WO2015130066A1 - Porous support, method for manufacturing same, and reinforced membrane comprising same - Google Patents

Porous support, method for manufacturing same, and reinforced membrane comprising same Download PDF

Info

Publication number
WO2015130066A1
WO2015130066A1 PCT/KR2015/001789 KR2015001789W WO2015130066A1 WO 2015130066 A1 WO2015130066 A1 WO 2015130066A1 KR 2015001789 W KR2015001789 W KR 2015001789W WO 2015130066 A1 WO2015130066 A1 WO 2015130066A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoweb
porous support
group
polyimide
nanofibers
Prior art date
Application number
PCT/KR2015/001789
Other languages
French (fr)
Korean (ko)
Inventor
김성진
오흥렬
이용환
노환권
김철기
최정영
박준영
백지숙
Original Assignee
코오롱패션머티리얼 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱패션머티리얼 (주) filed Critical 코오롱패션머티리얼 (주)
Priority to US15/120,170 priority Critical patent/US20170030009A1/en
Priority to JP2016554217A priority patent/JP2017510722A/en
Publication of WO2015130066A1 publication Critical patent/WO2015130066A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43838Ultrafine fibres, e.g. microfibres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M10/00Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements
    • D06M10/02Physical treatment of fibres, threads, yarns, fabrics, or fibrous goods made from such materials, e.g. ultrasonic, corona discharge, irradiation, electric currents, or magnetic fields; Physical treatment combined with treatment with chemical compounds or elements ultrasonic or sonic; Corona discharge
    • D06M10/025Corona discharge or low temperature plasma
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/10Physical properties porous

Definitions

  • the present invention relates to a porous support, a method for preparing the same, and a reinforcing membrane including the same, and more particularly, a porous support having excellent hydrophilicity and excellent hydrophilicity, as well as excellent air permeability and water permeability. It relates to a manufacturing method, and a reinforcing film including the same.
  • Nanofiber has a wide surface area and excellent porosity, and is used for various purposes such as water purification filters, air purification filters, composite materials, battery separators, and the like, and may be particularly useful for reinforcement composite membranes used in fuel cells for automobiles.
  • Fuel cells are electrochemical devices that run on hydrogen and oxygen as fuels, and are now becoming environmentally friendly because their products are pure water and reusable heat. In addition, due to its simple operation, high power density and noise, it is widely used as a power source for home, automobile, and power generation.
  • Fuel cells may be classified into alkali electrolyte fuel cells, direct oxidation fuel cells, and polymer electrolyte membrane fuel cells (PEMFC), depending on the type of electrolyte membrane.
  • the polymer electrolyte membrane fuel cell is a hydrogen ion ( H + ) can be operated at room temperature 20 due to the generation of electricity from the anode (anode) to the cathode (cathode), has the advantage that the activation time is very short compared to other fuel cells. .
  • the polymer electrolyte membrane fuel cell includes an electricity generating unit including a membrane electrode assembly (MEA) and a separator (also called a bipolar plate) having an anode and a cathode formed therebetween with a polymer electrolyte membrane therebetween; And a fuel supply unit supplying fuel to the electricity generation unit, and an oxidant supply unit supplying an oxidant such as oxygen or air to the electricity generation unit.
  • MEA membrane electrode assembly
  • separator also called a bipolar plate
  • the polymer electrolyte membrane may be divided into a single membrane made of a polymer such as a fluorine-based hydrocarbon or a hydrocarbon-based conductor as a conductor of hydrogen ions, and a composite membrane used by combining an organic-inorganic material or a porous support with the polymer.
  • a polymer such as a fluorine-based hydrocarbon or a hydrocarbon-based conductor as a conductor of hydrogen ions
  • a composite membrane used by combining an organic-inorganic material or a porous support with the polymer.
  • DuPont's Nafion which is a perfluorinated polymer, is most used, but has a disadvantage in that the membrane resistance is high due to its high price, low mechanical shape stability, and thick thickness.
  • PTFE Polytetrafluoroethylene
  • Patent Document 1 Korean Patent Publication No. 2011-0120185 (2011.11.03 published)
  • An object of the present invention is to provide a porous support having excellent air permeability and water permeability, excellent durability, heat resistance and chemical resistance, as well as excellent hydrophilicity.
  • Another object of the present invention is to provide a method for producing the porous support.
  • Still another object of the present invention is to provide a reinforcing film including the porous support.
  • the nanofibers include a nanoweb integrated into a nonwoven fabric including a plurality of pores, and provide a porous support having a saturation moisture arrival time of 1 to 600 seconds.
  • the nanoweb may have a moisture content of 3.0 wt% or more.
  • the nanoweb may have a wettability of 2 to 15 cm by a wicking test.
  • the nanoweb may have a contact angle of 90 ° or less.
  • the nanofibers may include 0.1 to 20 parts by weight of a hydrophilization additive based on 100 parts by weight of the nanofiber polymer.
  • the hydrophilization additive may be impregnated into the pores of the nanoweb.
  • Hydrophilization additives may be coated on one or both surfaces of the nanoweb.
  • the hydrophilization additive is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), It may be any one selected from the group consisting of aluminum oxide (Al 2 O 3 ), oxidized single-walled carbon nanobubbles, oxidized multi-walled carbon nanotubes, graphite oxide, graphene oxide and combinations thereof.
  • the hydrophilic additive is selected from the group consisting of polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethyl methacrylate, epoxy, and combinations thereof. It can be either.
  • the average particle diameter of the hydrophilic additive may be a nano hydrophilic additive of 0.005 to 1 ⁇ m.
  • the nanofibers may be polyimide nanofibers.
  • the main chain of the polyimide may include any substituent selected from the group consisting of an amine group, a carboxyl group, a hydroxyl group, and a combination thereof.
  • the polyimide may be prepared by imidizing a polyamic acid prepared by polymerizing a comonomer including a diamine, a dianhydride, and a hydroxy group.
  • the comonomer including the hydroxy group may be any one selected from the group consisting of dianiline including a hydroxy group, diphenyl urea including a hydroxy group, diamine including a hydroxy group, and a combination thereof.
  • One or both surfaces of the nanoweb may be plasma treated.
  • Inorganic materials may be deposited on one or both surfaces of the nanoweb.
  • the inorganic material is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), aluminum oxide ( Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and a combination thereof may be any one selected from the group.
  • a comonomer containing a hydroxyl group may be further added to the electrospinning solution.
  • the main chain of the nanofibers included in the polyimide nanoweb may be substituted with any one substituent selected from the group consisting of an amine group, a carboxyl group, a hydroxyl group and a combination thereof.
  • the step of electrospinning the electrospinning solution to produce a nanoweb integrated nanofibers in the form of a non-woven fabric comprising a plurality of pores, the saturation moisture arrival time of the nanoweb It provides a method for producing a porous support that is from 1 second to 600 seconds.
  • Hydrophilic additives may be further added to the electrospinning solution.
  • the method may further include impregnating a hydrophilization additive in the pores of the nanoweb.
  • the method may further include coating a hydrophilization additive on one or both surfaces of the nanoweb.
  • Plasma treatment of one or both surfaces of the nanoweb Plasma treatment of one or both surfaces of the nanoweb.
  • the plasma treatment condition may be to treat with a gas that can impart a hydrophilic group to one or both surfaces of the nanoweb using a low-temperature plasma or radio frequency (RF) plasma.
  • a gas that can impart a hydrophilic group to one or both surfaces of the nanoweb using a low-temperature plasma or radio frequency (RF) plasma.
  • RF radio frequency
  • the method may further include depositing an inorganic material on one or both surfaces of the nanoweb.
  • the method of depositing the inorganic material may be sputtering.
  • a reinforcing film including the porous support and an ion exchange polymer filling the pores of the porous support.
  • the porous support according to the present invention not only has excellent air permeability and water permeability, but also has excellent durability, heat resistance and chemical resistance, and excellent hydrophilicity.
  • FIG. 1 is a schematic diagram of a nozzle type electrospinning apparatus.
  • nano means nanoscale and includes a size of 1 ⁇ m or less.
  • the term “diameter” means the length of a short axis passing through the center of the fiber, and the “length” means the length of the long axis passing through the center of the fiber.
  • the porous support according to the embodiment of the present invention includes a nanoweb in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
  • the nanofibers have excellent chemical resistance, and can be preferably used hydrocarbon-based polymers which have hydrophobicity and are free of morphological changes due to moisture in a high humidity environment.
  • the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof
  • the polyimide excellent in heat resistance, chemical resistance, and morphological stability can be used preferably among these, It can select from the group which consists of these.
  • the porous support includes an aggregate of nanofibers, ie, nanowebs, in which nanofibers prepared by electrospinning are randomly arranged.
  • nanowebs in which nanofibers prepared by electrospinning are randomly arranged.
  • the average diameter of 40 to 5,000nm when the diameter of 50 fibers were measured using an electron scanning microscope (Scanning Electron Microscope, JSM6700F, JEOL), and calculated from the average. It is preferred to have a diameter. If the average diameter of the nanofibers is less than 40nm, the mechanical strength of the porous support may be lowered. If the average diameter of the nanofibers exceeds 5,000nm, the porosity may be significantly decreased and the thickness may be thickened.
  • the nanoweb may be made of the nanofibers as described above, and may have a porosity of 50% or more. As described above, the porosity of 50% or more increases the specific surface area of the porous support, so that the electrolyte is easily impregnated when applied as a separator, and as a result, the efficiency of the battery can be improved.
  • the nanoweb preferably has a porosity of 90% or less. If the porosity of the nanoweb exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly.
  • the porosity may be calculated by the ratio of the air volume to the total volume of the porous support according to Equation 1 below. In this case, the total volume is calculated by measuring the width, length, and thickness of the sample by preparing a rectangular shape, and the air volume can be obtained by subtracting the volume of the polymer inverted from the density after measuring the mass of the sample.
  • the nanoweb may have an average thickness of 5 to 50 ⁇ m. If the thickness of the nanoweb is less than 5 ⁇ m the mechanical strength and dimensional stability can be significantly reduced when applied as a separator, while if the thickness exceeds 50 ⁇ m the resistance loss increases when applied to the separator, light weight and integration may fall have. More preferred thickness of the nanoweb is in the range of 10 to 30 mu m.
  • the nanoweb has a weight of 30,000 to 500,000 g / mol in order to have a nanofiber and thickness having excellent porosity and optimized diameter, and to be easy to manufacture, and to exhibit excellent tensile strength after electrolyte impregnation. It is preferable to have an average molecular weight. If the weight average molecular weight of the polymer constituting the nanoweb is less than 30,000 g / mol, the porosity and thickness of the nanoweb may be easily controlled, but the tensile strength may be reduced after the porosity and the wet treatment. On the other hand, if the weight average molecular weight of the polymer constituting the nanoweb exceeds 500,000g / mol may be somewhat improved heat resistance, the manufacturing process may not proceed smoothly and the porosity may be reduced.
  • the nanoweb may have a weight average molecular weight in the range as described above, and as the polymer precursor is converted into a polymer under optimal curing conditions, the heat resistance may be 180 ° C. or higher, preferably 300 ° C. or higher. If the heat resistance of the nanoweb is less than 180 ° C., the heat resistance may be easily deformed at high temperatures as the heat resistance thereof decreases, and thus, the electrochemical device manufactured using the nanoweb may degrade performance. In addition, when the heat resistance of the nanoweb is reduced, the shape is deformed by abnormal heat generation, the performance is degraded, and if severe, it may cause a problem that bursts and explodes.
  • the nanoweb may be chemically insoluble in an organic solvent at room temperature (20 ° C.) to 100 ° C.
  • the organic solvent may be a conventional organic solvent such as NMP, DMF, DMAc, DMSO, THF, and the like.
  • the nanoweb may have a strain of 10% or less, preferably 5% or less.
  • the strain may be measured as an average of the transverse, longitudinal strain before and after leaving the nanoweb at 100 °C length 100 mm specimen 24 hours at 200 °C.
  • the shape may be modified under dimensional stability and high temperature environment of the support.
  • the imide conversion may be 90% or more, and preferably 99% or more.
  • the imide conversion rate can be measured by measuring the infrared spectra with respect to the nano web, calculating the ratio of the p- substituted CH absorbance already de CN absorbance at about 1500cm -1 1375cm -1. If the imide conversion is less than 90%, due to the unreacted material, it is not possible to secure the physical property degradation and form stability.
  • the nanoweb may have an air permeability of 50 to 250lpm, preferably 100 to 150lpm.
  • the air permeability can be measured by the ISO 9237 method. If the air permeability is less than 50lpm, it may be difficult to absorb the electrolyte, and if it exceeds 250lpm, it may not include the electrolyte sufficiently.
  • the nanoweb is excellent in hydrophilicity
  • the saturation moisture reaching time may be 1 second to 600 seconds, preferably 1 second to 300 seconds, more preferably 1 second to 180 seconds, even more preferably 1 second to 60 seconds Can be.
  • the saturation moisture arrival time is measured according to KS K ISO 9073-6, Textile-Non-Woven Fabric Test Method-Part 6: Liquid Absorption Time Method of Absorption Measurement Standard. Can be.
  • the nano-web may be impregnated with an ion exchange polymer, so that the ion-exchange polymer may be uniformly impregnated throughout the pores of the nanoweb when the reinforcing film is manufactured.
  • a hydrophilization channel may be further formed when the reinforcing film is used as a membrane for a fuel cell, thereby improving ion conductivity.
  • the nanoweb may have an electrolyte absorption capacity of 10 to 60% by weight, preferably 30 to 40% by weight.
  • the electrolyte absorption capacity was 70/30 (v) of ethyl methyl carbonate and ethylene carbonate based on KS K ISO 9073-6, Textile-Non-Woven Test Method-Part 6: Liquid Hygroscopic Capacity Method of Absorption Measurement Standard. / v) the mixture may be dropped at a height of 25 mm for 60 seconds, the mixture is drained vertically for 120 seconds, and then the weight of the nanoweb may be measured and calculated as in Equation 2 below.
  • the electrolyte absorption capacity is less than 10% by weight, the electrolyte absorption may be insufficient and battery performance may not be sufficiently expressed, and when the electrolyte absorption capacity is greater than 60% by weight, deterioration of the physical properties of the support may occur.
  • Electrolyte Absorption Capacity (%) (W1-W) / W ⁇ 100
  • W is the weight of the nanoweb before the electrolyte absorption
  • W1 is the weight of the nanoweb after the electrolyte absorption
  • the nanoweb may have a moisture regain of 3.0 wt% or more, preferably 3.0 to 5.0 wt%, and more preferably 3.1 to 5.0 wt%.
  • the moisture content is measured by measuring the moisture (O: weight of the specimen) after reaching the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours according to the moisture measurement method of KS K 0221 textile: oven balance method After drying for 1 hour and 30 minutes at 105 to 110 ° C., the weight (D: weight of the dried specimen) may be measured and calculated by Equation 3 below.
  • Moisture Content (wt%) (O-D) / D x 100
  • the nanoweb may have a wettability of 2 to 15 cm by a wicking test, preferably 2.1 to 15 cm, and more preferably 3 to 15 cm.
  • the wicking test is based on the US AATCC Test Method 197-2011, Vertical Wicking of Textiles B (Option B, Measure distance at a given time), 30 minutes after immersing the specimen It can measure by the method of measuring the later wicking maximum distance.
  • the wettability of the wicking test is less than 2 cm, the ion conductor and the support may be detached from the fuel cell operating environment, the operating time may be delayed in low humidity conditions, or the physical shape stability may be lowered, and it may exceed 15 cm.
  • the durability of the ion conductor may be reduced by swelling of the ion conductor, or the ion conductor and the support may be detached.
  • the nanoweb may have a contact angle of 90 ° or less, preferably 1 to 50 °, and more preferably 5 to 35 °.
  • the contact angle was filled with a syringe with distilled water while maintaining a 30 ° C and 40% RH to drop a droplet of 3mm diameter on the nanoweb, waiting for the water droplets to spread for 5 minutes, after 5 minutes to form a separator and water droplets
  • the contact angle can be measured.
  • the contact angle is less than 1 °, the wettability of the nanoweb may be excellent, but it may be difficult to manufacture high quality nanoweb due to an excessive amount of additives in the spinning process, and when the contact angle exceeds 90 °, the wettability is inferior to the separator of the electrochemical device. If used, it may be difficult to express sufficient performance.
  • the nanofibers are made of a hydrophobic polymer such as polyimide
  • a hydrophobic polymer such as polyimide
  • the nanoweb made of the hydrophobic polymer is required to be hydrophilized.
  • the said hydrophilization treatment can be applied as long as it is a conventional method which can improve the hydrophilicity of the said nanoweb, and is not specifically limited in this invention.
  • the nanoweb may include a hydrophilization additive. That is, the nanofibers themselves may include the hydrophilization additive, the hydrophilic additive may be impregnated in the pores of the nanoweb, the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb It may be.
  • the nanofibers when the nanofibers include the hydrophilic additive, the nanofibers may contain 0.1 to 20 parts by weight of hydrophilization additive, preferably 0.5 to 20 parts by weight, more preferably 1 to 1, based on 100 parts by weight of the nanofiber polymer. It may be included in 2 parts by weight.
  • the amount of the hydrophilization additive is less than 0.1 parts by weight with respect to 100 parts by weight of the nanofiber polymer, the hydrophilic performance is insufficient, so that the wettability may be degraded, and the performance of the electrochemical device may be lowered. Instability of the nanofiber jet (jet) is increased and non-uniform fiber focusing may be a problem when applied to the membrane of the electrochemical device.
  • the nanoweb may contain 0.1% of the hydrophilization additive based on 100 parts by weight of the nanoweb. To 20 parts by weight, preferably 3 to 20 parts by weight, more preferably 5 to 20 parts by weight.
  • the amount of the hydrophilization additive is less than 0.1 parts by weight with respect to 100 parts by weight of the nanoweb, the hydrophilic performance is insufficient, the wettability may be reduced, and the performance of the electrochemical device may be lowered. Instability of fiber jets and non-uniform fiber convergence can lead to problems when applied to separators in electrochemical devices.
  • the nanoweb has excellent wettability as the hydrophilic additive is included, and when used as a separator for an electrochemical device, the nanoweb may have excellent wettability with respect to an electrolyte, thereby improving efficiency of a battery.
  • the porous support is excellent in durability, heat resistance and chemical resistance to maintain the performance of the electrochemical device even in harsh operating conditions.
  • the hydrophilic additive may be an inorganic or organic hydrophilic additive.
  • the inorganic hydrophilic additives undergo oxidation and / or reduction reactions, i.e., electrochemical reactions, with the positive or negative electrode current collectors in the operating voltage range of the electrochemical device (e.g., 0 to 5 V on Li / Li + basis for lithium secondary batteries). It does not occur, does not impair the electrical conductivity, and if it can withstand the manufacturing process in the production of nanofibers including the same is not particularly limited.
  • the inorganic hydrophilization additive may be anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide ( ZrO 2 ), aluminum oxide (Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and any combination thereof may be selected from the group consisting of Preferably TiO 2 .
  • the organic hydrophilic additive may also be subjected to oxidation and / or reduction reactions, i.e., electrochemical, with a positive or negative electrode current collector in the operating voltage range of the electrochemical device (e.g., 0 to 5 V on Li / Li + basis for lithium secondary batteries).
  • electrochemical oxidation and / or reduction reactions
  • a positive or negative electrode current collector in the operating voltage range of the electrochemical device (e.g., 0 to 5 V on Li / Li + basis for lithium secondary batteries).
  • the organic hydrophilic additive may include polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethylmethacrylate, epoxy, and combinations thereof. It may be any one selected from the group consisting of.
  • the hydrophilic additive may be a nano hydrophilic additive, and thus the average particle diameter of the hydrophilic additive may be 0.005 to 1 ⁇ m, preferably 0.005 to 0.8 ⁇ m, more preferably 0.005 to 0.5 ⁇ m.
  • the average particle diameter of the nano-hydrophilic additive is less than 0.005 ⁇ m the hydrophilic effect may be inhibited or difficult to handle due to the aggregation of the nano-hydrophilized particles, when the nano-hydrophilic additive exceeds 1 ⁇ m physical tensile strength of the support is lowered, elongation at break Can be reduced.
  • the main chain of the polyimide may be an amine group, a carboxyl group, or a hydroxyl group in order to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test. And it may include any one hydrophilic substituent selected from the group consisting of a combination thereof.
  • the polyimide may be prepared through the imidization reaction in a subsequent curing process after preparing a polyamic acid (PAA).
  • PAA polyamic acid
  • the polyamic acid may be prepared according to a conventional manufacturing method, specifically, diamine may be prepared by mixing diamine in a solvent, adding dianhydride thereto, and polymerizing the diamine.
  • Aromatic diamine, and as the dianhydride, a wholly aromatic polyimide using an aromatic dianhydride can be preferably used.
  • the comonomer including the hydroxy group may be any one selected from the group consisting of dianiline including a hydroxy group, diphenyl urea including a hydroxy group, diamine including a hydroxy group, and a combination thereof.
  • the hydrophilic substituent may include 0.01 to 0.1 mol%, preferably 0.01 to 0.08 mol%, more preferably 0.02 to 0.08 mol% with respect to the entire polyimide. .
  • the content of the hydrophilic substituent is less than 0.01 mol%, hydrophilization may be insufficient due to the decrease of the hydrophilic group of the polyimide main chain, and when the content of the hydrophilic substituent exceeds 0.1 mol%, side reaction generation and physical elongation may be deteriorated.
  • the nanoweb when the nanofiber is made of a hydrophobic polymer such as polyimide, the nanoweb may be plasma-treated on one or both surfaces to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by wicking test. Can be. Plasma treatment of the nanoweb may replace a functional group having any hydrophilicity selected from the group consisting of carboxyl groups, hydroxyl groups, amine groups, and combinations thereof on the surface of the nanoweb.
  • the plasma treatment may be performed by using a low temperature plasma or a radio frequency (RF) plasma with a gas capable of imparting a hydrophilic group to one or both surfaces of the nanoweb.
  • the gas capable of imparting the hydrophilic group may be any one selected from the group consisting of ammonia gas, argon gas, oxygen gas, and combinations thereof, and the flow rate of the gas capable of imparting the hydrophilic group may be 10 to 200 sccm.
  • the power of the plasma may be 50 to 200 W, and the plasma treatment time may be 10 seconds to 5 minutes.
  • the nanofibers are made of a hydrophobic polymer such as polyimide
  • an inorganic material on one or both surfaces of the nanoweb to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by the wicking test. This can be deposited.
  • the inorganic material is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), aluminum oxide ( Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and a combination thereof may be any one selected from the group.
  • the porous support not only has excellent air permeability and water permeability, but also has excellent heat resistance and chemical resistance, and is required for gas or liquid filters, filter for dust masks, venting for automobiles, and venting for mobile phones.
  • Filter materials such as printer vents, high-end garment materials such as breathable tarps, electrochemical materials such as polymer electrolytes of fuel cells, secondary cells, electrolysis devices or separators of capacitors, dressings for wound healing, artificial blood vessels It can be used as a medical material such as a support, a bandage, a cosmetic mask and the like.
  • a method of manufacturing a porous support includes electrospinning an electrospinning solution to produce a nanoweb in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
  • the method of preparing the porous support may include adding diamine and dianhydride to a solvent to prepare an electrospinning solution, and electrospinning the prepared electrospinning solution.
  • the electrospinning solution is a solution containing the monomers for forming the nanofibers, the monomers for forming the nanofibers exhibit excellent chemical resistance, has a hydrophobic property by moisture in a high humidity environment Hydrocarbon type polymer which does not have a possibility of morphological modification can be used preferably.
  • the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof
  • a polyimide which is more excellent in heat resistance, chemical resistance, and shape stability.
  • the monomer for forming the nanofibers may be used without particular limitation as long as it can form the hydrocarbon-based polymer.
  • a nanoweb containing polyimide is prepared by using a polyamic acid (PAA) as a polyimide precursor that is well soluble in an organic solvent, and then undergoes imidization reaction in a subsequent curing process. It can be prepared through.
  • PAA polyamic acid
  • the polyamic acid nanoweb may be prepared according to a conventional manufacturing method, specifically, diamine may be prepared by mixing diamine in a solvent, adding dianhydride thereto, and then electrospinning it.
  • dianhydride examples include pyromellyrtic dianhydride (PMDA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA) ), 4,4'-oxydiphthalic anhydride (ODPA), 3,4 ', 3,4'-biphenyltetracarboxylic anhydride (3,4', 3,4 ')
  • PMDA pyromellyrtic dianhydride
  • BTDA 4,4'-benzophenone tetracarboxylic dianhydride
  • ODPA 4,4'-oxydiphthalic anhydride
  • BPDA -biphenyltetracarboxylic dianhydride
  • SiDA bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride
  • ODA 4,4'-oxydianiline
  • 1,3-bis (4-aminophenoxy) benzene 1,3-bis (4-aminophenoxy) benzene
  • RODA p-phenylene diamine
  • o-phenylene diamine o-phenylene diamine, o-PDA
  • mixtures thereof may be used.
  • the polyamic acid Dissolving solvents include m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, diethyl acetate, A solvent selected from the group consisting of tetrahydrofuran (THF), chloroform, ⁇ -butyrolactone and mixtures thereof may be used.
  • Monomers for forming the nanofibers are preferably included in 5 to 20% by weight based on the total weight of the electrospinning solution. If the content of the monomers is less than 5% by weight, the spinning may not proceed smoothly, and fiber formation may not be achieved or fibers having a uniform diameter may be produced, whereas the content of the monomers may exceed 20% by weight. In this case, as the discharge pressure increases rapidly, spinning may not be performed or processability may be reduced.
  • step 2 the electrospinning solution is spun to prepare a nanoweb precursor, that is, a polyamic acid nanoweb.
  • the spinning is not particularly limited in the present invention, but may be electrospinning, electro-blown spinning, centrifugal spinning, melt blowing, or the like. Emission can be used.
  • FIG. 1 is a schematic diagram of a nozzle type electrospinning apparatus.
  • the electrospinning supplies a predetermined amount of the precursor solution to the nozzle 3 using the metering pump 2 in the solution tank 1 in which the nanofiber precursor solution is stored, and the nozzle ( After discharging the solution of the nanofiber precursor through 3), the coagulated nanofiber precursor was formed simultaneously with scattering, and the coagulated nanofiber precursor was further concentrated in the collector 4 to prepare the precursor nanofiber of the porous support. have.
  • the electrospinning may be performed in a state in which the positive charge density around the nozzle is increased and the negative charge density around the collector is increased.
  • the droplets of the polymer can be spun and scattered, and at the same time, they can repel each other to collect nanofibers.
  • the area around the nozzle or around the collector may mean a space within a radius of 10 cm from the surface of the nozzle or the collector, but is not particularly limited in the present invention.
  • the positive charge density around the nozzle can be adjusted by installing a high voltage generator (not shown) capable of supplying positive charge around the nozzle, and the negative charge density around the collector is a high voltage capable of supplying negative charge around the collector. It can be adjusted by installing a generator (not shown).
  • the degree of increasing the positive charge density around the nozzle can be controlled by supplying positive charges around the nozzle at +10 to +100 kV, and the degree of increasing the negative charge density around the collector is supplied at 0 to -100 kV around the collector. Can be adjusted. If the positive charge supply is less than + 10kV, the radiation force may be insufficient, if the + 100kV exceeds the electrical insulation may be destroyed, if the negative charge supply is less than 0 the potential difference may be insufficient, if the insulation exceeds -100kV Can be destroyed.
  • the intensity of the electric field between the nozzle 3 and the collector 4 applied by the high voltage generator 6 and the voltage transfer rod 5 is preferably 850 to 3,500 V / cm. If the strength of the electric field is less than 850 V / cm, it is difficult to manufacture a nanofiber having a uniform thickness because the precursor solution is not continuously discharged, and the nanofibers formed after the spinning cannot be smoothly focused on the collector. Fabrication of the web may be difficult, and nanowebs having a normal shape cannot be obtained because the nanofibers do not settle correctly in the collector 4 when the electric field strength exceeds 3,500 V / cm.
  • a nanofiber precursor having a uniform fiber diameter, preferably an average diameter of 0.01 to 5 ⁇ m is prepared, and the nanofiber precursor is arranged in a predetermined direction or randomly to have a nonwoven form.
  • step 3 the nanofiber precursor of the nanoweb precursor is cured.
  • a curing process is performed as an additional process for the nanofiber precursors.
  • the nanofiber precursor prepared by electrospinning is made of polyamic acid, it is converted into polyimide through imidization during the curing process.
  • the temperature during the curing process is preferably adjusted in consideration of the conversion rate of the nanofiber precursor. Specifically, it is preferable that a curing process at 80 to 650 ° C is performed. When the curing temperature is less than 80 °C conversion rate is low, as a result there is a fear that the heat resistance and chemical resistance of the nano-web, and when the curing temperature exceeds 650 °C due to decomposition of the nanofibers nano web There is a fear that the physical properties of the.
  • the nanoweb may include a hydrophilic additive to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test.
  • the nanofibers themselves may include the hydrophilization additive
  • the hydrophilic additive may be impregnated in the pores of the nanoweb
  • the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb It may be.
  • the hydrophilic additive may be further added to the electrospinning solution and then electrospun.
  • the hydrophilic additive may include 0.1 to 20 parts by weight, preferably 3 to 20 parts by weight, and more preferably 5 to 20 parts by weight, based on 100 parts by weight of the monomer for preparing the nanofibers. .
  • the hydrophilic performance is insufficient, the wettability may be lowered, and the performance of the electrochemical device may be lowered. In this case, the instability of the nanofiber jet may be increased in the spinning process and non-uniform fiber focusing may be a problem when applied to the separator of the electrochemical device.
  • the spinning of the electrospinning solution can be prepared under normal spinning conditions, but during spinning of the precursor solution containing the hydrophilic additive, the instability of the spinning jet increases, so that the nanofibers are uniformly focused on the collector. It is not possible to manufacture high quality nanowebs. Accordingly, during spinning of the precursor solution including the hydrophilic additive, a cation blower is installed in the surrounding environment to increase the cation density, and the collector surface substrate is exposed to an anion blower to increase the anion density of the collector substrate. Otherwise, stable spinning jets may not be obtained, making it difficult to produce a uniform, high quality support.
  • the hydrophilic additive is prepared by adding the hydrophilic additive to a solvent
  • the porous support may be prepared by dipping and impregnating the nanoweb or by coating the hydrophilic additive solution on the surface of the nanoweb.
  • the nanoweb is immersed in the hydrophilic additive solution for 5 to 30 minutes at room temperature (20 °C) and then dried at 50 to 100 °C hot air oven for more than 3 hours , This may be done by performing the dipping and drying operation 2 to 5 times.
  • the method of coating the hydrophilic additive solution on the surface of the nanoweb may use a variety of methods known in the art, such as laminating process, spray process, screen printing process, doctor blade process.
  • the hydrophilic additive solution is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), Any one inorganic hydrophilic additive selected from the group consisting of aluminum oxide (Al 2 O 3 ), single-walled carbon nanobub oxide, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and combinations thereof Any one of organic solvents selected from the group consisting of polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethyl methacrylate, epoxy and combinations thereof Hydrating additives include N-methyl-2-pyrrolidine (NMP), dimethylformamide (DMF), dimethyl acetacea It can be prepared by adding and mixing to any one solvent selected from
  • the main chain of the polyimide may have an amine group, a carboxyl group, or a hydride to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test. It may include any one hydrophilic substituent selected from the group consisting of a hydroxyl group and a combination thereof.
  • the method of preparing the porous support is prepared after the polyimide or the polyamic acid and the polyimide or the polyamic acid in the main chain.
  • hydrophilic substituents preparing polyimides using dimines and / or dianhydrides containing the hydrophilic substituents, or combining comonomers containing the hydroxy groups in addition to the diamines and dianhydrides It can be prepared by polymerization.
  • a carboxyl group and an amine group may be substituted in a part of the main chain by treating with an aqueous alkali solution such as KOH or NaOH.
  • the comonomer containing the hydroxy group can be any of those that can be polymerized with the diamine and / or the dianhydride including the hydrophilic substituent, for example, dianiline, hydroxy containing a hydroxy group Any one selected from the group consisting of diphenyl urea containing an oxy group, diamine containing a hydroxy group, and a combination thereof can be used.
  • the nanoweb when the nanofiber is made of a hydrophobic polymer such as polyimide, the nanoweb may be plasma-treated on one or both surfaces to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by wicking test. Can be. Plasma treatment of the nanoweb may replace a functional group having any hydrophilicity selected from the group consisting of carboxyl groups, hydroxyl groups, amine groups, and combinations thereof on the surface of the nanoweb.
  • the plasma treatment may be performed by using a low temperature plasma or a radio frequency (RF) plasma with a gas capable of imparting a hydrophilic group to one or both surfaces of the nanoweb.
  • the gas capable of imparting the hydrophilic group may be any one selected from the group consisting of ammonia gas, argon gas, oxygen gas, and combinations thereof, and the flow rate of the gas capable of imparting the hydrophilic group may be 10 to 200 sccm.
  • the power of the plasma may be 50 to 200 W, and the plasma treatment time may be 10 seconds to 5 minutes.
  • the nanofiber is made of a hydrophobic polymer such as polyimide
  • an inorganic material is deposited on one or both surfaces of the nanoweb to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by the wicking test. Can be.
  • the deposited inorganic layer is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), Chemical vapor deposition (CVD) of any one precursor selected from the group consisting of aluminum oxide (Al 2 O 3 ), single-walled carbon nanobubbles, multi-walled carbon nanotubes, graphite oxide, graphene oxide, and combinations thereof Or physical vapor deposition (PVD) methods including sputtering. Conditions for the deposition may be a 1 minute to 60 minutes treatment in a 50 to 300 °C temperature atmosphere after placing a carpet that can give a hydrophilic group on the surface using an RF sputter or a vapor deposition machine.
  • Reinforcing membrane according to another embodiment of the present invention includes the porous support and the ion exchange polymer filled in the pores of the porous support.
  • Impregnation is a method of filling the ion exchange polymer into the pores of the porous support.
  • the impregnation method may be performed by immersing the porous support in a solution containing an ion exchange polymer.
  • the ion exchange polymer may be formed by immersing a related monomer or low molecular weight oligomer in the porous support, and then in-situ polymerization in the porous support.
  • the impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the nanoweb, the concentration of the ion exchange polymer, the kind of the solvent, the concentration of the ion exchange polymer to be impregnated into the porous support, and the like. However, the impregnation process may be made at a temperature of less than 100 °C at any point of the solvent, and more generally at a temperature of less than 70 °C at room temperature (20 °C). However, the temperature may not be higher than the melting point of the nanofibers.
  • the ion exchange polymer may be a cation exchange polymer having a cation exchange group such as proton or an anion exchange polymer having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
  • the cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
  • the cation exchange polymer includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
  • the cation exchange polymer when the cation exchange polymer is a hydrogen ion cation exchange polymer, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain. Specific examples thereof include poly (perfluorosulfonic acid) containing a sulfonic acid group, poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene containing a sulfonic acid group and fluorovinyl ether, and a defluorinated sulfide polyether.
  • a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain. Specific examples thereof include poly (perfluorosulfonic acid) containing a sulfonic acid group, poly (
  • Fluorine-based polymers including ketones or mixtures thereof; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof Hydrocarbon-based polymers include, but are not limited thereto.
  • the anion exchange polymer is a polymer capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion exchange polymer is commercially available in the form of a hydroxide or halide (generally chloride), and the anion exchange polymer Can be used for industrial water purification, metal separation or catalytic processes.
  • a metal hydroxide-doped polymer may be generally used. Specifically, poly (ethersulfone), polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) doped with metal hydroxide ), Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
  • the ion exchange polymer may be included in 50 to 99% by weight based on the total weight of the reinforcing film. If the content of the ion exchange polymer is less than 50% by weight, the ion conductivity of the reinforcing film may be lowered. If the content of the ion exchange polymer is more than 99% by weight, the mechanical strength and dimensional stability of the reinforcing film may be reduced. .
  • the ion exchange polymer may form a coating layer on one or both surfaces of the porous support.
  • the coating layer of the ion exchange polymer is adjusted to a thickness of 30 ⁇ m or less.
  • the mechanical strength of the reinforcing film is increased. It may be lowered, leading to an increase in the overall thickness of the reinforcement film, and thus an increase in resistance loss.
  • the reinforcing film Since the reinforcing film has a structure in which the ion exchange polymer is filled in the pores of the porous support, it exhibits excellent mechanical strength of 40 MPa or more. As the mechanical strength is improved, the thickness of the entire reinforcement film can be reduced to 80 ⁇ m or less. As a result, the ion conduction rate is increased and the resistance loss is reduced while saving material costs.
  • the reinforcing membrane includes a porous support having excellent durability and excellent binding force between the nanofibers and the ion-exchange polymer constituting the porous support, the three-dimensional expansion of the reinforcing film due to moisture can be suppressed, so that the length and thickness expansion rate This is relatively low.
  • the reinforcing film exhibits excellent dimensional stability of 5% or less when swollen in water.
  • the dimensional stability is a physical property evaluated according to Equation 4 below from the change in length before and after swelling when the reinforcing film is swelled in water.
  • the reinforcing membrane has excellent dimensional stability and ion conductivity, it may be preferably used as a polymer electrolyte membrane for a fuel cell or a membrane for a reverse osmosis filter.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. while transferring the polyamic acid nanoweb in a roll-to-roll manner to prepare a porous support composed of polyimide nanoweb.
  • a porous support was prepared in the same manner as in Example 1-1, except that 0.1 part by weight of anatase-type nano TiO 2 was used as the hydrophilic additive.
  • a porous support was prepared in the same manner as in Example 1-1, except that 20 parts by weight of anatase-type nano TiO 2 was used as the hydrophilic additive.
  • Test Example 1 Measurement of Characteristics of Porous Support
  • Example 1-1 Example 1-2
  • Example 1-3 Comparative Example 1-1 Saturation Moisture Reach Time 1) 200 600 60 3600 Moisture content 2) 3.5 3.0 5.0 2.5 Wettability 3) 3 2 7 0 Contact angle 4) 45 80 25 113
  • Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 °C After drying for 1 hour and 30 minutes, the weight change rate is measured.
  • porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
  • PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
  • anatase-type nano TiO 2 as a hydrophilic additive was added to dimethylformamide and stirred to prepare a hydrophilic additive solution. After immersing the prepared nanoweb in the prepared hydrophilic additive solution for 10 minutes at room temperature (20 °C) and dried at 80 °C hot air oven for more than 3 hours, by performing such immersion, drying operation 2 to 5 times The hydrophilization additive was impregnated into the nanoweb.
  • a porous support was prepared in the same manner as in Example 2-1, except that the hydrophilic additive solution was coated on both surfaces of the nanoweb using a spray and then dried. It was.
  • PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to manufacture polyimide nanoweb. Both surfaces of the prepared polyimide nanoweb were prepared using low temperature plasma. Oxygen gas was introduced into the plasma processing chamber at a flow rate of 150 sccm and then plasma treated at 20 W for 5 minutes.
  • PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 6 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb. Both surfaces of the prepared polyimide nanoweb were deposited at 150 W using RF sputtering, and the specimen temperature was fixed at 200 ° C., and sputtered for 10 minutes to form a TiO 2 inorganic layer.
  • Example 2-1 Example 2-2
  • Example 2-3 Example 2-4 Comparative Example 1-1 Saturation Moisture Reach Time 1) 250 280 10 300 3600 Moisture content 2) 3.3 3.6 5.0 3.8 2.5 Wettability 3) 4 4.5 15 6 0 Contact angle 4) 38 43 10 30 113
  • Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 °C After drying for 1 hour and 30 minutes, the weight change rate is measured.
  • porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
  • PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5% by weight and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
  • PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb.
  • the solution feed amount was 1.0 ml / min.
  • the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
  • Example 3-1 Example 3-2
  • Example 3-3 Comparative Example 1-1 Saturation Moisture Reach Time 1) 500 580 600 3600 Moisture content 2) 3.1 3.3 3.2 2.5 Wettability 3) 2.5 2.9 2.8 0 Contact angle 4) 48 42 44 113
  • Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 °C After drying for 1 hour and 30 minutes, the weight change rate is measured.
  • porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
  • the reinforcing film prepared in Preparation Example 4 was dried in a 60 ° C. oven for at least 6 hours and then stored twice at 80 ° C. for 2 hours in a single cycle. Tensile strength was measured and whether or not detachment phenomenon occurred.
  • the reinforcing film was dried for 6 hours at a temperature of 50 °C in a hot air oven and then immersed in ultrapure water for 24 hours to measure the dimensional change of the reinforcing film.
  • Comparative Example A polymer electrolyte membrane prepared by immersing a Dupont Nafion 117 membrane in ultrapure water for 3 hours or more so that sufficient water exists in the membrane.
  • the reinforcing film of the Example and the reinforcing film of the Comparative Example exhibited the same level of hydrogen ion conductivity at 25 °C compared to the fluorine-based strengthening film of the control example known to exhibit excellent hydrogen ion conductivity.
  • the reinforcing film of the Example showed the same level of hydrogen ion conductivity as the fluorine-based reinforcing film of the control example, whereas the reinforcing film of the comparative example showed a significantly lower ion conductivity than the fluorine-reinforcing film of the control example.
  • the reinforcing membrane of the embodiment exhibits significantly improved morphological stability compared to the electrolyte membrane of the fluorine-based polymer of the comparative example known to exhibit excellent hydrogen ion conductivity.
  • the porous support of the present invention has a wide surface area and excellent porosity, it can be used for various purposes such as water purification filters, air purification filters, composite materials, battery separators, and the like, and is particularly useful for reinforced composite membranes used in fuel cells for automobiles. Can be applied.

Abstract

The present invention relates to a porous support, a method for manufacturing the same, and a reinforced membrane comprising the same, the porous support comprising a nanoweb in which nanofibers are accumulated in the form of a nonwoven fabric including a plurality of pores, wherein the nanoweb has a moisture saturation time of 1 second to 600 seconds. The porous support not only has excellent durability, heat resistance, and chemical resistance while exhibiting excellent air permeability and water permeability, but also has good hydrophilicity.

Description

다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막Porous support, preparation method thereof, and reinforcing film including the same
본 발명은 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막에 관한 것으로서, 보다 상세하게는 통기도 및 통수도가 우수하면서 내구성, 내열성 및 내화학성이 우수할 뿐만 아니라, 친수성이 우수한 다공성 지지체, 이의 제조방법, 및 이를 포함하는 강화막에 관한 것이다.The present invention relates to a porous support, a method for preparing the same, and a reinforcing membrane including the same, and more particularly, a porous support having excellent hydrophilicity and excellent hydrophilicity, as well as excellent air permeability and water permeability. It relates to a manufacturing method, and a reinforcing film including the same.
나노섬유는 표면적이 넓고 다공성이 우수하기 때문에 정수용 필터, 공기 정화용 필터, 복합재료, 전지용 분리막 등의 다양한 용도로 이용되고 있으며, 특히 자동차용 연료전지에 사용되는 강화복합막에 유용하게 적용될 수 있다.Nanofiber has a wide surface area and excellent porosity, and is used for various purposes such as water purification filters, air purification filters, composite materials, battery separators, and the like, and may be particularly useful for reinforcement composite membranes used in fuel cells for automobiles.
연료전지는 수소와 산소를 연료로 작동되는 전기화학적 장치로서, 생성물이 순수한 물과 재사용 가능한 열이기 때문에 현재 친환경적인 장치로 대두되고 있다. 또한 작동이 간단하고 높은 출력밀도와 무소음 등의 장점으로 인해 가정용, 자동차용, 발전용 등의 전원으로 다양하게 쓰이고 있다.Fuel cells are electrochemical devices that run on hydrogen and oxygen as fuels, and are now becoming environmentally friendly because their products are pure water and reusable heat. In addition, due to its simple operation, high power density and noise, it is widely used as a power source for home, automobile, and power generation.
연료전지는 전해질막의 종류에 따라 알칼리 전해질 연료전지, 직접 산화형 연료전지, 고분자 전해질막 연료전지(polymer electrolyte membrane fuel cell, PEMFC) 등으로 구분될 수 있는데, 그중 고분자 전해질막 연료전지는 수소이온(H+)이 산화극(anode)에서 환원극(cathode)로 넘어가면서 전기를 발생시키는 원리로 상온(20)에서 작동이 가능하며, 다른 연료전지에 비해 활성화되는 시간이 매우 짧다는 장점을 가지고 있다. Fuel cells may be classified into alkali electrolyte fuel cells, direct oxidation fuel cells, and polymer electrolyte membrane fuel cells (PEMFC), depending on the type of electrolyte membrane. Among them, the polymer electrolyte membrane fuel cell is a hydrogen ion ( H + ) can be operated at room temperature 20 due to the generation of electricity from the anode (anode) to the cathode (cathode), has the advantage that the activation time is very short compared to other fuel cells. .
고분자 전해질막 연료전지는 고분자 전해질막을 사이에 두고 산화극과 환원극이 형성된 막-전극 접합체(membrane electrode assembly, MEA)와 세퍼레이터(바이폴라플레이트(bipolar plate) 라고도 함)를 포함하는 전기 발생부와, 상기 전기 발생부에 연료를 공급하는 연료공급부, 그리고 산소 또는 공기와 같은 산화제를 상기 전기 발생부에 공급하는 산화제 공급부로 이루어져 있다.The polymer electrolyte membrane fuel cell includes an electricity generating unit including a membrane electrode assembly (MEA) and a separator (also called a bipolar plate) having an anode and a cathode formed therebetween with a polymer electrolyte membrane therebetween; And a fuel supply unit supplying fuel to the electricity generation unit, and an oxidant supply unit supplying an oxidant such as oxygen or air to the electricity generation unit.
고분자 전해질막은 수소이온의 전도체로서 불소계나 탄화수소계 등 고분자로 이루어진 단일막과, 상기 고분자와 함께 유무기물질 또는 다공성 지지체 등을 복합화하여 사용한 복합막으로 나눌 수 있다. 단일막의 경우 과불소계 고분자인 듀폰(DuPont)사의 나피온(Nafion)이 가장 많이 사용되고 있지만, 가격이 비싸고 기계적 형태안정성이 낮으며 두께가 두꺼워 막 저항이 크다는 단점이 있다.The polymer electrolyte membrane may be divided into a single membrane made of a polymer such as a fluorine-based hydrocarbon or a hydrocarbon-based conductor as a conductor of hydrogen ions, and a composite membrane used by combining an organic-inorganic material or a porous support with the polymer. In the case of a single membrane, DuPont's Nafion, which is a perfluorinated polymer, is most used, but has a disadvantage in that the membrane resistance is high due to its high price, low mechanical shape stability, and thick thickness.
이러한 단점을 극복하기 위해 기계적 및 형태 안정성을 강화한 복합막에 대한 연구가 활발히 진행되고 있으며, 그 중 다공성 지지체에 이온 전도체를 함침하는 개념의 세공 충진막은 가격이 저렴할 뿐만 아니라 성능 기계적, 형태안정성을 가지고 있어 많은 연구가 이루어지고 있다.To overcome these shortcomings, studies on composite membranes with enhanced mechanical and morphological stability have been actively conducted. Among them, the pore-filled membranes in which the porous support is impregnated with ionic conductors are not only inexpensive but also have performance mechanical and morphological stability. There is much research being done.
세공 충진막에 쓰이는 일반적인 지지체로 폴리테트라플루오로에틸렌(polytetrafluoroethylene, PTFE)이 사용되고 있다. 그러나 PTFE 지지체의 경우 내화학성은 우수하지만 다공도가 40 내지 60%로 낮다는 문제점이 있다.Polytetrafluoroethylene (PTFE) is used as a general support for pore filling membranes. However, in the case of PTFE support, there is a problem that the chemical resistance is excellent but the porosity is low as 40 to 60%.
[선행기술문헌][Preceding technical literature]
(특허문헌 1) 한국특허공개 제2011-0120185호 (2011.11.03 공개)(Patent Document 1) Korean Patent Publication No. 2011-0120185 (2011.11.03 published)
본 발명의 목적은 통기도 및 통수도가 우수하면서 내구성, 내열성 및 내화학성이 우수할 뿐만 아니라, 친수성이 우수한 다공성 지지체를 제공하는 것이다.An object of the present invention is to provide a porous support having excellent air permeability and water permeability, excellent durability, heat resistance and chemical resistance, as well as excellent hydrophilicity.
본 발명의 다른 목적은 상기 다공성 지지체를 제조하는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for producing the porous support.
본 발명의 또 다른 목적은 상기 다공성 지지체를 포함하는 강화막을 제공하는 것이다.Still another object of the present invention is to provide a reinforcing film including the porous support.
본 발명의 일 실시예에 따르면, 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 포함하며, 상기 나노웹의 포화 함습 도달 시간이 1초 내지 600초인 다공성 지지체를 제공한다.According to one embodiment of the present invention, the nanofibers include a nanoweb integrated into a nonwoven fabric including a plurality of pores, and provide a porous support having a saturation moisture arrival time of 1 to 600 seconds.
상기 나노웹은 수분율이 3.0 중량% 이상일 수 있다.The nanoweb may have a moisture content of 3.0 wt% or more.
상기 나노웹은 위킹 테스트(wicking test)에 의한 젖음성이 2 내지 15cm일 수 있다.The nanoweb may have a wettability of 2 to 15 cm by a wicking test.
상기 나노웹은 접촉각(contact angle)이 90˚ 이하일 수 있다.The nanoweb may have a contact angle of 90 ° or less.
상기 나노 섬유는 상기 나노 섬유 고분자 100 중량부에 대하여 친수화 첨가제를 0.1 내지 20 중량부로 포함할 수 있다.The nanofibers may include 0.1 to 20 parts by weight of a hydrophilization additive based on 100 parts by weight of the nanofiber polymer.
상기 나노웹의 기공 내부에 친수화 첨가제가 함침될 수 있다.The hydrophilization additive may be impregnated into the pores of the nanoweb.
상기 나노웹의 일면 또는 양면의 표면에 친수화 첨가제가 코팅될 수 있다.Hydrophilization additives may be coated on one or both surfaces of the nanoweb.
상기 친수화 첨가제는 아나타제형 이산화티타늄(TiO2 anatase), 루타일 형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The hydrophilization additive is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), It may be any one selected from the group consisting of aluminum oxide (Al 2 O 3 ), oxidized single-walled carbon nanobubbles, oxidized multi-walled carbon nanotubes, graphite oxide, graphene oxide and combinations thereof.
상기 친수화 첨가제는 폴리하이드로에틸메타크릴레이트, 폴리비닐아세테이트, 폴리우레탄, 폴리디메틸실록산, 폴리이미드, 폴리아미드, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 에폭시 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다. The hydrophilic additive is selected from the group consisting of polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethyl methacrylate, epoxy, and combinations thereof. It can be either.
상기 친수화 첨가제의 평균 입경은 0.005 내지 1㎛인 나노 친수화 첨가제일 수 있다.The average particle diameter of the hydrophilic additive may be a nano hydrophilic additive of 0.005 to 1㎛.
상기 나노 섬유는 폴리이미드 나노 섬유일 수 있다.The nanofibers may be polyimide nanofibers.
상기 폴리이미드의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함할 수 있다.The main chain of the polyimide may include any substituent selected from the group consisting of an amine group, a carboxyl group, a hydroxyl group, and a combination thereof.
상기 폴리이미드는 디아민(diamine), 디언하이드라이드(dianhydride), 및 하이드록시기를 포함하는 공단량체(comonomer)를 중합시켜 제조된 폴리아믹산을 이미드화시켜 제조될 수 있다.The polyimide may be prepared by imidizing a polyamic acid prepared by polymerizing a comonomer including a diamine, a dianhydride, and a hydroxy group.
상기 하이드록시기를 포함하는 공단량체는 하이드록시기를 포함하는 디아닐린, 하이드록시기를 포함하는 디페닐 우레아, 하이드록시기를 포함하는 디아민 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The comonomer including the hydroxy group may be any one selected from the group consisting of dianiline including a hydroxy group, diphenyl urea including a hydroxy group, diamine including a hydroxy group, and a combination thereof.
상기 나노웹은 일면 또는 양면의 표면이 플라즈마 처리될 수 있다.One or both surfaces of the nanoweb may be plasma treated.
상기 나노웹의 일면 또는 양면의 표면에 무기물이 증착될 수 있다.Inorganic materials may be deposited on one or both surfaces of the nanoweb.
상기 무기물은 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.The inorganic material is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), aluminum oxide ( Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and a combination thereof may be any one selected from the group.
본 발명의 다른 일 실시예에 따르면, 디아민 및 디언하이드라이드를 용매에 첨가하여 전기 방사 용액을 제조하는 단계, 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 폴리아믹산 나노웹을 제조하는 단계, 그리고 상기 폴리아믹산 나노웹을 이미드화시켜 폴리이미드 나노웹을 제조하는 단계를 포함하며, 상기 폴리이미드 나노웹의 포화 함습 도달 시간은 1초 내지 600초인 것인 다공성 지지체의 제조 방법을 제공한다. According to another embodiment of the present invention, adding diamine and dianhydride to a solvent to prepare an electrospinning solution, electrospun the prepared electrospinning solution in the form of a nonwoven fabric in which the nanofibers comprise a plurality of pores Preparing an integrated polyamic acid nanoweb, and imidizing the polyamic acid nanoweb to produce a polyimide nanoweb, wherein the saturation moisture arrival time of the polyimide nanoweb is 1 second to 600 seconds. Provided are methods for preparing a phosphorous porous support.
상기 전기 방사 용액에 하이드록시기를 포함하는 공단량체를 더 첨가할 수 있다.A comonomer containing a hydroxyl group may be further added to the electrospinning solution.
상기 폴리이미드 나노웹이 포함하는 상기 나노 섬유의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기로 치환될 수 있다.The main chain of the nanofibers included in the polyimide nanoweb may be substituted with any one substituent selected from the group consisting of an amine group, a carboxyl group, a hydroxyl group and a combination thereof.
본 발명의 또 다른 일 실시예에 따르면, 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 제조하는 단계를 포함하며, 상기 나노웹의 포화 함습 도달 시간은 1초 내지 600초인 것인 다공성 지지체의 제조 방법을 제공한다.According to another embodiment of the present invention, the step of electrospinning the electrospinning solution to produce a nanoweb integrated nanofibers in the form of a non-woven fabric comprising a plurality of pores, the saturation moisture arrival time of the nanoweb It provides a method for producing a porous support that is from 1 second to 600 seconds.
상기 전기 방사 용액에 친수성 첨가제를 더 첨가할 수 있다.Hydrophilic additives may be further added to the electrospinning solution.
상기 나노웹의 기공 내부에 친수화 첨가제를 함침시키는 단계를 더 포함할 수 있다.The method may further include impregnating a hydrophilization additive in the pores of the nanoweb.
상기 나노웹의 일면 또는 양면의 표면에 친수화 첨가제를 코팅하는 단계를 더 포함할 수 있다.The method may further include coating a hydrophilization additive on one or both surfaces of the nanoweb.
상기 나노웹의 일면 또는 양면을 플라즈마 처리하는 단계를 더 포함할 수 있다.Plasma treatment of one or both surfaces of the nanoweb.
상기 플라즈마 처리 조건은 저온 플라즈마 또는 RF(radio frequency) 플라즈마를 사용하여 상기 나노웹의 일면 또는 양면에 친수성기를 부여할 수 있는 기체로 처리하는 것일 수 있다.The plasma treatment condition may be to treat with a gas that can impart a hydrophilic group to one or both surfaces of the nanoweb using a low-temperature plasma or radio frequency (RF) plasma.
상기 나노웹의 일면 또는 양면의 표면에 무기물을 증착시키는 단계를 더 포함할 수 있다.The method may further include depositing an inorganic material on one or both surfaces of the nanoweb.
상기 무기물을 증착시키는 방법은 스퍼터링일 수 있다.The method of depositing the inorganic material may be sputtering.
본 발명의 또 다른 일 실시예에 따르면, 상기 다공성 지지체, 그리고 상기 다공성 지지체의 기공을 채우고 있는 이온 교환 폴리머를 포함하는 강화막을 제공한다.According to another embodiment of the present invention, there is provided a reinforcing film including the porous support and an ion exchange polymer filling the pores of the porous support.
기타 본 발명의 실시예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specific details of the embodiments of the present invention are included in the following detailed description.
본 발명에 따른 다공성 지지체는 통기도 및 통수도가 우수하면서 내구성, 내열성 및 내화학성이 우수할 뿐만 아니라, 친수성이 우수하다.The porous support according to the present invention not only has excellent air permeability and water permeability, but also has excellent durability, heat resistance and chemical resistance, and excellent hydrophilicity.
도 1은 노즐형 전기 방사 장치의 개략도이다.1 is a schematic diagram of a nozzle type electrospinning apparatus.
이하, 본 발명의 실시예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, embodiments of the present invention will be described in detail. However, this is presented as an example, by which the present invention is not limited and the present invention is defined only by the scope of the claims to be described later.
본 발명에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 발명에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In the present invention, the terms 'comprise' or 'have' are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
본 명세서에 기재된 용어 "나노"란 나노 스케일을 의미하며, 1㎛ 이하의 크기를 포함한다.As used herein, the term "nano" means nanoscale and includes a size of 1 μm or less.
본 명세서에 기재된 용어 "직경"이란, 섬유의 중심을 지나는 단축의 길이를 의미하고, "길이"란 섬유의 중심을 지나는 장축의 길이를 의미한다.As used herein, the term "diameter" means the length of a short axis passing through the center of the fiber, and the "length" means the length of the long axis passing through the center of the fiber.
본 발명의 일 실시예에 따른 다공성 지지체는 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 포함한다.The porous support according to the embodiment of the present invention includes a nanoweb in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
상기 나노 섬유는 우수한 내화학성을 나타내고, 소수성을 가져 고습의 환경에서 수분에 의한 형태 변형 우려가 없는 탄화수소계 고분자를 바람직하게 사용할 수 있다. 구체적으로 상기 탄화수소계 고분자로는 나일론, 폴리이미드, 폴리아라미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리아닐린, 폴리에틸렌옥사이드, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 스티렌 부타디엔 고무, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐알코올, 폴리비닐리덴 플루오라이드, 폴리비닐 부틸렌, 폴리우레탄, 폴리벤즈옥사졸, 폴리벤즈이미다졸, 폴리아미드이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 이들의 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 이중에서도 내열성, 내화학성, 및 형태 안정성이 보다 우수한 폴리이미드를 바람직하게 사용할 수 있다.The nanofibers have excellent chemical resistance, and can be preferably used hydrocarbon-based polymers which have hydrophobicity and are free of morphological changes due to moisture in a high humidity environment. Specifically, the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof The polyimide excellent in heat resistance, chemical resistance, and morphological stability can be used preferably among these, It can select from the group which consists of these.
상기 다공성 지지체는 전기 방사에 의해 제조된 나노 섬유가 랜덤하게 배열된 나노 섬유의 집합체, 즉, 나노웹을 포함한다. 이때 상기 나노 섬유는 나노웹의 다공도 및 두께를 고려하여, 전자주사현미경(Scanning Electron Microscope, JSM6700F, JEOL)을 이용하여 50개의 섬유 직경을 측정하여 그 평균으로부터 계산했을 때, 40 내지 5,000nm의 평균 직경을 갖는 것이 바람직하다. 만일 상기 나노 섬유의 평균 직경이 40nm 미만일 경우 다공성 지지체의 기계적 강도가 저하될 수 있고, 상기 나노 섬유의 평균 직경이 5,000nm를 초과할 경우 다공도가 현저히 떨어지고 두께가 두꺼워질 수 있다. The porous support includes an aggregate of nanofibers, ie, nanowebs, in which nanofibers prepared by electrospinning are randomly arranged. In this case, considering the porosity and thickness of the nanoweb, the average diameter of 40 to 5,000nm when the diameter of 50 fibers were measured using an electron scanning microscope (Scanning Electron Microscope, JSM6700F, JEOL), and calculated from the average. It is preferred to have a diameter. If the average diameter of the nanofibers is less than 40nm, the mechanical strength of the porous support may be lowered. If the average diameter of the nanofibers exceeds 5,000nm, the porosity may be significantly decreased and the thickness may be thickened.
상기 나노웹은 상기와 같은 나노 섬유로 이루어짐으로써, 50% 이상의 다공도를 가질 수 있다. 이와 같이 50% 이상의 다공도를 가짐에 따라, 다공성 지지체의 비표면적이 커지기 때문에 분리막으로 적용시 전해질의 함침이 용이하고, 그 결과로 전지의 효율을 향상시킬 수 있다. 한편, 상기 나노웹은 90% 이하의 다공도를 갖는 것이 바람직하다. 만일, 상기 나노웹의 다공도가 90%를 초과할 경우 형태 안정성이 저하됨으로써 후공정이 원활하게 진행되지 않을 수 있다. 상기 다공도는 하기 수학식 1에 따라 다공성 지지체 전체부피 대비 공기부피의 비율에 의하여 계산할 수 있다. 이때, 전체부피는 직사각형 형태의 샘플을 제조하여 가로, 세로, 두께를 측정하여 계산하고, 공기부피는 샘플의 질량을 측정 후 밀도로부터 역산한 고분자 부피를 전체부피에서 빼서 얻을 수 있다.The nanoweb may be made of the nanofibers as described above, and may have a porosity of 50% or more. As described above, the porosity of 50% or more increases the specific surface area of the porous support, so that the electrolyte is easily impregnated when applied as a separator, and as a result, the efficiency of the battery can be improved. On the other hand, the nanoweb preferably has a porosity of 90% or less. If the porosity of the nanoweb exceeds 90%, morphological stability may be lowered, and thus the subsequent process may not proceed smoothly. The porosity may be calculated by the ratio of the air volume to the total volume of the porous support according to Equation 1 below. In this case, the total volume is calculated by measuring the width, length, and thickness of the sample by preparing a rectangular shape, and the air volume can be obtained by subtracting the volume of the polymer inverted from the density after measuring the mass of the sample.
[수학식 1][Equation 1]
다공도(%) = (나노웹 내 공기부피/다공성 지지체의 전체부피) × 100Porosity (%) = (air volume in nanoweb / total volume of porous support) × 100
또한, 상기 나노웹은 5 내지 50㎛의 평균 두께를 가질 수 있다. 상기 나노웹의 두께가 5㎛ 미만이면 분리막으로 적용시 기계적 강도 및 치수안정성이 현저히 떨어질 수 있고, 반면 두께가 50㎛를 초과하면 분리막으로의 적용시 저항손실이 증가하고, 경량화 및 집적화가 떨어질 수 있다. 보다 바람직한 나노웹의 두께는 10 내지 30㎛의 범위이다.In addition, the nanoweb may have an average thickness of 5 to 50㎛. If the thickness of the nanoweb is less than 5㎛ the mechanical strength and dimensional stability can be significantly reduced when applied as a separator, while if the thickness exceeds 50㎛ the resistance loss increases when applied to the separator, light weight and integration may fall have. More preferred thickness of the nanoweb is in the range of 10 to 30 mu m.
상기 나노웹이 우수한 다공도 및 최적화된 직경을 갖는 나노 섬유와 두께를 가지고, 제조가 용이하며, 전해질 함침 후 우수한 인장 강도를 나타내기 위해서는 상기 나노웹을 구성하는 고분자가 30,000 내지 500,000g/mol의 중량평균 분자량을 갖는 것이 바람직하다. 만일, 상기 나노웹을 구성하는 고분자의 중량평균 분자량이 30,000g/mol 미만일 경우 나노웹의 다공도 및 두께를 용이하게 제어할 수 있으나, 다공도 및 습윤처리 후 인장 강도가 저하될 수 있다. 반면, 상기 나노웹을 구성하는 고분자의 중량평균 분자량이 500,000g/mol을 초과할 경우 내열성은 다소 향상될 수 있으나, 제조공정이 원활하게 진행되지 않고 다공도가 저하될 수 있다. The nanoweb has a weight of 30,000 to 500,000 g / mol in order to have a nanofiber and thickness having excellent porosity and optimized diameter, and to be easy to manufacture, and to exhibit excellent tensile strength after electrolyte impregnation. It is preferable to have an average molecular weight. If the weight average molecular weight of the polymer constituting the nanoweb is less than 30,000 g / mol, the porosity and thickness of the nanoweb may be easily controlled, but the tensile strength may be reduced after the porosity and the wet treatment. On the other hand, if the weight average molecular weight of the polymer constituting the nanoweb exceeds 500,000g / mol may be somewhat improved heat resistance, the manufacturing process may not proceed smoothly and the porosity may be reduced.
또한, 상기 나노웹은 상술한 바와 같은 범위의 중량평균 분자량을 갖고 최적의 경화 조건에서 고분자 전구체가 고분자로 변환됨에 따라, 내열성이 180℃ 이상, 바람직하게는 300℃ 이상일 수 있다. 만일, 상기 나노웹의 내열성이 180℃ 미만일 경우 내열성이 떨어짐에 따라 고온에서 쉽게 변형될 수 있고, 이에 따라 이를 이용하여 제조한 전기화학소자는 성능이 저하될 수 있다. 또한, 상기 나노웹의 내열성이 떨어질 경우 이상 발열에 의해 형태가 변형되어 성능이 저하되고 심할 경우 파열되어 폭발하는 문제가 생길 수 있다.In addition, the nanoweb may have a weight average molecular weight in the range as described above, and as the polymer precursor is converted into a polymer under optimal curing conditions, the heat resistance may be 180 ° C. or higher, preferably 300 ° C. or higher. If the heat resistance of the nanoweb is less than 180 ° C., the heat resistance may be easily deformed at high temperatures as the heat resistance thereof decreases, and thus, the electrochemical device manufactured using the nanoweb may degrade performance. In addition, when the heat resistance of the nanoweb is reduced, the shape is deformed by abnormal heat generation, the performance is degraded, and if severe, it may cause a problem that bursts and explodes.
상기 나노웹은 상온(20℃) 내지 100℃에서 유기 용매에 불용하여 화학적으로 안정성을 가질 수 있다. 상기 유기 용매는 NMP, DMF, DMAc, DMSO, THF 등의 통상의 유기 용매일 수 있다.The nanoweb may be chemically insoluble in an organic solvent at room temperature (20 ° C.) to 100 ° C. The organic solvent may be a conventional organic solvent such as NMP, DMF, DMAc, DMSO, THF, and the like.
상기 나노웹은 변형율이 10 길이% 이하일 수 있고, 바람직하게 5 길이% 이하일 수 있다. 상기 변형율은 시편 가로 100 mm 세로 100 mm을 200℃ 에 24시간 상기 나노웹을 방치 하여 방치 전후의 가로, 세로 변형율의 평균으로 측정할 수 있다. 상기 변형율이 10 길이%를 초과하는 경우 지지체의 치수 안정성과 고온 환경하에서 형태 변형이 이루어질 수 있다.The nanoweb may have a strain of 10% or less, preferably 5% or less. The strain may be measured as an average of the transverse, longitudinal strain before and after leaving the nanoweb at 100 ℃ length 100 mm specimen 24 hours at 200 ℃. When the strain exceeds 10% by length, the shape may be modified under dimensional stability and high temperature environment of the support.
상기 나노웹은 폴리이미드로 이루어진 경우 이미드 전환율이 90% 이상일 수 있고, 바람직하게 99% 이상일 수 있다. 상기 이미드 전환율은 상기 나노웹에 대하여 적외선 스펙트럼을 측정하여, 1375cm-1에서의 이미드 C-N 흡광도 대 1500cm-1에서의 p-치환된 C-H 흡광도의 비를 계산하여 측정할 수 있다. 상기 이미드 전환율이 90% 미만인 경우 미반응 물질로 인하여 물성 저하와 형태 안정성을 담보 할 수 없다.When the nanoweb is made of polyimide, the imide conversion may be 90% or more, and preferably 99% or more. The imide conversion rate can be measured by measuring the infrared spectra with respect to the nano web, calculating the ratio of the p- substituted CH absorbance already de CN absorbance at about 1500cm -1 1375cm -1. If the imide conversion is less than 90%, due to the unreacted material, it is not possible to secure the physical property degradation and form stability.
상기 나노웹은 공기 투과도가 50 내지 250lpm 일 수 있고, 바람직하게 100 내지 150lpm 일 수 있다. 상기 공기 투과도는 ISO 9237 방법에 의하여 측정할 수 있다. 상기 공기 투과도가 50lpm 미만인 경우 전해액의 흡수가 어려워질 수 있고, 250lpm을 초과하는 경우 전해액을 충분히 포함시키지 못할 수 있다.The nanoweb may have an air permeability of 50 to 250lpm, preferably 100 to 150lpm. The air permeability can be measured by the ISO 9237 method. If the air permeability is less than 50lpm, it may be difficult to absorb the electrolyte, and if it exceeds 250lpm, it may not include the electrolyte sufficiently.
상기 나노웹은 친수성이 우수하여 포화 함습 도달 시간이 1초 내지 600초일 수 있고, 바람직하게 1초 내지 300초일 수 있고, 더욱 바람직하게 1초 내지 180초일 수 있고, 더더욱 바람직하게 1초 내지 60초일 수 있다. 상기 포화 함습 도달 시간은 KS K ISO 9073-6, 텍스타일-부직포 시험방법-제 6부: 흡수 측정 규격중 액체 흡습시간 방법에 의거하여, 물을 25mm 높이에서 낙하시켜 시편이 완전히 젖는 시간을 측정할 수 있다. The nanoweb is excellent in hydrophilicity, the saturation moisture reaching time may be 1 second to 600 seconds, preferably 1 second to 300 seconds, more preferably 1 second to 180 seconds, even more preferably 1 second to 60 seconds Can be. The saturation moisture arrival time is measured according to KS K ISO 9073-6, Textile-Non-Woven Fabric Test Method-Part 6: Liquid Absorption Time Method of Absorption Measurement Standard. Can be.
상기 포화 함습 도달 시간이 상기 범위 내인 경우 상기 나노웹에 이온 교환 폴리머를 함침시켜 강화막 제조시 상기 이온 교환 폴리머를 상기 나노웹의 기공 전체에 걸쳐 균일하게 많은 양을 함침시킬 수 있다. 또한, 상기 나노웹의 친수성이 높아지면 상기 강화막을 연료 전지용 멤브레인으로 사용시 친수화 채널이 더욱 형성되어 이온전도도를 향상시킬 수 있다.When the saturation moisture arrival time is within the above range, the nano-web may be impregnated with an ion exchange polymer, so that the ion-exchange polymer may be uniformly impregnated throughout the pores of the nanoweb when the reinforcing film is manufactured. In addition, when the hydrophilicity of the nanoweb is increased, a hydrophilization channel may be further formed when the reinforcing film is used as a membrane for a fuel cell, thereby improving ion conductivity.
상기 나노웹은 전해질 흡수 용량이 10 내지 60 중량%일 수 있고, 바람직하게 30 내지 40 중량%일 수 있다. 상기 전해질 흡수 용량은 KS K ISO 9073-6, 텍스타일-부직포 시험방법-제 6부: 흡수 측정 규격중 액체 흡습 용량 방법에 의거하여, 에틸 메틸 카르보네이트와 에틸렌 카르보네이트의 70/30(v/v) 혼합물을 25mm 높이에서 60초 동안 낙하시키고, 120초 동안 수직으로 상기 혼합물을 드레인시킨 후 나노웹의 무게를 측정하여 하기 수학식 2와 같이 계산할 수 있다. 상기 전해질 흡수 용량이 10 중량% 미만인 경우 전해질 흡수가 떨어져서 전지 성능이 충분히 발현되지 못할 수 있고, 60 중량%를 초과하는 경우 지지체의 물성 저하가 발생할 수 있다.The nanoweb may have an electrolyte absorption capacity of 10 to 60% by weight, preferably 30 to 40% by weight. The electrolyte absorption capacity was 70/30 (v) of ethyl methyl carbonate and ethylene carbonate based on KS K ISO 9073-6, Textile-Non-Woven Test Method-Part 6: Liquid Hygroscopic Capacity Method of Absorption Measurement Standard. / v) the mixture may be dropped at a height of 25 mm for 60 seconds, the mixture is drained vertically for 120 seconds, and then the weight of the nanoweb may be measured and calculated as in Equation 2 below. When the electrolyte absorption capacity is less than 10% by weight, the electrolyte absorption may be insufficient and battery performance may not be sufficiently expressed, and when the electrolyte absorption capacity is greater than 60% by weight, deterioration of the physical properties of the support may occur.
[수학식 2][Equation 2]
전해질 흡수 용량(%)=(W1 - W)/W × 100Electrolyte Absorption Capacity (%) = (W1-W) / W × 100
상기 수학식 2에서 W는 전해질 흡수 전의 나노웹의 무게이고, W1은 전해질 흡수 후의 나노웹의 무게이다.In Equation 2, W is the weight of the nanoweb before the electrolyte absorption, W1 is the weight of the nanoweb after the electrolyte absorption.
상기 나노웹은 수분율(moisture regain)이 3.0 중량% 이상일 수 있고, 바람직하게 3.0 내지 5.0 중량%일 수 있고, 더욱 바람직하게 3.1 내지 5.0 중량%일 수 있다. 상기 수분율은 KS K 0221 텍스타일의 수분 측정 방법: 오븐 밸런스법에 의거하여 시편을 24시간 동안 섬유 실험실 표준상태(KS K 0901)에서 수분 평형에 도달시킨 후 무게(O: 시편의 무게)를 측정하고, 105 내지 110℃에서 1시간 30분 건조시킨 후 무게(D: 건조된 시편의 무게)를 측정하여 하기 수학식 3에 의하여 계산할 수 있다. The nanoweb may have a moisture regain of 3.0 wt% or more, preferably 3.0 to 5.0 wt%, and more preferably 3.1 to 5.0 wt%. The moisture content is measured by measuring the moisture (O: weight of the specimen) after reaching the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours according to the moisture measurement method of KS K 0221 textile: oven balance method After drying for 1 hour and 30 minutes at 105 to 110 ° C., the weight (D: weight of the dried specimen) may be measured and calculated by Equation 3 below.
[수학식 3][Equation 3]
수분율(중량%) = (O-D)/D×100Moisture Content (wt%) = (O-D) / D x 100
(O: 시편의 무게, D: 건조된 시편의 무게)(O: weight of specimen, D: weight of dried specimen)
상기 나노웹은 위킹 테스트(wicking test)에 의한 젖음성이 2 내지 15cm일 수 있고, 바람직하게 2.1 내지 15cm일 수 있고, 더욱 바람직하게 3 내지 15cm일 수 있다. 상기 위킹 테스트는 미국 AATCC Test Method 197-2011, 텍스타일의 수직방향 위킹 시험 규격(Vertical Wicking of Textiles)중 선택B(Option B, Measure distance at a given time)에 의거하여, 시편을 침지한 후 30분 후의 위킹 최대 거리를 계측하는 방법에 의하여 측정할 수 있다. 상기 위킹 테스트에 의한 젖음성이 2cm 미만인 경우 연료 전지 작동 환경에서 이온전도체와 지지체가 탈리하는 문제가 발생하거나, 저습 조건에서 작동 시간이 지연되거나, 물리적 형태 안정성이 저하될 수 있고, 15cm를 초과하는 경우 연료 전지 작동 환경에서 이온전도체의 팽윤 가속화에 의하여 내구성이 저하되거나, 이온전도체와 지지체가 탈리될 수 있다.The nanoweb may have a wettability of 2 to 15 cm by a wicking test, preferably 2.1 to 15 cm, and more preferably 3 to 15 cm. The wicking test is based on the US AATCC Test Method 197-2011, Vertical Wicking of Textiles B (Option B, Measure distance at a given time), 30 minutes after immersing the specimen It can measure by the method of measuring the later wicking maximum distance. When the wettability of the wicking test is less than 2 cm, the ion conductor and the support may be detached from the fuel cell operating environment, the operating time may be delayed in low humidity conditions, or the physical shape stability may be lowered, and it may exceed 15 cm. In the fuel cell operating environment, the durability of the ion conductor may be reduced by swelling of the ion conductor, or the ion conductor and the support may be detached.
상기 나노웹은 접촉각(contact angle)이 90° 이하일 수 있고, 바람직하게 1 내지 50°일 수 있고, 더욱 바람직하게 5 내지 35°일 수 있다. 상기 접촉각은 30℃ 및 RH 40%를 유지한 상태에서 증류수를 주사기에 충전하여 상기 나노웹 위에 지름 3mm 크기의 물방울을 떨어 뜨린 후 5분 동안 물방울이 퍼지기를 기다려서, 5분 이후 분리막과 물방울이 이루는 접촉각을 측정할 수 있다. 상기 접촉각이 1° 미만인 경우 나노웹의 습윤성은 우수해지나, 방사 공정상의 첨가제 함량 과다로 품질이 우수한 나노웹 제조가 어려울 수 있고, 90°를 초과하는 경우에는 습윤성이 떨어져서 전기 화학 소자의 분리막으로 사용하는 경우 충분한 성능을 발현하기 어려울 수 있다.The nanoweb may have a contact angle of 90 ° or less, preferably 1 to 50 °, and more preferably 5 to 35 °. The contact angle was filled with a syringe with distilled water while maintaining a 30 ° C and 40% RH to drop a droplet of 3mm diameter on the nanoweb, waiting for the water droplets to spread for 5 minutes, after 5 minutes to form a separator and water droplets The contact angle can be measured. When the contact angle is less than 1 °, the wettability of the nanoweb may be excellent, but it may be difficult to manufacture high quality nanoweb due to an excessive amount of additives in the spinning process, and when the contact angle exceeds 90 °, the wettability is inferior to the separator of the electrochemical device. If used, it may be difficult to express sufficient performance.
상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 내열성, 내화학성, 및 형태 안정성이 우수하다는 장점이 있지만, 친수성 성질이 부족하여 상기 이온 전도성 폴리머를 상기 나노웹의 기공 전체에 걸쳐 균일하게 많은 양을 함침시킬 수 없고, 친수화 채널이 형성이 부족하여 이온전도도가 저하될 수도 있다. 따라서, 상기와 같은 소수성 폴리머로 이루어진 나노웹이 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서는 친수화 처리가 필요하다. 상기 친수화 처리는 상기 나노웹의 친수성을 향상시킬 수 있는 종래의 방법이면 어느 것이나 적용 가능하고 본 발명에서 특별히 한정되지 않는다.When the nanofibers are made of a hydrophobic polymer such as polyimide, there is an advantage of excellent heat resistance, chemical resistance, and morphological stability, but lack of hydrophilic properties to uniformly increase the ion conductive polymer throughout the pores of the nanoweb. Can not be impregnated, and the formation of the hydrophilic channel may be insufficient, leading to a decrease in ion conductivity. Accordingly, in order to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by the wicking test, the nanoweb made of the hydrophobic polymer is required to be hydrophilized. The said hydrophilization treatment can be applied as long as it is a conventional method which can improve the hydrophilicity of the said nanoweb, and is not specifically limited in this invention.
상기 나노웹의 친수화 처리 방법의 일 예로, 상기 나노웹은 친수화 첨가제를 포함할 수 있다. 즉, 상기 나노 섬유 자체가 상기 친수화 첨가제를 포함할 수 있고, 상기 친수성 첨가제가 상기 나노웹의 기공 내부에 함침된 것일 수도 있고, 상기 친수성 첨가제가 상기 나노웹의 일면 또는 양면의 표면에 코팅된 것일 수 있다.As an example of the hydrophilization treatment method of the nanoweb, the nanoweb may include a hydrophilization additive. That is, the nanofibers themselves may include the hydrophilization additive, the hydrophilic additive may be impregnated in the pores of the nanoweb, the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb It may be.
구체적으로, 상기 나노 섬유가 상기 친수성 첨가제를 포함하는 경우 상기 나노 섬유는 상기 나노 섬유 고분자 100 중량부에 대하여 친수화 첨가제를 0.1 내지 20 중량부, 바람직하게 0.5 내지 20 중량부, 더욱 바람직하게 1 내지 2 중량부로 포함할 수 있다.Specifically, when the nanofibers include the hydrophilic additive, the nanofibers may contain 0.1 to 20 parts by weight of hydrophilization additive, preferably 0.5 to 20 parts by weight, more preferably 1 to 1, based on 100 parts by weight of the nanofiber polymer. It may be included in 2 parts by weight.
상기 친수화 첨가제의 함량이 상기 나노 섬유 고분자 100 중량부에 대하여 0.1 중량부 미만인 경우 친수 성능이 부족하여 습윤성이 저하되어 전기 화학 소자의 성능이 저하될 수 있고, 20 중량부를 초과하는 경우 방사 공정에서 나노 섬유 제트(jet)의 불안정성을 증가시키고 불균일한 섬유 집속이 이루어져서 전기 화학 소자의 분리막에 적용시 문제가 있을 수 있다.When the amount of the hydrophilization additive is less than 0.1 parts by weight with respect to 100 parts by weight of the nanofiber polymer, the hydrophilic performance is insufficient, so that the wettability may be degraded, and the performance of the electrochemical device may be lowered. Instability of the nanofiber jet (jet) is increased and non-uniform fiber focusing may be a problem when applied to the membrane of the electrochemical device.
상기 나노웹의 기공 내부에 상기 친수화 첨가제가 함침되거나, 상기 친수성 첨가제가 상기 나노웹의 일면 또는 양면의 표면에 코팅된 경우 상기 나노웹은 상기 나노웹 100 중량부에 대하여 상기 친수화 첨가제를 0.1 내지 20 중량부, 바람직하게 3 내지 20 중량부, 더욱 바람직하게 5 내지 20 중량부로 포함할 수 있다.When the hydrophilization additive is impregnated in the pores of the nanoweb, or when the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb, the nanoweb may contain 0.1% of the hydrophilization additive based on 100 parts by weight of the nanoweb. To 20 parts by weight, preferably 3 to 20 parts by weight, more preferably 5 to 20 parts by weight.
상기 친수화 첨가제의 함량이 상기 나노웹 100 중량부에 대하여 0.1 중량부 미만인 경우 친수 성능이 부족하여 습윤성이 저하되어 전기 화학 소자의 성능이 저하될 수 있고, 20 중량부를 초과하는 경우 방사 공정에서 나노 섬유 제트(jet)의 불안정성을 증가시키고 불균일한 섬유 집속이 이루어져서 전기 화학 소자의 분리막에 적용시 문제가 있을 수 있다.When the amount of the hydrophilization additive is less than 0.1 parts by weight with respect to 100 parts by weight of the nanoweb, the hydrophilic performance is insufficient, the wettability may be reduced, and the performance of the electrochemical device may be lowered. Instability of fiber jets and non-uniform fiber convergence can lead to problems when applied to separators in electrochemical devices.
상기 나노웹은 상기 친수화 첨가제를 포함함에 따라 습윤성이 우수하여, 전기 화학 소자용 분리막으로 사용되는 경우 전해질에 대한 젖음성이 우수하여 전지의 효율을 향상시킬 수 있다. 또한, 상기 다공성 지지체는 내구성, 내열성 및 내화학성이 우수하여 가혹한 작동 조건에서도 전기 화학 소자의 성능을 유지할 수 있도록 한다.The nanoweb has excellent wettability as the hydrophilic additive is included, and when used as a separator for an electrochemical device, the nanoweb may have excellent wettability with respect to an electrolyte, thereby improving efficiency of a battery. In addition, the porous support is excellent in durability, heat resistance and chemical resistance to maintain the performance of the electrochemical device even in harsh operating conditions.
상기 친수화 첨가제는 무기 또는 유기 친수화 첨가제일 수 있다. 상기 무기 친수화 첨가제는 전기 화학 소자의 작동 전압 범위(예컨대, 리튬 이차 전지의 경우 Li/Li+ 기준으로 0 내지 5V)에서 양극 또는 음극 집전체와 산화 및/또는 환원 반응, 즉 전기 화학적 반응을 일으키지 않고, 통전성을 해하지 않으며, 이를 포함하는 나노 섬유 제조시 제조 공정에 견딜 수 있는 것이라면 특별히 제한되지 않는다. The hydrophilic additive may be an inorganic or organic hydrophilic additive. The inorganic hydrophilic additives undergo oxidation and / or reduction reactions, i.e., electrochemical reactions, with the positive or negative electrode current collectors in the operating voltage range of the electrochemical device (e.g., 0 to 5 V on Li / Li + basis for lithium secondary batteries). It does not occur, does not impair the electrical conductivity, and if it can withstand the manufacturing process in the production of nanofibers including the same is not particularly limited.
예를 들면, 상기 무기 친수화 첨가제는 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 바람직하게 TiO2일 수 있다.For example, the inorganic hydrophilization additive may be anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide ( ZrO 2 ), aluminum oxide (Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and any combination thereof may be selected from the group consisting of Preferably TiO 2 .
또한, 상기 유기 친수화 첨가제도 전기 화학 소자의 작동 전압 범위(예컨대, 리튬 이차 전지의 경우 Li/Li+ 기준으로 0 내지 5V)에서 양극 또는 음극 집전체와 산화 및/또는 환원 반응, 즉 전기 화학적 반응을 일으키지 않고, 통전성을 해하지 않으며, 이를 포함하는 나노 섬유 제조시 제조 공정에 견딜 수 있는 것이라면 특별히 제한되지 않는다. In addition, the organic hydrophilic additive may also be subjected to oxidation and / or reduction reactions, i.e., electrochemical, with a positive or negative electrode current collector in the operating voltage range of the electrochemical device (e.g., 0 to 5 V on Li / Li + basis for lithium secondary batteries). There is no particular limitation as long as it does not cause a reaction and does not impair current conduction, and can withstand a manufacturing process in manufacturing a nanofiber including the same.
예를 들면, 상기 유기 친수화 첨가제는 폴리하이드로에틸메타크릴레이트, 폴리비닐아세테이트, 폴리우레탄, 폴리디메틸실록산, 폴리이미드, 폴리아미드, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 에폭시 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.For example, the organic hydrophilic additive may include polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethylmethacrylate, epoxy, and combinations thereof. It may be any one selected from the group consisting of.
상기 친수화 첨가제는 나노 친수화 첨가제일 수 있으며, 이에 따라 상기 친수화 첨가제의 평균 입경은 0.005 내지 1㎛, 바람직하게 0.005 내지 0.8㎛, 더욱 바람직하게 0.005 내지 0.5㎛일 수 있다. 상기 나노 친수화 첨가제의 평균 입경이 0.005㎛ 미만인 경우 나노 친수화 입자의 응집으로 친수화 효과가 저해되거나 취급이 어려울 수 있고, 1㎛를 초과하는 경우 지지체의 물리적 인장강도가 저하되고, 파단 신도가 감소될 수 있다.The hydrophilic additive may be a nano hydrophilic additive, and thus the average particle diameter of the hydrophilic additive may be 0.005 to 1 ㎛, preferably 0.005 to 0.8 ㎛, more preferably 0.005 to 0.5 ㎛. When the average particle diameter of the nano-hydrophilic additive is less than 0.005㎛ the hydrophilic effect may be inhibited or difficult to handle due to the aggregation of the nano-hydrophilized particles, when the nano-hydrophilic additive exceeds 1㎛ physical tensile strength of the support is lowered, elongation at break Can be reduced.
상기한 바와 같이, 상기 나노 섬유가 소수성 폴리머인 폴리이미드로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 폴리이미드의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 친수성 치환기를 포함할 수 있다.As described above, when the nanofiber is made of a polyimide which is a hydrophobic polymer, the main chain of the polyimide may be an amine group, a carboxyl group, or a hydroxyl group in order to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test. And it may include any one hydrophilic substituent selected from the group consisting of a combination thereof.
즉, 상기 폴리이미드는 폴리아믹산(polyamic acid, PAA)을 제조한 후 후속의 경화 공정에서의 이미드화 반응을 통해 제조할 수 있다. 상기 폴리아믹산은 통상의 제조 방법에 따라 제조할 수 있으며, 구체적으로는 디아민(diamine)을 용매에 혼합하고 여기에 디언하이드라이드(dianhydride)를 첨가한 후 중합하여 제조할 수 있고, 상기 디아민으로는 방향족 디아민(aromatic diamine)을, 상기 디언하이드라이드로는 방향족 디언하이드라이드(aromatic dianhydride)를 사용한 완전 방향족 폴리이미드를 바람직하게 사용할 수 있다.That is, the polyimide may be prepared through the imidization reaction in a subsequent curing process after preparing a polyamic acid (PAA). The polyamic acid may be prepared according to a conventional manufacturing method, specifically, diamine may be prepared by mixing diamine in a solvent, adding dianhydride thereto, and polymerizing the diamine. Aromatic diamine, and as the dianhydride, a wholly aromatic polyimide using an aromatic dianhydride can be preferably used.
이때, 상기 폴리이미드의 주쇄가 상기 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함하기 위하여, 상기 폴리이미드 또는 상기 폴리아믹산을 제조한 후 상기 폴리이미드 또는 상기 폴리아믹산의 주쇄에 상기 친수성 치환기를 치환시키거나, 상기 친수성 치환기를 포함하는 상기 다이민 및/또는 상기 디언하이드라이드를 이용하여 상기 폴리이미드를 제조하거나, 상기 디아민과 상기 디언하이드라이드 이외에 상기 히드록시기를 포함하는 공단량체(comonomer)를 함께 중합시켜 제조할 수 있다. 상기 하이드록시기를 포함하는 공단량체는 하이드록시기를 포함하는 디아닐린, 하이드록시기를 포함하는 디페닐 우레아, 하이드록시기를 포함하는 디아민 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.In this case, the polyimide after preparing the polyimide or the polyamic acid to include any substituent selected from the group consisting of the amine group, carboxyl group, hydroxy group and combinations thereof Or substituting the hydrophilic substituent on the main chain of the polyamic acid, preparing the polyimide using the dimine and / or the dianhydride including the hydrophilic substituent, or the diamine and the dianhydride It can be prepared by polymerizing a comonomer containing a hydroxyl group together. The comonomer including the hydroxy group may be any one selected from the group consisting of dianiline including a hydroxy group, diphenyl urea including a hydroxy group, diamine including a hydroxy group, and a combination thereof.
상기 폴리이미드의 주쇄가 상기 친수성 치환기를 포함하는 경우 상기 친수성 치환기는 상기 폴리이미드 전체에 대하여 0.01 내지 0.1 몰%, 바람직하게 0.01 내지 0.08 몰%, 더욱 바람직하게 0.02 내지 0.08 몰%로 포함할 수 있다. 상기 친수성 치환기의 함량이 0.01 몰% 미만인 경우 상기 폴리이미드 주쇄의 친수화기 감소로 친수화가 미비할 수 있고, 0.1 몰%를 초과하는 경우 부반응 생성 및 물리적인 강신도 저하가 문제될 수 있다.When the main chain of the polyimide includes the hydrophilic substituent, the hydrophilic substituent may include 0.01 to 0.1 mol%, preferably 0.01 to 0.08 mol%, more preferably 0.02 to 0.08 mol% with respect to the entire polyimide. . When the content of the hydrophilic substituent is less than 0.01 mol%, hydrophilization may be insufficient due to the decrease of the hydrophilic group of the polyimide main chain, and when the content of the hydrophilic substituent exceeds 0.1 mol%, side reaction generation and physical elongation may be deteriorated.
상기한 바와 같이, 상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 나노웹은 일면 또는 양면의 표면이 플라즈마 처리될 수 있다. 상기 나노웹을 플라즈마 처리하면 상기 나노웹 표면에 카르복실기, 하이드록시기, 아민기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 친수성을 가지는 관능기를 치환시킬 수 있다.As described above, when the nanofiber is made of a hydrophobic polymer such as polyimide, the nanoweb may be plasma-treated on one or both surfaces to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by wicking test. Can be. Plasma treatment of the nanoweb may replace a functional group having any hydrophilicity selected from the group consisting of carboxyl groups, hydroxyl groups, amine groups, and combinations thereof on the surface of the nanoweb.
구체적으로, 상기 플라즈마 처리는 저온 플라즈마 또는 RF(radio frequency) 플라즈마를 사용하여 상기 나노웹의 일면 또는 양면에 친수성기를 부여할 수 있는 기체로 처리하는 것일 수 있다. 상기 친수성기를 부여할 수 있는 기체는 암모니아 가스, 아르곤 가스, 산소 가스 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 상기 친수성기를 부여할 수 있는 기체의 유량은 10 내지 200sccm일 수 있고, 상기 플라즈마의 파워는 50 내지 200W일 수 있고, 상기 플라즈마 처리 시간은 10초 내지 5분일 수 있다.Specifically, the plasma treatment may be performed by using a low temperature plasma or a radio frequency (RF) plasma with a gas capable of imparting a hydrophilic group to one or both surfaces of the nanoweb. The gas capable of imparting the hydrophilic group may be any one selected from the group consisting of ammonia gas, argon gas, oxygen gas, and combinations thereof, and the flow rate of the gas capable of imparting the hydrophilic group may be 10 to 200 sccm. The power of the plasma may be 50 to 200 W, and the plasma treatment time may be 10 seconds to 5 minutes.
또한, 상기한 바와 같이, 상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 나노웹의 일면 또는 양면의 표면에 무기물이 증착될 수 있다. 상기 무기물은 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있다.In addition, as described above, when the nanofibers are made of a hydrophobic polymer such as polyimide, an inorganic material on one or both surfaces of the nanoweb to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by the wicking test. This can be deposited. The inorganic material is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), aluminum oxide ( Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and a combination thereof may be any one selected from the group.
상기 다공성 지지체는 통기도 및 통수도가 우수할 뿐만 아니라, 내열성 및 내화학성이 우수하여 내열성 및 내화학성이 요구되는 기체 또는 액체 필터용 여과재, 방진 마스크용 여과재, 자동차용 벤팅(venting), 휴대폰용 벤팅, 프린터용 벤팅 등과 같은 필터용 소재, 투습 방수포와 같은 고급 의류용 소재, 연료 전지의 고분자 전해질, 이차 전지, 전기 분해 장치 또는 커패시터의 분리막과 같은 전기 화학용 소재, 상처 치료용 드레싱, 인공 혈관용 지지체, 붕대, 화장품용 마스크 등과 같은 의료용 소재 등으로 사용될 수 있다. The porous support not only has excellent air permeability and water permeability, but also has excellent heat resistance and chemical resistance, and is required for gas or liquid filters, filter for dust masks, venting for automobiles, and venting for mobile phones. , Filter materials such as printer vents, high-end garment materials such as breathable tarps, electrochemical materials such as polymer electrolytes of fuel cells, secondary cells, electrolysis devices or separators of capacitors, dressings for wound healing, artificial blood vessels It can be used as a medical material such as a support, a bandage, a cosmetic mask and the like.
본 발명의 다른 일 실시예에 따른 다공성 지지체의 제조 방법은 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 제조하는 단계를 포함한다.According to another embodiment of the present invention, a method of manufacturing a porous support includes electrospinning an electrospinning solution to produce a nanoweb in which nanofibers are integrated into a nonwoven fabric including a plurality of pores.
일 예로, 상기 나노 섬유가 소수성 폴리머인 폴리이미드로 이루어진 경우 상기 다공성 지지체의 제조 방법은 디아민 및 디언하이드라이드를 용매에 첨가하여 전기 방사 용액을 제조하는 단계, 상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 폴리아믹산 나노웹을 제조하는 단계, 그리고 상기 폴리아믹산 나노웹을 이미드화시켜 폴리이미드 나노웹을 제조하는 단계를 포함한다. For example, when the nanofibers are made of polyimide which is a hydrophobic polymer, the method of preparing the porous support may include adding diamine and dianhydride to a solvent to prepare an electrospinning solution, and electrospinning the prepared electrospinning solution. Preparing a polyamic acid nanoweb in which the nanofibers are integrated in a nonwoven form including a plurality of pores, and imidizing the polyamic acid nanoweb to produce a polyimide nanoweb.
이하 각 단계별로 살펴보면, 상기 전기 방사 용액은 상기 나노 섬유를 형성하기 위한 단량체들을 포함하는 용액으로서, 상기 나노 섬유를 형성하기 위한 단량체들은 우수한 내화학성을 나타내고, 소수성을 가져 고습의 환경에서 수분에 의한 형태 변형 우려가 없는 탄화수소계 고분자를 바람직하게 사용할 수 있다. Looking at each step below, the electrospinning solution is a solution containing the monomers for forming the nanofibers, the monomers for forming the nanofibers exhibit excellent chemical resistance, has a hydrophobic property by moisture in a high humidity environment Hydrocarbon type polymer which does not have a possibility of morphological modification can be used preferably.
구체적으로 상기 탄화수소계 고분자로는 나일론, 폴리이미드, 폴리아라미드, 폴리에테르이미드, 폴리아크릴로니트릴, 폴리아닐린, 폴리에틸렌옥사이드, 폴리에틸렌나프탈레이트, 폴리부틸렌테레프탈레이트, 스티렌 부타디엔 고무, 폴리스티렌, 폴리비닐 클로라이드, 폴리비닐알코올, 폴리비닐리덴 플루오라이드, 폴리비닐 부틸렌, 폴리우레탄, 폴리벤즈옥사졸, 폴리벤즈이미다졸, 폴리아미드이미드, 폴리에틸렌테레프탈레이트, 폴리에틸렌, 폴리프로필렌, 이들의 공중합체, 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있으며, 이중에서도 내열성, 내화학성, 및 형태안정성이 보다 우수한 폴리이미드를 사용하는 것이 바람직하다. 이하, 나노 섬유가 소수성 폴리머인 폴리이미드로 이루어진 경우에 대하여 구체적으로 설명한다.Specifically, the hydrocarbon-based polymer may be nylon, polyimide, polyaramid, polyetherimide, polyacrylonitrile, polyaniline, polyethylene oxide, polyethylene naphthalate, polybutylene terephthalate, styrene butadiene rubber, polystyrene, polyvinyl chloride, Polyvinyl alcohol, polyvinylidene fluoride, polyvinyl butylene, polyurethane, polybenzoxazole, polybenzimidazole, polyamideimide, polyethylene terephthalate, polyethylene, polypropylene, copolymers thereof, and mixtures thereof One selected from the group consisting of can be used, and among them, it is preferable to use a polyimide which is more excellent in heat resistance, chemical resistance, and shape stability. Hereinafter, the case where a nanofiber consists of polyimide which is a hydrophobic polymer is demonstrated concretely.
상기 나노 섬유를 형성하기 위한 단량체로는 상기 탄화수소계 고분자를 형성할 수 있는 것이라면 특별한 제한없이 사용할 수 있다. 예를 들면, 폴리이미드를 포함하는 나노웹은 유기 용매에 잘 녹는 폴리이미드 전구체로서 폴리아믹산(polyamic acid, PAA)을 이용하여 폴리아믹산 나노웹을 제조한 후 후속의 경화공정에서의 이미드화 반응을 통해 제조할 수 있다.The monomer for forming the nanofibers may be used without particular limitation as long as it can form the hydrocarbon-based polymer. For example, a nanoweb containing polyimide is prepared by using a polyamic acid (PAA) as a polyimide precursor that is well soluble in an organic solvent, and then undergoes imidization reaction in a subsequent curing process. It can be prepared through.
상기 폴리아믹산 나노웹은 통상의 제조 방법에 따라 제조할 수 있으며, 구체적으로는 디아민(diamine)을 용매에 혼합하고 여기에 디언하이드라이드(dianhydride)를 첨가한 후 이를 전기방사하여 제조할 수 있다. The polyamic acid nanoweb may be prepared according to a conventional manufacturing method, specifically, diamine may be prepared by mixing diamine in a solvent, adding dianhydride thereto, and then electrospinning it.
상기 디언하이드라이드로는 피로멜리트산 무수물(pyromellyrtic dianhydride, PMDA), 3,3',4,4'-벤조페논 테트라카르복실산 이무수물(3,3',4,4'-benzophenonetetracarboxylic dianhydride, BTDA), 4,4'-옥시디프탈산무수물(4,4'-oxydiphthalic anhydride, ODPA), 3,4',3,4'-비페닐테트라카르복실산 무수물(3,4',3,4'-biphenyltetracarboxylic dianhydride, BPDA), 및 비스(3,4-카르복시페닐디메틸실란 이무수물(bis(3,4-dicarboxyphenyl)dimethylsilane dianhydride, SiDA) 및 이들의 혼합물로 이루어진 군에서 선택되는 화합물을 사용할 수 있다. 또한, 상기 디아민으로는 4,4'-옥시디아닐린(4,4'-oxydianiline, ODA), 1,3-비스(4-아미노페녹시)벤젠(1,3-bis(4-aminophenoxy)benzene, RODA), p-페닐렌 디아민(p-phenylene diamine, p-PDA), o-페닐렌 디아민(o-phenylene diamine, o-PDA) 및 이들의 혼합물로 이루어진 군에서 선택되는 것을 사용할 수 있다. 상기 폴리아믹산을 용해시키는 용매로는 m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트, 테트라하이드로퓨란(THF), 클로로포름, γ-부티로락톤 및 이들의 혼합물로 이루어진 군에서 선택되는 용매를 사용할 수 있다.Examples of the dianhydride include pyromellyrtic dianhydride (PMDA), 3,3 ', 4,4'-benzophenone tetracarboxylic dianhydride (3,3', 4,4'-benzophenonetetracarboxylic dianhydride, BTDA) ), 4,4'-oxydiphthalic anhydride (ODPA), 3,4 ', 3,4'-biphenyltetracarboxylic anhydride (3,4', 3,4 ') A compound selected from the group consisting of -biphenyltetracarboxylic dianhydride (BPDA), and bis (3,4-dicarboxyphenyl) dimethylsilane dianhydride (SiDA) and mixtures thereof can be used. As the diamine, 4,4'-oxydianiline (ODA), 1,3-bis (4-aminophenoxy) benzene (1,3-bis (4-aminophenoxy) benzene , RODA), p-phenylene diamine (p-PDA), o-phenylene diamine (o-phenylene diamine, o-PDA) and mixtures thereof may be used. The polyamic acid Dissolving solvents include m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, diethyl acetate, A solvent selected from the group consisting of tetrahydrofuran (THF), chloroform, γ-butyrolactone and mixtures thereof may be used.
상기 나노 섬유를 형성하기 위한 단량체들은 상기 전기 방사 용액 전체 중량에 대하여 5 내지 20중량%로 포함되는 것이 바람직하다. 만일, 상기 단량체들의 함량이 5중량% 미만일 경우 방사가 원활하게 진행되지 않기 때문에 섬유 형성이 이루어지지 않거나 균일한 직경을 갖는 섬유를 제조할 수 없고, 반면 상기 단량체들의 함량이 20중량%를 초과할 경우 토출 압력이 급격히 증가함에 따라 방사가 이루어지지 않거나 공정성이 저하될 수 있다.Monomers for forming the nanofibers are preferably included in 5 to 20% by weight based on the total weight of the electrospinning solution. If the content of the monomers is less than 5% by weight, the spinning may not proceed smoothly, and fiber formation may not be achieved or fibers having a uniform diameter may be produced, whereas the content of the monomers may exceed 20% by weight. In this case, as the discharge pressure increases rapidly, spinning may not be performed or processability may be reduced.
단계 2에서는 상기 전기 방사 용액을 방사하여 나노웹 전구체, 즉 폴리아믹산 나노웹을 제조한다. 상기 방사는 본 발명에서 특별히 한정되지 않으나, 전기 방사(electrospinning), 일렉트로-블로운 방사(electro-blown spinning), 원심 방사(centrifugal spinning) 또는 멜트 블로잉(melt blowing) 등일 수 있고, 바람직하게는 전기 방사를 이용할 수 있다.In step 2, the electrospinning solution is spun to prepare a nanoweb precursor, that is, a polyamic acid nanoweb. The spinning is not particularly limited in the present invention, but may be electrospinning, electro-blown spinning, centrifugal spinning, melt blowing, or the like. Emission can be used.
이하에서는 전기 방사를 이용하는 경우에 대하여 상세하게 설명한다. Hereinafter, the case of using electrospinning will be described in detail.
도 1은 노즐형 전기 방사 장치의 개략도이다. 상기 도 1을 참조하면, 상기 전기 방사는 상기 나노 섬유 전구체 용액이 보관된 용액 탱크(1)에서 정량 펌프(2)를 이용하여 노즐(3)로 상기 전구체 용액을 일정량으로 공급하고, 상기 노즐(3)을 통해 상기 나노 섬유 전구체 용액을 토출한 후 비산과 동시에 응고된 나노 섬유 전구체를 형성하고, 추가적으로 이러한 응고된 나노 섬유 전구체를 콜렉터(4)에서 집속시켜 다공성 지지체의 전구체 나노 섬유를 제조할 수 있다.1 is a schematic diagram of a nozzle type electrospinning apparatus. Referring to FIG. 1, the electrospinning supplies a predetermined amount of the precursor solution to the nozzle 3 using the metering pump 2 in the solution tank 1 in which the nanofiber precursor solution is stored, and the nozzle ( After discharging the solution of the nanofiber precursor through 3), the coagulated nanofiber precursor was formed simultaneously with scattering, and the coagulated nanofiber precursor was further concentrated in the collector 4 to prepare the precursor nanofiber of the porous support. have.
이때, 상기 전기 방사는 상기 노즐 주변의 양전하 밀도를 높이고, 상기 콜렉터 주변의 음전하 밀도를 높인 상태에서 이루어질 수 있다. 이를 통하여 고분자 액적이 방사되고 비산됨과 동시에 상호 반발하여 나노 섬유로 수집되는 효과를 얻을 수 있다. 상기 노즐 주변 또는 상기 콜렉터 주변은 상기 노즐 또는 상기 콜렉터의 표면으로부터 반경 10cm 이내의 공간을 의미할 수 있으나, 본 발명에서 특별히 한정되지 않는다.In this case, the electrospinning may be performed in a state in which the positive charge density around the nozzle is increased and the negative charge density around the collector is increased. Through this, the droplets of the polymer can be spun and scattered, and at the same time, they can repel each other to collect nanofibers. The area around the nozzle or around the collector may mean a space within a radius of 10 cm from the surface of the nozzle or the collector, but is not particularly limited in the present invention.
구체적으로, 상기 노즐 주변의 양전하 밀도는 상기 노즐 주변에 양전하를 공급할 수 있는 고전압 발생기(도시하지 않음)를 설치하여 조절할 수 있고, 상기 콜렉터 주변의 음전하 밀도는 상기 콜렉터 주변에 음전하를 공급할 수 있는 고전압 발생기(도시하지 않음)를 설치하여 조절할 수 있다.Specifically, the positive charge density around the nozzle can be adjusted by installing a high voltage generator (not shown) capable of supplying positive charge around the nozzle, and the negative charge density around the collector is a high voltage capable of supplying negative charge around the collector. It can be adjusted by installing a generator (not shown).
상기 노즐 주변의 양전하 밀도를 높이는 정도는 상기 노즐 주변에 양전하를 +10 내지 +100kV로 공급함으로써 조절할 수 있고, 상기 콜렉터 주변의 음전하 밀도를 높이는 정도는 상기 콜렉터 주변에 음전하를 0 내지 -100kV로 공급함으로써 조절할 수 있다. 상기 양전하 공급량이 +10kV 미만인 경우 방사력이 부족할 수 있고, +100kV를 초과하는 경우 전기 절연이 파괴될 수 있으며, 상기 음전하 공급량이 0 미만인 경우 전위차가 부족할 수 있고, -100kV를 초과하는 경우 절연이 파괴될 수 있다.The degree of increasing the positive charge density around the nozzle can be controlled by supplying positive charges around the nozzle at +10 to +100 kV, and the degree of increasing the negative charge density around the collector is supplied at 0 to -100 kV around the collector. Can be adjusted. If the positive charge supply is less than + 10kV, the radiation force may be insufficient, if the + 100kV exceeds the electrical insulation may be destroyed, if the negative charge supply is less than 0 the potential difference may be insufficient, if the insulation exceeds -100kV Can be destroyed.
이때, 고전압 발생부(6) 및 전압 전달 로드(5)에 의해 인가된 상기 노즐(3)과 콜렉터(4) 사이의 전기장의 세기는 850 내지 3,500V/cm인 것이 바람직하다. 만일, 상기 전기장의 세기가 850V/cm 미만일 경우 연속적으로 전구체 용액이 토출되지 않기 때문에 균일한 두께의 나노 섬유를 제조하기 어렵고, 또한 방사된 후 형성된 나노 섬유가 콜렉터에 원활하게 집속될 수 없기 때문에 나노웹의 제조가 곤란할 수 있고, 전기장의 세기가 3,500V/cm를 초과하는 경우 나노 섬유가 콜렉터(4)에 정확하게 안착되지 않기 때문에 정상적인 형태를 갖는 나노웹이 얻어질 수 없다.At this time, the intensity of the electric field between the nozzle 3 and the collector 4 applied by the high voltage generator 6 and the voltage transfer rod 5 is preferably 850 to 3,500 V / cm. If the strength of the electric field is less than 850 V / cm, it is difficult to manufacture a nanofiber having a uniform thickness because the precursor solution is not continuously discharged, and the nanofibers formed after the spinning cannot be smoothly focused on the collector. Fabrication of the web may be difficult, and nanowebs having a normal shape cannot be obtained because the nanofibers do not settle correctly in the collector 4 when the electric field strength exceeds 3,500 V / cm.
상기 방사 공정을 통해 균일한 섬유 직경, 바람직하게는 0.01 내지 5㎛의 평균 직경을 갖는 나노 섬유 전구체가 제조되며, 상기 나노 섬유 전구체는 일정 방향 또는 랜덤하게 배열되어 부직포 형태를 가진다.Through the spinning process, a nanofiber precursor having a uniform fiber diameter, preferably an average diameter of 0.01 to 5 μm is prepared, and the nanofiber precursor is arranged in a predetermined direction or randomly to have a nonwoven form.
단계 3에서는 상기 나노웹 전구체의 나노 섬유 전구체를 경화시킨다.In step 3, the nanofiber precursor of the nanoweb precursor is cured.
상기 나노 섬유 전구체를 상기 나노 섬유로 전환시키기 위해서는 상기 나노 섬유 전구체에 대한 추가의 공정으로서 경화 공정을 실시한다. 예를 들어, 상기 전기 방사를 통해 제조된 나노 섬유 전구체가 폴리아믹산으로 이루어진 경우, 경화 공정 동안의 이미드화를 통해 폴리이미드로 변환 된다.In order to convert the nanofiber precursors into the nanofibers, a curing process is performed as an additional process for the nanofiber precursors. For example, when the nanofiber precursor prepared by electrospinning is made of polyamic acid, it is converted into polyimide through imidization during the curing process.
이에 따라, 상기 경화 공정시 온도는 상기 나노 섬유 전구체의 변환율을 고려하여 적절히 조절하는 것이 바람직하다. 구체적으로는 80 내지 650℃에서의 경화 공정이 수행되는 것이 바람직하다. 상기 경화시 온도가 80℃ 미만인 경우 변환율이 낮아지고, 그 결과로 나노웹의 내열성 및 내화학성이 저하될 우려가 있으며, 경화 온도가 650℃를 초과하는 경우에는 상기 나노 섬유의 분해로 인하여 나노웹의 물성이 저하될 우려가 있다.Accordingly, the temperature during the curing process is preferably adjusted in consideration of the conversion rate of the nanofiber precursor. Specifically, it is preferable that a curing process at 80 to 650 ° C is performed. When the curing temperature is less than 80 ℃ conversion rate is low, as a result there is a fear that the heat resistance and chemical resistance of the nano-web, and when the curing temperature exceeds 650 ℃ due to decomposition of the nanofibers nano web There is a fear that the physical properties of the.
한편, 상기한 바와 같이, 상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 나노웹은 친수화 첨가제를 포함할 수 있다. 즉, 상기 나노 섬유 자체가 상기 친수화 첨가제를 포함할 수 있고, 상기 친수성 첨가제가 상기 나노웹의 기공 내부에 함침된 것일 수도 있고, 상기 친수성 첨가제가 상기 나노웹의 일면 또는 양면의 표면에 코팅된 것일 수 있다.Meanwhile, as described above, when the nanofiber is made of a hydrophobic polymer such as polyimide, the nanoweb may include a hydrophilic additive to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test. have. That is, the nanofibers themselves may include the hydrophilization additive, the hydrophilic additive may be impregnated in the pores of the nanoweb, the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb It may be.
구체적으로, 상기 나노 섬유가 상기 친수성 첨가제를 포함하는 경우 상기 전기 방사 용액에 상기 친수성 첨가제를 더 첨가한 후 전기 방사할 수 있다. 이 경우 상기 친수성 첨가제는 상기 나노 섬유를 제조하기 위한 단량체 100 중량부에 대하여 상기 친수화 첨가제를 0.1 내지 20 중량부, 바람직하게 3 내지 20 중량부, 더욱 바람직하게 5 내지 20 중량부로 포함할 수 있다. Specifically, when the nanofibers include the hydrophilic additive, the hydrophilic additive may be further added to the electrospinning solution and then electrospun. In this case, the hydrophilic additive may include 0.1 to 20 parts by weight, preferably 3 to 20 parts by weight, and more preferably 5 to 20 parts by weight, based on 100 parts by weight of the monomer for preparing the nanofibers. .
상기 친수화 첨가제의 함량이 상기 나노 섬유를 제조하기 위한 단량체 100 중량부에 대하여 0.1 중량부 미만인 경우 친수 성능이 부족하여 습윤성이 저하되어 전기 화학 소자의 성능이 저하될 수 있고, 20 중량부를 초과하는 경우 방사 공정에서 나노 섬유 제트(jet)의 불안정성을 증가시키고 불균일한 섬유 집속이 이루어져서 전기 화학 소자의 분리막에 적용시 문제가 있을 수 있다.When the content of the hydrophilization additive is less than 0.1 parts by weight based on 100 parts by weight of the monomer for producing the nanofibers, the hydrophilic performance is insufficient, the wettability may be lowered, and the performance of the electrochemical device may be lowered. In this case, the instability of the nanofiber jet may be increased in the spinning process and non-uniform fiber focusing may be a problem when applied to the separator of the electrochemical device.
또한, 상기 전기 방사 용액의 방사시에는 일반적인 방사 조건에서 제조가 가능하나, 상기 친수화 첨가제를 포함하는 전구체 용액의 방사시에는 방사 제트(jet)의 불안정성이 증가하여 나노 섬유가 콜렉터에 균일하게 집속되지 않기 때문에 품질이 우수한 나노웹을 제조할 수 없다. 따라서, 상기 친수화 첨가제를 포함하는 전구체 용액의 방사시에는 방사 주변 환경에 양이온 블로워를 설치하여 양이온 밀도를 높여주고, 콜렉터 표면의 기재는 음이온 블로워에 노출되어 콜렉터 기재의 음이온 밀도를 높여주어야 한다. 그렇지 않은 경우 안정적인 방사 제트를 얻을 수 없어 균일하고 품질이 우수한 지지체 제조가 어려울 수 있다.In addition, the spinning of the electrospinning solution can be prepared under normal spinning conditions, but during spinning of the precursor solution containing the hydrophilic additive, the instability of the spinning jet increases, so that the nanofibers are uniformly focused on the collector. It is not possible to manufacture high quality nanowebs. Accordingly, during spinning of the precursor solution including the hydrophilic additive, a cation blower is installed in the surrounding environment to increase the cation density, and the collector surface substrate is exposed to an anion blower to increase the anion density of the collector substrate. Otherwise, stable spinning jets may not be obtained, making it difficult to produce a uniform, high quality support.
상기 나노웹의 기공 내부에 상기 친수화 첨가제가 함침되거나, 상기 친수성 첨가제가 상기 나노웹의 일면 또는 양면의 표면에 코팅된 경우, 상기 친수화 첨가제를 용매에 첨가하여 제조된 친수화 첨가제 용액에 상기 나노웹을 침지시켜 함침시키거나, 상기 친수화 첨가제 용액을 상기 나노웹의 표면에 코팅하여 상기 다공성 지지체를 제조할 수 있다.When the hydrophilization additive is impregnated in the pores of the nanoweb, or when the hydrophilic additive is coated on the surface of one or both surfaces of the nanoweb, the hydrophilic additive is prepared by adding the hydrophilic additive to a solvent The porous support may be prepared by dipping and impregnating the nanoweb or by coating the hydrophilic additive solution on the surface of the nanoweb.
상기 친수화 첨가제 용액에 상기 나노웹을 함침하는 방법은 상기 나노웹을 상기 친수화 첨가제 용액에 상온(20℃)에서 5 내지 30분 동안 침지한 후 50 내지 100℃ 열풍오븐에서 3시간 이상 건조하며, 이와 같은 침지, 건조 작업을 2 내지 5회 수행하여 이루어질 수 있다.In the method of impregnating the nanoweb in the hydrophilic additive solution, the nanoweb is immersed in the hydrophilic additive solution for 5 to 30 minutes at room temperature (20 ℃) and then dried at 50 to 100 ℃ hot air oven for more than 3 hours , This may be done by performing the dipping and drying operation 2 to 5 times.
또한, 상기 친수화 첨가제 용액을 상기 나노웹의 표면에 코팅하는 방법은 라미네이팅 공정, 스프레이 공정, 스크린 프린팅 공정, 닥터 블레이드 공정 등 당업계에 공지된 다양한 방법을 이용할 수 있다.In addition, the method of coating the hydrophilic additive solution on the surface of the nanoweb may use a variety of methods known in the art, such as laminating process, spray process, screen printing process, doctor blade process.
상기 친수화 첨가제 용액은 상기한 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 무기 친수화 첨가제 또는 폴리하이드로에틸메타크릴레이트, 폴리비닐아세테이트, 폴리우레탄, 폴리디메틸실록산, 폴리이미드, 폴리아미드, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 에폭시 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 유기 친수화 첨가제를 N-메틸-2-피롤리돈(N-methyl-2-pyrrolidine, NMP), 디메틸포름아마이드(dimethylformamide, DMF), 디메틸 아세트아마이드(dimethylacetamide, DMA), 디메틸설폭사이드(dimethylsulfoxide, DMSO) 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 용매에 첨가하고 혼합하여 제조할 수 있다.The hydrophilic additive solution is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), Any one inorganic hydrophilic additive selected from the group consisting of aluminum oxide (Al 2 O 3 ), single-walled carbon nanobub oxide, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and combinations thereof Any one of organic solvents selected from the group consisting of polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethyl methacrylate, epoxy and combinations thereof Hydrating additives include N-methyl-2-pyrrolidine (NMP), dimethylformamide (DMF), dimethyl acetacea It can be prepared by adding and mixing to any one solvent selected from the group consisting of amide (dimethylacetamide, DMA), dimethylsulfoxide (dimethylsulfoxide, DMSO) and combinations thereof.
상기한 바와 같이, 상기 제조된 나노웹이 소수성 폴리머인 폴리이미드로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 폴리이미드의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 친수성 치환기를 포함할 수 있다.As described above, when the prepared nanoweb is made of a polyimide which is a hydrophobic polymer, the main chain of the polyimide may have an amine group, a carboxyl group, or a hydride to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by a wicking test. It may include any one hydrophilic substituent selected from the group consisting of a hydroxyl group and a combination thereof.
즉, 주쇄에 상기 친수성 치환기를 포함하는 폴리이미드로 이루어진 나노웹을 제조하기 위하여, 상기 다공성 지지체의 제조 방법은 상기 폴리이미드 또는 상기 폴리아믹산을 제조한 후 상기 폴리이미드 또는 상기 폴리아믹산의 주쇄에 상기 친수성 치환기를 치환시키거나, 상기 친수성 치환기를 포함하는 다이민 및/또는 디언하이드라이드를 이용하여 폴리이미드를 제조하거나, 상기 디아민과 디언하이드라이드 이외에 상기 하이드록시기를 포함하는 공단량체(comonomer)를 함께 중합시켜 제조할 수 있다.That is, in order to produce a nanoweb made of a polyimide containing the hydrophilic substituent in the main chain, the method of preparing the porous support is prepared after the polyimide or the polyamic acid and the polyimide or the polyamic acid in the main chain Substituting hydrophilic substituents, preparing polyimides using dimines and / or dianhydrides containing the hydrophilic substituents, or combining comonomers containing the hydroxy groups in addition to the diamines and dianhydrides It can be prepared by polymerization.
상기 폴리이미드 또는 상기 폴리아믹산의 주쇄에 상기 친수성 치환기를 치환시키는 방법은 KOH나 NaOH와 같은 알칼리 수용액으로 처리하여 주쇄의 일부에 카르복실기와 아민기를 치환시킬 수 있다.In the method of replacing the hydrophilic substituent on the main chain of the polyimide or the polyamic acid, a carboxyl group and an amine group may be substituted in a part of the main chain by treating with an aqueous alkali solution such as KOH or NaOH.
또한, 상기 하이드록시기를 포함하는 공단량체는 상기 친수성 치환기를 포함하면서 상기 디아민 및/또는 상기 디언하이드라이드와 중합이 가능한 것은 어느 것이나 사용 가능하고, 예를 들면, 하이드록시기를 포함하는 디아닐린, 하이드록시기를 포함하는 디페닐 우레아, 하이드록시기를 포함하는 디아민 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나를 사용할 수 있다.In addition, the comonomer containing the hydroxy group can be any of those that can be polymerized with the diamine and / or the dianhydride including the hydrophilic substituent, for example, dianiline, hydroxy containing a hydroxy group Any one selected from the group consisting of diphenyl urea containing an oxy group, diamine containing a hydroxy group, and a combination thereof can be used.
상기한 바와 같이, 상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 나노웹은 일면 또는 양면의 표면이 플라즈마 처리될 수 있다. 상기 나노웹을 플라즈마 처리하면 상기 나노웹 표면에 카르복실기, 하이드록시기, 아민기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 친수성을 가지는 관능기를 치환시킬 수 있다.As described above, when the nanofiber is made of a hydrophobic polymer such as polyimide, the nanoweb may be plasma-treated on one or both surfaces to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by wicking test. Can be. Plasma treatment of the nanoweb may replace a functional group having any hydrophilicity selected from the group consisting of carboxyl groups, hydroxyl groups, amine groups, and combinations thereof on the surface of the nanoweb.
구체적으로, 상기 플라즈마 처리는 저온 플라즈마 또는 RF(radio frequency) 플라즈마를 사용하여 상기 나노웹의 일면 또는 양면에 친수성기를 부여할 수 있는 기체로 처리하는 것일 수 있다. 상기 친수성기를 부여할 수 있는 기체는 암모니아 가스, 아르곤 가스, 산소 가스 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 상기 친수성기를 부여할 수 있는 기체의 유량은 10 내지 200sccm일 수 있고, 상기 플라즈마의 파워는 50 내지 200W일 수 있고, 상기 플라즈마 처리 시간은 10초 내지 5분일 수 있다.Specifically, the plasma treatment may be performed by using a low temperature plasma or a radio frequency (RF) plasma with a gas capable of imparting a hydrophilic group to one or both surfaces of the nanoweb. The gas capable of imparting the hydrophilic group may be any one selected from the group consisting of ammonia gas, argon gas, oxygen gas, and combinations thereof, and the flow rate of the gas capable of imparting the hydrophilic group may be 10 to 200 sccm. The power of the plasma may be 50 to 200 W, and the plasma treatment time may be 10 seconds to 5 minutes.
상기한 바와 같이, 상기 나노 섬유가 폴리이미드 등과 같은 소수성 폴리머로 이루어진 경우 상기 포화 함습 도달 시간, 수분율, 위킹 테스트에 의한 젖음성 또는 접촉각을 만족시키기 위해서 상기 나노웹의 일면 또는 양면의 표면에 무기물이 증착될 수 있다.As described above, when the nanofiber is made of a hydrophobic polymer such as polyimide, an inorganic material is deposited on one or both surfaces of the nanoweb to satisfy the saturation moisture arrival time, moisture content, wettability or contact angle by the wicking test. Can be.
상기 증착된 무기물층은 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 전구체를 화학기상증착(CVD) 또는 스퍼터링을 포함한 물리기상증착(PVD) 방법을 이용하여 증착시킬 수 있다. 상기 증착의 조건은 RF 스퍼터 또는 증착기를 사용하여 표면 에 친수성기를 부여할 수 있는 카겟를 위치시킨후 50 내지 300℃ 온도 분위기에서 1분 내지 60분 처리하는 것일 수 있다.The deposited inorganic layer is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), Chemical vapor deposition (CVD) of any one precursor selected from the group consisting of aluminum oxide (Al 2 O 3 ), single-walled carbon nanobubbles, multi-walled carbon nanotubes, graphite oxide, graphene oxide, and combinations thereof Or physical vapor deposition (PVD) methods including sputtering. Conditions for the deposition may be a 1 minute to 60 minutes treatment in a 50 to 300 ℃ temperature atmosphere after placing a carpet that can give a hydrophilic group on the surface using an RF sputter or a vapor deposition machine.
본 발명의 또 다른 일 실시예에 따른 강화막은 상기 다공성 지지체 및 상기 다공성 지지체의 기공 내에 충진된 이온 교환 폴리머를 포함한다.Reinforcing membrane according to another embodiment of the present invention includes the porous support and the ion exchange polymer filled in the pores of the porous support.
상기 다공성 지지체의 기공 내에 상기 이온 교환 폴리머를 충진시키는 방법으로는 함침(impregnation)을 들 수 있다. 상기 함침 방법은 상기 다공성 지지체를 이온 교환 폴리머를 포함한 용액에 침지시켜 수행될 수 있다. 또한, 상기 이온 교환 폴리머는 관련 모노머 또는 저분자량 올리고머를 상기 다공성 지지체에 침지시킨 후, 상기 다공성 지지체 내에서 in-situ 중합하여 형성될 수도 있다.Impregnation is a method of filling the ion exchange polymer into the pores of the porous support. The impregnation method may be performed by immersing the porous support in a solution containing an ion exchange polymer. In addition, the ion exchange polymer may be formed by immersing a related monomer or low molecular weight oligomer in the porous support, and then in-situ polymerization in the porous support.
상기 함침 온도 및 시간은 다양한 요소들의 영향을 받을 수 있다. 예를 들면, 나노웹의 두께, 이온 교환 폴리머의 농도, 용매의 종류, 다공성 지지체에 함침시키고자 하는 이온 교환 폴리머의 농도 등에 의하여 영향을 받을 수 있다. 다만, 상기 함침 공정은 상기 용매의 어느점 이상에서 100℃ 이하의 온도에서 이루어질 수 있으며, 더욱 일반적으로 상온(20℃)에서 70℃ 이하의 온도에서 이루어질 수 있다. 다만, 상기 온도는 상기 나노 섬유의 융점 이상일 수는 없다. The impregnation temperature and time may be influenced by various factors. For example, it may be influenced by the thickness of the nanoweb, the concentration of the ion exchange polymer, the kind of the solvent, the concentration of the ion exchange polymer to be impregnated into the porous support, and the like. However, the impregnation process may be made at a temperature of less than 100 ℃ at any point of the solvent, and more generally at a temperature of less than 70 ℃ at room temperature (20 ℃). However, the temperature may not be higher than the melting point of the nanofibers.
상기 이온 교환 폴리머는 프로톤과 같은 양이온 교환 그룹을 가지는 양이온 교환 폴리머이거나, 또는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온 교환 그룹을 가지는 음이온 교환 폴리머일 수 있다. The ion exchange polymer may be a cation exchange polymer having a cation exchange group such as proton or an anion exchange polymer having an anion exchange group such as hydroxy ion, carbonate or bicarbonate.
상기 양이온 교환 그룹은 술폰산기, 카르복실기, 보론산기, 인산기, 이미드기, 술폰이미드기, 술폰아미드기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나일 수 있고, 일반적으로 술폰산기 또는 카르복실기일 수 있다.The cation exchange group may be any one selected from the group consisting of a sulfonic acid group, a carboxyl group, a boronic acid group, a phosphoric acid group, an imide group, a sulfonimide group, a sulfonamide group, and a combination thereof, and in general, may be a sulfonic acid group or a carboxyl group. have.
상기 양이온 교환 폴리머는 상기 양이온 교환 그룹을 포함하며, 주쇄에 불소를 포함하는 플루오르계 고분자; 벤즈이미다졸, 폴리아미드, 폴리아미드이미드, 폴리이미드, 폴리아세탈, 폴리에틸렌, 폴리프로필렌, 아크릴 수지, 폴리에스테르, 폴리술폰, 폴리에테르, 폴리에테르이미드, 폴리에스테르, 폴리에테르술폰, 폴리에테르이미드, 폴리카보네이트, 폴리스티렌, 폴리페닐렌설파이드, 폴리에테르에테르케톤, 폴리에테르케톤, 폴리아릴에테르술폰, 폴리포스파젠 또는 폴리페닐퀴녹살린 등의 탄화수소계 고분자; 폴리스티렌-그라프트-에틸렌테트라플루오로에틸렌 공중합체, 또는 폴리스티렌-그라프트-폴리테트라플루오로에틸렌 공중합체 등의 부분 불소화된 고분자; 술폰 이미드 등을 들 수 있다.The cation exchange polymer includes the cation exchange group, the fluorine-based polymer containing fluorine in the main chain; Benzimidazole, polyamide, polyamideimide, polyimide, polyacetal, polyethylene, polypropylene, acrylic resin, polyester, polysulfone, polyether, polyetherimide, polyester, polyethersulfone, polyetherimide, poly Hydrocarbon-based polymers such as carbonate, polystyrene, polyphenylene sulfide, polyether ether ketone, polyether ketone, polyaryl ether sulfone, polyphosphazene or polyphenylquinoxaline; Partially fluorinated polymers such as polystyrene-graft-ethylenetetrafluoroethylene copolymer or polystyrene-graft-polytetrafluoroethylene copolymer; Sulfone imides and the like.
보다 구체적으로, 상기 양이온 교환 폴리머가 수소 이온 양이온 교환 폴리머인 경우 상기 고분자들은 측쇄에 술폰산기, 카르복실산기, 인산기, 포스포닌산기 및 이들의 유도체로 이루어진 군에서 선택되는 양이온 교환기를 포함할 수 있으며, 그 구체적인 예로는 술폰산기를 포함하는 폴리(퍼플루오로술폰산), 폴리(퍼플루오로카르복실산), 술폰산기를 포함하는 테트라플루오로에틸렌과 플루오로비닐에테르의 공중합체, 탈불소화된 황화 폴리에테르케톤 또는 이들의 혼합물을 포함하는 플루오르계 고분자; 술폰화된 폴리이미드(sulfonated polyimide, S-PI), 술폰화된 폴리아릴에테르술폰(sulfonated polyarylethersulfone, S-PAES), 술폰화된 폴리에테르에테르케톤(sulfonated polyetheretherketone, SPEEK), 술폰화된 폴리벤즈이미다졸(sulfonated polybenzimidazole, SPBI), 술폰화된 폴리술폰(sulfonated polysulfone, S-PSU), 술폰화된 폴리스티렌(sulfonated polystyrene, S-PS), 술폰화된 폴리포스파젠(sulfonated polyphosphazene) 및 이들의 혼합물을 포함하는 탄화수소계 고분자를 들 수 있으나, 이에 한정되는 것은 아니다.More specifically, when the cation exchange polymer is a hydrogen ion cation exchange polymer, the polymers may include a cation exchange group selected from the group consisting of sulfonic acid groups, carboxylic acid groups, phosphoric acid groups, phosphonic acid groups, and derivatives thereof in the side chain. Specific examples thereof include poly (perfluorosulfonic acid) containing a sulfonic acid group, poly (perfluorocarboxylic acid), a copolymer of tetrafluoroethylene containing a sulfonic acid group and fluorovinyl ether, and a defluorinated sulfide polyether. Fluorine-based polymers including ketones or mixtures thereof; Sulfonated polyimide (S-PI), sulfonated polyarylethersulfone (S-PAES), sulfonated polyetheretherketone (SPEEK), sulfonated polybenzimine Sulfonated polybenzimidazole (SPBI), sulfonated polysulfone (S-PSU), sulfonated polystyrene (S-PS), sulfonated polyphosphazene and mixtures thereof Hydrocarbon-based polymers include, but are not limited thereto.
상기 음이온 교환 폴리머는 하이드록시 이온, 카보네이트 또는 바이카보네이트와 같은 음이온을 이송시킬 수 있는 폴리머로서, 음이온 교환 폴리머는 하이드록사이드 또는 할라이드(일반적으로 클로라이드) 형태가 상업적으로 입수 가능하며, 상기 음이온 교환 폴리머는 산업적 정수(water purification), 금속 분리 또는 촉매 공정 등에 사용될 수 있다.The anion exchange polymer is a polymer capable of transporting anions such as hydroxy ions, carbonates or bicarbonates, and the anion exchange polymer is commercially available in the form of a hydroxide or halide (generally chloride), and the anion exchange polymer Can be used for industrial water purification, metal separation or catalytic processes.
상기 음이온 교환 폴리머로는 일반적으로 금속 수산화물이 도핑된 폴리머를 사용할 수 있으며, 구체적으로 금속 수산화물이 도핑된 폴리(에테르술폰), 폴리스티렌, 비닐계 폴리머, 폴리(비닐 클로라이드), 폴리(비닐리덴 플루오라이드), 폴리(테트라플루오로에틸렌), 폴리(벤즈이미다졸) 또는 폴리(에틸렌글리콜) 등을 사용할 수 있다.As the anion exchange polymer, a metal hydroxide-doped polymer may be generally used. Specifically, poly (ethersulfone), polystyrene, vinyl polymer, poly (vinyl chloride), poly (vinylidene fluoride) doped with metal hydroxide ), Poly (tetrafluoroethylene), poly (benzimidazole), poly (ethylene glycol) and the like can be used.
상기 이온 교환 폴리머는 상기 강화막 전체 중량에 대하여 50 내지 99중량%로 포함될 수 있다. 상기 이온 교환 폴리머의 함량이 50 중량% 미만이면 상기 강화막의 이온 전도도가 저하될 우려가 있고, 상기 이온 교환 폴리머의 함량이 99 중량%를 초과하면 상기 강화막의 기계적 강도 및 치수안정성이 저하될 수 있다.The ion exchange polymer may be included in 50 to 99% by weight based on the total weight of the reinforcing film. If the content of the ion exchange polymer is less than 50% by weight, the ion conductivity of the reinforcing film may be lowered. If the content of the ion exchange polymer is more than 99% by weight, the mechanical strength and dimensional stability of the reinforcing film may be reduced. .
상기 이온 교환 폴리머는 상기 다공성 지지체의 기공 내부에 충진되는 것과 더불어 그 제조 공정상 상기 다공성 지지체의 일면 또는 양면의 표면에 코팅층을 형성할 수도 있다. 상기 이온 교환 폴리머의 코팅층은 그 두께를 30㎛ 이하로 조절하는 것이 바람직한데, 상기 이온 교환 폴리머의 코팅층이 상기 다공성 지지체의 표면에 30㎛를 초과한 두께로 형성될 경우에는 상기 강화막의 기계적 강도가 저하될 수 있고, 상기 강화막의 전체 두께 증가로 이어져 저항손실이 증가될 수 있다.In addition to filling the pores of the porous support, the ion exchange polymer may form a coating layer on one or both surfaces of the porous support. Preferably, the coating layer of the ion exchange polymer is adjusted to a thickness of 30 μm or less. When the coating layer of the ion exchange polymer is formed to a thickness of more than 30 μm on the surface of the porous support, the mechanical strength of the reinforcing film is increased. It may be lowered, leading to an increase in the overall thickness of the reinforcement film, and thus an increase in resistance loss.
상기 강화막은 상기 다공성 지지체의 기공 내에 상기 이온 교환 폴리머를 충진한 구조이기 때문에, 40MPa 이상의 우수한 기계적 강도를 나타낸다. 이와 같이 기계적 강도가 증진됨에 따라 상기 강화막 전체의 두께를 80㎛ 이하로 줄일 수 있으며, 그 결과로 재료비 절약과 더불어 이온 전도 속도가 증가되고 저항손실이 감소된다.Since the reinforcing film has a structure in which the ion exchange polymer is filled in the pores of the porous support, it exhibits excellent mechanical strength of 40 MPa or more. As the mechanical strength is improved, the thickness of the entire reinforcement film can be reduced to 80 μm or less. As a result, the ion conduction rate is increased and the resistance loss is reduced while saving material costs.
또한, 상기 강화막은 내구성이 우수한 다공성 지지체를 포함하는 동시에 다공성 지지체를 구성하는 나노 섬유와 이온 교환 폴리머의 결착력이 우수하기 때문에, 수분에 의한 강화막의 3차원적 팽창을 억제할 수 있어 길이 및 두께 팽창률이 상대적으로 낮아진다. 구체적으로, 상기 강화막은 물에 팽윤시켰을 때 5% 이하의 우수한 치수안정성을 나타낸다. 상기 치수안정성은 상기 강화막을 물에 팽윤시켰을 때 팽윤 전 후 길이 변화로부터 하기 수학식 4에 따라 평가되는 물성이다.In addition, since the reinforcing membrane includes a porous support having excellent durability and excellent binding force between the nanofibers and the ion-exchange polymer constituting the porous support, the three-dimensional expansion of the reinforcing film due to moisture can be suppressed, so that the length and thickness expansion rate This is relatively low. Specifically, the reinforcing film exhibits excellent dimensional stability of 5% or less when swollen in water. The dimensional stability is a physical property evaluated according to Equation 4 below from the change in length before and after swelling when the reinforcing film is swelled in water.
[수학식 4][Equation 4]
치수안정성=[(팽윤 후 길이-팽윤 전 길이)/팽윤 전 길이]×100Dimensional stability = [(length after swelling-length before swelling) / length before swelling] × 100
상기 강화막은 우수한 치수 안정성과 이온 전도도를 가지기 때문에 연료 전지용 고분자 전해질 막 또는 역삼투 필터용 멤브레인으로 바람직하게 사용될 수 있다.Since the reinforcing membrane has excellent dimensional stability and ion conductivity, it may be preferably used as a polymer electrolyte membrane for a fuel cell or a membrane for a reverse osmosis filter.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
[제조예 1: 다공성 지지체의 제조]Preparation Example 1: Preparation of Porous Support
(실시예 1-1)(Example 1-1)
PMDA 및 ODA와 PDA 단량체 100 중량부 및 아나타제형 나노 TiO2인 친수화 첨가제 5 중량부를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0ml/min이었다. 또한, 각각 양이온 블로워와 음이온 블로워를 방사챔버와 콜렉터 기재에 설치하여 방사환경은 양이온밀도를 높여주고, 콜렉터 기재는 음이온 밀도를 높여주었다.100 parts by weight of PMDA and ODA and PDA monomer and 5 parts by weight of anatase-type nano TiO 2 hydrophilic additive were dissolved in a dimethylformamide solution to prepare 5L of a spinning solution having a solid content of 12.5% by weight and 620poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min. In addition, by installing a cationic blower and an anion blower in the spinning chamber and the collector substrate, respectively, the radiation environment increased the cation density, and the collector substrate increased the anion density.
이어서, 상기 폴리아믹산 나노웹을 롤투롤 방식으로 이송시키면서 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹으로 구성된 다공성 지지체를 제조하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. while transferring the polyamic acid nanoweb in a roll-to-roll manner to prepare a porous support composed of polyimide nanoweb.
(실시예 1-2)(Example 1-2)
친수화 첨가제로 아나타제형 나노 TiO2를 0.1 중량부로 사용한 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 다공성 지지체를 제조하였다.A porous support was prepared in the same manner as in Example 1-1, except that 0.1 part by weight of anatase-type nano TiO 2 was used as the hydrophilic additive.
(실시예 1-3)(Example 1-3)
친수화 첨가제로 아나타제형 나노 TiO2를 20 중량부로 사용한 것을 제외하고는 상기 실시예 1-1에서와 동일한 방법으로 실시하여 다공성 지지체를 제조하였다.A porous support was prepared in the same manner as in Example 1-1, except that 20 parts by weight of anatase-type nano TiO 2 was used as the hydrophilic additive.
(비교예 1-1)(Comparative Example 1-1)
PMDA 및 ODA, PDA 단량체 100 중량부를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다. 이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹으로 구성된 다공성 지지체를 제조하였다. 100 parts by weight of PMDA, ODA, and PDA monomer were dissolved in a dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5% by weight and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min. Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a porous support composed of polyimide nanoweb.
[시험예 1: 다공성 지지체의 특성 측정]Test Example 1: Measurement of Characteristics of Porous Support
상기 실시예 및 비교예에서 제조된 다공성 지지체의 포화 함습 도달 시간, 수분율, 젖음성, 접촉각을 측정하였고, 그 결과를 하기 표 1에 정리하였다.The saturation moisture reaching time, moisture content, wettability, and contact angle of the porous supports prepared in Examples and Comparative Examples were measured, and the results are summarized in Table 1 below.
표 1
실시예1-1 실시예1-2 실시예1-3 비교예1-1
포화 함습 도달 시간1) 200 600 60 3600
수분율2) 3.5 3.0 5.0 2.5
젖음성3) 3 2 7 0
접촉각4) 45 80 25 113
Table 1
Example 1-1 Example 1-2 Example 1-3 Comparative Example 1-1
Saturation Moisture Reach Time 1) 200 600 60 3600
Moisture content 2) 3.5 3.0 5.0 2.5
Wettability 3) 3 2 7 0
Contact angle 4) 45 80 25 113
1) 포화 함습 도달 시간(초): KS K ISO 9073-6, 텍스타일-부직포 시험방법-제 6부: 흡수 측정 규격중 액체 흡습시간 방법에 의거하여, 물을 25mm 높이에서 낙하시켜 시편이 완전히 젖는 시간을 측정함.1) Saturation Moisture Attainment Time (sec): KS K ISO 9073-6, Textiles-Nonwovens Test Method-Part 6: Absorption Measurement According to the liquid hygroscopic time method, the specimen is completely wetted by dropping water at a height of 25 mm. Measure your time.
2) 수분율(중량%): KS K 0221텍스타일의 수분 측정 방법: 오븐 밸런스법에 의거하여 시편을 24시간 동안 섬유 실험실 표준상태(KS K 0901)에서 수분 평형에 도달시킨 후, 105 내지 110℃에서 1시간 30분 건조시킨 후 무게 변화율을 측정함.2) Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 ℃ After drying for 1 hour and 30 minutes, the weight change rate is measured.
3) 젖음성(cm): 미국 AATCC Test Method 197-2011, 텍스타일의 수직방향 위킹 시험 규격(Vertical Wicking of Textiles)중 선택B(Option B, Measure distance at a given time)에 의거하여, 시편을 침지한 후 30분 후의 위킹 최대 거리를 측정함.3) Wetability (cm): Immersion of specimens in accordance with B (Option B, Measure distance at a given time) of US AATCC Test Method 197-2011, Vertical Wicking of Textiles. Measure the wicking maximum distance 30 minutes later.
4) 접촉각(°): 30℃ 및 RH 40%를 유지한 상태에서 증류수를 주사기에 충전하여 분리막 위에 지름 3mm 크기의 물방울을 떨어 뜨린 후 5분 동안 물방울이 퍼지기를 기다려서, 5분 이후 분리막과 물방울이 이루는 접촉각을 측정함.4) Contact angle (°): Fill the syringe with distilled water at 30 ° C and 40% RH, drop a 3 mm diameter drop onto the separator, wait for 5 minutes to spread, and wait 5 minutes after separation Measure this contact angle.
상기 표 1을 참조하면, 실시예에서 제조된 다공성 멤브레인은 비교예에서 제조된 멤브레인에 비하여 친수성이 우수함을 알 수 있다.Referring to Table 1, it can be seen that the porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
[제조예 2 다공성 지지체의 제조]Preparation Example 2 Preparation of Porous Support
(실시예 2-1)(Example 2-1)
PMDA 및 ODA와 PDA 단량체를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다.PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
한편, 친수화 첨가제인 아나타제형 나노 TiO2를 디메틸포름아마이드에 첨가하고 교반하여 친수화 첨가제 용액을 제조하였다. 상기 제조된 친수화 첨가제 용액에 상기 제조된 나노웹을 상온(20℃)에서 10분 동안 침지한 후 80℃ 열풍오븐에서 3시간 이상 건조하며, 이와 같은 침지, 건조 작업을 2 내지 5회 수행하여 상기 친수화 첨가제를 상기 나노웹에 함침시켰다.On the other hand, anatase-type nano TiO 2 as a hydrophilic additive was added to dimethylformamide and stirred to prepare a hydrophilic additive solution. After immersing the prepared nanoweb in the prepared hydrophilic additive solution for 10 minutes at room temperature (20 ℃) and dried at 80 ℃ hot air oven for more than 3 hours, by performing such immersion, drying operation 2 to 5 times The hydrophilization additive was impregnated into the nanoweb.
(실시예 2-2)(Example 2-2)
상기 실시예 2-1에서 상기 친수화 첨가제 용액을 상기 나노웹 양면 표면에 스프레이를 이용하여 코팅한 후 건조하는 작업을 반복한 것을 제외하고는 실시예 2-1과 동일하게 실시하여 다공성 지지체를 제조하였다.A porous support was prepared in the same manner as in Example 2-1, except that the hydrophilic additive solution was coated on both surfaces of the nanoweb using a spray and then dried. It was.
(실시예 2-3)(Example 2-3)
PMDA 및 ODA와 PDA 단량체를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0ml/min이었다.PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다 상기 제조된 폴리이미드 나노웹의 양면 표면을 저온 플라즈마를 사용하여 산소 기체를 150sccm 유량으로 플라즈마 처리 챔버에 투입한 후 20W로 5분 동안 플라즈마 처리하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to manufacture polyimide nanoweb. Both surfaces of the prepared polyimide nanoweb were prepared using low temperature plasma. Oxygen gas was introduced into the plasma processing chamber at a flow rate of 150 sccm and then plasma treated at 20 W for 5 minutes.
(실시예 2-4)(Example 2-4)
PMDA 및 ODA와 PDA 단량체를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다.PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 6분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다. 상기 제조된 폴리이미드 나노웹의 양면 표면을 RF 스퍼터를 사용하여 증착 파워는 150W로 유지하고, 시편 온도는 200℃로 고정하여, 10분 동안 스퍼터링하여 TiO2 무기물층을 형성하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 6 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb. Both surfaces of the prepared polyimide nanoweb were deposited at 150 W using RF sputtering, and the specimen temperature was fixed at 200 ° C., and sputtered for 10 minutes to form a TiO 2 inorganic layer.
[시험예 2: 다공성 지지체의 특성 측정]Test Example 2: Measurement of Characteristics of Porous Support
상기 실시예 및 비교예에서 제조된 다공성 지지체의 포화 함습 도달 시간, 수분율, 젖음성, 접촉각을 측정하였고, 그 결과를 하기 표 2에 정리하였다.The saturation moisture reaching time, moisture content, wettability, and contact angle of the porous supports prepared in Examples and Comparative Examples were measured, and the results are summarized in Table 2 below.
표 2
실시예2-1 실시예2-2 실시예2-3 실시예 2-4 비교예1-1
포화 함습 도달 시간1) 250 280 10 300 3600
수분율2) 3.3 3.6 5.0 3.8 2.5
젖음성3) 4 4.5 15 6 0
접촉각4) 38 43 10 30 113
TABLE 2
Example 2-1 Example 2-2 Example 2-3 Example 2-4 Comparative Example 1-1
Saturation Moisture Reach Time 1) 250 280 10 300 3600
Moisture content 2) 3.3 3.6 5.0 3.8 2.5
Wettability 3) 4 4.5 15 6 0
Contact angle 4) 38 43 10 30 113
1) 포화 함습 도달 시간(초): KS K ISO 9073-6, 텍스타일-부직포 시험방법-제 6부: 흡수 측정 규격중 액체 흡습시간 방법에 의거하여, 물을 25mm 높이에서 낙하시켜 시편이 완전히 젖는 시간을 측정함.1) Saturation Moisture Attainment Time (sec): KS K ISO 9073-6, Textiles-Nonwovens Test Method-Part 6: Absorption Measurement According to the liquid hygroscopic time method, the specimen is completely wetted by dropping water at a height of 25 mm. Measure your time.
2) 수분율(중량%): KS K 0221텍스타일의 수분 측정 방법: 오븐 밸런스법에 의거하여 시편을 24시간 동안 섬유 실험실 표준상태(KS K 0901)에서 수분 평형에 도달시킨 후, 105 내지 110℃에서 1시간 30분 건조시키 후 무게 변화율을 측정함.2) Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 ℃ After drying for 1 hour and 30 minutes, the weight change rate is measured.
3) 젖음성(cm): 미국 AATCC Test Method 197-2011, 텍스타일의 수직방향 위킹 시험 규격(Vertical Wicking of Textiles)중 선택B(Option B, Measure distance at a given time)에 의거하여, 시편을 침지한 후 30분 후의 위킹 최대 거리를 측정함.3) Wetability (cm): Immersion of specimens in accordance with B (Option B, Measure distance at a given time) of US AATCC Test Method 197-2011, Vertical Wicking of Textiles. Measure the wicking maximum distance 30 minutes later.
4) 접촉각(°): 30℃ 및 RH 40%를 유지한 상태에서 증류수를 주사기에 충전하여 분리막 위에 지름 3mm 크기의 물방울을 떨어 뜨린 후 5분 동안 물방울이 퍼지기를 기다려서, 5분 이후 분리막과 물방울이 이루는 접촉각을 측정함.4) Contact angle (°): Fill the syringe with distilled water at 30 ° C and 40% RH, drop a 3 mm diameter drop onto the separator, wait for 5 minutes to spread, and wait 5 minutes after separation Measure this contact angle.
상기 표 2를 참조하면, 실시예에서 제조된 다공성 멤브레인은 비교예에서 제조된 멤브레인에 비하여 친수성이 우수함을 알 수 있다.Referring to Table 2, it can be seen that the porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
[제조예 3 다공성 지지체의 제조]Preparation Example 3 Preparation of Porous Support
(실시예 3-1)(Example 3-1)
PMDA, ODA와 PDA, 및 하이드록시기를 포함하는 디페닐 우레아 단량체를50:45:5의 중량비로 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다.PMDA, ODA and PDA, and diphenyl containing hydroxy groups Urea The monomer was dissolved in a dimethylformamide solution at a weight ratio of 50: 45: 5 to prepare 5 L of a spinning solution having a solid content of 12.5% by weight and 620 poise.
제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다.After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
(실시예 3-2)(Example 3-2)
PMDA 및 ODA와 PDA 단량체를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다.PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5% by weight and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
상기 제조된 폴리이미드 나노웹 표면에 스프레이를 이용하여 0.1N KOH 용액을 1초간 살포후 건조하여 상기 폴리이미드의 주쇄에 카르복실기를 0.02몰%로 치환시켰다.Spraying 0.1N KOH solution for 1 second using a spray on the surface of the prepared polyimide nanoweb and dried to replace the carboxyl group to 0.02 mol% in the main chain of the polyimide.
(실시예 3-3)(Example 3-3)
PMDA 및 ODA와 PDA 단량체를 디메틸포름아마이드 용액에 용해시켜 고형분 12.5 중량%, 620poise인 방사용액 5L를 제조하였다. 제조된 방사용액을 용액 탱크에 이송한 후, 이를 정량 기어펌프를 통해 노즐이 26개로 구성되고 고전압이 49kV로 인가된 방사챔버로 공급하여 방사하여 폴리아믹산 나노웹을 제조하였다. 이때 용액 공급량은 1.0 ml/min이었다.PMDA, ODA, and PDA monomer were dissolved in dimethylformamide solution to prepare 5 L of a spinning solution having a solid content of 12.5 wt% and 620 poise. After transporting the prepared spinning solution to the solution tank, it was supplied to the spinning chamber consisting of 26 nozzles and a high voltage of 49kV through a quantitative gear pump to produce a polyamic acid nanoweb. The solution feed amount was 1.0 ml / min.
이어서, 상기 폴리아믹산 나노웹을 420℃의 온도로 유지된 연속 경화로에서 10분 동안 열경화를 실시하여 폴리이미드 나노웹을 제조하였다.Subsequently, the polyamic acid nanoweb was thermally cured for 10 minutes in a continuous curing furnace maintained at a temperature of 420 ° C. to prepare a polyimide nanoweb.
상기 제조된 폴리이미드 나노웹 표면에 스프레이를 이용하여 0.1N NaOH 용액을 1초간 살포후 건조하여 상기 폴리이미드의 주쇄에 카르복실기를 0.01몰%로 치환시켰다.Spraying 0.1N NaOH solution for 1 second using a spray on the surface of the prepared polyimide nanoweb and dried to replace the carboxyl group with 0.01 mol% in the main chain of the polyimide.
[시험예 3: 다공성 지지체의 특성 측정]Test Example 3: Measurement of Properties of Porous Support
상기 실시예 및 비교예에서 제조된 다공성 지지체의 포화 함습 도달 시간, 수분율, 젖음성, 접촉각을 측정하였고, 그 결과를 하기 표 3에 정리하였다.The saturation moisture reaching time, moisture content, wettability, and contact angle of the porous supports prepared in Examples and Comparative Examples were measured, and the results are summarized in Table 3 below.
표 3
실시예3-1 실시예3-2 실시예3-3 비교예1-1
포화 함습 도달 시간1) 500 580 600 3600
수분율2) 3.1 3.3 3.2 2.5
젖음성3) 2.5 2.9 2.8 0
접촉각4) 48 42 44 113
TABLE 3
Example 3-1 Example 3-2 Example 3-3 Comparative Example 1-1
Saturation Moisture Reach Time 1) 500 580 600 3600
Moisture content 2) 3.1 3.3 3.2 2.5
Wettability 3) 2.5 2.9 2.8 0
Contact angle 4) 48 42 44 113
1) 포화 함습 도달 시간(초): KS K ISO 9073-6, 텍스타일-부직포 시험방법-제 6부: 흡수 측정 규격중 액체 흡습시간 방법에 의거하여, 물을 25mm 높이에서 낙하시켜 시편이 완전히 젖는 시간을 측정함.1) Saturation Moisture Attainment Time (sec): KS K ISO 9073-6, Textiles-Nonwovens Test Method-Part 6: Absorption Measurement According to the liquid hygroscopic time method, the specimen is completely wetted by dropping water at a height of 25 mm. Measure your time.
2) 수분율(중량%): KS K 0221텍스타일의 수분 측정 방법: 오븐 밸런스법에 의거하여 시편을 24시간 동안 섬유 실험실 표준상태(KS K 0901)에서 수분 평형에 도달시킨 후, 105 내지 110℃에서 1시간 30분 건조시키 후 무게 변화율을 측정함.2) Moisture content (% by weight): KS K 0221 Textile Moisture Determination Method: According to the oven balance method, after the specimen reached the water equilibrium in the fiber laboratory standard state (KS K 0901) for 24 hours, at 105 to 110 ℃ After drying for 1 hour and 30 minutes, the weight change rate is measured.
3) 젖음성(cm): 미국 AATCC Test Method 197-2011, 텍스타일의 수직방향 위킹 시험 규격(Vertical Wicking of Textiles)중 선택B(Option B, Measure distance at a given time)에 의거하여, 시편을 침지한 후 30분 후의 위킹 최대 거리를 측정함.3) Wetability (cm): Immersion of specimens in accordance with B (Option B, Measure distance at a given time) of US AATCC Test Method 197-2011, Vertical Wicking of Textiles. Measure the wicking maximum distance 30 minutes later.
4) 접촉각: 30℃ 및 RH 40%를 유지한 상태에서 증류수를 주사기에 충전하여 분리막 위에 지름 3mm 크기의 물방울을 떨어 뜨린 후 5분 동안 물방울이 퍼지기를 기다려서, 5분 이후 분리막과 물방울이 이루는 접촉각을 측정함.4) Contact angle: Fill the syringe with distilled water at 30 ° C and 40% RH, drop a 3mm diameter droplet onto the separator, wait for 5 minutes for the droplet to spread, and contact angle between the membrane and the droplet after 5 minutes. Measured.
상기 표 3을 참조하면, 실시예에서 제조된 다공성 멤브레인은 비교예에서 제조된 멤브레인에 비하여 친수성이 우수함을 알 수 있다.Referring to Table 3, it can be seen that the porous membrane prepared in the example is superior in hydrophilicity to the membrane prepared in the comparative example.
[제조예 4: 강화막의 제조]Production Example 4: Production of Reinforcement Film
페트리 디쉬에 상기 제조예 1 내지 3에서 제조된 다공성 지지체와 함께 5중량%의 나피온 용액을 웹의 단위면적(cm2) 당 0.06g의 나피온이 함침될 수 있도록 넣어주고, 오븐을 사용하여 60℃에서 4시간 이상 건조하여 강화막을 제조하였다.In a Petri dish, 5% by weight of Nafion solution together with the porous support prepared in Preparation Examples 1 to 3 was added to impregnate 0.06 g of Nafion per unit area (cm 2 ) of the web, and using an oven It was dried at 60 ℃ for 4 hours or more to prepare a reinforcing film.
[시험예 4][Test Example 4]
상기 제조예 4에서 제조된 강화막을 각각 친수성 기가 충분히 활성화되도록 1몰 황산 용액에 3시간 동안 침지시킨 후 초순수로 깨끗이 표면을 닦아 전도도 측정 샘플을 준비한 후, 저항 측정 장치를 통해 90% 가습, 4전극법에 의해 25℃ 및 80℃에서 이온전도도를 각각 측정하였다. After immersing the reinforcing film prepared in Preparation Example 4 in 1 mol sulfuric acid solution for 3 hours to fully activate the hydrophilic group, and then wipe the surface with ultrapure water to prepare a sample for conductivity measurement, 90% humidification, 4-electrode method through a resistance measuring device The ion conductivity was measured at 25 ° C. and 80 ° C., respectively.
또한, 상기 제조예 4에서 제조된 강화막을 60℃ 오븐에서 6시간 이상 건조 후 80℃ 열수에서 2시간 보관하는 것을 1회로 하여 5회 반복 실시한 후 결과의 강화막에 대해 UTM-3365 기기를 사용하여 인장강도를 측정하였고, 탈리 현상 발생 여부를 측정하였다.In addition, the reinforcing film prepared in Preparation Example 4 was dried in a 60 ° C. oven for at least 6 hours and then stored twice at 80 ° C. for 2 hours in a single cycle. Tensile strength was measured and whether or not detachment phenomenon occurred.
또한, 상기 제조예 4에서 제조된 강화막의 형태안정성을 평가하기 위하여, 상기 강화막을 열풍오븐내에서 50℃의 온도에서 6시간 건조한 후 초순수에 24시간 동안 침지하여 강화막의 치수변화를 측정하였다. In addition, to evaluate the shape stability of the reinforcing film prepared in Preparation Example 4, the reinforcing film was dried for 6 hours at a temperature of 50 ℃ in a hot air oven and then immersed in ultrapure water for 24 hours to measure the dimensional change of the reinforcing film.
상기 측정 결과를 하기 표 4에 나타내었다.The measurement results are shown in Table 4 below.
표 4
이온 전도도(Scm-1) 인장강도(MPa) 탈리여부 치수변화율(%)
25℃ 80℃ 평가전 5회실시후 X Y
실시예 1-1 0.07 0.08 47 45 탈리X 1 1
실시예 1-2 0.06 0.07 40 33 탈리X 0.5 0.5
실시예 1-3 0.09 0.10 49 49 탈리X 0.1 0.1
실시예 2-1 0.07 0.08 46 43 탈리X 0.5 0.5
실시예 2-2 0.07 0.08 46 43 탈리X 0.5 0.5
실시예 2-3 0.08 0.09 40 35 탈리X 1.0 1.0
실시예 2-4 0.07 0.08 43 43 탈리X 0.5 0.5
실시예 3-1 0.07 0.08 41 40 탈리X 0.5 0.5
실시예 3-2 0.07 0.08 40 35 탈리X 0.5 0.5
실시예 3-3 0.07 0.08 40 35 탈리X 0.5 0.5
비교예 1-1 0.06 0.07 40 30 탈리 1.0 1.0
대조예1) 0.09 0.10 36 26 탈리 10.0 10.0
Table 4
Ionic Conductivity (Scm -1 ) Tensile Strength (MPa) Tally Dimensional rate of change (%)
25 ℃ 80 ℃ Before evaluation 5 times X Y
Example 1-1 0.07 0.08 47 45 Tally X One One
Example 1-2 0.06 0.07 40 33 Tally X 0.5 0.5
Example 1-3 0.09 0.10 49 49 Tally X 0.1 0.1
Example 2-1 0.07 0.08 46 43 Tally X 0.5 0.5
Example 2-2 0.07 0.08 46 43 Tally X 0.5 0.5
Example 2-3 0.08 0.09 40 35 Tally X 1.0 1.0
Example 2-4 0.07 0.08 43 43 Tally X 0.5 0.5
Example 3-1 0.07 0.08 41 40 Tally X 0.5 0.5
Example 3-2 0.07 0.08 40 35 Tally X 0.5 0.5
Example 3-3 0.07 0.08 40 35 Tally X 0.5 0.5
Comparative Example 1-1 0.06 0.07 40 30 Tally 1.0 1.0
Comparative Example 1 0.09 0.10 36 26 Tally 10.0 10.0
1) 대조예: 듀폰사의 나피온 117 막을 초순수에 3시간 이상 침지하여 막내 물이 충분히 존재하도록 하여 준비된 고분자 전해질막.1) Comparative Example: A polymer electrolyte membrane prepared by immersing a Dupont Nafion 117 membrane in ultrapure water for 3 hours or more so that sufficient water exists in the membrane.
상기 표 4에 나타난 바와 같이, 실시예의 강화막 및 비교예의 강화막은, 우수한 수소이온 전도도를 나타내는 것으로 알려진 대조예의 플루오르계 강화막과 비교하여 25℃에서는 동등 수준의 수소이온 전도도를 나타내었다. 그러나, 80℃ 고온에서 실시예의 강화막은 대조예의 플루오르계 강화막과 동등 수준의 수소이온 전도도를 나타낸 반면, 비교예의 강화막은 대조예의 플루오르계 강화막에 비해 현저히 저하된 이온전도도를 나타내었다.As shown in Table 4, the reinforcing film of the Example and the reinforcing film of the Comparative Example exhibited the same level of hydrogen ion conductivity at 25 ℃ compared to the fluorine-based strengthening film of the control example known to exhibit excellent hydrogen ion conductivity. However, at 80 ° C. high temperature, the reinforcing film of the Example showed the same level of hydrogen ion conductivity as the fluorine-based reinforcing film of the control example, whereas the reinforcing film of the comparative example showed a significantly lower ion conductivity than the fluorine-reinforcing film of the control example.
또한, 실시예의 강화막은 종래 우수한 수소 이온 전도도를 나타내는 것으로 알려진 대조예의 플루오르계 고분자의 전해질막에 비해 현저히 개선된 형태 안정성을 나타냄을 알 수 있다.In addition, it can be seen that the reinforcing membrane of the embodiment exhibits significantly improved morphological stability compared to the electrolyte membrane of the fluorine-based polymer of the comparative example known to exhibit excellent hydrogen ion conductivity.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the preferred embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.
본 발명의 다공성 지지체는 표면적이 넓고 다공성이 우수하기 때문에 정수용 필터, 공기 정화용 필터, 복합재료, 전지용 분리막 등의 다양한 용도로 이용될 수 있고, 특히 자동차용 연료전지에 사용되는 강화복합막에 유용하게 적용될 수 있다.Since the porous support of the present invention has a wide surface area and excellent porosity, it can be used for various purposes such as water purification filters, air purification filters, composite materials, battery separators, and the like, and is particularly useful for reinforced composite membranes used in fuel cells for automobiles. Can be applied.

Claims (29)

  1. 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 포함하며,The nanofibers comprise a nanoweb integrated into a nonwoven form containing a plurality of pores,
    상기 나노웹의 포화 함습 도달 시간이 1초 내지 600초인 다공성 지지체.A porous support having a saturation moisture arrival time of the nanoweb is 1 second to 600 seconds.
  2. 제1항에 있어서,The method of claim 1,
    상기 나노웹은 수분율이 3.0 중량% 이상인 것인 다공성 지지체.The nanoweb has a moisture content of 3.0% by weight or more.
  3. 제1항에 있어서,The method of claim 1,
    상기 나노웹은 위킹 테스트(wicking test)에 의한 젖음성이 2 내지 15cm인 것인 다공성 지지체.The nanoweb has a wettability of 2 to 15 cm by wicking test (wicking test).
  4. 제1항에 있어서,The method of claim 1,
    상기 나노웹은 접촉각(contact angle)이 90° 이하인 것인 다공성 지지체.The nanoweb has a contact angle (90) or less of the porous support.
  5. 제1항에 있어서,The method of claim 1,
    상기 나노 섬유는 상기 나노 섬유 고분자 100 중량부에 대하여 친수화 첨가제를 0.1 내지 20 중량부로 포함하는 것인 다공성 지지체.The nanofiber is a porous support comprising 0.1 to 20 parts by weight of a hydrophilic additive based on 100 parts by weight of the nanofiber polymer.
  6. 제1항에 있어서,The method of claim 1,
    상기 나노웹의 기공 내부에 친수화 첨가제가 함침된 것인 다공성 지지체.Porous support is impregnated with a hydrophilic additive in the pores of the nanoweb.
  7. 제1항에 있어서,The method of claim 1,
    상기 나노웹의 일면 또는 양면의 표면에 친수화 첨가제가 코팅된 것인 다공성 지지체.Porous support that is coated with a hydrophilic additive on one or both surfaces of the nanoweb.
  8. 제5항 내지 제7항 중 어느 한 항에 있어서, The method according to any one of claims 5 to 7,
    상기 친수화 첨가제는 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 다공성 지지체.The hydrophilization additive is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), oxide Aluminum (Al 2 O 3 ), single-walled carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and any one selected from the group consisting of a porous support.
  9. 제5항 내지 제7항 중 어느 한 항에 있어서,The method according to any one of claims 5 to 7,
    상기 친수화 첨가제는 폴리하이드로에틸메타크릴레이트, 폴리비닐아세테이트, 폴리우레탄, 폴리디메틸실록산, 폴리이미드, 폴리아미드, 폴리에틸렌테레프탈레이트, 폴리메틸메타크릴레이트, 에폭시 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 다공성 지지체.The hydrophilic additive is selected from the group consisting of polyhydroethyl methacrylate, polyvinylacetate, polyurethane, polydimethylsiloxane, polyimide, polyamide, polyethylene terephthalate, polymethyl methacrylate, epoxy, and combinations thereof. Which is one porous support.
  10. 제5항 내지 제7항 중 어느 한 항에 있어서, The method according to any one of claims 5 to 7,
    상기 친수화 첨가제의 평균 입경은 0.005 내지 1㎛인 나노 친수화 첨가제인 것인 다공성 지지체.An average particle diameter of the hydrophilic additive is a nano hydrophilic additive of 0.005 to 1㎛.
  11. 제1항에 있어서,The method of claim 1,
    상기 나노 섬유는 폴리이미드 나노 섬유인 것인 다공성 지지체.The nanofibers are polyimide nanofibers.
  12. 제11항에 있어서,The method of claim 11,
    상기 폴리이미드의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기를 포함하는 것인 다공성 지지체.The backbone of the polyimide is a porous support comprising any substituent selected from the group consisting of amine groups, carboxyl groups, hydroxyl groups and combinations thereof.
  13. 제12항에 있어서,The method of claim 12,
    상기 폴리이미드는 디아민(diamine), 디언하이드라이드(dianhydride), 및 하이드록시기를 포함하는 공단량체(comonomer)를 중합시켜 제조된 폴리아믹산을 이미드화시켜 제조된 것인 다공성 지지체.The polyimide is a porous support prepared by imidizing a polyamic acid prepared by polymerizing a comonomer including a diamine, a dianhydride, and a hydroxy group.
  14. 제13항에 있어서,The method of claim 13,
    상기 하이드록시기를 포함하는 공단량체는 하이드록시기를 포함하는 디아닐린, 하이드록시기를 포함하는 디페닐 우레아, 하이드록시기를 포함하는 디아민 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 다공성 지지체.The comonomer comprising a hydroxy group is any one selected from the group consisting of dianiline containing a hydroxy group, diphenyl urea containing a hydroxy group, diamine containing a hydroxy group and combinations thereof.
  15. 제1항에 있어서,The method of claim 1,
    상기 나노웹은 일면 또는 양면의 표면이 플라즈마 처리된 것인 다공성 지지체. The nanoweb is one or both surfaces of the porous support that is plasma-treated.
  16. 제1항에 있어서,The method of claim 1,
    상기 나노웹의 일면 또는 양면의 표면에 무기물이 증착된 것인 다공성 지지체.Inorganic material is deposited on the surface of one or both surfaces of the nanoweb.
  17. 제16항에 있어서,The method of claim 16,
    상기 무기물은 아나타제형 이산화티타늄(TiO2 anatase), 루타일형 이산화티타늄(TiO2 rutile), 브룩카이트형 이산화티타늄(TiO2 brookite), 이산화주석(SnO), 이산화지르코늄(ZrO2), 산화알루미늄(Al2O3), 산화 단일벽 탄소나노뷰브, 산화 다중벽 탄소나노튜브, 산화 그라파이트 옥사이드, 산화그래핀 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나인 것인 다공성 지지체.The inorganic material is anatase type titanium dioxide (TiO 2 anatase), rutile type titanium dioxide (TiO 2 rutile), brookite type titanium dioxide (TiO 2 brookite), tin dioxide (SnO), zirconium dioxide (ZrO 2 ), aluminum oxide ( Al 2 O 3 ), single-walled oxide carbon nanobubble, multi-walled carbon nanotube oxide, graphite oxide, graphene oxide and any one selected from the group consisting of a porous support.
  18. 디아민 및 디언하이드라이드를 용매에 첨가하여 전기 방사 용액을 제조하는 단계,Adding diamine and dianhydride to a solvent to prepare an electrospinning solution,
    상기 제조된 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 폴리아믹산 나노웹을 제조하는 단계, 그리고Electrospinning the prepared electrospinning solution to prepare a polyamic acid nanoweb in which nanofibers are integrated into a nonwoven fabric including a plurality of pores, and
    상기 폴리아믹산 나노웹을 이미드화시켜 폴리이미드 나노웹을 제조하는 단계를 포함하며,Imidating the polyamic acid nanoweb to prepare a polyimide nanoweb;
    상기 폴리이미드 나노웹의 포화 함습 도달 시간은 1초 내지 600초인 것인 다공성 지지체의 제조 방법.Method for producing a porous support of the polyimide nanoweb saturation moisture arrival time is 1 second to 600 seconds.
  19. 제18항에 있어서, The method of claim 18,
    상기 전기 방사 용액에 하이드록시기를 포함하는 공단량체를 더 첨가하는 것인 다공성 지지체의 제조 방법.Method for producing a porous support that further adds a comonomer containing a hydroxyl group to the electrospinning solution.
  20. 제18항에 있어서,The method of claim 18,
    상기 폴리이미드 나노웹이 포함하는 상기 나노 섬유의 주쇄는 아민기, 카르복실기, 하이드록시기 및 이들의 조합으로 이루어진 군에서 선택되는 어느 하나의 치환기로 치환된 것인 다공성 지지체의 제조 방법.The main chain of the nanofibers included in the polyimide nanoweb is a method for producing a porous support is substituted with any one substituent selected from the group consisting of amine groups, carboxyl groups, hydroxyl groups and combinations thereof.
  21. 전기 방사 용액을 전기 방사하여 나노 섬유들이 다수의 기공을 포함하는 부직포 형태로 집적된 나노웹을 제조하는 단계를 포함하며,Electrospinning the electrospinning solution to produce a nanoweb in which the nanofibers are integrated into a nonwoven form comprising a plurality of pores,
    상기 나노웹의 포화 함습 도달 시간은 1초 내지 600초인 것인 다공성 지지체의 제조 방법.Saturation moisture arrival time of the nanoweb is 1 second to 600 seconds to produce a porous support.
  22. 제21항에 있어서,The method of claim 21,
    상기 전기 방사 용액에 친수성 첨가제를 더 첨가하는 것인 다공성 지지체의 제조 방법.The method of manufacturing a porous support further comprises adding a hydrophilic additive to the electrospinning solution.
  23. 제21항에 있어서,The method of claim 21,
    상기 나노웹의 기공 내부에 친수화 첨가제를 함침시키는 단계를 더 포함하는 것인 다공성 지지체의 제조 방법.Impregnating a hydrophilic additive in the pores of the nanoweb further comprising the step of producing a porous support.
  24. 제21항에 있어서,The method of claim 21,
    상기 나노웹의 일면 또는 양면의 표면에 친수화 첨가제를 코팅하는 단계를 더 포함하는 것인 다공성 지지체의 제조 방법.Method of producing a porous support further comprises the step of coating a hydrophilic additive on the surface of one or both surfaces of the nanoweb.
  25. 제21항에 있어서,The method of claim 21,
    상기 나노웹의 일면 또는 양면을 플라즈마 처리하는 단계를 더 포함하는 것인 다공성 지지체의 제조 방법.Plasma treatment of one or both sides of the nanoweb further comprising the method of manufacturing a porous support.
  26. 제25항에 있어서,The method of claim 25,
    상기 플라즈마 처리는 저온 플라즈마 또는 RF(radio frequency) 플라즈마를 사용하여 상기 나노웹의 일면 또는 양면에 친수성기를 부여할 수 있는 기체로 처리하는 것인 다공성 지지체의 제조 방법. The plasma treatment is a method of producing a porous support that is treated with a gas that can impart a hydrophilic group on one or both sides of the nanoweb using a low-temperature plasma or radio frequency (RF) plasma.
  27. 제21항에 있어서,The method of claim 21,
    상기 나노웹의 일면 또는 양면의 표면에 무기물을 증착시키는 단계를 더 포함하는 것인 다공성 지지체의 제조 방법.Method for producing a porous support further comprises the step of depositing an inorganic material on one or both surfaces of the nanoweb.
  28. 제27항에 있어서,The method of claim 27,
    상기 무기물을 증착시키는 방법은 스퍼터링인 것인 다공성 지지체의 제조 방법.The method of depositing the inorganic material is a method for producing a porous support that is sputtering.
  29. 제1항에 따른 다공성 지지체, 그리고The porous support according to claim 1, and
    상기 다공성 지지체의 기공을 채우고 있는 이온 교환 폴리머Ion exchange polymer filling the pores of the porous support
    를 포함하는 강화막.Reinforcing film comprising a.
PCT/KR2015/001789 2014-02-25 2015-02-25 Porous support, method for manufacturing same, and reinforced membrane comprising same WO2015130066A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/120,170 US20170030009A1 (en) 2014-02-25 2015-02-25 Porous support, preparation method therefor, and reinforced membrane containing same
JP2016554217A JP2017510722A (en) 2014-02-25 2015-02-25 Porous support, method for producing the same, and reinforced membrane including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0021948 2014-02-25
KR1020140021948A KR20150101039A (en) 2014-02-25 2014-02-25 Porous support, method for manufacturing the same, and reinforced membrane comprising the same

Publications (1)

Publication Number Publication Date
WO2015130066A1 true WO2015130066A1 (en) 2015-09-03

Family

ID=54009328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001789 WO2015130066A1 (en) 2014-02-25 2015-02-25 Porous support, method for manufacturing same, and reinforced membrane comprising same

Country Status (4)

Country Link
US (1) US20170030009A1 (en)
JP (1) JP2017510722A (en)
KR (1) KR20150101039A (en)
WO (1) WO2015130066A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359098A (en) * 2019-06-19 2019-10-22 五邑大学 A kind of mesoporous carbon fiber electrode material and preparation method thereof
CN111519342A (en) * 2020-05-06 2020-08-11 蚌埠泰鑫材料技术有限公司 Preparation method of functionalized titanium oxide modified polyimide fiber filter material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170362740A1 (en) * 2016-06-16 2017-12-21 Eurekite Holding BV Flexible ceramic fibers and polymer composite and method of making the same
FR3063743A1 (en) * 2017-03-10 2018-09-14 Sorbonne Université COMPOSITE MEMBRANE AND PROCESS FOR PRODUCING SUCH A MEMBRANE
GB201704950D0 (en) * 2017-03-28 2017-05-10 Univ Manchester Thin film material transfer method
CN107366036B (en) * 2017-09-01 2019-11-22 山东圣泉新材料股份有限公司 Modified spandex fibre of a kind of graphene and preparation method thereof, application
CN108722209A (en) * 2018-06-13 2018-11-02 贵州永合益环保科技有限公司 A kind of processing technology of graphene hybridized film
CN108786484A (en) * 2018-06-19 2018-11-13 贵州永合益环保科技有限公司 A kind of preparation method of hybridized film
KR20200065828A (en) * 2018-11-30 2020-06-09 한국과학기술연구원 A composite membrane comprising a conductive material layer, and secondary cell battery, electrochemical element, and electrochemical device comprising the same, and the method thereof
CN110195277B (en) * 2019-05-21 2020-11-03 江西先材纳米纤维科技有限公司 Preparation method of graphene coated carbon-doped PI composite conductive nanofiber long yarn
CN111331976B (en) * 2020-03-24 2020-12-22 大连双迪桃花卫生用品有限公司 Composite protective material for epidemic prevention of neocoronary pneumonia and preparation method thereof
CN114377555A (en) * 2022-01-19 2022-04-22 天津鼎芯膜科技有限公司 Hollow fiber humidifying membrane and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120185A (en) * 2010-04-28 2011-11-03 코오롱인더스트리 주식회사 Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR20110136448A (en) * 2010-06-15 2011-12-21 코오롱인더스트리 주식회사 Porous support and method for manufacturing the same
KR20120134236A (en) * 2011-06-01 2012-12-12 코오롱인더스트리 주식회사 Electrolyte membrane for fuel cell and method of manufacturing the same
KR20130030954A (en) * 2011-09-20 2013-03-28 제일모직주식회사 Thin film composite membrane and method for preparing the same
KR20130137014A (en) * 2010-12-09 2013-12-13 이 아이 듀폰 디 네모아 앤드 캄파니 Polyimide nanoweb with amidized surface and method for preparing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1522605A (en) * 1974-09-26 1978-08-23 Ici Ltd Preparation of fibrous sheet product
JPH0679832A (en) * 1992-05-26 1994-03-22 Nitto Denko Corp Hydrophilic fiber sheet and production thereof
JP3886845B2 (en) * 2002-05-14 2007-02-28 三菱電機株式会社 Porous membrane for temperature / humidity exchanger and method for producing the same
JP2004018751A (en) * 2002-06-19 2004-01-22 Ube Ind Ltd Hydrophilic porous polyimide film and method for producing the same
US20100136865A1 (en) * 2006-04-06 2010-06-03 Bletsos Ioannis V Nonwoven web of polymer-coated nanofibers
JP2010214255A (en) * 2009-03-13 2010-09-30 Sumitomo Electric Ind Ltd Separation membrane
EP2576880B1 (en) * 2010-05-25 2016-04-27 Kolon Fashion Material, Inc. Electrolyte membrane comprising a polyimide porous web
JP5311070B2 (en) * 2010-08-25 2013-10-09 住友金属鉱山株式会社 Metalized polyimide film and evaluation method thereof
JP5822389B2 (en) * 2011-12-14 2015-11-24 花王株式会社 Nanofiber and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110120185A (en) * 2010-04-28 2011-11-03 코오롱인더스트리 주식회사 Polymer electrolyte membrane for fuel cell and method of manufacturing the same
KR20110136448A (en) * 2010-06-15 2011-12-21 코오롱인더스트리 주식회사 Porous support and method for manufacturing the same
KR20130137014A (en) * 2010-12-09 2013-12-13 이 아이 듀폰 디 네모아 앤드 캄파니 Polyimide nanoweb with amidized surface and method for preparing
KR20120134236A (en) * 2011-06-01 2012-12-12 코오롱인더스트리 주식회사 Electrolyte membrane for fuel cell and method of manufacturing the same
KR20130030954A (en) * 2011-09-20 2013-03-28 제일모직주식회사 Thin film composite membrane and method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359098A (en) * 2019-06-19 2019-10-22 五邑大学 A kind of mesoporous carbon fiber electrode material and preparation method thereof
CN111519342A (en) * 2020-05-06 2020-08-11 蚌埠泰鑫材料技术有限公司 Preparation method of functionalized titanium oxide modified polyimide fiber filter material
CN111519342B (en) * 2020-05-06 2021-06-04 黄山金石木塑料科技有限公司 Preparation method of functionalized titanium oxide modified polyimide fiber filter material

Also Published As

Publication number Publication date
JP2017510722A (en) 2017-04-13
KR20150101039A (en) 2015-09-03
US20170030009A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2015130066A1 (en) Porous support, method for manufacturing same, and reinforced membrane comprising same
US9136034B2 (en) Polymer electrolyte membrane for a fuel cell, and method for preparing same
KR101995527B1 (en) Reinforced composite membrane for fuel cell and membrane-electrode assembly for fuel cell comprising the same
WO2013147520A1 (en) Polymer electrolyte membrane, a method for fabricating the same, and a membrane-electrode assembly including the same
WO2015147550A1 (en) Polymer electrolyte membrane, and membrane-electrode assembly and fuel cell containing same
WO2017171285A2 (en) Ion-exchange membrane, method for manufacturing same, and energy storing device comprising same
WO2015047008A1 (en) Polymer electrolyte membrane, method for fabricating same, and membrane-electrode assembly comprising same
KR101451567B1 (en) Porous support, method for manufacturing the same, and reinforced membrane comprising the same
JP5994476B2 (en) Method for producing composite polymer electrolyte membrane
WO2020005018A1 (en) Polymer electrolyte membrane, manufacturing method therefor, and membrane electrode assembly comprising same
KR101971269B1 (en) Porous support, method for manufacturing the same, and reinforced membrane comprising the same
KR102560503B1 (en) Porous support with excellent filling characteristics of ion conductor, manufacturing method thereof, and reinforced membrane including the same
KR101513076B1 (en) Polymer electrolyte membrane for fuel cell and fuel cell comprising same
WO2015130061A1 (en) Porous support, preparation method therefor, and reinforced membrane containing same
KR101424850B1 (en) Polyimide porous nanofiber web and Method for manufacturing the same
KR101560422B1 (en) Porous Nanofiber web
KR101731802B1 (en) Polyimide porous nanofiber web and Method for manufacturing the same
KR101440659B1 (en) Polyimide porous nanofiber web and Method for manufacturing the same
KR101488546B1 (en) Polyimide porous nanofiber web and Method for manufacturing the same
KR101513075B1 (en) Porous support and method for manufacturing same
KR101972082B1 (en) Porous support having complex structure, method for manufacturing the same, and reinforced membrane comprising the same
KR20190101940A (en) Porous support having good chemical resistance and thermal stability, method for manufacturing the same, and reinforced membrane comprising the same
WO2018182191A1 (en) Ion exchange membrane, manufacturing method therefor, and energy storage device comprising same
KR20160077566A (en) Porous support having good chemical resistance and thermal stability, method for manufacturing the same, and reinforced membrane comprising the same
KR20110129112A (en) Porous nanofiber web

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754889

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15120170

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016554217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754889

Country of ref document: EP

Kind code of ref document: A1