변화를 나타낸 주사전자현미경(SEM) 사진이다.Figure 4 is a scanning electron microscope showing the surface change of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method according to the content of tetrahydrofuran (THF) in the mixed solvent according to an embodiment of the present invention (SEM) picture.
도 5는 본원 발명의 일 실시예에 다른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 BET 측정결과를 나타낸 그래프이다. Figure 5 is a graph showing the BET measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by another non-solvent induction phase separation method in an embodiment of the present invention.
도 6은 본원 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극과 탄화된 치밀한 구조를 보이는 전극의 CV 측정결과를 나타낸 그래프이다.FIG. 6 is a graph illustrating CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by non-solvent induction phase separation according to an embodiment of the present invention, and an electrode having a compact carbonized structure.
도 7은 본원 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 주사속도에 따른 CV 측정결과를 나타낸 그래프이다.7 is a graph showing the results of CV measurement according to the scanning speed of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by the non-solvent induction phase separation method according to an embodiment of the present invention.
도 8은 본원 발명의 일 실시예에 따른 THF 함량에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 CV 측정결과를 나타낸 그래프이다.FIG. 8 is a graph illustrating CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to THF content according to an embodiment of the present invention.
이하, 본원 발명을 구체적으로 설명하기 하기로 한다. 그러나 본원 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본원 발명의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석해서는 안 되며, 본원 발명의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본원 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다.Hereinafter, the present invention will be described in detail. However, embodiments according to the present invention may be modified in many different forms, and the scope of the present invention should not be construed as being limited to the embodiments described below, the embodiments of the present invention are average in the art It is provided to those skilled in the art to more fully explain the present invention.
본원 발명에서는 상기 과제를 해결하기 위하여, 내재적 미세기공성 고분자를 양용매(good solvent)에 용해시키는 고분자 균일용액 제조단계; 상기 고분자 균일용액으로부터 비용매 유도 상분리법(non-solvent induced phase separation)을 통하여 다공성 구조를 형성하는 다공성 구조체 형성단계; 및 상기 다공성 구조체를 탄화시키는 탄화단계를 포함하는 다공성 탄소 구조체의 제조방법을 제공한다.In the present invention, in order to solve the above problems, the step of preparing a homogeneous polymer solution dissolving the intrinsic microporous polymer in a good solvent; A porous structure forming step of forming a porous structure through non-solvent induced phase separation from the polymer homogeneous solution; And a carbonization step of carbonizing the porous structure.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 내재적 미세기공성 고분자는 하기 화학식 1의 화학구조를 가지는 고분자일 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (1).
<화학식 1><Formula 1>
Figure PCTKR2016011579-appb-I000006
Figure PCTKR2016011579-appb-I000006
(상기 화학식 1에서 X는 하기 X1, X2, X3 및 X4로 이루어진 군에서 선택되고, Y는 하기 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 및 Y10으로 이루어진 군에서 선택된다.)(In Formula 1, X is selected from the group consisting of X1, X2, X3 and X4, and Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .)
Figure PCTKR2016011579-appb-I000007
Figure PCTKR2016011579-appb-I000007
Figure PCTKR2016011579-appb-I000008
Figure PCTKR2016011579-appb-I000008
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 화학식 1의 내재적 미세기공성 고분자는 하기 반응식 1을 통하여 제조되는 고분자일 수 있다.In the method of preparing a porous carbon structure according to the present invention, the intrinsic microporous polymer of Chemical Formula 1 may be a polymer prepared through Scheme 1 below.
<반응식 1><Scheme 1>
Figure PCTKR2016011579-appb-I000009
Figure PCTKR2016011579-appb-I000009
(상기 반응식 1에서 X는 하기 X1, X2, X3 및 X4로 이루어진 군에서 선택되고, Y는 하기 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 및 Y10으로 이루어진 군에서 선택된다.)(X in Scheme 1 is selected from the group consisting of X1, X2, X3 and X4, Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .)
Figure PCTKR2016011579-appb-I000010
Figure PCTKR2016011579-appb-I000010
Figure PCTKR2016011579-appb-I000011
Figure PCTKR2016011579-appb-I000011
하기 표 1과 표 2에는 본원 발명에 따른 더욱 바람직한 내재적 미세기공성 고분자의 제조에 필요한 단량체 X와 Y의 조합을 기재하였다. Tables 1 and 2 below describe combinations of monomers X and Y necessary for the preparation of more preferred intrinsic microporous polymers according to the present invention.
고분자1Polymer 1 고분자2 Polymer 2 고분자3 Polymer 3 고분자4 Polymer 4 고분자5 Polymer 5 고분자6 Polymer 6 고분자7 Polymer 7 고분자8Polymer 8 고분자9 Polymer 9 고분자10 Polymer 10
X1+Y1 X1 + Y1 X1+Y2X1 + Y2 X1+Y3X1 + Y3 X2+Y1X2 + Y1 X2+Y2X2 + Y2 X3+Y2X3 + Y2 X1+Y4X1 + Y4 X4+Y4X4 + Y4 X1+Y5X1 + Y5 X4+Y5X4 + Y5
고분자11Polymer 11 고분자12Polymer 12 고분자13Polymer 13 고분자14Polymer 14 고분자15 Polymer 15
X1+Y6 X1 + Y6 X1+Y7X1 + Y7 X1+Y8X1 + Y8 X1+Y9X1 + Y9 X1+Y10X1 + Y10
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 내재적 미세기공성 고분자는 하기 화학식 2의 화학구조를 가지는 고분자일 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (2).
<화학식 2><Formula 2>
Figure PCTKR2016011579-appb-I000012
Figure PCTKR2016011579-appb-I000012
(상기 화학식 2에서 Z는 하기 Z1, Z2, Z3, X4 및 Z5로 이루어진 군에서 선택된다.)(In Formula 2, Z is selected from the group consisting of Z1, Z2, Z3, X4 and Z5.)
Figure PCTKR2016011579-appb-I000013
Figure PCTKR2016011579-appb-I000013
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 화학식 2의 내재적 미세기공성 고분자는 하기 반응식 2를 통하여 제조될 수 있다. 즉, 상기 표 1의 고분자 1의 반복단위구조 내의 니트릴기(-CN)의 화학적 개질 반응을 통하여 다양한 기능성기를 부여할 수 있다.In the method of preparing a porous carbon structure according to the present invention, the intrinsic microporous polymer of Chemical Formula 2 may be prepared through the following Scheme 2. That is, various functional groups may be provided through chemical modification of the nitrile group (-CN) in the repeating unit structure of the polymer 1 of Table 1 above.
<반응식 2><Scheme 2>
Figure PCTKR2016011579-appb-I000014
Figure PCTKR2016011579-appb-I000014
Figure PCTKR2016011579-appb-I000015
Figure PCTKR2016011579-appb-I000015
또한, 본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 내재적 미세기공성 고분자는 하기 화학식 3의 화학구조를 가지는 고분자일 수 있다.In addition, in the method of manufacturing a porous carbon structure according to the present invention, the intrinsic microporous polymer may be a polymer having a chemical structure of the formula (3).
<화학식 3><Formula 3>
Figure PCTKR2016011579-appb-I000016
Figure PCTKR2016011579-appb-I000016
상기 화학식 3에서, X는 In Formula 3, X is
Figure PCTKR2016011579-appb-I000017
,
Figure PCTKR2016011579-appb-I000018
,
Figure PCTKR2016011579-appb-I000019
,
Figure PCTKR2016011579-appb-I000020
,
Figure PCTKR2016011579-appb-I000021
,
Figure PCTKR2016011579-appb-I000022
, ,
Figure PCTKR2016011579-appb-I000023
,
Figure PCTKR2016011579-appb-I000024
,
Figure PCTKR2016011579-appb-I000025
,
Figure PCTKR2016011579-appb-I000026
,
Figure PCTKR2016011579-appb-I000027
,
Figure PCTKR2016011579-appb-I000028
,
Figure PCTKR2016011579-appb-I000029
,
Figure PCTKR2016011579-appb-I000030
,
Figure PCTKR2016011579-appb-I000031
,
Figure PCTKR2016011579-appb-I000032
Figure PCTKR2016011579-appb-I000033
으로 이루어진 군에서 선택된다.
Figure PCTKR2016011579-appb-I000017
,
Figure PCTKR2016011579-appb-I000018
,
Figure PCTKR2016011579-appb-I000019
,
Figure PCTKR2016011579-appb-I000020
,
Figure PCTKR2016011579-appb-I000021
,
Figure PCTKR2016011579-appb-I000022
,,
Figure PCTKR2016011579-appb-I000023
,
Figure PCTKR2016011579-appb-I000024
,
Figure PCTKR2016011579-appb-I000025
,
Figure PCTKR2016011579-appb-I000026
,
Figure PCTKR2016011579-appb-I000027
,
Figure PCTKR2016011579-appb-I000028
,
Figure PCTKR2016011579-appb-I000029
,
Figure PCTKR2016011579-appb-I000030
,
Figure PCTKR2016011579-appb-I000031
,
Figure PCTKR2016011579-appb-I000032
And
Figure PCTKR2016011579-appb-I000033
It is selected from the group consisting of.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체 형성단계는 고분자 균일용액을 비용매와 접촉시키는 비용매 접촉단계를 포함할 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the porous structure forming step may include a non-solvent contact step of contacting the polymer uniform solution with the non-solvent.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 양용매(good solvent) 및 비용매(non-solvent)는 단일용매 또는 혼합용매일 수 있다.In the method for producing a porous carbon structure according to the present invention, the good solvent and non-solvent may be a single solvent or a mixed solvent.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 양용매는 단일용매 또는 혼합용매일 수 있다. 본원 발명에 따른 내재적 미세기공성 고분자의 양용매는 테트라하이드로퓨란(THF), 클로로포름(CHCl3), 메타-크레졸(m-cresol), 디클로로벤젠, N-메틸-2-피롤리돈(NMP), 디메틸술폭시드(DMSO), 디메틸아세트아미드(DMAc), 디메틸포름아미드(MDF), 메틸에틸케톤(MEK), 아세톤, 트리에틸포스페이트(TEP), 디클로로메탄(DCM), 트리에틸글라이콜(TEG), 카프로락탐, 부틸로락톤(butyrolactone), 사이클로헥산, 톨루엔, 다이옥산, 부틸아세테이트(n-BA), 메틸클로라이드, 헥사플루오르이소프로판올(HFIP), 클로로벤젠 등이 있으며, 첨가제로 Pluronic계열의 계면활성제, 에탄올, 리튬클로라이드(LiCl), 폴리비닐피롤리돈(PVP), 디에틸글라이콜(DEG), 부탄올(1-butanol), 에틸아세테이트(AA), Naproxen, 메탄올, 칼슘클로라이드(CaCl2), 글리세롤 등으로 이루어진 군에서 선택되는 단일용매 또는 혼합용매일 수 있다. 본원 발명에 따른 양용매는 테트라하이드로퓨란(THF), 클로로포름(CHCl3), 메타-크레졸(m-cresol), 디클로로벤젠 및 이들의 혼합용매가 바람직하다.In the method for producing a porous carbon structure according to the present invention, the good solvent may be a single solvent or a mixed solvent. The good solvent of the intrinsic microporous polymer according to the present invention is tetrahydrofuran (THF), chloroform (CHCl 3 ), meta-cresol (m-cresol), dichlorobenzene, N-methyl-2-pyrrolidone (NMP), dimethyl Sulfoxide (DMSO), dimethylacetamide (DMAc), dimethylformamide (MDF), methyl ethyl ketone (MEK), acetone, triethyl phosphate (TEP), dichloromethane (DCM), triethyl glycol (TEG) , Caprolactam, butyrolactone, cyclohexane, toluene, dioxane, butyl acetate (n-BA), methyl chloride, hexafluoroisopropanol (HFIP), chlorobenzene, etc. Ethanol, lithium chloride (LiCl), polyvinylpyrrolidone (PVP), diethyl glycol (DEG), butanol (1-butanol), ethyl acetate (AA), Naproxen, methanol, calcium chloride (CaCl 2 ), Single solvent or mixed solvent selected from the group consisting of glycerol Can. The good solvent according to the present invention is preferably tetrahydrofuran (THF), chloroform (CHCl 3 ), meta-cresol, dichlorobenzene and a mixed solvent thereof.
보다 구체적인 일 예로 표 1에 기재된 고분자1의 양용매는 테트라하이드로퓨란(THF)과 클로로포름(CHCl3)의 혼합용매가 보다 바람직하고, 고분자2 내지 고분자6의 양용매는 테트라하이드로퓨란(FHF)이 보다 바람직하며, 고분자7 내지 고분자9의 양용매는 클로로포름(CHCl3)이 보다 바람직하고, 고분자10의 양용매는 메타-크레졸(m-cresol)이 보다 바람직하다.As a more specific example, the good solvent of the polymer 1 shown in Table 1 is more preferably a mixed solvent of tetrahydrofuran (THF) and chloroform (CHCl 3 ), and more preferably the good solvent of the polymers 2 to 6 is tetrahydrofuran (FHF). The good solvent of the polymers 7 to 9 is more preferably chloroform (CHCl 3 ), and the good solvent of the polymer 10 is more preferably meta-cresol.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 비용매는 메탄올, 에탄올, 이소프로필 알콜 등의 알콜류 및 빈용매인 시클로헥사논, 이소포론, γ-부티로락톤(γ-butyrolactone), 메틸이소아밀케톤, 프탈산 디메틸, 프로필렌글리콜메틸에테르, 프로필렌카보네이트, 아세톤, 물(water), 글리세롤트리아세테이트로 이루어진 군에서 선택되는 하나 또는 둘 이상의 혼합물 일수 있다. 보다 바람직하게 비용매는 메탄올, 에탄올, 이소프로필 알콜 등의 알콜이다. In the method for producing a porous carbon structure according to the present invention, the non-solvent is cyclohexanone, isophorone, γ-butyrolactone, methylyi, which are alcohols such as methanol, ethanol, isopropyl alcohol, and poor solvents. It may be one or more mixtures selected from the group consisting of pediatric milk ketone, dimethyl phthalate, propylene glycol methyl ether, propylene carbonate, acetone, water, and glycerol triacetate. More preferably, the nonsolvent is an alcohol such as methanol, ethanol or isopropyl alcohol.
다음으로, 상기 균일용액을 이용하여 전구체를 제조하는 전구체 제조단계를 설명한다.Next, a precursor manufacturing step of preparing a precursor using the uniform solution will be described.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체 형성단계는 고분자 균일용액을 이용하여 전구체를 제조하는 전구체 제조단계 및 상기 전구체를 비용매와 접촉시키는 비용매 접촉단계를 포함할 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the forming of the porous structure may include a precursor manufacturing step of preparing a precursor using a polymer homogeneous solution and a nonsolvent contacting step of contacting the precursor with a nonsolvent. .
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 전구체는 양용매가 모두 제거되지 않은 젤-형태(gel-like)의 입자, 섬유, 필름 또는 3차원 형상 중 어느 하나일 수 있다.In the method of manufacturing a porous carbon structure according to the present invention, the precursor may be any one of gel-like particles, fibers, films or three-dimensional shapes in which both good solvents are not removed.
상기 양용매에 녹은 내재적 미세기공성 고분자의 균일용액은 원하는 어떠한 형태로도 성형될 수 있다. 그 일 예로 용액을 이용한 공지의 성형방법이 사용될 수 있으며 성형되는 형태는 제한되지 않는다. 이러한 성형의 형태는 이후 비용매 유도 상분리법을 통하여 다공성 구조를 형성할 수 있는 형태로 젤 형태의 입자, 섬유상, 필름 및 이들의 3차원의 형태는 모두 가능하다. 이러한 3차원의 전구체는 양용매가 모두 제거되지 않은 상태가 더욱 바람직하다.The homogeneous solution of the intrinsic microporous polymer dissolved in the good solvent may be molded into any desired form. For example, a known molding method using a solution may be used, and the shape to be molded is not limited. The shape of the molding can be formed into a porous structure through the non-solvent induced phase separation method in the form of gel particles, fibrous, film and three-dimensional form of them are all possible. The three-dimensional precursor is more preferably in a state in which both good solvents are not removed.
상기 전구체의 형태로서 입자의 경우, 균일용액을 다양한 스프레이법, 침전법 등을 통해 완전 구형이나, 반구형 등의 다양한 형태를 가지면서 수nm ~ 수cm 까지의 다양한 크기를 가지도록 제조될 수 있다. 섬유상 전구체의 경우 전기방사를 포함한 다양한 섬유제조에 사용되는 방사법, 인쇄법 등을 통해 수nm ~ 수cm 까지의 다양한 폭과 제한을 두지 않는 다양한 길이로 제조될 수 있으며, 필름상의 전구체의 경우 다양한 닥터블레이드(doctor blade), 인쇄법 등의 제막방법을 통해 수um ~ 수cm까지의 두께를 가지고 제한을 두지 않는 넓이로 제조될 수 있다. 또한, 3차원 구조체의 경우, 금속망과 같은 다양한 재질의 3차원 기재 위에 미세기공성 고분자 용액을 도입하거나, 사용된 용매에 불용 특성을 나타내는 입자를 3차원 구조로 쌓은 후 고분자 용액을 도입함으로써 제조될 수 있을 뿐만 아니라 균일용액을 비용매에 과량을 투입하여 침전물의 형태로 제조되는 경우를 포함한다.In the case of particles in the form of the precursor, the uniform solution may be prepared to have a variety of sizes from several nm to several cm while having a variety of forms, such as full sphere, hemispherical, etc. through various spray methods, precipitation methods. In the case of fibrous precursor, it can be produced in various lengths without limitation and various widths from several nm to several cm through the spinning method, printing method, etc. used in the manufacture of various fibers including electrospinning. Through film forming methods such as a blade (doctor blade), printing, etc., it can be manufactured with a thickness of several um to several cm without limit. In addition, in the case of a three-dimensional structure, a microporous polymer solution may be introduced onto a three-dimensional substrate made of various materials such as a metal net, or stacked with particles having insoluble properties in a used solvent in a three-dimensional structure and then introduced into the polymer solution. In addition, it may include the case where the homogeneous solution is prepared in the form of a precipitate by adding an excessive amount to the non-solvent.
다음으로, 상기 전구체를 비용매 유도 상분리법을 통하여 다공성 구조를 형성하는 다공성 구조체 형성단계에 대하여 설명한다.Next, the porous structure forming step of forming the porous structure through the non-solvent induced phase separation method will be described.
비용매 유도 상분리법(Non-solvent Induced Phase Separation: NIPS)은 고분자 용액이 비용매와 접촉에 의해 용매가 추출되며 상분리를 일으키는 공정으로서, 고분자 용액 내의 용매와 비용매의 교환에 의한 고분자의 침전을 이용하는 것이다. 고분자를 적정 용매에 용해시켜 만든 고분자 용액을 성형한 후 이를 비용매가 들어있는 응고조에 침지시키면, 고분자 용액 내의 용매가 추출되며 고분자는 매트릭스를 형성하고 용매는 제거되어 기공을 형성하게 된다. 이러한 비용매 유도 상분리법을 이용하여 본원 발명에 따른 양용매가 모두 제거되지 않는 상태인 젤 형태의 입자, 섬유, 필름 및 이들의 고분자된 3차원의 전구체를 비용매에 침지함으로서 상기 전구체는 비용매 유도 상분리에 의하여 다공성 구조가 형성된다.Non-solvent Induced Phase Separation (NIPS) is a process in which the solvent is extracted by contacting the polymer solution with the non-solvent and causes phase separation. It is to use. When the polymer solution formed by dissolving the polymer in a suitable solvent is molded and then immersed in a coagulation bath containing a non-solvent, the solvent in the polymer solution is extracted, the polymer forms a matrix, and the solvent is removed to form pores. By using such a non-solvent induced phase separation method, the precursor is non-solvent induced by immersing the gel-like particles, fibers, films, and polymerized three-dimensional precursors thereof in a state in which all of the good solvents according to the present invention are not removed. The porous structure is formed by phase separation.
본원 발명에 따른 비용매 유도 상분리법에 따른 다공 구조는 여러 가지 형태로 제조될 수 있는데 대칭적인 셀구조(symmetric cellular), 이상연속구조(bicontinuous type), 비대칭 셀구조(asymmetric cellular), 노둘라(nodular), 손가락구조(finger type)의 형태이거나 하이드로젤(hydrogel) 형태의 3차원 다공성 구조체로 제조할 수 있다. 본원 발명에서는 다공성 구조체가 전극으로 활용될 것이므로 3차원 다공 구조를 가지는 하이드로젤( hydrogel) 형태의 구조체가 가장 바람직하다. The porous structure according to the non-solvent induced phase separation method according to the present invention can be manufactured in various forms, including symmetric cellular structure, bicontinuous type structure, asymmetric cellular structure, and nodular ( It can be produced in the form of nodular, finger structure (finger type) or a three-dimensional porous structure of the hydrogel (hydrogel) form. In the present invention, since the porous structure will be used as an electrode, a structure in the form of a hydrogel having a three-dimensional porous structure is most preferable.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 따른 상기 다공성 구조체는 그 단면이 비대칭의 다공 구조일 수 있다. 보다 구체적으로는 비용매 유도 상분리에 의하여 양용매가 모두 제거되지 않는 상태인 젤 형태의 입자, 섬유, 필름 및 이들의 고분자된 3차원의 전구체는 비용매에 침지가 이루어지면, 비용매와 접촉되는 부분부터 고분자의 고화가 시작되면서 양용매와 비용매의 혼합에 의하여 외부의 큰 기공의 형태로부터 내부 쪽으로 갈수록 미세한 기공의 형태로 그 단면이 비대칭성의 다공구조의 다공성 구조체를 형성할 수 있다. 대표적으로 그 형태는 스폰지 구조(sponge like structure)를 포함할 수 있다. 비용매 유도 상분리법으로부터 손가락구조(finger-like) 또는 스폰지(sponge-like) 구조체를 제조할 수 있으며 용매를 적절히 혼합하여 사용할 경우 주로 폼(foam) 형태의 스폰지(sponge-like)의 구조도 형성할 수 있다. The porous structure according to the method of manufacturing a porous carbon structure according to the present invention may be an asymmetric porous structure thereof. More specifically, the gel-like particles, fibers, films, and polymerized three-dimensional precursors thereof, in which both good solvents are not removed by non-solvent induced phase separation, are contacted with the non-solvent when immersed in the non-solvent. From the start of the solidification of the polymer, the mixture of the good solvent and the non-solvent can form a porous structure of the porous structure of the cross-section of the asymmetric porous structure in the form of fine pores toward the inside toward the inside from the large pores. Representatively, the form may comprise a sponge like structure. Finger-like or sponge-like structures can be prepared from nonsolvent-induced phase separation and, when properly mixed with solvents, also form sponge-like structures. can do.
한편, 본원 발명에서는 비용매 유도 상분리법으로부터 다공성 구조체를 형성하는 것을 주로 설명하였지만 이러한 상분리법을 비용매 유도 상분리법(NIPS)에 한정하지 않고 기체유도 상분리법(vapor-induced phase separation: VIPS), 반응유도 상분리법(reaction-induced phase separation: RIPS), 열유도 상분리법(thermal induced phase separation: TIPS) 등의 다양한 상분리법을 활용하면 동일 내지 유사한 구조의 다공성 구조체를 제조할 수 있다.Meanwhile, in the present invention, the formation of the porous structure from the non-solvent induced phase separation method is mainly described. However, the phase separation method is not limited to the non-solvent induced phase separation method (NIPS), but the vapor-induced phase separation method (VIPS), Various phase separation methods such as reaction-induced phase separation (RIPS) and thermal induced phase separation (TIPS) may be used to prepare porous structures having the same or similar structure.
마지막으로 다공성 구조체를 탄화시키는 탄화단계를 설명한다. 본원 발명에 따른 다공성 탄소 구조체는 상분리법 통하여 다공성 구조가 형성된 내재적 미세기공성 고분자 전구체가 탄화된 것으로 본원 발명에서 사용된 다공성 구조체의 탄화는 고순도의 수소, 질소, 혹은 이들의 혼합가스 존재하에서 고온의 furnace를 이용하여 가열함으로써 수행될 수 있다. 또한, 탄화효과를 증대시키기 위해 일부의 이산화탄소 혹은 산소 등의 활성가스를 활용할 수 있다. 가열 온도 및 시간은 다양하게 조절될 수 있다.Finally, the carbonization step of carbonizing the porous structure will be described. The porous carbon structure according to the present invention is a carbonized intrinsic microporous polymer precursor having a porous structure through a phase separation method. The carbonization of the porous structure used in the present invention is performed at high temperature in the presence of high purity hydrogen, nitrogen, or a mixed gas thereof. It can be carried out by heating using. In addition, some of the active gas such as carbon dioxide or oxygen may be used to increase the carbonization effect. Heating temperature and time can be variously adjusted.
본원 발명에 따른 다공성 탄소구조체의 제조방법에 있어서, 상기 다공성 구조체는 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조를 포함할 수 있다.In the method for producing a porous carbon structure according to the present invention, the porous structure may include an asymmetric macro-pore structure in the cross section.
또한, 본원 발명에 따른 다공성 탄소 구조체는 상기 제조방법에 따라 제조되어, 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함할 수 있다.In addition, the porous carbon structure according to the present invention is prepared according to the manufacturing method, an asymmetric macro-pore structure in the cross-section, the meso-pore structure (meso-pore) structure and intrinsic formed while the intrinsic microporous polymer is carbonized It may include an intrinsic micro-pore structure.
또한, 본원 발명에 따른 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함하는 탄소 구조체는 전지용 전극으로 그 효과가 매우 우수하다.In addition, an asymmetric macro-pore structure, a meso-pore structure and an intrinsic micro-pore structure formed while the intrinsic microporous polymer is carbonized in the cross section according to the present invention. The carbon structure is a battery electrode, and the effect is very excellent.
이러한 본원 발명의 비용매 유도 상분리법으로부터 제조된 전극은 매크로 기공(macro-pore), 메조 기공(meso-pore), 마이크로 기공(micro-pore)이 적절하게 형성하여 3차원 다공성 구조 특성을 나타내기 때문에 전극 내부로 전해질 이온의 접근성을 용이하게 하고 결과적으로 많은 전하의 축적을 가능하게 하여 전지용 전극으로 효과가 우수하다. Electrode prepared from the non-solvent induced phase separation method of the present invention is a macro-pore, meso-pore, micro-pore appropriately formed to exhibit a three-dimensional porous structure characteristics Therefore, it is easy to access the electrolyte ions into the electrode, and as a result, it is possible to accumulate a lot of charges, which is excellent as a battery electrode.
상기와 같이 제조된 다공성 구조체 전극은 저항증가를 일으키고 전기화학적 안정성에 영향을 주는 전극 제조용 바인더를 사용하지 않은 모노리스(monolith) 타입의 전극이므로 높은 전기전도도를 나타내며 안정성이 우수하다. The porous structure electrode manufactured as described above has a high electrical conductivity and excellent stability because it is a monolith type electrode that does not use a binder for electrode production, which causes resistance increase and affects electrochemical stability.
본원 발명의 다공성 구조체 전극은 수계 및 전해질을 사용하는 슈퍼커패시터용 전극으로 사용될 수 있으며 높은 정전용량과 높은 출력을 나타낼 수 있다.The porous structure electrode of the present invention can be used as an electrode for a supercapacitor using an aqueous system and an electrolyte, and can exhibit high capacitance and high output.
본원 발명의 다공성 구조체 전극은 리튬이온전지, 나트륨이온전지, 리튬황전지, 나트륨황전지, 리튬공기전지 등 다양한 이차전지의 전극으로 활용될 수 있다.The porous structure electrode of the present invention may be utilized as an electrode of various secondary batteries such as lithium ion battery, sodium ion battery, lithium sulfur battery, sodium sulfur battery, and lithium air battery.
이하, 본원 발명을 구체적으로 설명하기 위해 실시예와 첨부된 도면을 이용하여 보다 상세하게 설명하기로 한다.Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings and examples.
1. 내재적 미세기공성 고분자의 제조: 고분자1의 제조1. Preparation of intrinsic microporous polymer: Preparation of polymer 1
표 1과 표 2에 기재된 본원 발명의 다양한 내재적 기공성 고분자 중 X1인 3,3,3',3'-tetramethyl-1,1'-spirobisindane(TTSBI)과 Y1인 2,3,5,6,-tetrafluoroterephthalonitrile(TFTPN)의 조합으로 이루어진 고분자1을 제조하는 방법에 대하여 설명한다. TTSBI와 TFTPN을 하기의 조건으로 반응하였다.3,3,3 ', 3'-tetramethyl-1,1'-spirobisindane (TTSBI), which is X1, and 2,3,5,6, which are Y1, among the various intrinsic pore polymers of the present invention described in Table 1 and Table 2 A method for preparing Polymer 1 consisting of a combination of -tetrafluoroterephthalonitrile (TFTPN) will be described. TTSBI and TFTPN were reacted under the following conditions.
먼저, 환류 냉각기가 연결된 2 구 500 ml 둥근 바닥 플라스크를 사용하였으며, 시료를 투입하기 전에 반응기 내의 수분을 제거하기 위해 오븐에서 건조 후, 질소를 흘려주었다. 반응기에 TTSBI(X1, 10.21 g, 30 mmol), TFTPN(Y1, 6.00 g, 30 mmol), potassium carbonate (8.29 g, 60 mmol, DMF 210 mL을 넣었다. 55 ℃로 예열된 오일 수조에 혼합물이 담긴 둥근 플라스크를 넣고 72시간 동안 반응을 진행하였다. 반응이 종료된 후, 올리고머를 제거하기 위해 반응물에 300 mL의 THF를 부어 침전이 생기도록 한 뒤, 올리고머를 포함하는 상등액은 제거하고, 침전물은 다시 300 mL THF에 녹였다. 이후에 고분자 용액을 물에 부어 재침전시키고 여과한 후, 60 ℃의 감압건조기에서 24시간 동안 건조를 진행하였다. 이후에 메탄올에 재침전, 여과, 그리고 건조를 진행하여 고분자1을 얻었다. GPC(Gel permeation chromatography) 측정결과 Mn = 55,000 PDI (Polydispersity index) = 1.7 의 값으로 측정되었다. First, a two-necked 500 ml round bottom flask connected with a reflux condenser was used, followed by drying in an oven to remove moisture in the reactor and then flowing nitrogen before adding the sample. To the reactor was placed TTSBI (X1, 10.21 g, 30 mmol), TFTPN (Y1, 6.00 g, 30 mmol) and potassium carbonate (8.29 g, 60 mmol, DMF 210 mL. The mixture was placed in an oil bath preheated to 55 ° C. After the reaction was completed, the reaction was completed for 72 hours, and after completion of the reaction, 300 mL of THF was poured into the reaction to remove the oligomer, and then precipitated. The supernatant containing the oligomer was removed, and the precipitate was returned. It was dissolved in 300 mL THF, after which the polymer solution was poured into water, reprecipitated and filtered, and then dried in a vacuum dryer at 60 ° C. for 24 hours, after which the polymer was reprecipitated, filtered, and dried. It was obtained 1. GPC (Gel permeation chromatography) measurement result was measured with a value of M n = 55,000 PDI (Polydispersity index) = 1.7.
2. 고분자 막의 제조:2. Preparation of Polymer Membrane:
2.1 비교예: 치밀한 고분자 막의 제조2.1 Comparative Example: Preparation of Dense Polymeric Membranes
비교예로 사용된 치밀한 고분자 막은 용매로 디클로로벤제(dichlorobenzene)을 사용하고 고형분(solid contents) 4 wt%로 고분자파우더(고분자1, 실제 사용한 양은 1 g)를 균일하게 녹이고 닥터블레이드(doctor blade)를 사용하여 300 um의 두께로 캐스팅(casting)하고 질소분위기 하에서 80 oC에서 건조하여 치밀한 막을 제조하였다. The dense polymer membrane used as a comparative example uses dichlorobenzene as a solvent, uniformly dissolves the polymer powder (polymer 1, 1 g of the actual amount used) by 4 wt% of solid contents, and removes the doctor blade. Cast to a thickness of 300 um and dried at 80 ° C. under a nitrogen atmosphere to produce a dense membrane.
2.2 실시예: 비용매 유도 상분리법(Non-solvent Induces Phase Separation: NIPS)에 의한 막의 제조Example: Preparation of Membrane by Non-solvent Induces Phase Separation (NIPS)
고분자파우더(고분자1, 1 g)를 혼합용매(dichlorobenzene/THF)에 용해시켜 균일 용액을 만들었다. 이때, 고형분(solid contents) 4 wt%로 치밀한 막 제조와 같은 조건으로 균일 용액을 제조하였다. 균일용액을 닥터블레이드(doctor blade)를 사용하여 300 um의 두께로 캐스팅함과 동시에 비용매에 침전시켜 다공성 전구체를 제조하였다. 이때. 사용한 비용매는 상온의 메탄올을 사용하였다. 또한, 상기와 같은 조건으로 혼합용매 내의 THF의 질량비를 달리하여 다공성 전구체를 제조하였다.Polymer powder (polymer 1, 1 g) was dissolved in a mixed solvent (dichlorobenzene / THF) to make a homogeneous solution. At this time, a homogeneous solution was prepared under the same conditions as a dense membrane at 4 wt% of solid contents. The homogeneous solution was cast to a thickness of 300 um using a doctor blade and simultaneously precipitated in a non-solvent to prepare a porous precursor. At this time. As the non-solvent used, methanol at room temperature was used. In addition, a porous precursor was prepared by varying the mass ratio of THF in the mixed solvent under the same conditions as described above.
3. 탄화단계3. Carbonization stage
본원 발명에서 사용된 다공성 구조체의 탄화는 어떠한 이산화탄소와 산소가 배제된 조건(CO2 또는 O2)에서 고순도 수소(H2) 100cc/min으로 노(furnace) 내부로 투입하고 1100 oC 까지 온도를 올려 다공성 전구체 및 치밀한 막을 30분 ~ 3시간 정도 탄화하여 탄화된 3차원 다공성 구조 전극을 제조하였다.Carbonization of the porous structure used in the present invention is a high-purity hydrogen (H 2) in a condition that excludes any carbon dioxide and oxygen (CO 2 or O 2 ) Into the furnace (furnace) at 100cc / min and the temperature was raised to 1100 o C to carbonize the porous precursor and dense membrane for about 30 minutes to 3 hours to prepare a carbonized three-dimensional porous structure electrode.
4. 물성분석4. Property analysis
4.1 다공성 측정: Pore textural properties (BET) 4.1 Porosity Measurement: Pore textural properties (BET)
실제 3차원 다공성 구조를 가지는 탄화된 전극의 비표면적, 기공크기 그리고 기공체적을 77 K에서 N2기체를 사용하여 BET분석을 통해 확인하였다. Horvath-Kawazoe plot을 통해 기공크기를 측정하였고, 300 nm이하의 메조기공과 매크로기공의 경우에는 BET를 사용하여 측정하였다.The specific surface area, pore size, and pore volume of the carbonized electrode with actual three-dimensional porous structure were confirmed by BET analysis using N 2 gas at 77 K. The pore size was measured using the Horvath-Kawazoe plot, and mesopores and macropores below 300 nm were measured using BET.
4.2 전극의 전기적 특성분석4.2 Electrical Characterization of Electrodes
본원 발명에 따른 상분리법으로부터 제조된 탄화된 다공성 전극의 전기화학적 특성을 확인하였다. 전극으로 탄화된 다공성 전극 및 치밀한 막을 사용하였고, 전해질은 수계 전해질(1.0 M H2SO4 aqueous solution)을 활용하여 3-electrode method(half-cell test)법으로부터 측정하였다. 이때, 온도조건은 모두 상온에서 분석하였다.The electrochemical properties of the carbonized porous electrode prepared from the phase separation method according to the present invention were confirmed. Carbonized porous electrodes and dense membranes were used as the electrodes, and the electrolytes were measured from a 3-electrode method (half-cell test) using an aqueous electrolyte (1.0 MH 2 SO 4 aqueous solution). At this time, the temperature conditions were all analyzed at room temperature.
도 1의 (a) 본 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 나타낸 것이고, 도 1의 (b)는 이를 탄화시켜 제조된 전극을 나타낸 것이다. 탄화된 다공성 구조 전극은 어떠한 깨짐이 관찰되지 않았으며, 실제 어떠한 고분자 바인더 없이 모노리스형(monolith type) 전극으로 활용할 수 있음을 확인하였다.Figure 1 (a) shows the intrinsic microporous polymer membrane prepared by non-solvent induction phase separation method according to an embodiment of the present invention, Figure 1 (b) shows an electrode prepared by carbonizing it. No cracking was observed in the carbonized porous structure electrode, and it was confirmed that the electrode could be used as a monolith type electrode without any polymer binder.
도 2의 (a)는 내재적 미세기공성 고분자 막의 치밀한 막의 단면을 나타낸 주사전자현미경(SEM) 사진이고, 도 2의 (b)는 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막의 단면을 나타낸 것이다. 도 2에서 볼 수 있는 바와 같이 일반적인 필름 캐스팅법으로 제조된 내재적 미세기공성 고분자 막인 도 2의 (a)는 필름의 단면이 치밀한 구조인 것을 알 수 있는 반면에 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막의 단면은 미세다공의 스폰지 구조(sponge like structure)임을 알 수 있다. Figure 2 (a) is a scanning electron microscope (SEM) photograph showing a cross-section of the dense membrane of the intrinsic microporous polymer membrane, Figure 2 (b) is a cross-sectional view of the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method. . As shown in Figure 2 (a) of the intrinsic microporous polymer membrane prepared by a general film casting method can be seen that the cross section of the film is a dense structure, while the intrinsic micromachine produced by the non-solvent induced phase separation method It can be seen that the cross section of the porous polymer membrane is a sponge-like structure of micropores.
도 2와 같은 구조를 실제 전극으로 활용하였을 때, 미세다공의 스폰지 구조(sponge like structure)특성을 보이는 다공성 구조체가 치밀한 막 대비 전해질 이온의 이동을 용이하게 하여 전기화학적 특성을 향상할 수 있다.When the structure as shown in FIG. 2 is used as an actual electrode, the porous structure showing the sponge-like structure of micropores may improve the electrochemical properties by facilitating the movement of electrolyte ions relative to the dense membrane.
도 3의 (a) 본원 발명의 일 실시예에 따라 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막(cNPIM-8)을 탄화시켜 제조된 전극의 표면의 주사전자현미경(SEM) 사진이고, 도 3의 (b)는 해당 전극 단면의 주사전자현미경(SEM) 사진을 나타낸 것이다. 비용매 유도 상분리법을 사용하지 않은 치밀한 막은 탄화 후에도 치밀한 막 형태를 보이며, 비용매 유도 상분리법으로부터 제조된 미세다공의 스펀지 구조특성을 보이는 다공성 구조체 또한 탄화 후에도 사슬-사슬 간의 뭉개짐이나 깨짐 현상 없이 미세다공의 스펀지 구조를 보였다.Figure 3 (a) is a scanning electron microscope (SEM) photograph of the surface of the electrode prepared by carbonizing the intrinsic microporous polymer membrane (cNPIM-8) prepared by a non-solvent induction phase separation method according to an embodiment of the present invention, Figure 3 (b) shows a scanning electron microscope (SEM) picture of the cross section of the electrode. The dense membrane without the non-solvent induced phase separation shows a dense membrane even after carbonization, and the porous structure showing the sponge structure characteristics of the microporous prepared from the non-solvent induced phase separation method also has no crushing or breaking of chain-chain after carbonization. It showed a microporous sponge structure.
도 4는 본 발명의 일 실시예에 따른 혼합용매에서 테트라하이드로퓨란(THF)의 함량에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 표면 변화를 나타낸 주사전자현미경(SEM) 사진이다. Figure 4 is a scanning electron microscope showing the surface change of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation method according to the content of tetrahydrofuran (THF) in the mixed solvent according to an embodiment of the present invention (SEM) picture.
도 4는 혼합용매로 디클로로벤젠(dichlorobenzene)/테트라하이드로퓨란(THF)에서 사용된 THF의 중량비를 달리하여 다공성 전구체를 제조한 결과이다. 도 4 (a)(cNPIM-3)는 dichlorobenzene/THF = 7:3 (중량비), 도 4 (b)(cNPIM-5)는 dichlorobenzene/THF = 5:5 (중량비), 도 4 (c)(cNPIM-7)는 dichlorobenzene/THF = 3:7 (중량비), 도 4 (d)(cNPIM-8)는 dichlorobenzene/THF = 2:8 (중량비)로 제조된 다공성 전구체의 주사전자현미경 사진이다. 혼합용매로 사용된 THF의 함량비가 증가함에 따라 기공의 크기가 증가하는 것을 확인하였다.4 is a result of preparing a porous precursor by varying the weight ratio of THF used in dichlorobenzene / tetrahydrofuran (THF) as a mixed solvent. Figure 4 (a) (cNPIM-3) is dichlorobenzene / THF = 7: 3 (weight ratio), Figure 4 (b) (cNPIM-5) is dichlorobenzene / THF = 5: 5 (weight ratio), Figure 4 (c) ( cNPIM-7) is dichlorobenzene / THF = 3: 7 (weight ratio), Figure 4 (d) (cNPIM-8) is a scanning electron micrograph of the porous precursor prepared by dichlorobenzene / THF = 2: 8 (weight ratio). As the content ratio of THF used as the mixed solvent increases, the pore size increases.
도 5는 본 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 BET 측정결과를 나타낸 그래프이다. cNPIM-0는 치밀한 막의 데이타 이고, cNPIM-7은 80% 탄화가 일어난 전극의 데이타 이다. 본원 발명에 따른 다공성 구조를 가지는 탄화된 전극의 비표면적을 측정한 결과를 표 3에 나타내었다. 치밀한 막(cNPIM-0)은 2086.7 m2/g, 탄화된 다공성 전극(cNPIM-7)은 2101.1 m2/g의 매우 높은 비표면적을 나타내었다. 또한, 치밀한 막 대비 탄화된 다공성 전극은 매크로 기공(macro-pore), 메조 기공(meso-pore), 마이크로 기공(micro-pore)이 관찰되었다. Figure 5 is a graph showing the BET measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induction phase separation method according to an embodiment of the present invention. cNPIM-0 is the data of dense membrane and cNPIM-7 is the electrode of 80% carbonization. Table 3 shows the results of measuring the specific surface area of the carbonized electrode having a porous structure according to the present invention. Dense film (cNPIM-0) is 2086.7 m 2 / g, the carbonized porous electrode (cNPIM-7) was characterized by a very high specific surface area of 2101.1 m 2 / g. Also, macro-pores, meso-pores, and micro-pores were observed in the carbonized porous electrode compared to the dense membrane.
Surface area (m2/g)Surface area (m 2 / g) Pore volume(cm3/g)Pore volume (cm 3 / g) Total volume in pore(cm3/g)Total volume in pore (cm 3 / g) Micropore size (nm)Micropore size (nm)
cNPIM-0(dense)cNPIM-0 (dense) 2086.72086.7 0.750.75 0.780.78 0.720.72
cNPIM-7(carbonization-80%)cNPIM-7 (carbonization-80%) 2101.12101.1 0.720.72 0.90.9 0.750.75
도 6은 본 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극 및 탄화된 치밀한 막 형태인 전극의 CV 측정결과를 나타낸 그래프이다. CV 측정결과 본원 발명에 따른 다공성 전극은 치밀한 형태인 전극 대비 큰 전류값을 보였다. 이는 다공성 구조를 가지는 탄화된 다공성 전극은 다양한 크기의 기공을 내재하고 있기 때문에 전해질 이온의 접근이 용이하여 나타나는 결과이다. FIG. 6 is a graph showing CV measurement results of an electrode manufactured by carbonizing an intrinsic microporous polymer membrane prepared by a non-solvent induced phase separation method and an electrode in the form of a carbonized dense membrane according to an embodiment of the present invention. As a result of CV measurement, the porous electrode according to the present invention showed a larger current value than the electrode having a compact form. This is a result of the carbonized porous electrode having a porous structure has easy access of the electrolyte ions because it contains pores of various sizes.
도 7은 본 발명의 일 실시예에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 주사속도에 따른 CV 측정결과를 나타낸 그래프이고, 도 8은 본 발명의 일 실시예에 따른 THF 함량 변화에 따른 비용매 유도 상분리법으로 제조된 내재적 미세기공성 고분자 막을 탄화시켜 제조된 전극의 CV 측정결과를 나타낸 그래프이다.  7 is a graph showing the results of CV measurement according to the scanning speed of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by the non-solvent induction phase separation method according to an embodiment of the present invention, Figure 8 is an embodiment of the present invention It is a graph showing the CV measurement results of the electrode prepared by carbonizing the intrinsic microporous polymer membrane prepared by non-solvent induced phase separation according to the THF content change according to the example.
CV 측정결과 본원 발명에 따른 다공성 전극은 거의 사각형 형태(nearly rectangular shape)의 CV 그래프를 보임으로서 매우 안정적인 커패시터 거동을 보였다. 즉, EDLC용 전극물질로 사용하기에 적절함을 확인할 수 있었다. 또한, 혼합용매인 THF 함량을 변화하여 제조한 전극의 경우 THF의 함량이 증가할수록 CV의 전류값이 증가하였다. 즉, 전극의 비정전용량이 증가한 것으로 이는 도 4의 SEM 결과와 같이 THF의 함량이 증가함에 따라 전극 내의 기공크기가 증가하였기 때문이다. 특히, 도 4의 (d) 및 도 6의 (d) cNPIM-8 (상분리법으로부터 제조된 다공성 전구체의 THF 함량비 8)의 경우 전류 밀도(current density)가 100 mA/g 일 때, 405.8 F/g의 매우 큰 비 정전용량을 나타내었는데 이는 상분리법으로부터 제조된 전극이 매크로 기공(macro-pore), 메조 기공(meso-pore), 마이크로 기공(micro-pore)이 적절하게 형성하여 3차원 다공성 구조 특성을 나타내기 때문에 전극 내부로 전해질 이온의 접근성을 용이하게 하고 결과적으로 많은 전하의 축적을 가능하게 하기 때문인 것으로 해석된다.As a result of CV measurement, the porous electrode according to the present invention showed very stable capacitor behavior by showing a CV graph of a nearly rectangular shape. That is, it could be confirmed that it is suitable for use as an electrode material for EDLC. In addition, in the case of an electrode manufactured by changing the THF content of the mixed solvent, the current value of CV increased as the THF content increased. That is, the specific capacitance of the electrode was increased because the pore size in the electrode was increased as the THF content was increased as shown in the SEM result of FIG. 4. In particular, in the case of Fig. 4 (d) and Fig. 6 (d) cNPIM-8 (THF content ratio of the porous precursor prepared from the phase separation method 8) when the current density is 100 mA / g, 405.8 F / g showed a very large specific capacitance, which means that the electrode prepared from the phase separation method has the proper formation of macro-pore, meso-pore, and micro-pore, resulting in three-dimensional porosity. It is interpreted that this is because it shows structural characteristics, thereby facilitating accessibility of electrolyte ions into the electrode and consequently allowing a large amount of charge accumulation.
이상에서 설명한 바와 같이 본원 발명의 내재적 미세기공성 고분자의 비용매 유도 상분리법을 이용한 다공성 탄소 구조체의 제조방법과 이에 따라 제조된 다공성 탄소 구조체는 그 단면이 비대칭인 3차원 다공성 구조를 가지고, 본원 발명에 따른 다공성 탄소구조체를 이용한 전지용 전극은 매우 큰 비 정전용량을 가지므로 전지용 전극으로 매우 우수한 성능을 가짐을 알 수 있다.As described above, the method for preparing a porous carbon structure using the non-solvent induced phase separation method of the intrinsic microporous polymer of the present invention and the porous carbon structure prepared according to the present invention have a three-dimensional porous structure having an asymmetric cross section. Battery electrode using the porous carbon structure according to it has a very large specific capacitance, it can be seen that has a very excellent performance as a battery electrode.
본원 발명에 따른 내재적 미세기공성 고분자를 이용한 비용매 유도 상분리법은 3차원 다공성 구조를 가지는 탄소구조체의 제조 및 이를 이용한 전지용 전극의 제조시 매우 큰 비 정전용량을 가지므로 전지용 전극 제조기술 및 전지관련 산업에 활용성이 매우 다양하고, 본원 발명의 다공성 구조체 전극은 리튬이온전지, 나트륨이온전지, 리튬황전지, 나트륨황전지, 리튬공기전지 등 다양한 이차전지의 전극으로 활용될 수 있다.The non-solvent induced phase separation method using the intrinsic microporous polymer according to the present invention has a very large specific capacitance when manufacturing a carbon structure having a three-dimensional porous structure and a battery electrode using the same, and thus, a battery electrode manufacturing technology and a battery-related industry Very versatile, the porous structure electrode of the present invention can be used as an electrode of various secondary batteries, such as lithium ion battery, sodium ion battery, lithium sulfur battery, sodium sulfur battery, lithium air battery.

Claims (10)

  1. 내재적 미세기공성 고분자를 양용매(good solvent)에 용해시키는 고분자 균일용액 제조단계;Preparing a homogeneous polymer solution for dissolving the intrinsic microporous polymer in a good solvent;
    상기 고분자 균일용액으로부터 비용매 유도 상분리법(non-solvent induced phase separation)을 통하여 다공성 구조를 형성하는 다공성 구조체 형성단계; 및A porous structure forming step of forming a porous structure through non-solvent induced phase separation from the polymer homogeneous solution; And
    상기 다공성 구조체를 탄화시키는 탄화단계를 포함하는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법.And a carbonization step of carbonizing the porous structure.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 내재적 미세기공성 고분자는 하기 화학식 1의 화학구조를 가지는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법:The intrinsic microporous polymer has a chemical structure represented by the following Chemical Formula 1
    <화학식 1><Formula 1>
    Figure PCTKR2016011579-appb-I000034
    Figure PCTKR2016011579-appb-I000034
    (상기 화학식 1에서 X는 하기 X1, X2, X3 및 X4로 이루어진 군에서 선택되고, Y는 하기 Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 및 Y10으로 이루어진 군에서 선택된다.)(In Formula 1, X is selected from the group consisting of X1, X2, X3 and X4, and Y is selected from the group consisting of Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9 and Y10. .)
    Figure PCTKR2016011579-appb-I000035
    Figure PCTKR2016011579-appb-I000035
    Figure PCTKR2016011579-appb-I000036
    Figure PCTKR2016011579-appb-I000036
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 내재적 미세기공성 고분자는 하기 화학식 2의 화학구조를 가지는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법:The intrinsic microporous polymer has a chemical structure of Formula 2 below
    <화학식 2><Formula 2>
    Figure PCTKR2016011579-appb-I000037
    Figure PCTKR2016011579-appb-I000037
    (상기 화학식 2에서 Z는 하기 Z1, Z2, Z3, Z4, 및 Z5로 이루어진 군에서 선택된다.)(In Formula 2, Z is selected from the group consisting of Z1, Z2, Z3, Z4, and Z5.)
    Figure PCTKR2016011579-appb-I000038
    Figure PCTKR2016011579-appb-I000038
  4. 청구항 1에 있어서,The method according to claim 1,
    상기 다공성 구조체 형성단계는 고분자 균일용액을 비용매와 접촉시키는 비용매 접촉단계를 포함하는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법.The porous structure forming step comprises a non-solvent contact step of contacting the polymer homogeneous solution with the non-solvent.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 다공성 구조체 형성단계는 고분자 균일용액을 이용하여 전구체를 제조하는 전구체 제조단계 및 상기 전구체를 비용매와 접촉시키는 비용매 접촉단계를 포함하는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법.The porous structure forming step comprises a precursor manufacturing step of producing a precursor using a homogeneous polymer solution and a non-solvent contact step of contacting the precursor with the non-solvent.
  6. 청구항 1에 있어서,The method according to claim 1,
    상기 양용매(good solvent) 및 비용매(non-solvent)는 단일용매 또는 혼합용매인 것을 특징으로 하는 다공성 탄소 구조체의 제조방법.The good solvent and the non-solvent is a method for producing a porous carbon structure, characterized in that the single solvent or mixed solvent.
  7. 청구항 3에 있어서,The method according to claim 3,
    상기 전구체는 양용매가 모두 제거되지 않은 젤-형태(gel-like)의 입자, 섬유, 필름 또는 3차원 형상 중 어느 하나인 것을 특징으로 하는 다공성 탄소 구조체의 제조방법.The precursor is a method for producing a porous carbon structure, characterized in that any one of the gel-like particles, fibers, films or three-dimensional shape, all of the good solvent is not removed.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 다공성 구조체는 단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조를 포함하는 것을 특징으로 하는 다공성 탄소 구조체의 제조방법. The porous structure is a method of producing a porous carbon structure, characterized in that it comprises an asymmetric macro-pore structure in the cross section.
  9. 청구항 1 내지 청구항 6 중 어느 한 항의 제조방법으로 제조되어, It is manufactured by the manufacturing method of any one of claims 1 to 6,
    단면에 비대칭성 매크로 기공(asymmetric macro-pore) 구조, 내재적 미세기공성 고분자가 탄화되면서 형성된 메조 기공(meso-pore) 구조 및 내재적 미세기공(intrinsic micro-pore) 구조를 포함하는 것을 특징으로 하는 다공성 탄소 구조체.Porous carbon characterized by including an asymmetric macro-pore structure in cross section, a meso-pore structure formed by carbonization of an intrinsic microporous polymer, and an intrinsic micro-pore structure Structure.
  10. 청구항 7에 기재된 상기 다공성 탄소 구조체를 포함하는 것을 특징으로 하는 전지용 전극.A battery electrode comprising the porous carbon structure according to claim 7.
PCT/KR2016/011579 2015-11-19 2016-10-14 Porous carbon structure using intrinsically microporous polymer, and battery electrode including same WO2017086609A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150162284A KR101818757B1 (en) 2015-11-19 2015-11-19 Porous carbon structure using polymers of intrinsic microporosity and electrode for battery using the same
KR10-2015-0162284 2015-11-19

Publications (1)

Publication Number Publication Date
WO2017086609A1 true WO2017086609A1 (en) 2017-05-26

Family

ID=58717560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/011579 WO2017086609A1 (en) 2015-11-19 2016-10-14 Porous carbon structure using intrinsically microporous polymer, and battery electrode including same

Country Status (2)

Country Link
KR (1) KR101818757B1 (en)
WO (1) WO2017086609A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3840091A1 (en) * 2019-12-18 2021-06-23 VARTA Micro Innovation GmbH Cell with metallic lithium anode and production method
EP3916870A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH High energy density lithium ion cell
EP3916869A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102178369B1 (en) * 2018-10-05 2020-11-12 한국화학연구원 Graphite felt having multimodal porous carbon coating layer and redox flow battery using the same as electrodes
KR102196169B1 (en) * 2019-07-11 2020-12-29 한국화학연구원 Porous carbon-Sulfur composite using polymers of intrinsic microporosity and cathode for Metal-Sulfur battery using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110097758A (en) * 2008-10-16 2011-08-31 우베 고산 가부시키가이샤 Method and apparatus for producing polymer particles
US20120041084A1 (en) * 2009-04-30 2012-02-16 Naiying Du Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties
KR20140059673A (en) * 2012-11-08 2014-05-16 한국화학연구원 Polyethersulfone copolymer of intrinsic microporosity, preparation of method and membrain for gas separation using the same
KR101485867B1 (en) * 2013-09-27 2015-01-26 한국화학연구원 Porous carbon structure comprising polymers of intrinsic microporosity and preparation method thereof
KR20150038215A (en) * 2010-04-05 2015-04-08 미쓰비시 레이온 컴퍼니, 리미티드 Process for production of porous membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110097758A (en) * 2008-10-16 2011-08-31 우베 고산 가부시키가이샤 Method and apparatus for producing polymer particles
US20120041084A1 (en) * 2009-04-30 2012-02-16 Naiying Du Carboxylated Polymers of Intrinsic Microporosity (PIMs) with Tunable Gas Transport Properties
KR20150038215A (en) * 2010-04-05 2015-04-08 미쓰비시 레이온 컴퍼니, 리미티드 Process for production of porous membrane
KR20140059673A (en) * 2012-11-08 2014-05-16 한국화학연구원 Polyethersulfone copolymer of intrinsic microporosity, preparation of method and membrain for gas separation using the same
KR101485867B1 (en) * 2013-09-27 2015-01-26 한국화학연구원 Porous carbon structure comprising polymers of intrinsic microporosity and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3840091A1 (en) * 2019-12-18 2021-06-23 VARTA Micro Innovation GmbH Cell with metallic lithium anode and production method
WO2021122069A1 (en) * 2019-12-18 2021-06-24 Varta Micro Innovation Gmbh Cell with metallic lithium anode and production method
CN114788052A (en) * 2019-12-18 2022-07-22 瓦尔塔创新有限责任公司 Battery with metallic lithium anode and method of manufacture
EP3916870A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH High energy density lithium ion cell
EP3916869A1 (en) 2020-05-29 2021-12-01 VARTA Microbattery GmbH Lithium ion cell with high specific energy density
WO2022058342A1 (en) 2020-05-29 2022-03-24 Varta Microbattery Gmbh Lithium-ion cell with a high specific energy density
WO2022111932A1 (en) 2020-05-29 2022-06-02 Varta Microbattery Gmbh Energy storage element having a prismatic housing

Also Published As

Publication number Publication date
KR20170058561A (en) 2017-05-29
KR101818757B1 (en) 2018-01-15

Similar Documents

Publication Publication Date Title
WO2017086609A1 (en) Porous carbon structure using intrinsically microporous polymer, and battery electrode including same
WO2017217832A1 (en) Method for producing carbon aerogel precursor, and carbon aerogel precursor and carbon aerogel produced thereby
WO2011099677A1 (en) Method for preparing porous carbon nanofibers containing a metal oxide, porous carbon nanofibers prepared using the method, and carbon nanofiber products including same
WO2013147520A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
WO2011055967A2 (en) Heat-resistant and high-tenacity ultrafine fibrous separation layer, method for manufacturing same, and secondary cell using same
WO2021091323A1 (en) Two-dimensional ni-organic framework/rgo composite and electrode for secondary battery or super-capacitor comprising same
WO2009125985A2 (en) Method of manufacturing the microporous polyolefin composite film with a thermally stable layer at high temperature
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2015130066A1 (en) Porous support, method for manufacturing same, and reinforced membrane comprising same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
WO2012134254A2 (en) Polymer electrolyte and preparation method thereof
WO2016032166A1 (en) Separator membrane having high heat resistance and flame retardancy, and electrochemical battery
WO2019039820A2 (en) Porous composite separator and manufacturing method therefor
WO2018043800A1 (en) Method for preparing high-specific surface area hard carbon-based electrode active material through control of carbonization process and electrode active material prepared thereby
WO2020080897A1 (en) Dispersant for non-aqueous electrolyte battery separator including cyanoethyl group-containing polymer, non-aqueous electrolyte battery separator, and non-aqueous electrolyte battery
WO2010117134A2 (en) Composition for producing positive electrode for electricity storage device, positive electrode for electricity storage device made with said composition, and electricity storage device comprising same
KR20100072825A (en) Porous membrane having advanced heat resistance and electrochemical device using the same
WO2015064908A1 (en) Polymer electrolyte membrane for a fuel cell, method for manufacturing same, and fuel cell comprising same
WO2016072634A1 (en) Method for preparing polymer resin composition for producing filtration membrane having improved hydrophilicity and mechanical strength
WO2016122195A1 (en) Compound comprising aromatic ring, polymer comprising same, and polyelectrolyte membrane using same
WO2023043007A1 (en) Surface-activated carbon fiber electrode, method for manufacturing same, flexible fiber-type supercapacitor, and method for manufacturing flexible fiber-type supercapacitor
WO2022131665A1 (en) Novel polyfluorene-based cross-linked copolymer, method for producing same, and anion exchange membrane for alkaline fuel cell using same
WO2019045404A1 (en) Method for manufacturing hollow structure
WO2021034159A1 (en) Composite separator for lithium secondary battery, and manufacturing method therefor
WO2022270934A1 (en) Anion exchange composite membrane, manufacturing method therefor, and alkaline fuel cell comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16866561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16866561

Country of ref document: EP

Kind code of ref document: A1