WO2014183457A1 - Friction power generator - Google Patents

Friction power generator Download PDF

Info

Publication number
WO2014183457A1
WO2014183457A1 PCT/CN2013/090660 CN2013090660W WO2014183457A1 WO 2014183457 A1 WO2014183457 A1 WO 2014183457A1 CN 2013090660 W CN2013090660 W CN 2013090660W WO 2014183457 A1 WO2014183457 A1 WO 2014183457A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
insulating layer
polymer insulating
layer
electrode layer
Prior art date
Application number
PCT/CN2013/090660
Other languages
French (fr)
Chinese (zh)
Inventor
徐传毅
邓杨
Original Assignee
纳米新能源(唐山)有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 纳米新能源(唐山)有限责任公司 filed Critical 纳米新能源(唐山)有限责任公司
Publication of WO2014183457A1 publication Critical patent/WO2014183457A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N1/00Electrostatic generators or motors using a solid moving electrostatic charge carrier
    • H02N1/04Friction generators

Definitions

  • the present invention relates to a friction generator, and more particularly to a friction generator provided with a separation support. Background technique
  • Frictional electricity is one of the most common phenomena in nature, but it is ignored because it is difficult to collect and utilize. If the application of triboelectric power to self-generating equipment is bound to bring more convenience to people's lives.
  • the Applicant has developed a friction generator that relies on internal friction to induce electrical potential changes and the induced effects of metal plates on both sides to generate electrical energy. It is a new type of generator based on novel principles and methods.
  • the generator can be realized under the conditions of lower cost, less raw materials and processing steps, and has the advantages of low cost, high performance, and no pollution to the environment.
  • the generator is used in a wide range of applications, from human activities, transportation, wave fluctuations, wind power, mechanical vibration and many other activities. In addition, it can provide electrical energy for personal electronic products, environmental monitoring, medical science, etc., and therefore has great commercial and social benefits.
  • the technical problem solved by the invention is: overcome the defect that the existing friction generator is always in the contact state or the separation state, and the output performance is affected, and provides a friction generator which is vertically grown on the surface of the friction layer by the protective layer coating.
  • the oxidized nanowire array serves as a separation support to overcome the above drawbacks.
  • the first technical solution provided by the present invention is a friction generator including a first electrode layer, a first polymer insulating layer, and a second electrode layer which are sequentially stacked, wherein the A support portion is disposed between the high molecular polymer insulating layer and the second electrode layer, and the support portion includes a oxidized nanowire array and a protective layer covering the oxidized nanowire array, the first electrode layer and the second electrode layer It is the two outputs of the voltage or current of the friction generator.
  • the material of the second electrode layer is a metal or an alloy
  • the oxidized nanowire array is vertically grown on either surface of the first polymer insulating layer and the opposite surface of the second electrode layer.
  • At least one surface of the surface of the first polymer polymer insulating layer and the opposite surface of the second electrode layer is provided with a micro/nano concave-convex structure, and the micro-nano set on the surface of the first polymer insulating layer
  • the concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm; and the micro/nano concave-convex structure provided on the surface of the second electrode layer is a micro/nano concave-convex structure having a convex height of 300 ⁇ -1 ⁇ .
  • the friction generator is provided with a second polymer insulating layer between the first polymer insulating layer and the second electrode layer, and the supporting portion is disposed on the first polymer Between the insulating layer and the second polymer insulating layer.
  • the oxidized nanowire array is vertically grown on either surface of the opposite surfaces of the first polymer polymer insulating layer and the second polymer polymer insulating layer.
  • At least one surface of the opposite surface of the first polymer polymer insulating layer and the second polymer polymer insulating layer is provided with a micro/nano concave-convex structure, and the micro-nano concave-convex structure is convex A nano concave-convex structure having a height of 50 nm to 300 nm.
  • the friction generator further includes an intermediate film layer disposed between the first polymer insulating layer and the second polymer insulating layer, the first polymer polymerization A support portion is disposed between the insulating layer and the intermediate film layer, and/or between the intermediate film layer and the second polymer insulating layer, and the oxidized nanowire array is vertically grown on the first polymer insulating layer and the intermediate layer On either surface of the opposite surface of the film layer, and/or on either surface of the second polymeric insulating layer and the opposing surface of the intermediate film layer.
  • At least one surface of the first polymer insulating layer and the opposite surface of the intermediate film layer, and/or at least one surface of the opposite surface of the second polymer insulating layer and the intermediate film layer are disposed there is a micro-nano concave-convex structure, and the micro-nano concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
  • the material used for the intermediate film layer is different from that of the first polymer polymer insulating layer and the second polymer polymer insulating layer, and is selected from the group consisting of polyimide film, aniline furfural resin film, and poly Furfural film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, Poly(diphenylene terephthalate) film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymerization Film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copo
  • the materials used for the first polymer insulating layer and/or the second polymer insulating layer are independently selected from the group consisting of polyimide film, aniline furfural resin film, and polyacetal film. , ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly-o-benzene a diallyl dicaptanate film, a cellulose sponge film, a regenerated sponge film, a polyurethane elastomer film, a styrene propylene copolymer film, a styrene butadiene copolymer film, a rayon film, a polyacrylate polymer film, Polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Ester film, polyvinyl butyral film, furfural phenol condensation film, neoprene
  • the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
  • the material used for the first electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
  • the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium;
  • the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy , niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the material used for the protective layer is polydecyl methacrylate.
  • the height of the support portion is 20-500 ⁇ m.
  • the width is 0.5-2 mm; the length is 0.5 mm-3 cm.
  • the support portion is arranged in an array of a shape of a tic-tac-toe, a cross-word, a zebra, a cross or a word.
  • the second technical solution provided by the present invention is a friction generator including a first electrode layer, a first polymer insulating layer, and a friction electrode layer, which are sequentially stacked. a second polymer polymer insulating layer and a second electrode layer; wherein the first polymer polymer insulating layer and the friction electrode layer, and/or the second polymer polymer insulating layer and the friction electrode layer are disposed
  • the support portion includes a oxidized nanowire array and a protective layer covering the oxidized nanowire array, and the oxidized nanowire array is vertically grown on the opposite surfaces of the polymer polymer insulating layer and the friction electrode layer.
  • the oxidized nanowire array is vertically grown on any surface of the first polymer insulating layer and the opposite surface of the friction electrode layer and/or the second polymer insulating layer and the opposite surface of the friction electrode layer;
  • the first electrode layer and the second electrode layer are one output end of a friction generator voltage or current;
  • the friction electrode layer is a friction generator Another output terminal of the voltage or current.
  • the aforementioned friction generator, the first polymer insulating layer and the opposite surface of the friction electrode layer At least one surface, and/or at least one surface of the opposite surface of the second polymer insulating layer and the friction electrode layer is provided with a micro/nano concave-convex structure, and the micro-nano concave-convex structure disposed on the surface of the polymer insulating layer
  • the nano concave-convex structure having a convex height of 50 nm to 300 nm;
  • the micro/nano concave-convex structure provided on the surface of the friction electrode layer is a micro/nano concave-convex structure having a convex height of 300 ⁇ -1 ⁇ .
  • the materials used for the first polymer insulating layer and the second polymer insulating layer are independently selected from the group consisting of polyimide film, aniline resin film, polyacetal film, and ethyl group.
  • the material used for the first electrode layer and the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy, and the material of the friction electrode layer is metal or alloy;
  • the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium;
  • the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a bismuth alloy, a copper alloy , alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the material used for the protective layer is polydecyl methacrylate.
  • the height of the support portion is 20-500 ⁇ m.
  • the width is 0.5-2 mm; the length is 0.5 mm-3 cm.
  • the support portion is arranged in an array of a shape of a tic-tac-toe, a cross-word, a zebra, a cross or a word.
  • the friction generator of the present invention forms a friction layer interface between the polymer polymer insulating layer and the metal electrode layer, or the polymer polymer insulating layer, and is formed by using a protective layer (PMMA)-coated oxidized nanowire array. a support portion, thereby forming a separation space between the two friction layers, The effect of the basic separation of the friction layer can be achieved.
  • PMMA protective layer
  • the support portion of the oxidized nanowire array coated by the protective layer (PMMA) has good elastic properties, the two friction layers can be separated quickly after contact, rapidly increasing the potential difference, thereby driving external current flow, and improving current output. .
  • the protective layer (PMMA) is coated on the outside of the oxidized nanowire array, the occurrence of dissolution or frictional damage of the oxidized nanowire array is avoided.
  • the oxidized nanowires have piezoelectric properties, and in the case of extrusion friction, a certain piezoelectric energy can be generated, and the piezoelectric electrical energy generated by the oxidized nanowires is superimposed with the frictional electrical energy generated by the friction generator, so that the present invention The friction generator outputs more power and better performance.
  • FIG. 1 is a schematic perspective view of a specific embodiment of a friction generator of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the friction generator of FIG. 1 of the present invention.
  • FIG. 3 is a schematic perspective view showing another embodiment of the friction generator of the present invention.
  • FIG. 4 is a schematic cross-sectional view of the friction generator of FIG. 3 of the present invention.
  • FIG. 5 is a schematic perspective structural view of another embodiment of the friction generator of the present invention.
  • Figure 6 is a cross-sectional view showing the friction generator of Figure 5 of the present invention.
  • FIG. 7 is a schematic perspective view showing another embodiment of the friction generator of the present invention.
  • Figure 8 is a cross-sectional view showing the friction generator of Figure 7 of the present invention.
  • FIG. 9 is a schematic perspective view showing another arrangement manner of the support portion of the present invention.
  • Figure 10 is a cross-sectional view showing the manner in which the support portion of Figure 9 is disposed.
  • Figure 11 is a schematic view showing another arrangement of the support portion of the present invention.
  • Figure 12 is a schematic view showing another arrangement of the support portion of the present invention.
  • FIG. 13 is a schematic view showing another arrangement of the support portion of the present invention. detailed description
  • the invention relates to a friction generator, a protective layer (PMMA) coated oxidized nanowire array
  • a separation space is formed between the two friction layers, and the effect of the separation of the friction layers can be achieved.
  • a friction generator 1 includes a first electrode layer 11, a first polymer insulating layer 12, and a second electrode layer 13 which are sequentially stacked, wherein the first polymer is polymerized.
  • a support portion 14 is disposed between the material insulating layer 12 and the second electrode layer 13, and the support portion 14 includes a oxidized nanowire array 141 and a protective layer 142 covering the oxidized nanowire array.
  • the oxidized nanowire array 141 is vertically grown on any surface of the opposite surfaces of the first polymer insulating layer 12 and the second electrode layer 13; the first electrode layer 11 and the second electrode layer 13 are friction generators The output of voltage or current.
  • the material used for the second electrode layer 13 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin. , iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium Alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the friction generator 1 includes: a first electrode layer 11, a first polymer insulating layer 12, a second electrode layer 13, and a support portion 14; the first electrode layer 11 is disposed on the first polymer insulating layer
  • the first side surface of the first polymer layer 12 is provided with a support portion 14 on the second side surface of the first polymer polymer insulating layer 12, and the support portion 14 includes oxidation which is vertically grown on the surface of the first polymer polymer insulating layer 12.
  • the nanowire array 141 and the protective layer 142 (using polydecyl methacrylate) coated with the oxidized nanowire array are used.
  • the surface of the first polymer insulating layer 12 provided with the support portion 14 is disposed opposite to the surface of the second electrode layer 13 (for example, a double-sided adhesive, a universal adhesive, a polyphenylene ether, a thermoplastic engineering plastic such as polyolefin, etc.) The edges are bonded) to form a friction generator 1.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
  • the surface of the first polymer insulating layer 12 provided with the support portion 14 and at least one surface of the surface of the second electrode layer 13 are provided with a micro/nano concave-convex structure (not shown), and the surface of the polymer polymer insulating layer is disposed
  • the micro-nano-convex structure is a nano-concave structure having a protrusion height of 50 nm to 300 nm; and the micro-nano-convex structure provided on the surface of the second electrode layer 13 is a micro-nano-convex structure having a protrusion height of 300 ⁇ -1 ⁇ .
  • the surface of the second electrode layer 13 is provided with a micro/nano-convex structure (not shown).
  • the oxidized nanowires may be grown on the second electrode layer 13 to form the support portion 14, and thus it is preferable that the micro/nano concave-convex structure is provided on the first polymer insulating layer 12.
  • the micro-nano concave-convex structure and the support portion 14 are respectively disposed on different layers to facilitate manufacturing.
  • the first electrode layer 11 is not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphite electrode, silver nanowire film, and metal or alloy.
  • the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium;
  • the alloy is aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, copper alloy, word Alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the material of the first polymer insulating layer 12 is selected from the group consisting of polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl Acid ester film, cellulose film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film , styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, poly Vinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film and polyethylene propylene
  • the friction generator 1 is provided with a second polymer insulation between the first polymer insulating layer 12 and the second electrode layer 13.
  • Layer 15. the friction generator 1 includes: a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14; the first electrode layer 11
  • the second electrode layer 13 is disposed on the first side surface of the first polymer insulating layer 12, and the second electrode layer 13 is disposed on the first side surface of the second polymer insulating layer 15 in the second polymer insulating layer 15.
  • the second side surface is provided with a support portion 14 including an oxidized nanowire array 141 vertically grown on the surface of the second polymer insulating layer 15 and a protective layer covering the oxidized nanowire array (Polymer) Ethyl acrylate) 142.
  • the surface of the second polymer insulating layer 15 provided with the support portion 14 is laminated to the second side surface of the first polymer polymer insulating layer 12 Placed, composed of friction generator 1.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
  • a surface of the second polymer insulating layer 15 provided with the support portion 14 and at least one surface of the second side surface of the first polymer polymer insulating layer 12 are provided with a micro/nano concave-convex structure (not shown), and the polymer
  • the micro/nano concave-convex structure provided on the surface of the polymer insulating layer is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
  • a micro-nano-convex structure is provided on the second side surface of the first polymer-polymer insulating layer 12.
  • the oxidized nanowires may be grown on the first polymer insulating layer 12 to form the support portion 14, and thus it is preferable that the micro/nano uneven structure is provided on the second polymer insulating layer 15.
  • the micro-nano uneven structure and the support portion 14 are preferably disposed on different levels, respectively, to facilitate fabrication.
  • the first electrode layer 11 and the second electrode layer 13 are not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphene electrodes, and silver nanowire films.
  • a metal or an alloy wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum Alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • the materials of the first polymer insulating layer 12 and the second polymer insulating layer 15 are preferably different, and are independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, and ethyl cellulose.
  • the friction generator 1 may further include an intermediate film layer 16 disposed on the first polymer insulating layer 12 . Between the second polymer insulating layer 15 and the first polymer insulating layer 12 and the intermediate film layer 16, and/or the intermediate film layer 16 and the second polymer insulating layer 15 A support portion 14 is provided between them.
  • the friction generator 1 includes a first electrode layer 11, a first polymer insulating layer 12, an intermediate film layer 16, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14;
  • An electrode layer 11 is disposed on the first side surface of the first polymer insulating layer 12, the second electrode layer 13 is disposed on the first side surface of the second polymer insulating layer 15, and the intermediate film layer 16 is disposed on the first side
  • the support portion 14 includes a oxidized nanowire array 141 and a protective layer covering the oxidized nanowire array (polyacrylic acid) Ester ester) 142.
  • the oxidized nanowire array 141 is vertically grown on either surface of the first polymer insulating layer 12 and the opposite surface of the intermediate film layer 16, and/or the opposite surfaces of the second polymer insulating layer 15 and the intermediate film layer 16. On either surface.
  • the nano concave-convex structure (not shown) is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
  • the micro-nano-convex structure and the support portion 14 are respectively disposed on different layers to facilitate manufacturing.
  • the first electrode layer 11 and the second electrode layer 13 are not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphene electrodes, and silver nanowire films.
  • a metal or an alloy wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum Alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
  • Material used for the first polymer insulating layer 12 and the second polymer insulating layer 15 Independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film , cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film , styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, Any one of a furfural phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber
  • the material used for the intermediate film layer 16 is different from that of the first polymer polymer insulating layer 12 and the second polymer polymer insulating layer 15, and may be a polyimide film, an aniline resin film, a polyacetal film, or a B.
  • another friction generator 2 includes a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, and a second polymer insulation. a layer 24 and a second electrode layer 25; wherein the first polymer polymer insulating layer 22 and the friction electrode layer 23, and/or between the second polymer insulating layer 24 and the friction electrode layer 23 are provided
  • the support portion 26 includes a oxidized nanowire array 261 and a protective layer 262 coated with an oxidized nanowire array. The oxidized nanowire array is vertically grown on the high molecular polymer insulating layer and the friction electrode layer.
  • First polymer insulation layer 22 and triboelectric At least one surface of the opposite surface of the pole layer 23, and at least one surface of the opposite surface of the second polymer insulating layer 24 and the friction electrode layer 23 are provided with a micro/nano concave-convex structure (not shown), the polymer polymerization
  • the micro/nano concave-convex structure disposed on the surface of the insulating layer is a nano concave-convex structure having a convex height of 50 nm to 300 nm; and the micro-nano concave-convex structure provided on the surface of the friction electrode layer 23 is a micro-nano concave-convex structure having a convex height of 300 nm-l ⁇ .
  • the friction generator 2 includes: a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, a second polymer insulating layer 24, a second electrode layer 25, and
  • the first electrode layer 21 is disposed on the first side surface of the first polymer layer 22, the second electrode layer 25 is disposed on the first side surface of the second polymer insulating layer 24, and the friction electrode layer 23 is disposed.
  • first polymer insulating layer 22 and the second polymer insulating layer 24 on the second side surface of the first polymer insulating layer 22 and the second polymer insulating layer 24 At least one surface on the two side surfaces is provided with a support portion 26 including a oxidized nanowire array 261 and a protective layer (polydecyl acrylate) 262 coated with an oxidized nanowire array.
  • the second side surface of the first polymer insulating layer 22 is laminated with the first side surface of the friction electrode layer 23, and the second side surface of the second polymer insulating layer 24 and the second side of the friction electrode layer 23
  • the side surfaces are stacked to form a friction generator 2.
  • the first electrode layer 21 and the second electrode layer 25 are connected together as an output terminal of a voltage or current of the friction generator 2, and the friction electrode layer 23 serves as an output terminal of another voltage or current of the friction generator 2.
  • At least one of the two surfaces of the first side surface of the first polymer polymer insulating layer 22 and the first side surface of the friction electrode layer 23 is provided with a micro/nano concave-convex structure (not shown), and the second polymer At least one of the two surfaces of the second side surface of the polymer insulating layer 24 opposite to the second side surface of the friction electrode layer 23 is provided with a micro/nano concave-convex structure (not shown).
  • the micro/nano-convex structure provided on the surface of the polymer polymer insulating layer is a nano-concave structure having a protrusion height of 50 nm to 300 nm; and the micro-nano-convex structure provided on the surface of the friction electrode layer 23 is a protrusion height of 300 ⁇ -1 ⁇ Nano concave and convex structure.
  • the micro/nano concave-convex structure and the support portion 26 are respectively disposed on different levels to facilitate manufacturing.
  • the material used for the friction electrode layer 23 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is aluminum alloy, titanium Alloy, magnesium alloy Gold, bismuth alloy, copper alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the materials used for the first polymer insulating layer 22 and the second polymer insulating layer 24 are independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, and poly Amide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film , cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film , polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, Any one
  • the materials used for the first electrode layer 21 and the second electrode layer 25 are selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, Titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys , niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
  • the friction generator of the present invention uses a protective layer (PMMA)-coated oxidized nanowire array as a support portion, thereby forming a separation space between the two friction layers, thereby achieving the effect of substantially separating the friction layers.
  • PMMA protective layer
  • the support layer of the protective layer (PMMA) coated oxidized nanowire array has good elastic properties, the two friction layers can be separated quickly after contact, and the potential difference is rapidly increased, thereby driving external current flow and increasing current output.
  • the protective layer (PMMA) is coated on the outside of the oxidized nanowire array, the occurrence of dissolution or friction damage of the oxidized nanowire array is avoided.
  • the oxidized nanowire has piezoelectric properties, and a certain piezoelectric energy can be generated in the case of extrusion friction, and the piezoelectric electrical energy generated by the oxidized nanowire is superimposed with the frictional electrical energy generated by the friction generator, so that the present invention
  • the friction generator outputs more power and better performance.
  • the arrangement position of the support portion of the present invention will be described in detail by taking the friction generator of the structure shown in Figs. 3 and 4 as an example. Those skilled in the art can easily apply the following setting relationships to the friction generators of other structures mentioned in the present invention.
  • the support portion is preferably, but not limited to, a cylindrical body and a quadrangular prism.
  • the support portion is disposed at both side edges of the first polymer polymer insulating layer or the second polymer polymer insulating layer to serve as a support, and at the same time reduce the friction area.
  • the height of the support is 20-500 ⁇ ⁇ .
  • the width is 0.5-2 mm; the length is 0.5 mm-3 cm.
  • the arrangement of the support portions is preferably arranged in an array, and the shape is not limited, for example, an array arrangement of a tic-tac-toe, a cross-word, a zebra, a cross or a mouth-shaped shape.
  • a plurality of strip-shaped support portions can be arranged in parallel, which serves as a regular support and is also well produced.
  • the support portion may also be disposed at four end angles of the polymer polymer insulating layer (as shown in FIG. 11), disposed at the peripheral edge of the polymer polymer insulating layer (as shown in FIG. 12), and the parallel array is disposed on the polymer. On the polymer insulation layer (as shown in Figure 13).
  • a photoresist layer is disposed on the polymer polymer insulating layer, and then the surface of the polymer polymer insulating layer is photolithographically formed to form a designed oxide nanowire growth region on the surface of the polymer polymer insulating layer.
  • the present invention has no special requirements for the photoresist material used, and a photoresist material conventionally used for substrate photolithography can be applied to the present invention, for example, including 5-60 mass% photosensitive resin (for example, epoxy resin modified), 5- 50% by mass of a reactive diluent (e.g., polyethylene glycol dimercapto acrylate), 0.1-15 mass% of a photoinitiator. According to this step, those skilled in the art can easily complete the area where the oxidized growth is etched on the metal or alloy layer.
  • An oxidized seed layer having a thickness of 30 to 50 nm is formed on one surface of the high molecular polymer insulating layer or the metal or alloy layer by conventional spray sputtering prior to the provision of the photoresist layer.
  • the electrode layer is disposed on the polymer polymer insulating layer by a conventional method in the art, for example, by using RF sputtering, gold, platinum, titanium or nickel. Any one of a metal or an alloy such as titanium is sputtered onto the high molecular polymer insulating layer.
  • a metal or an alloy such as titanium is sputtered onto the high molecular polymer insulating layer.
  • the oxidized nanowire array is grown by wet chemical method, and the oxidized nanowire array is grown only on the surface of the exposed polymer insulating layer.
  • the present invention uses a conventional wet chemical method to grow an oxidized nanowire array, for example, a mixture of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0)) as a culture solution.
  • HMTA cyclohexamethylenetetramine
  • nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0)
  • a 0.1 mol/L concentration consisting of equimolar cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate ( ⁇ 0 3 ⁇ 6( ⁇ 2 0)) is used.
  • HMTA equimolar cyclohexamethylenetetramine
  • nitric acid hexahydrate ⁇ 0 3 ⁇ 6( ⁇ 2 0)
  • the culture medium was placed with the oxidized seed layer facing down, placed on top of the culture solution, and grown at 85 ° C in a mechanical convection oven (Model: Yamato DKN400, Santa Clara, Calif.) with deionized water. Rinse and dry in air to obtain an array of oxidized nanowires.
  • the protective layer is overlaid on the oxidized nanowire array by spin coating.
  • micro/nano relief structure of the present invention can be prepared by a variety of methods, such as pressing with a silicon template having a specific regular raised structure, sanding a metal surface with sandpaper, and other methods.
  • a method of preparing the micro-nano-convex structure will be described in detail below.
  • S1 creates a silicon template.
  • a regular pattern is formed on the surface by photolithography of the silicon wafer.
  • the patterned silicon wafer is anisotropically etched by wet etching, and a concave quadrangular pyramid array structure can be engraved, or it can be isotropically etched by a dry engraving process to engrave a concave cube array. structure.
  • the template was cleaned with acetone and isopropyl alcohol, and then all the templates were subjected to surface silanization in a trimethyl chlorosilane atmosphere, and the treated silicon template was used.
  • a polymer film having a surface of a micro-nano uneven structure is produced.
  • the polymer slurry is first applied to the surface of the silicon template, vacuum degassed, and the excess mixture on the surface of the wafer is removed by spin coating to form a thin polymer liquid film.
  • the entire template was cured and then peeled off to obtain a uniform polymer film having a specific microstructure array.
  • the friction generator of the present invention uses a protective layer-coated oxidized nanowire array as a support portion, thereby forming a separation space between the two friction layers, thereby achieving the effect of substantially separating the friction layers. After the two friction layers are in contact, they can be separated faster, and the potential difference is rapidly increased, thereby driving the external current to flow and increasing the current output.
  • the oxidized nanowire has piezoelectric properties, and can generate a certain piezoelectric electric energy in the case of extrusion friction, and the piezoelectric electric energy generated by the oxidation nanowire is superimposed with the friction electric energy generated by the friction generator to make the friction of the present invention.
  • the generator outputs more power and performance.
  • the friction generator of this embodiment has a size of 3 cm x 3 cm and a total thickness of about 500 ⁇ .
  • the friction generator first electrode layer 11, the first polymer insulating layer 12, the second electrode layer 13, and the support portion 14, the first electrode layer 11 and the second electrode layer 13 serve as voltage or current of the friction generator 1.
  • a polyimide film (Kapton, thickness lOOum) DuPont 500HN) was used as the first polymer insulating layer 12.
  • One surface of the first polymer insulating layer 12 is plated with a gold film having a thickness of 100 nm, which is the first electrode layer 11.
  • Two strip-shaped support portions 14 (height 500 ⁇ ⁇ , width 0.5 mm, length 3 cm) are provided on the other surface of the first polymer polymer insulating layer 12, and the support portion 14 includes vertical growth in the first
  • a copper foil having a thickness of 50 ⁇ m was used as the second electrode layer 13, and one surface of the copper foil was sanded by a fine sandpaper to form an irregular micro-nano-convex structure having a projection height in the range of 350 to 500 nm.
  • the surface of the second electrode layer 13 having the micro/nano uneven structure faces the surface of the first polymer insulating layer 12 having the support portion 14, and the second electrode layer 13 is stacked on the first polymer insulating layer 12. , get the friction generator sample 1#.
  • the edge of the friction generator is sealed with a common tape.
  • the friction generator sample 1# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) caused the friction generator sample 1# to undergo periodic bending and release.
  • the maximum output voltage and current signal of the friction generator sample 1# reached 12V and 2 ⁇ , respectively. .
  • Example 2
  • the friction generator of this embodiment has a size of 3 cm x 3 cm and a total thickness of about 600 ⁇ m.
  • the friction generator includes a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
  • a polyimide film (thickness lOOum) was used as the first polymer insulating layer 12. On one surface thereof, a micro/nano concave-convex structure having a convex height of 150 nm is provided, and the other surface is plated with an aluminum thin film having a thickness of 100 nm, which is the first electrode layer 11.
  • a polyethylene terephthalate film (thickness lOOum) was used as the second polymer insulating layer 15.
  • a support portion 14 is provided on one surface thereof, and an aluminum film having a thickness of 100 nm is plated on the other surface, and the aluminum film is the second electrode layer 13.
  • the support portion 14 is disposed at four corners of the second polymer insulating layer 15 as shown in Fig. 11, and has a size of a small square of 2 mm x 2 mm having a height of 250 ⁇ m.
  • the support portion 14 includes an oxidized nanowire array 141 vertically grown on the surface of the second polymer insulating layer 15 and a protective layer 142 (using polydecyl methacrylate) coated with the oxidized nanowire array.
  • the surface of the first polymer polymer insulating layer 12 having the micro/nano concave-convex structure faces the surface of the second polymer insulating layer 15 having the support portion 14, and the first polymer polymer insulating layer 12 is stacked on the second surface.
  • a friction generator sample 2# was obtained on the polymer polymer insulating layer 15. The friction generator The edges are sealed with a plain tape.
  • the friction generator sample 2# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 2# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 2# reached 18V and 3-, respectively. 4 ⁇ .
  • Example 3
  • the size of the friction generator of this embodiment is 3 cm x 3 cm, and the total thickness is about 700 ⁇ .
  • the friction generator includes a first electrode layer 11, a first polymer insulating layer 12, an intermediate film layer 16, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14.
  • the first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
  • a polyimide film (having a thickness of about 100 ⁇ m) is used as the first polymer insulating layer 12 and the second polymer insulating layer 15.
  • the first polymer insulating layer 12 and the second polymer insulating layer 15 are respectively provided with a micro/nano concave-convex structure having a convex height of 150 nm on one surface, and an aluminum thin film having a thickness of 100 nm on the other surface, and the aluminum thin film is It is the first electrode layer 11 and the second electrode layer 13.
  • a polyethylene terephthalate film (having a thickness of about 100 ⁇ m) is used as the intermediate film layer 16, and a support portion 14 is provided on one surface of the intermediate film layer 16.
  • the support portion 14 is as shown in FIG.
  • the periphery of the second polymer insulating layer 15 is a small square of 2 mm x 2 mm having a height of 20 ⁇ m.
  • the support portion 14 includes an oxidized nanowire array 141 and a coated oxidized nanowire vertically grown on the surface of the intermediate film layer 16.
  • the protective layer 142 of the array (using polydecyl methacrylate).
  • the intermediate film layer 16 is stacked on the surface of the first polymer polymer insulating layer 12 having the micro/nano concave-convex structure, and then the second polymer polymer insulating layer 15 has the micro-nano-convex structure surface facing the intermediate film layer 16, It was placed on the intermediate film layer 16 to obtain a friction generator sample 3#. The edge of the friction generator is sealed with a common tape.
  • the friction generator sample 3# exhibits a typical open circuit characteristic in the measurement of IV (current-voltage). Using a stepper motor with periodic oscillations (0.33 Hz and 0.13% deformation) to make a friction generator sample 3# The bending and release of the life cycle, the maximum output voltage and current signal of the friction generator sample 3# reached 20 V and 4 ⁇ , respectively.
  • IV current-voltage
  • the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 1000 ⁇ m.
  • the friction generator includes a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, a second polymer insulating layer 24, a second electrode layer 25, and a support portion 26.
  • the first electrode layer 21 and the second electrode layer 25 are one output of the voltage or current of the friction generator 2; the friction electrode 23 is the other output of the voltage or current of the friction generator 2.
  • a polyimide film (having a thickness of about 100 ⁇ m) is used as the first polymer insulating layer 22 and the second polymer insulating layer 24.
  • the first polymer insulating layer 22 and the second polymer insulating layer 24 are respectively provided with a support portion 26 on one surface, and an aluminum film having a thickness of 100 nm is plated on the other surface, and the aluminum film is the first electrode layer 21 And a second electrode layer 25.
  • the support portion 26 is strip-shaped on both sides of the polymer polymer insulating layer, and has a size of a rectangular strip of 3 cm x 2 mm with a height of 250 ⁇ ⁇ .
  • the support portion 26 includes an oxidized nanowire array 261 vertically grown on the surfaces of the first polymer insulating layer 22 and the second polymer insulating layer 24, and a protective layer 262 coated with an oxidized nanowire array (using polyfluorene) Ethyl acrylate).
  • a copper foil having a thickness of 100 ⁇ m was used as the friction electrode 23, and the two surfaces of the copper foil were respectively sanded by a fine sandpaper to form an irregular micro-nano-convex structure having a projection height in the range of 350 to 500 nm.
  • the friction electrode 23 is stacked on the surface of the first polymer insulating layer 22 having the support portion 26, and then the face of the second polymer insulating layer 24 having the support portion 26 faces the friction electrode 23, and is stacked on the friction On the electrode 23, a friction generator sample 4# was obtained. The edge of the friction generator is sealed with a common tape.
  • the friction generator sample 4# exhibits a typical open circuit characteristic in the measurement of IV (current-voltage).
  • the stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) caused the friction generator sample 4# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 4# reached 20 V and 4 respectively.
  • the friction generator of the present invention can be applied to various self-driven systems such as touch screens, electronic displays, and other personal electronic products with potential application value, which has the advantages of low production cost and high power generation efficiency.

Abstract

A friction power generator comprises a first electrode layer (11), a first polymer insulating layer (12), and a second electrode layer (13) that are successively stacked up, a support portion (14) being provided between the first polymer insulating layer and the second electrode layer, the support portion comprising a zinc oxide nanowire array (141) and a protective layer (142) wrapping the zinc oxide nanowire array, and the first electrode layer and the second electrode layer being two output ends for outputting the voltage or the current of the friction power generator. The friction power generator uses the zinc oxide nanowire array wrapped by the protective layer as a support portion, and a separation space is formed between the friction surfaces accordingly, thereby basically separating the friction layers.

Description

摩擦发电机  Friction generator
技术领域 Technical field
本发明涉及一种摩擦发电机, 尤其是涉及一种设有分离支撑部的摩擦发 电机。 背景技术  The present invention relates to a friction generator, and more particularly to a friction generator provided with a separation support. Background technique
随着现代生活水平不断提高, 生活节奏不断加快, 出现了应用方便、 对 环境依赖度低的自发电设备。 现有的自发电设备通常利用材料的压电特性。 例如 2006年,美国佐治亚理工学院教授王中林等成功地在纳米尺度范围内将 机械能转换成电能, 研制出世界上最小的发电机-纳米发电机。 纳米发电机的 基本原理是: 当纳米线 (NWs )在外力下动态拉伸时, 纳米线中生成压电电 势, 相应瞬变电流在两端流动以平衡费米能级。  With the continuous improvement of the modern living standards and the accelerating pace of life, there have been self-generating devices that are easy to apply and have low dependence on the environment. Existing self-generating devices typically utilize the piezoelectric properties of the material. For example, in 2006, Professor Wang Zhonglin of the Georgia Institute of Technology in the United States successfully converted mechanical energy into electrical energy in the nanometer scale, and developed the world's smallest generator-nano generator. The basic principle of nanogenerators is: When nanowires (NWs) are dynamically stretched under external forces, a piezoelectric potential is generated in the nanowires, and the corresponding transient current flows at both ends to balance the Fermi level.
物体和物体之间相互进行摩擦, 就会使一方带上负电, 另一方带上正电。 这种由于物体间摩擦产生的电叫摩擦电。摩擦电是自然界最常见的现象之一, 但是因为很难收集利用而被忽略。 如果能够将摩擦电应用到自发电设备中, 势必会给人们的生活带来更多的便利。  Rubbing between objects and objects causes one party to be negatively charged and the other to be positively charged. This type of electricity, which is caused by friction between objects, is called triboelectricity. Frictional electricity is one of the most common phenomena in nature, but it is ignored because it is difficult to collect and utilize. If the application of triboelectric power to self-generating equipment is bound to bring more convenience to people's lives.
本申请人已经研制出摩擦发电机, 其依靠内部摩擦起电电势的变化以及 两侧金属极板的诱导效应产生电能, 是一种以新颖的原理和方法为基础的新 型发电机。 该发电机能够在较低成本、较少原材料和加工工序的条件下实现, 具有低成本、 高性能、 不污染环境等优势。 该发电机应用广泛, 能够从人类 活动、 交通运输、 海浪波动、 风力驱动、 机械振动等众多活动中获得能量。 另外, 其还可以为个人电子产品、 环境监控、 医学科学等提供电能, 因此具 有巨大的商业价值和社会效益。  The Applicant has developed a friction generator that relies on internal friction to induce electrical potential changes and the induced effects of metal plates on both sides to generate electrical energy. It is a new type of generator based on novel principles and methods. The generator can be realized under the conditions of lower cost, less raw materials and processing steps, and has the advantages of low cost, high performance, and no pollution to the environment. The generator is used in a wide range of applications, from human activities, transportation, wave fluctuations, wind power, mechanical vibration and many other activities. In addition, it can provide electrical energy for personal electronic products, environmental monitoring, medical science, etc., and therefore has great commercial and social benefits.
但是, 根据摩擦发电机的工作原理, 在发电机工作的过程中, 高分子聚 合物与金属电极之间, 或者高分子聚合物之间构成摩擦面, 摩擦面需要不断 的接触摩擦和分离, 而一直处于接触状态或者分离状态时发电机则不具有很 好的输出性能。 因此, 为了能够制作出性能优异的发电机, 需要对发电机的 结构进行改进, 使两个摩擦面能够很好的接触与分离。 发明内容 However, according to the working principle of the friction generator, during the operation of the generator, a friction surface is formed between the polymer and the metal electrode, or between the polymer, and the friction surface requires constant contact friction and separation. The generator does not have very much when it is in contact or in a separated state. Good output performance. Therefore, in order to be able to produce a generator with excellent performance, it is necessary to improve the structure of the generator so that the two friction surfaces can be well contacted and separated. Summary of the invention
本发明解决的技术问题是: 克服现有摩擦发电机一直处于接触状态或分 离状态, 输出性能受影响的缺陷, 提供一种摩擦发电机, 采用保护层包覆的 垂直生长于摩擦层表面上的氧化辞纳米线阵列作为分离支撑部, 克服了上述 缺陷。  The technical problem solved by the invention is: overcome the defect that the existing friction generator is always in the contact state or the separation state, and the output performance is affected, and provides a friction generator which is vertically grown on the surface of the friction layer by the protective layer coating. The oxidized nanowire array serves as a separation support to overcome the above drawbacks.
为了解决上述技术问题, 本发明提供的第一技术方案是, 一种摩擦发电 机, 包括依次层叠设置的第一电极层、 第一高分子聚合物绝缘层和第二电极 层, 其中所述第一高分子聚合物绝缘层和第二电极层之间设有支撑部, 所述 支撑部包括氧化辞纳米线阵列和包覆氧化辞纳米线阵列的保护层, 第一电极 层和第二电极层是摩擦发电机的电压或电流的两个输出端。  In order to solve the above technical problem, the first technical solution provided by the present invention is a friction generator including a first electrode layer, a first polymer insulating layer, and a second electrode layer which are sequentially stacked, wherein the A support portion is disposed between the high molecular polymer insulating layer and the second electrode layer, and the support portion includes a oxidized nanowire array and a protective layer covering the oxidized nanowire array, the first electrode layer and the second electrode layer It is the two outputs of the voltage or current of the friction generator.
前述的摩擦发电机, 所述第二电极层所用材料是金属或合金, 所述氧化 辞纳米线阵列垂直生长在第一高分子聚合物绝缘层和第二电极层相对表面的 任一表面上。  In the foregoing friction generator, the material of the second electrode layer is a metal or an alloy, and the oxidized nanowire array is vertically grown on either surface of the first polymer insulating layer and the opposite surface of the second electrode layer.
前述的摩擦发电机, 第一高分子聚合物绝缘层表面与第二电极层相对表 面的至少一个表面上设置有微纳凹凸结构, 所述第一高分子聚合物绝缘层表 面上设置的微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构; 所述第 二电极层表面上设置的微纳凹凸结构为凸起高度 300ηηι-1μηι 的微纳凹凸结 构。  In the foregoing friction generator, at least one surface of the surface of the first polymer polymer insulating layer and the opposite surface of the second electrode layer is provided with a micro/nano concave-convex structure, and the micro-nano set on the surface of the first polymer insulating layer The concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm; and the micro/nano concave-convex structure provided on the surface of the second electrode layer is a micro/nano concave-convex structure having a convex height of 300 ηηι-1 μη.
前述的摩擦发电机, 所述摩擦发电机在第一高分子聚合物绝缘层和第二 电极层之间设置有第二高分子聚合物绝缘层, 所述支撑部设置于第一高分子 聚合物绝缘层和第二高分子聚合物绝缘层之间。  In the above friction generator, the friction generator is provided with a second polymer insulating layer between the first polymer insulating layer and the second electrode layer, and the supporting portion is disposed on the first polymer Between the insulating layer and the second polymer insulating layer.
前述的摩擦发电机, 所述氧化辞纳米线阵列垂直生长在第一高分子聚合 物绝缘层和第二高分子聚合物绝缘层相对表面的任一表面上。  In the foregoing friction generator, the oxidized nanowire array is vertically grown on either surface of the opposite surfaces of the first polymer polymer insulating layer and the second polymer polymer insulating layer.
前述的摩擦发电机, 第一高分子聚合物绝缘层与第二高分子聚合物绝缘 层相对表面的至少一个表面上设置有微纳凹凸结构, 所述微纳凹凸结构为凸 起高度 50nm-300nm的纳米凹凸结构。 In the friction generator of the foregoing, at least one surface of the opposite surface of the first polymer polymer insulating layer and the second polymer polymer insulating layer is provided with a micro/nano concave-convex structure, and the micro-nano concave-convex structure is convex A nano concave-convex structure having a height of 50 nm to 300 nm.
前述的摩擦发电机, 所述摩擦发电机进一步包括居间薄膜层, 该居间薄 膜层设置于第一高分子聚合物绝缘层和第二高分子聚合物绝缘层之间, 所述 第一高分子聚合物绝缘层和居间薄膜层之间, 和 /或居间薄膜层与第二高分子 聚合物绝缘层之间设有支撑部, 氧化辞纳米线阵列垂直生长在第一高分子聚 合物绝缘层和居间薄膜层相对表面的任一表面上, 和 /或第二高分子聚合物绝 缘层和居间薄膜层相对表面的任一表面上。  In the above friction generator, the friction generator further includes an intermediate film layer disposed between the first polymer insulating layer and the second polymer insulating layer, the first polymer polymerization A support portion is disposed between the insulating layer and the intermediate film layer, and/or between the intermediate film layer and the second polymer insulating layer, and the oxidized nanowire array is vertically grown on the first polymer insulating layer and the intermediate layer On either surface of the opposite surface of the film layer, and/or on either surface of the second polymeric insulating layer and the opposing surface of the intermediate film layer.
前述的摩擦发电机, 第一高分子聚合物绝缘层与居间薄膜层相对表面的 至少一个表面上, 和 /或第二高分子聚合物绝缘层与居间薄膜层相对表面的至 少一个表面上, 设置有微纳凹凸结构, 所述微纳凹凸结构为凸起高度 50nm-3 OOnm的纳米凹凸结构。  The friction generator of the foregoing, at least one surface of the first polymer insulating layer and the opposite surface of the intermediate film layer, and/or at least one surface of the opposite surface of the second polymer insulating layer and the intermediate film layer are disposed There is a micro-nano concave-convex structure, and the micro-nano concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
前述的摩擦发电机, 所述居间薄膜层所用材料与第一高分子聚合物绝缘 层和第二高分子聚合物绝缘层所用材料不同, 选自聚酰亚胺薄膜、 苯胺曱醛 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇 酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚 氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造 纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯 二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡 胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯 乙烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任意一种。  In the above friction generator, the material used for the intermediate film layer is different from that of the first polymer polymer insulating layer and the second polymer polymer insulating layer, and is selected from the group consisting of polyimide film, aniline furfural resin film, and poly Furfural film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, Poly(diphenylene terephthalate) film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymerization Film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer Any one of a film, a natural rubber film, a polyacrylonitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate.
前述的摩擦发电机, 所述第一高分子聚合物绝缘层和 /或第二高分子聚合 物绝缘层所用材料分别独立的选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱 醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二 酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻 苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄 膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚 丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇 酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二 烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄 膜和聚乙烯丙二酚碳酸盐中的任意一种。 In the foregoing friction generator, the materials used for the first polymer insulating layer and/or the second polymer insulating layer are independently selected from the group consisting of polyimide film, aniline furfural resin film, and polyacetal film. , ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly-o-benzene a diallyl dicaptanate film, a cellulose sponge film, a regenerated sponge film, a polyurethane elastomer film, a styrene propylene copolymer film, a styrene butadiene copolymer film, a rayon film, a polyacrylate polymer film, Polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate Ester film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film and polyethylene Any one of propylene glycol carbonates.
前述的摩擦发电机, 所述第二电极层所用材料选自铟锡氧化物、石墨烯、 银纳米线膜、 金属或合金。  In the foregoing friction generator, the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
前述的摩擦发电机, 所述第一电极层所用材料选自铟锡氧化物、石墨烯、 银纳米线膜、 金属或合金。  In the foregoing friction generator, the material used for the first electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
前述的摩擦发电机, 所述金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合 金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  In the foregoing friction generator, the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy , niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
前述的摩擦发电机, 所述保护层所用材料是聚曱基丙烯酸曱酯。  In the aforementioned friction generator, the material used for the protective layer is polydecyl methacrylate.
前述的摩擦发电机, 所述支撑部的高度是 20-500 μ ηι。 优选的, 其宽度 是 0.5-2mm; 长度是 0.5mm-3cm„  In the aforementioned friction generator, the height of the support portion is 20-500 μm. Preferably, the width is 0.5-2 mm; the length is 0.5 mm-3 cm.
前述的摩擦发电机, 所述支撑部排列方式为形状为井字, 叉字, 斑马的, 十字的或口字的阵列排列。  In the foregoing friction generator, the support portion is arranged in an array of a shape of a tic-tac-toe, a cross-word, a zebra, a cross or a word.
为了解决上述技术问题, 本发明提供的第二技术方案是, 一种摩擦发电 机, 所述摩擦发电机包括依次层叠设置的第一电极层, 第一高分子聚合物绝 缘层, 摩擦电极层, 第二高分子聚合物绝缘层和第二电极层; 其中所述第一 高分子聚合物绝缘层和摩擦电极层之间, 和 /或第二高分子聚合物绝缘层和摩 擦电极层之间设有支撑部, 所述支撑部包括氧化辞纳米线阵列和包覆氧化辞 纳米线阵列的保护层, 所述氧化辞纳米线阵列垂直生长在高分子聚合物绝缘 层和摩擦电极层相对表面的任一表面上, 其中氧化辞纳米线阵列垂直生长在 第一高分子聚合物绝缘层与摩擦电极层相对表面和 /或第二高分子聚合物绝 缘层与摩擦电极层相对表面的任一表面上; 所述第一电极层和第二电极层为 摩擦发电机电压或电流的一个输出端; 所述摩擦电极层为摩擦发电机电压或 电流的另一个输出端。  In order to solve the above technical problem, the second technical solution provided by the present invention is a friction generator including a first electrode layer, a first polymer insulating layer, and a friction electrode layer, which are sequentially stacked. a second polymer polymer insulating layer and a second electrode layer; wherein the first polymer polymer insulating layer and the friction electrode layer, and/or the second polymer polymer insulating layer and the friction electrode layer are disposed The support portion includes a oxidized nanowire array and a protective layer covering the oxidized nanowire array, and the oxidized nanowire array is vertically grown on the opposite surfaces of the polymer polymer insulating layer and the friction electrode layer. a surface, wherein the oxidized nanowire array is vertically grown on any surface of the first polymer insulating layer and the opposite surface of the friction electrode layer and/or the second polymer insulating layer and the opposite surface of the friction electrode layer; The first electrode layer and the second electrode layer are one output end of a friction generator voltage or current; the friction electrode layer is a friction generator Another output terminal of the voltage or current.
前述的摩擦发电机, 第一高分子聚合物绝缘层与摩擦电极层相对表面的 至少一个表面上, 和 /或第二高分子聚合物绝缘层与摩擦电极层相对表面的至 少一个表面上设置有微纳凹凸结构, 所述高分子聚合物绝缘层表面上设置的 微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构; 所述摩擦电极层表 面上设置的微纳凹凸结构为凸起高度 300ηηι-1μηι的微纳凹凸结构。 The aforementioned friction generator, the first polymer insulating layer and the opposite surface of the friction electrode layer At least one surface, and/or at least one surface of the opposite surface of the second polymer insulating layer and the friction electrode layer is provided with a micro/nano concave-convex structure, and the micro-nano concave-convex structure disposed on the surface of the polymer insulating layer The nano concave-convex structure having a convex height of 50 nm to 300 nm; the micro/nano concave-convex structure provided on the surface of the friction electrode layer is a micro/nano concave-convex structure having a convex height of 300 ηηι-1 μη.
前述的摩擦发电机, 所述第一高分子聚合物绝缘层和第二高分子聚合物 绝缘层所用材料分别独立的选自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛 薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸 酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯 二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯 酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄 膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙 烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和 聚乙烯丙二酚碳酸盐中的任意一种。  In the foregoing friction generator, the materials used for the first polymer insulating layer and the second polymer insulating layer are independently selected from the group consisting of polyimide film, aniline resin film, polyacetal film, and ethyl group. Cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalic acid Diallyl ester film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol Film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, Any one of a polyacrylonitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate.
前述的摩擦发电机, 所述第一电极层和第二电极层所用材料选自铟锡氧 化物、 石墨烯、 银纳米线膜、 金属或合金, 所述摩擦电极层所用材料是金属 或合金; 其中, 金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨 合金、 钼合金、 铌合金或钽合金。  In the foregoing friction generator, the material used for the first electrode layer and the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy, and the material of the friction electrode layer is metal or alloy; Wherein, the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a bismuth alloy, a copper alloy , alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
前述的摩擦发电机, 所述保护层所用材料是聚曱基丙烯酸曱酯。  In the aforementioned friction generator, the material used for the protective layer is polydecyl methacrylate.
前述的摩擦发电机, 所述支撑部的高度是 20-500 μ ηι。 优选的, 其宽度 是 0.5-2mm; 长度是 0.5mm-3cm„  In the aforementioned friction generator, the height of the support portion is 20-500 μm. Preferably, the width is 0.5-2 mm; the length is 0.5 mm-3 cm.
前述的摩擦发电机, 所述支撑部排列方式为形状为井字, 叉字, 斑马的, 十字的或口字的阵列排列。  In the foregoing friction generator, the support portion is arranged in an array of a shape of a tic-tac-toe, a cross-word, a zebra, a cross or a word.
本发明的摩擦发电机在高分子聚合物绝缘层与金属电极层之间, 或者高 分子聚合物绝缘层之间构成摩擦层界面, 由于采用保护层(PMMA ) 包覆的 氧化辞纳米线阵列作为支撑部, 从而在两摩擦层之间形成了一个分离空间, 能够实现摩擦层基本分离的效果。 另外, 由于保护层(PMMA ) 包覆的氧化 辞纳米线阵列的支撑部弹性性能较好, 使得两摩擦层接触之后能较快分离, 迅速提升电势差, 进而驱动外部电流流动, 提高了电流的输出。 再者, 由于 保护层(PMMA ) 包覆于氧化辞纳米线阵列的外部, 从而避免了氧化辞纳米 线阵列溶解或者摩擦损坏等情况的出现。 最后, 氧化辞纳米线具有压电性能, 在挤压摩擦的情况下可以产生一定的压电电能, 氧化辞纳米线产生的压电电 能与摩擦发电机产生的摩擦电能叠加在一起, 使本发明的摩擦发电机输出的 电能更高, 性能更好。 附图说明 The friction generator of the present invention forms a friction layer interface between the polymer polymer insulating layer and the metal electrode layer, or the polymer polymer insulating layer, and is formed by using a protective layer (PMMA)-coated oxidized nanowire array. a support portion, thereby forming a separation space between the two friction layers, The effect of the basic separation of the friction layer can be achieved. In addition, since the support portion of the oxidized nanowire array coated by the protective layer (PMMA) has good elastic properties, the two friction layers can be separated quickly after contact, rapidly increasing the potential difference, thereby driving external current flow, and improving current output. . Furthermore, since the protective layer (PMMA) is coated on the outside of the oxidized nanowire array, the occurrence of dissolution or frictional damage of the oxidized nanowire array is avoided. Finally, the oxidized nanowires have piezoelectric properties, and in the case of extrusion friction, a certain piezoelectric energy can be generated, and the piezoelectric electrical energy generated by the oxidized nanowires is superimposed with the frictional electrical energy generated by the friction generator, so that the present invention The friction generator outputs more power and better performance. DRAWINGS
图 1为本发明摩擦发电机一种具体实施方式的立体结构示意图。  1 is a schematic perspective view of a specific embodiment of a friction generator of the present invention.
图 2为本发明图 1摩擦发电机的剖面示意图。  2 is a schematic cross-sectional view of the friction generator of FIG. 1 of the present invention.
图 3为本发明摩擦发电机另一种具体实施方式的立体结构示意图。  3 is a schematic perspective view showing another embodiment of the friction generator of the present invention.
图 4为本发明图 3摩擦发电机的剖面示意图。  4 is a schematic cross-sectional view of the friction generator of FIG. 3 of the present invention.
图 5为本发明摩擦发电机另一种具体实施方式的立体结构示意图。  FIG. 5 is a schematic perspective structural view of another embodiment of the friction generator of the present invention.
图 6为本发明图 5摩擦发电机的剖面示意图。  Figure 6 is a cross-sectional view showing the friction generator of Figure 5 of the present invention.
图 7为本发明摩擦发电机另一种具体实施方式的立体结构示意图。  7 is a schematic perspective view showing another embodiment of the friction generator of the present invention.
图 8为本发明图 7摩擦发电机的剖面示意图。  Figure 8 is a cross-sectional view showing the friction generator of Figure 7 of the present invention.
图 9为本发明支撑部其他设置方式立体结构示意图。  FIG. 9 is a schematic perspective view showing another arrangement manner of the support portion of the present invention.
图 10为本发明图 9中支撑部设置方式剖面示意图。  Figure 10 is a cross-sectional view showing the manner in which the support portion of Figure 9 is disposed.
图 11为本发明支撑部其他设置方式示意图。  Figure 11 is a schematic view showing another arrangement of the support portion of the present invention.
图 12为本发明支撑部其他设置方式示意图。  Figure 12 is a schematic view showing another arrangement of the support portion of the present invention.
图 13为本发明支撑部其他设置方式示意图。 具体实施方式  Figure 13 is a schematic view showing another arrangement of the support portion of the present invention. detailed description
为充分了解本发明之目的、 特征及功效, 借由下述具体的实施方式, 对 本发明做详细说明。  In order to fully understand the objects, features and advantages of the present invention, the invention will be described in detail.
本发明是一种摩擦发电机, 保护层(PMMA ) 包覆的氧化辞纳米线阵列 作为支撑部, 从而在两摩擦层之间形成了一个分离空间, 能够实现摩擦层基 本分离的效果。 The invention relates to a friction generator, a protective layer (PMMA) coated oxidized nanowire array As the support portion, a separation space is formed between the two friction layers, and the effect of the separation of the friction layers can be achieved.
如图 1和图 2所示, 一种摩擦发电机 1包括依次层叠设置的第一电极层 11、 第一高分子聚合物绝缘层 12和第二电极层 13 , 其中所述第一高分子聚 合物绝缘层 12和第二电极层 13之间设有支撑部 14, 所述支撑部 14包括氧 化辞纳米线阵列 141 和包覆氧化辞纳米线阵列的保护层 142。 所述氧化辞纳 米线阵列 141垂直生长在第一高分子聚合物绝缘层 12和第二电极层 13相对 表面的任一表面上; 第一电极层 11和第二电极层 13是摩擦发电机的电压或 电流的输出端。  As shown in FIG. 1 and FIG. 2, a friction generator 1 includes a first electrode layer 11, a first polymer insulating layer 12, and a second electrode layer 13 which are sequentially stacked, wherein the first polymer is polymerized. A support portion 14 is disposed between the material insulating layer 12 and the second electrode layer 13, and the support portion 14 includes a oxidized nanowire array 141 and a protective layer 142 covering the oxidized nanowire array. The oxidized nanowire array 141 is vertically grown on any surface of the opposite surfaces of the first polymer insulating layer 12 and the second electrode layer 13; the first electrode layer 11 and the second electrode layer 13 are friction generators The output of voltage or current.
如图 2所示, 在本发明的一个具体实施方式中, 第二电极层 13所用材料 是金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合 金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 具体的, 摩擦发电机 1 包括: 第一电极 层 11、 第一高分子聚合物绝缘层 12、 第二电极层 13以及支撑部 14; 第一电 极层 11设置在第一高分子聚合物绝缘层 12的第一侧表面, 在第一高分子聚 合物绝缘层 12的第二侧表面上设置有支撑部 14, 所述支撑部 14包括垂直生 长在第一高分子聚合物绝缘层 12表面的氧化辞纳米线阵列 141和包覆氧化辞 纳米线阵列的保护层 142 (采用聚曱基丙烯酸曱酯)。 设置有支撑部 14的第 一高分子聚合物绝缘层 12表面与第二电极层 13表面正对层叠设置 (例如采 用双面胶,万能胶,聚苯醚、聚烯烃等热塑性工程塑料等等将边缘进行粘接), 组成摩擦发电机 1。 第一电极层 11和第二电极层 13作为摩擦发电机 1的电 压或电流的输出端。  As shown in FIG. 2, in a specific embodiment of the present invention, the material used for the second electrode layer 13 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin. , iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium Alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy. Specifically, the friction generator 1 includes: a first electrode layer 11, a first polymer insulating layer 12, a second electrode layer 13, and a support portion 14; the first electrode layer 11 is disposed on the first polymer insulating layer The first side surface of the first polymer layer 12 is provided with a support portion 14 on the second side surface of the first polymer polymer insulating layer 12, and the support portion 14 includes oxidation which is vertically grown on the surface of the first polymer polymer insulating layer 12. The nanowire array 141 and the protective layer 142 (using polydecyl methacrylate) coated with the oxidized nanowire array are used. The surface of the first polymer insulating layer 12 provided with the support portion 14 is disposed opposite to the surface of the second electrode layer 13 (for example, a double-sided adhesive, a universal adhesive, a polyphenylene ether, a thermoplastic engineering plastic such as polyolefin, etc.) The edges are bonded) to form a friction generator 1. The first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
设置有支撑部 14的第一高分子聚合物绝缘层 12表面与第二电极层 13表 面至少有一个表面设置有微纳凹凸结构(图未示), 所述高分子聚合物绝缘层 表面上设置的微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构; 所述 第二电极层 13表面上设置的微纳凹凸结构为凸起高度 300ηηι-1μηι的微纳凹 凸结构。 优选地, 第二电极层 13的表面设置微纳凹凸结构 (图未示)。 另外, 氧化辞纳米线也可以生长在第二电极层 13上, 以形成支撑部 14, 这样优选微纳凹凸结构设置在第一高分子聚合物绝缘层 12上。微纳凹凸结构 与支撑部 14分别设置在不同的层面上, 便于制造。 The surface of the first polymer insulating layer 12 provided with the support portion 14 and at least one surface of the surface of the second electrode layer 13 are provided with a micro/nano concave-convex structure (not shown), and the surface of the polymer polymer insulating layer is disposed The micro-nano-convex structure is a nano-concave structure having a protrusion height of 50 nm to 300 nm; and the micro-nano-convex structure provided on the surface of the second electrode layer 13 is a micro-nano-convex structure having a protrusion height of 300 ηηι-1 μη. Preferably, the surface of the second electrode layer 13 is provided with a micro/nano-convex structure (not shown). Further, the oxidized nanowires may be grown on the second electrode layer 13 to form the support portion 14, and thus it is preferable that the micro/nano concave-convex structure is provided on the first polymer insulating layer 12. The micro-nano concave-convex structure and the support portion 14 are respectively disposed on different layers to facilitate manufacturing.
第一电极层 11对所用材料没有特殊规定, 能够形成导电层的材料都在本 发明的保护范围之内, 例如是铟锡氧化物、 石墨婦电极、 银纳米线膜, 以及 金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合 金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The first electrode layer 11 is not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphite electrode, silver nanowire film, and metal or alloy. The metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is aluminum alloy, titanium alloy, magnesium alloy, niobium alloy, copper alloy, word Alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
第一高分子聚合物绝缘层 12所用材料选自聚酰亚胺薄膜、苯胺曱 树脂 薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚 乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯 薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨 酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤 维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二 曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶 薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙 烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任意一种。  The material of the first polymer insulating layer 12 is selected from the group consisting of polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol butyl Acid ester film, cellulose film, cellulose acetate film, polyethylene adipate film, diallyl phthalate film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film , styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, poly Vinyl butyral film, furfural phenol polycondensate film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film and polyethylene propylene glycol carbon Any of the acid salts.
如图 3和图 4所示, 在本发明的一个具体实施方式中, 摩擦发电机 1在 第一高分子聚合物绝缘层 12和第二电极层 13之间设置有第二高分子聚合物 绝缘层 15。 具体的, 摩擦发电机 1包括: 第一电极层 11、 第一高分子聚合物 绝缘层 12、 第二高分子聚合物绝缘层 15、 第二电极层 13以及支撑部 14; 第 一电极层 11设置在第一高分子聚合物绝缘层 12的第一侧表面, 第二电极层 13设置在第二高分子聚合物绝缘层 15 的第一侧表面, 在第二高分子聚合物 绝缘层 15的第二侧表面上设置有支撑部 14, 所述支撑部包括垂直生长在第 二高分子聚合物绝缘层 15表面的氧化辞纳米线阵列 141和包覆氧化辞纳米线 阵列的保护层(聚曱基丙烯酸曱酯) 142。 设置有支撑部 14的第二高分子聚 合物绝缘层 15的表面与第一高分子聚合物绝缘层 12的第二侧表面正对层叠 放置, 组成摩擦发电机 1。 第一电极层 11和第二电极层 13作为摩擦发电机 1 的电压或电流的输出端。 As shown in FIG. 3 and FIG. 4, in a specific embodiment of the present invention, the friction generator 1 is provided with a second polymer insulation between the first polymer insulating layer 12 and the second electrode layer 13. Layer 15. Specifically, the friction generator 1 includes: a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14; the first electrode layer 11 The second electrode layer 13 is disposed on the first side surface of the first polymer insulating layer 12, and the second electrode layer 13 is disposed on the first side surface of the second polymer insulating layer 15 in the second polymer insulating layer 15. The second side surface is provided with a support portion 14 including an oxidized nanowire array 141 vertically grown on the surface of the second polymer insulating layer 15 and a protective layer covering the oxidized nanowire array (Polymer) Ethyl acrylate) 142. The surface of the second polymer insulating layer 15 provided with the support portion 14 is laminated to the second side surface of the first polymer polymer insulating layer 12 Placed, composed of friction generator 1. The first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
设置有支撑部 14的第二高分子聚合物绝缘层 15表面与第一高分子聚合 物绝缘层 12第二侧表面至少有一个表面设置有微纳凹凸结构 (图未示), 所 述高分子聚合物绝缘层表面上设置的微纳凹凸结构为凸起高度 50nm-300nm 的纳米凹凸结构。 优选地, 在第一高分子聚合物绝缘层 12的第二侧表面设置 微纳凹凸结构。  a surface of the second polymer insulating layer 15 provided with the support portion 14 and at least one surface of the second side surface of the first polymer polymer insulating layer 12 are provided with a micro/nano concave-convex structure (not shown), and the polymer The micro/nano concave-convex structure provided on the surface of the polymer insulating layer is a nano concave-convex structure having a convex height of 50 nm to 300 nm. Preferably, a micro-nano-convex structure is provided on the second side surface of the first polymer-polymer insulating layer 12.
另外, 氧化辞纳米线也可以生长在第一高分子聚合物绝缘层 12上, 以形 成支撑部 14, 这样优选微纳凹凸结构设置在第二高分子聚合物绝缘层 15上。 微纳凹凸结构与支撑部 14优选分别设置在不同的层面上, 便于制造。  Further, the oxidized nanowires may be grown on the first polymer insulating layer 12 to form the support portion 14, and thus it is preferable that the micro/nano uneven structure is provided on the second polymer insulating layer 15. The micro-nano uneven structure and the support portion 14 are preferably disposed on different levels, respectively, to facilitate fabrication.
第一电极层 11和第二电极层 13对所用材料没有特殊规定, 能够形成导 电层的材料都在本发明的保护范围之内, 例如是铟锡氧化物、 石墨烯电极、 银纳米线膜, 以及金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合 金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The first electrode layer 11 and the second electrode layer 13 are not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphene electrodes, and silver nanowire films. And a metal or an alloy wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum Alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
第一高分子聚合物绝缘层 12和第二高分子聚合物绝缘层 15所用材料优 选不同, 分别独立的选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二 烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯 丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚 合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚 乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚 物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯 丙二酚碳酸盐中的任意一种。  The materials of the first polymer insulating layer 12 and the second polymer insulating layer 15 are preferably different, and are independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, and ethyl cellulose. Film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalic acid diene a propyl ester film, a cellulose sponge film, a regenerated sponge film, a polyurethane elastomer film, a styrene propylene copolymer film, a styrene butadiene copolymer film, a rayon film, a polyacrylate polymer film, a polyvinyl alcohol film, Polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polypropylene Any one of a nitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate.
如图 5和图 6所示, 在一个具体实施方式中, 摩擦发电机 1还可以进一 步包括居间薄膜层 16, 该居间薄膜层 16设置于第一高分子聚合物绝缘层 12 和第二高分子聚合物绝缘层 15之间, 所述第一高分子聚合物绝缘层 12和居 间薄膜层 16之间, 和 /或居间薄膜层 16与第二高分子聚合物绝缘层 15之间 设有支撑部 14。 具体的, 摩擦发电机 1包括第一电极层 11、 第一高分子聚合 物绝缘层 12、 居间薄膜层 16、 第二高分子聚合物绝缘层 15、 第二电极层 13 以及支撑部 14; 第一电极层 11设置在第一高分子聚合物绝缘层 12的第一侧 表面, 第二电极层 13设置在第二高分子聚合物绝缘层 15的第一侧表面, 居 间薄膜层 16设置在第一高分子聚合物绝缘层 12与第二高分子聚合物绝缘层 15之间, 且第一高分子聚合物绝缘层 12和居间薄膜层 16相对表面中的至少 一个表面, 和 /或居间薄膜层 16与第二高分子聚合物绝缘层 15相对表面中的 至少一个表面设置有支撑部 14; 支撑部 14包括氧化辞纳米线阵列 141和包 覆氧化辞纳米线阵列的保护层(聚曱基丙烯酸曱酯) 142。 居间薄膜层 16分 别与第一高分子聚合物绝缘层 12 的第二侧表面和第二高分子聚合物绝缘层As shown in FIG. 5 and FIG. 6 , in one embodiment, the friction generator 1 may further include an intermediate film layer 16 disposed on the first polymer insulating layer 12 . Between the second polymer insulating layer 15 and the first polymer insulating layer 12 and the intermediate film layer 16, and/or the intermediate film layer 16 and the second polymer insulating layer 15 A support portion 14 is provided between them. Specifically, the friction generator 1 includes a first electrode layer 11, a first polymer insulating layer 12, an intermediate film layer 16, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14; An electrode layer 11 is disposed on the first side surface of the first polymer insulating layer 12, the second electrode layer 13 is disposed on the first side surface of the second polymer insulating layer 15, and the intermediate film layer 16 is disposed on the first side Between the high molecular polymer insulating layer 12 and the second polymer insulating layer 15, and at least one of the opposing surfaces of the first polymer insulating layer 12 and the intermediate film layer 16, and/or the intermediate film layer 16 and at least one surface of the opposite surface of the second polymer insulating layer 15 is provided with a support portion 14; the support portion 14 includes a oxidized nanowire array 141 and a protective layer covering the oxidized nanowire array (polyacrylic acid) Ester ester) 142. The intermediate film layer 16 and the second side surface of the first polymer insulating layer 12 and the second polymer insulating layer
15的第二侧表面层叠设置, 组成摩擦发电机 1。 第一电极层 11和第二电极层The second side surfaces of the 15 are stacked to form a friction generator 1. First electrode layer 11 and second electrode layer
13作为摩擦发电机 1的电压或电流的输出端。 氧化辞纳米线阵列 141垂直生 长在第一高分子聚合物绝缘层 12和居间薄膜层 16相对表面的任一表面上, 和 /或第二高分子聚合物绝缘层 15和居间薄膜层 16相对表面的任一表面上。 13 is the output of the voltage or current of the friction generator 1. The oxidized nanowire array 141 is vertically grown on either surface of the first polymer insulating layer 12 and the opposite surface of the intermediate film layer 16, and/or the opposite surfaces of the second polymer insulating layer 15 and the intermediate film layer 16. On either surface.
第一高分子聚合物绝缘层 12与居间薄膜层 16相对表面的至少一个表面 上, 和 /或第二高分子聚合物绝缘层 15与居间薄膜层 16相对表面的至少一个 表面上, 设置有微纳凹凸结构 (图未示), 所述微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构。 优选地, 微纳凹凸结构与支撑部 14分别设置 在不同的层面上, 便于制造。  On at least one surface of the first polymer interlayer insulating layer 12 and the opposite surface of the intermediate film layer 16, and/or at least one surface of the opposing surface of the second polymer insulating layer 15 and the intermediate film layer 16, The nano concave-convex structure (not shown) is a nano concave-convex structure having a convex height of 50 nm to 300 nm. Preferably, the micro-nano-convex structure and the support portion 14 are respectively disposed on different layers to facilitate manufacturing.
第一电极层 11和第二电极层 13对所用材料没有特殊规定, 能够形成导 电层的材料都在本发明的保护范围之内, 例如是铟锡氧化物、 石墨烯电极、 银纳米线膜, 以及金属或合金, 其中金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合 金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The first electrode layer 11 and the second electrode layer 13 are not particularly limited in terms of materials used, and materials capable of forming a conductive layer are all within the scope of the present invention, such as indium tin oxide, graphene electrodes, and silver nanowire films. And a metal or an alloy wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is an aluminum alloy, a titanium alloy, a magnesium alloy, a tantalum Alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, tungsten alloys, molybdenum alloys, niobium alloys or niobium alloys.
第一高分子聚合物绝缘层 12和第二高分子聚合物绝缘层 15所用材料分 别独立的选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素 薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄 膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄 膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚 物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁 醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸 盐中的任意一种。 Material used for the first polymer insulating layer 12 and the second polymer insulating layer 15 Independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film , cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate film), cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film , styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, Any one of a furfural phenol polycondensate film, a neoprene film, a butadiene propylene copolymer film, a natural rubber film, a polyacrylonitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate .
居间薄膜层 16所用材料与第一高分子聚合物绝缘层 12和第二高分子聚 合物绝缘层 15所用材料不同, 可以为聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚 曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁 二酸酯薄膜、 纤维素薄膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚 邻苯二曱酸二烯丙酯薄膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体 薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二 醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁 二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物 薄膜和聚乙烯丙二酚碳酸盐中的任意一种。  The material used for the intermediate film layer 16 is different from that of the first polymer polymer insulating layer 12 and the second polymer polymer insulating layer 15, and may be a polyimide film, an aniline resin film, a polyacetal film, or a B. Cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, polyphthalate Acid diallyl ester film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyethylene Alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film Any one of a polyacrylonitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate.
如图 7和图 8所示, 另一种摩擦发电机 2, 包括依次层叠设置的第一电 极层 21 , 第一高分子聚合物绝缘层 22, 摩擦电极层 23 , 第二高分子聚合物 绝缘层 24和第二电极层 25; 其中所述第一高分子聚合物绝缘层 22和摩擦电 极层 23之间, 和 /或第二高分子聚合物绝缘层 24和摩擦电极层 23之间设有 支撑部 26, 所述支撑部 26包括氧化辞纳米线阵列 261和包覆氧化辞纳米线 阵列的保护层 262 , 所述氧化辞纳米线阵列垂直生长在高分子聚合物绝缘层 和摩擦电极层相对表面的任一表面上; 所述第一电极层 21 和第二电极层 25 连接一起为摩擦发电机 2电压或电流的一个输出端;所述摩擦电极 23为摩擦 发电机 2电压或电流的另一个输出端。第一高分子聚合物绝缘层 22与摩擦电 极层 23相对表面的至少一个表面上, 以及第二高分子聚合物绝缘层 24与摩 擦电极层 23相对表面的至少一个表面上设置有微纳凹凸结构 (图未示), 所 述高分子聚合物绝缘层表面上设置的微纳凹凸结构为凸起高度 50nm-300nm 的纳米凹凸结构;所述摩擦电极层 23表面上设置的微纳凹凸结构为凸起高度 300nm-l μηι的微纳凹凸结构。 As shown in FIG. 7 and FIG. 8, another friction generator 2 includes a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, and a second polymer insulation. a layer 24 and a second electrode layer 25; wherein the first polymer polymer insulating layer 22 and the friction electrode layer 23, and/or between the second polymer insulating layer 24 and the friction electrode layer 23 are provided The support portion 26 includes a oxidized nanowire array 261 and a protective layer 262 coated with an oxidized nanowire array. The oxidized nanowire array is vertically grown on the high molecular polymer insulating layer and the friction electrode layer. On either surface of the surface; the first electrode layer 21 and the second electrode layer 25 are connected together as one output of the voltage or current of the friction generator 2; the friction electrode 23 is another voltage or current of the friction generator 2 An output. First polymer insulation layer 22 and triboelectric At least one surface of the opposite surface of the pole layer 23, and at least one surface of the opposite surface of the second polymer insulating layer 24 and the friction electrode layer 23 are provided with a micro/nano concave-convex structure (not shown), the polymer polymerization The micro/nano concave-convex structure disposed on the surface of the insulating layer is a nano concave-convex structure having a convex height of 50 nm to 300 nm; and the micro-nano concave-convex structure provided on the surface of the friction electrode layer 23 is a micro-nano concave-convex structure having a convex height of 300 nm-l μη .
在一个具体实施方式中, 摩擦发电机 2包括: 第一电极层 21、 第一高分 子聚合物绝缘层 22、 摩擦电极层 23、 第二高分子聚合物绝缘层 24、 第二电 极层 25 以及支撑部 26; 第一电极层 21设置在第一聚合物层 22的第一侧表 面, 第二电极层 25设置在第二高分子聚合物绝缘层 24的第一侧表面, 摩擦 电极层 23设置在第一高分子聚合物绝缘层 22与第二高分子聚合物绝缘层 24 之间,在第一高分子聚合物绝缘层 22的第二侧表面和第二高分子聚合物绝缘 层 24的第二侧表面上至少一个表面设置有支撑部 26, 所述支撑部 26包括氧 化辞纳米线阵列 261和包覆氧化辞纳米线阵列的保护层(聚曱基丙烯酸曱酯) 262。第一高分子聚合物绝缘层 22的第二侧表面与摩擦电极层 23的第一侧表 面层叠放置, 和第二高分子聚合物绝缘层 24的第二侧表面与摩擦电极层 23 的第二侧表面层叠放置, 组成摩擦发电机 2。 第一电极层 21和第二电极层 25 连接一起作为摩擦发电机 2的一个电压或电流的输出端,摩擦电极层 23作为 摩擦发电机 2的另一个电压或电流的输出端。  In a specific embodiment, the friction generator 2 includes: a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, a second polymer insulating layer 24, a second electrode layer 25, and The first electrode layer 21 is disposed on the first side surface of the first polymer layer 22, the second electrode layer 25 is disposed on the first side surface of the second polymer insulating layer 24, and the friction electrode layer 23 is disposed. Between the first polymer insulating layer 22 and the second polymer insulating layer 24, on the second side surface of the first polymer insulating layer 22 and the second polymer insulating layer 24 At least one surface on the two side surfaces is provided with a support portion 26 including a oxidized nanowire array 261 and a protective layer (polydecyl acrylate) 262 coated with an oxidized nanowire array. The second side surface of the first polymer insulating layer 22 is laminated with the first side surface of the friction electrode layer 23, and the second side surface of the second polymer insulating layer 24 and the second side of the friction electrode layer 23 The side surfaces are stacked to form a friction generator 2. The first electrode layer 21 and the second electrode layer 25 are connected together as an output terminal of a voltage or current of the friction generator 2, and the friction electrode layer 23 serves as an output terminal of another voltage or current of the friction generator 2.
第一高分子聚合物绝缘层 22的第二侧表面与摩擦电极层 23的第一侧表 面相对设置的两个表面中至少一个表面设置有微纳凹凸结构(图未示), 第二 高分子聚合物绝缘层 24的第二侧表面与摩擦电极层 23的第二侧表面相对设 置的两个表面中至少一个表面设置有微纳凹凸结构(图未示)。 所述高分子聚 合物绝缘层表面上设置的微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸 结构;所述摩擦电极层 23表面上设置的微纳凹凸结构为凸起高度 300ηηι-1μηι 的纳米凹凸结构。 优选地, 微纳凹凸结构与支撑部 26分别设置在不同的层面 上, 便于制造。  At least one of the two surfaces of the first side surface of the first polymer polymer insulating layer 22 and the first side surface of the friction electrode layer 23 is provided with a micro/nano concave-convex structure (not shown), and the second polymer At least one of the two surfaces of the second side surface of the polymer insulating layer 24 opposite to the second side surface of the friction electrode layer 23 is provided with a micro/nano concave-convex structure (not shown). The micro/nano-convex structure provided on the surface of the polymer polymer insulating layer is a nano-concave structure having a protrusion height of 50 nm to 300 nm; and the micro-nano-convex structure provided on the surface of the friction electrode layer 23 is a protrusion height of 300 ηηι-1 μηι Nano concave and convex structure. Preferably, the micro/nano concave-convex structure and the support portion 26 are respectively disposed on different levels to facilitate manufacturing.
摩擦电极层 23所用材料是金属或合金, 其中金属是金、银、铂、钯、铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合 金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。 The material used for the friction electrode layer 23 is a metal or an alloy, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; the alloy is aluminum alloy, titanium Alloy, magnesium alloy Gold, bismuth alloy, copper alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
第一高分子聚合物绝缘层 22和第二高分子聚合物绝缘层 24所用材料分 别独立的选自聚酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素 薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄 膜、 纤维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄 膜、 纤维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚 物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁 醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天 然橡胶薄膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸 盐中的任意一种。  The materials used for the first polymer insulating layer 22 and the second polymer insulating layer 24 are independently selected from the group consisting of polyimide film, aniline furfural resin film, polyacetal film, ethyl cellulose film, and poly Amide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, polyethylene adipate film, poly(phenylene terephthalate) film , cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film , polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, Any one of an acrylonitrile vinyl chloride copolymer film and a polyvinyl propylene glycol carbonate.
第一电极层 21和第二电极层 25所用材料选自铟锡氧化物、 石墨烯、 银 纳米线膜、 金属或合金; 其中, 金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟 合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合金。  The materials used for the first electrode layer 21 and the second electrode layer 25 are selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, Titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys , niobium alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
本发明的摩擦发电机由于采用保护层(PMMA ) 包覆的氧化辞纳米线阵 列作为支撑部, 从而在两摩擦层之间形成了一个分离空间, 能够实现摩擦层 基本分离的效果。  The friction generator of the present invention uses a protective layer (PMMA)-coated oxidized nanowire array as a support portion, thereby forming a separation space between the two friction layers, thereby achieving the effect of substantially separating the friction layers.
由于保护层( PMMA )包覆的氧化辞纳米线阵列的支撑部弹性性能较好, 使得两摩擦层接触之后能较快分离, 迅速提升电势差, 进而驱动外部电流流 动, 提高了电流的输出。  Since the support layer of the protective layer (PMMA) coated oxidized nanowire array has good elastic properties, the two friction layers can be separated quickly after contact, and the potential difference is rapidly increased, thereby driving external current flow and increasing current output.
由于保护层(PMMA ) 包覆于氧化辞纳米线阵列的外部, 从而避免了氧 化辞纳米线阵列溶解或者摩擦损坏等情况的出现。 另外, 氧化辞纳米线具有 压电性能, 在挤压摩擦的情况下可以产生一定的压电电能, 氧化辞纳米线产 生的压电电能与摩擦发电机产生的摩擦电能叠加在一起, 使本发明的摩擦发 电机输出的电能更高, 性能更好。 在下文中, 以图 3和图 4所示结构的摩擦发电机为例详细说明本发明支 撑部的设置位置。 本领域技术人员很容易将下述这些设置关系应用到本发明 提及的其他结构的摩擦发电机中。 Since the protective layer (PMMA) is coated on the outside of the oxidized nanowire array, the occurrence of dissolution or friction damage of the oxidized nanowire array is avoided. In addition, the oxidized nanowire has piezoelectric properties, and a certain piezoelectric energy can be generated in the case of extrusion friction, and the piezoelectric electrical energy generated by the oxidized nanowire is superimposed with the frictional electrical energy generated by the friction generator, so that the present invention The friction generator outputs more power and better performance. Hereinafter, the arrangement position of the support portion of the present invention will be described in detail by taking the friction generator of the structure shown in Figs. 3 and 4 as an example. Those skilled in the art can easily apply the following setting relationships to the friction generators of other structures mentioned in the present invention.
支撑部优选但是不限于呈圓柱体和四棱柱体。 支撑部设置在第一高分子 聚合物绝缘层或第二高分子聚合物绝缘层的两侧边缘位置, 起到支撑作用的 同时, 又 4艮少减少摩擦面积。 支撑部的高度是 20-500 μ ηι。 优选的, 其宽度 是 0.5-2mm; 长度是 0.5mm-3cm。 支撑部排列方式优选阵列排列, 形状不限, 例如为井字, 叉字, 斑马的, 十字的或口字形状的阵列排列。  The support portion is preferably, but not limited to, a cylindrical body and a quadrangular prism. The support portion is disposed at both side edges of the first polymer polymer insulating layer or the second polymer polymer insulating layer to serve as a support, and at the same time reduce the friction area. The height of the support is 20-500 μ ηι. Preferably, the width is 0.5-2 mm; the length is 0.5 mm-3 cm. The arrangement of the support portions is preferably arranged in an array, and the shape is not limited, for example, an array arrangement of a tic-tac-toe, a cross-word, a zebra, a cross or a mouth-shaped shape.
如图 9和图 10所示, 当摩擦发电机的面积很大时, 可以平行并列设置多 个条型支撑部, 起到一个规则支撑的作用, 同时又好制作。  As shown in Fig. 9 and Fig. 10, when the area of the friction generator is large, a plurality of strip-shaped support portions can be arranged in parallel, which serves as a regular support and is also well produced.
支撑部还可以设置在高分子聚合物绝缘层的四个端角 (如图 11所示), 设置在高分子聚合物绝缘层的四周边缘(如图 12所示)以及平行阵列设置在 高分子聚合物绝缘层上(如图 13所示)。  The support portion may also be disposed at four end angles of the polymer polymer insulating layer (as shown in FIG. 11), disposed at the peripheral edge of the polymer polymer insulating layer (as shown in FIG. 12), and the parallel array is disposed on the polymer. On the polymer insulation layer (as shown in Figure 13).
下面详细说明本发明支撑部的制备方法。  The preparation method of the support portion of the present invention will be described in detail below.
a. 在高分子聚合物绝缘层、 或金属或合金层上光刻出氧化辞生长所设计 的区域  a. Photolithographically designed areas of the polymer polymer layer, or metal or alloy layer
在高分子聚合物绝缘层上设置光阻材料层, 然后光刻高分子聚合物绝缘 层表面, 在高分子聚合物绝缘层表面形成所设计的氧化辞纳米线生长区域。 本发明对所用光阻材料没有特殊要求, 常规用于基板光刻蚀的光阻材料均可 应用于本发明, 例如包括 5-60质量百分比感光树脂(例如环氧树脂改性物), 5-50质量百分比的反应性稀释剂(例如聚乙二醇二曱基丙烯酸酯), 0.1-15质 量百分比的光引发剂。 本领域技术人员根据该步骤, 很容易完成在金属或合 金层上光刻出氧化辞生长所设计的区域。  A photoresist layer is disposed on the polymer polymer insulating layer, and then the surface of the polymer polymer insulating layer is photolithographically formed to form a designed oxide nanowire growth region on the surface of the polymer polymer insulating layer. The present invention has no special requirements for the photoresist material used, and a photoresist material conventionally used for substrate photolithography can be applied to the present invention, for example, including 5-60 mass% photosensitive resin (for example, epoxy resin modified), 5- 50% by mass of a reactive diluent (e.g., polyethylene glycol dimercapto acrylate), 0.1-15 mass% of a photoinitiator. According to this step, those skilled in the art can easily complete the area where the oxidized growth is etched on the metal or alloy layer.
在设置光阻材料层前, 采用常规喷射溅镀在高分子聚合物绝缘层、 或金 属或合金层的一个面上生成一个厚度 30-50nm的氧化辞种子层。  An oxidized seed layer having a thickness of 30 to 50 nm is formed on one surface of the high molecular polymer insulating layer or the metal or alloy layer by conventional spray sputtering prior to the provision of the photoresist layer.
高分子聚合物绝缘层上设置光阻材料层前, 将电极层设置在高分子聚合 物绝缘层上, 所用方法是本领域常规技术方法, 例如利用射频溅镀, 将金、 铂、钛或镍钛等金属或合金中的任意一种射频溅镀到高分子聚合物绝缘层上。 b. 在光刻出氧化辞生长的区域内垂直生长氧化辞 Before the photoresist layer is disposed on the polymer insulating layer, the electrode layer is disposed on the polymer polymer insulating layer by a conventional method in the art, for example, by using RF sputtering, gold, platinum, titanium or nickel. Any one of a metal or an alloy such as titanium is sputtered onto the high molecular polymer insulating layer. b. Vertical growth of the oxidation word in the area where the oxidized oxidized word grows
在光刻的生长区域中, 采用湿化学法生长氧化辞纳米线阵列, 使氧化辞 纳米线阵列只生长在暴露的高分子聚合物绝缘层表面。 本发明采用常规湿化 学法生长氧化辞纳米线阵列, 例如采用环六亚曱基四胺(HMTA )和硝酸辞 六水合物( ΖηΝ03·6(Η20) )的混合物作为培养液, 在适当的温度例如 80-95 V 下, 生长氧化辞纳米线阵列。 具体的,在一个具体实施方式中, 采用 0.1mol/L 浓度的由等摩尔的环六亚曱基四胺 ( HMTA ) 和硝酸辞六水合物 ( ΖηΝ03·6(Η20) )组成的培养液, 将生成有氧化辞种子层的面朝下, 放在培 养液顶部, 在 85°C下在机械对流加热炉 (型号: Yamato DKN400, 加利福尼 亚, 圣克拉拉) 中生长, 用去离子水沖洗并在空气中干燥, 得到氧化辞纳米 线阵列。 In the growth region of the lithography, the oxidized nanowire array is grown by wet chemical method, and the oxidized nanowire array is grown only on the surface of the exposed polymer insulating layer. The present invention uses a conventional wet chemical method to grow an oxidized nanowire array, for example, a mixture of cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate (ΖηΝ0 3 ·6(Η 2 0)) as a culture solution. The oxidized nanowire array is grown at a suitable temperature, for example 80-95 V. Specifically, in a specific embodiment, a 0.1 mol/L concentration consisting of equimolar cyclohexamethylenetetramine (HMTA) and nitric acid hexahydrate (ΖηΝ0 3 ·6(Η 2 0)) is used. The culture medium was placed with the oxidized seed layer facing down, placed on top of the culture solution, and grown at 85 ° C in a mechanical convection oven (Model: Yamato DKN400, Santa Clara, Calif.) with deionized water. Rinse and dry in air to obtain an array of oxidized nanowires.
c 在氧化辞纳米线阵列层的表面覆盖保护层  c covering the surface of the oxidized nanowire array layer with a protective layer
通过旋涂法将保护层覆盖于氧化辞纳米线阵列上。  The protective layer is overlaid on the oxidized nanowire array by spin coating.
d. 剥落光阻材料形成支撑部。  d. Stripping the photoresist material to form a support portion.
本发明微纳凹凸结构可以采用多种方法进行制备, 例如用有特定规则凸 起结构的硅模板压制, 用砂纸打磨金属表面以及其他方法。 下面详细说明微 纳凹凸结构的一种制备方法。  The micro/nano relief structure of the present invention can be prepared by a variety of methods, such as pressing with a silicon template having a specific regular raised structure, sanding a metal surface with sandpaper, and other methods. A method of preparing the micro-nano-convex structure will be described in detail below.
S1 制作硅模板。将硅片用光刻的方法在表面做出规则的图形。做好图形 的硅片用湿刻的工艺各向异性刻蚀, 可以刻出凹形的四棱锥阵列结构, 或者 也可以用干刻的工艺各向同性刻蚀, 可以刻出凹形的立方体阵列结构。 刻好 之后的模板用丙酮和异丙醇清洗干净, 然后所有的模板都在三曱基氯硅烷的 气氛中进行表面硅烷化的处理, 处理好的硅模板待用。  S1 creates a silicon template. A regular pattern is formed on the surface by photolithography of the silicon wafer. The patterned silicon wafer is anisotropically etched by wet etching, and a concave quadrangular pyramid array structure can be engraved, or it can be isotropically etched by a dry engraving process to engrave a concave cube array. structure. After the engraving, the template was cleaned with acetone and isopropyl alcohol, and then all the templates were subjected to surface silanization in a trimethyl chlorosilane atmosphere, and the treated silicon template was used.
S2 制作具有微纳凹凸结构表面的高分子聚合物膜。首先将聚合物浆料涂 覆于硅模板表面, 真空脱气, 用旋转涂覆的方式将硅片表面多余的混合物去 掉, 形成一层薄薄的聚合物液体膜。 将整个模板固化, 然后剥离, 得到均匀 的具有特定微结构阵列的聚合物膜。  S2 A polymer film having a surface of a micro-nano uneven structure is produced. The polymer slurry is first applied to the surface of the silicon template, vacuum degassed, and the excess mixture on the surface of the wafer is removed by spin coating to form a thin polymer liquid film. The entire template was cured and then peeled off to obtain a uniform polymer film having a specific microstructure array.
当本发明的摩擦发电机的各层向下弯曲时, 由于存在的微纳凹凸结构, 摩擦发电机中的高分子聚合物绝缘层与金属电极层之间, 或者高分子聚合物 绝缘层之间相互摩擦产生静电荷, 静电荷的产生会使第一电极层和第二电极 层之间, 或者第一电极层和第二电极层分别与摩擦电极层之间的电容发生改 变, 从而导致第一电极层和第二电极层之间, 或者第一电极层和第二电极层 分别与摩擦电极层之间出现电势差。 由于电极之间电势差的存在, 自由电子 将通过外电路由电势低的一侧流向电势高的一侧,从而在外电路中形成电流。 When the layers of the friction generator of the present invention are bent downward, due to the existence of the micro/nano concave-convex structure, between the polymer polymer insulating layer and the metal electrode layer in the friction generator, or the high molecular polymer The insulating layers rub against each other to generate an electrostatic charge, and the generation of the static charge changes the capacitance between the first electrode layer and the second electrode layer, or between the first electrode layer and the second electrode layer and the friction electrode layer, respectively. Thereby, a potential difference occurs between the first electrode layer and the second electrode layer, or between the first electrode layer and the second electrode layer and the friction electrode layer, respectively. Due to the potential difference between the electrodes, the free electrons will flow from the side with the lower potential to the side with the higher potential through the external circuit, thereby forming a current in the external circuit.
本发明的摩擦发电机由于采用保护层包覆的氧化辞纳米线阵列作为支撑 部, 从而在两摩擦层之间形成了一个分离空间, 能够实现摩擦层基本分离的 效果。 两摩擦层接触之后能较快分离, 迅速提升电势差, 进而驱动外部电流 流动, 提高了电流的输出。  The friction generator of the present invention uses a protective layer-coated oxidized nanowire array as a support portion, thereby forming a separation space between the two friction layers, thereby achieving the effect of substantially separating the friction layers. After the two friction layers are in contact, they can be separated faster, and the potential difference is rapidly increased, thereby driving the external current to flow and increasing the current output.
氧化辞纳米线具有压电性能, 在挤压摩擦的情况下可以产生一定的压电 电能, 氧化辞纳米线产生的压电电能与摩擦发电机产生的摩擦电能叠加在一 起, 使本发明的摩擦发电机输出的电能更高, 性能更好。  The oxidized nanowire has piezoelectric properties, and can generate a certain piezoelectric electric energy in the case of extrusion friction, and the piezoelectric electric energy generated by the oxidation nanowire is superimposed with the friction electric energy generated by the friction generator to make the friction of the present invention. The generator outputs more power and performance.
当理解的是, 这不应被理解为对本发明权利要求范围的限制。 实施例 1 It is understood that this should not be construed as limiting the scope of the claims. Example 1
如图 1和 2所示, 本实施例摩擦发电机尺寸为 3cmx3cm, 总厚度大约是 500 μ ηι左右。 该摩擦发电机第一电极层 11、 第一高分子聚合物绝缘层 12、 第二电极层 13以及支撑部 14, 第一电极层 11和第二电极层 13作为摩擦发 电机 1的电压或电流的输出端。  As shown in Figures 1 and 2, the friction generator of this embodiment has a size of 3 cm x 3 cm and a total thickness of about 500 μηη. The friction generator first electrode layer 11, the first polymer insulating layer 12, the second electrode layer 13, and the support portion 14, the first electrode layer 11 and the second electrode layer 13 serve as voltage or current of the friction generator 1. The output.
采用聚酰亚胺薄膜(Kapton, 厚度 lOOum )杜邦 500HN )作为第一高分 子聚合物绝缘层 12。第一高分子聚合物绝缘层 12的一个表面上镀厚度 lOOnm 的金薄膜, 该金薄膜即为第一电极层 11。 第一高分子聚合物绝缘层 12的另 一个表面上的两侧设有两条条型的支撑部 14 (高度 500 μ ηι, 宽度 0.5mm, 长度是 3cm ),支撑部 14包括垂直生长在第一高分子聚合物绝缘层 12表面的 氧化辞纳米线阵列 141和包覆氧化辞纳米线阵列的保护层 142 (采用聚曱基 丙烯酸曱酯)。 采用厚度 50μηι的铜箔作为第二电极层 13 , 该铜箔的一个表面采用细砂 纸打磨的方法设置不规则的凸起高度在 350-500nm范围内的微纳凹凸结构。 A polyimide film (Kapton, thickness lOOum) DuPont 500HN) was used as the first polymer insulating layer 12. One surface of the first polymer insulating layer 12 is plated with a gold film having a thickness of 100 nm, which is the first electrode layer 11. Two strip-shaped support portions 14 (height 500 μ ηι, width 0.5 mm, length 3 cm) are provided on the other surface of the first polymer polymer insulating layer 12, and the support portion 14 includes vertical growth in the first An oxidized nanowire array 141 on the surface of a high molecular polymer insulating layer 12 and a protective layer 142 (using polydecyl methacrylate) coated with an oxidized nanowire array. A copper foil having a thickness of 50 μm was used as the second electrode layer 13, and one surface of the copper foil was sanded by a fine sandpaper to form an irregular micro-nano-convex structure having a projection height in the range of 350 to 500 nm.
第二电极层 13 带有微纳凹凸结构的面朝向第一高分子聚合物绝缘层 12 的具有支撑部 14的表面, 将第二电极层 13叠放到第一高分子聚合物绝缘层 12上, 得到摩擦发电机样品 1#。 该摩擦发电机的边缘用普通胶布密封。  The surface of the second electrode layer 13 having the micro/nano uneven structure faces the surface of the first polymer insulating layer 12 having the support portion 14, and the second electrode layer 13 is stacked on the first polymer insulating layer 12. , get the friction generator sample 1#. The edge of the friction generator is sealed with a common tape.
摩擦发电机样品 1#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 1#发 生周期的弯曲和释放, 摩擦发电机样品 1#的最大输出电压和电流信号分别达 到了 12V和 2 μΑ。 实施例 2  The friction generator sample 1# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage). The stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) caused the friction generator sample 1# to undergo periodic bending and release. The maximum output voltage and current signal of the friction generator sample 1# reached 12V and 2 μΑ, respectively. . Example 2
如图 3和图 4所示, 本实施例摩擦发电机尺寸为 3cmx 3cm, 总厚度大约 是 600μηι。 该摩擦发电机包括第一电极层 11、 第一高分子聚合物绝缘层 12、 第二高分子聚合物绝缘层 15、 第二电极层 13以及支撑部 14。 第一电极层 11 和第二电极层 13作为摩擦发电机 1的电压或电流的输出端。  As shown in Figs. 3 and 4, the friction generator of this embodiment has a size of 3 cm x 3 cm and a total thickness of about 600 μm. The friction generator includes a first electrode layer 11, a first polymer insulating layer 12, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14. The first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
采用聚酰亚胺薄膜(厚度 lOOum )作为第一高分子聚合物绝缘层 12。 在 其一个表面上设置凸起高度 150nm 的微纳凹凸结构, 另一个表面上镀厚度 lOOnm的铝薄膜, 该铝薄膜即为第一电极层 11。  A polyimide film (thickness lOOum) was used as the first polymer insulating layer 12. On one surface thereof, a micro/nano concave-convex structure having a convex height of 150 nm is provided, and the other surface is plated with an aluminum thin film having a thickness of 100 nm, which is the first electrode layer 11.
采用聚对苯二曱酸乙二醇酯薄膜(厚度 lOOum )作为第二高分子聚合物 绝缘层 15。 在其一个表面上设置支撑部 14, 另一个表面上镀厚度 lOOnm的 铝薄膜, 该铝薄膜即为第二电极层 13。 支撑部 14如图 11所示, 设置在第二 高分子聚合物绝缘层 15的四个角,其尺寸为高度 250 μ m的 2mmx2mm的小 正方形。 支撑部 14包括垂直生长在第二高分子聚合物绝缘层 15表面的氧化 辞纳米线阵列 141 和包覆氧化辞纳米线阵列的保护层 142 (采用聚曱基丙烯 酸曱酯)。  A polyethylene terephthalate film (thickness lOOum) was used as the second polymer insulating layer 15. A support portion 14 is provided on one surface thereof, and an aluminum film having a thickness of 100 nm is plated on the other surface, and the aluminum film is the second electrode layer 13. The support portion 14 is disposed at four corners of the second polymer insulating layer 15 as shown in Fig. 11, and has a size of a small square of 2 mm x 2 mm having a height of 250 μm. The support portion 14 includes an oxidized nanowire array 141 vertically grown on the surface of the second polymer insulating layer 15 and a protective layer 142 (using polydecyl methacrylate) coated with the oxidized nanowire array.
第一高分子聚合物绝缘层 12 带有微纳凹凸结构的面朝向第二高分子聚 合物绝缘层 15的具有支撑部 14的表面,将第一高分子聚合物绝缘层 12叠放 到第二高分子聚合物绝缘层 15上, 得到摩擦发电机样品 2#。 该摩擦发电机 的边缘用普通胶布密封。 The surface of the first polymer polymer insulating layer 12 having the micro/nano concave-convex structure faces the surface of the second polymer insulating layer 15 having the support portion 14, and the first polymer polymer insulating layer 12 is stacked on the second surface. On the polymer polymer insulating layer 15, a friction generator sample 2# was obtained. The friction generator The edges are sealed with a plain tape.
摩擦发电机样品 2#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 2#发 生周期的弯曲和释放, 摩擦发电机样品 2#的最大输出电压和电流信号分别达 到了 18V和 3-4 μΑ。 实施例 3  The friction generator sample 2# exhibits a typical open circuit characteristic in the measurement of I-V (current-voltage). The stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) causes the friction generator sample 2# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 2# reached 18V and 3-, respectively. 4 μΑ. Example 3
如图 5和图 6所示, 本实施例摩擦发电机尺寸为 3 cmx 3cm, 总厚度大 约是 700μηι左右。 该摩擦发电机包括第一电极层 11、 第一高分子聚合物绝缘 层 12、 居间薄膜层 16、 第二高分子聚合物绝缘层 15、 第二电极层 13以及支 撑部 14。 第一电极层 11和第二电极层 13作为摩擦发电机 1的电压或电流的 输出端。  As shown in Fig. 5 and Fig. 6, the size of the friction generator of this embodiment is 3 cm x 3 cm, and the total thickness is about 700 μηι. The friction generator includes a first electrode layer 11, a first polymer insulating layer 12, an intermediate film layer 16, a second polymer insulating layer 15, a second electrode layer 13, and a support portion 14. The first electrode layer 11 and the second electrode layer 13 serve as outputs of the voltage or current of the friction generator 1.
采用聚酰亚胺薄膜(厚度 lOOum左右)作为第一高分子聚合物绝缘层 12 和第二高分子聚合物绝缘层 15。 第一高分子聚合物绝缘层 12和第二高分子 聚合物绝缘层 15分别在一个表面上设置凸起高度 150nm的微纳凹凸结构, 另一个表面上镀厚度 lOOnm的铝薄膜, 该铝薄膜即为第一电极层 11和第二 电极层 13。  A polyimide film (having a thickness of about 100 μm) is used as the first polymer insulating layer 12 and the second polymer insulating layer 15. The first polymer insulating layer 12 and the second polymer insulating layer 15 are respectively provided with a micro/nano concave-convex structure having a convex height of 150 nm on one surface, and an aluminum thin film having a thickness of 100 nm on the other surface, and the aluminum thin film is It is the first electrode layer 11 and the second electrode layer 13.
采用聚对苯二曱酸乙二醇酯薄膜(厚度 lOOum左右 M乍为居间薄膜层 16, 在居间薄膜层 16的一个表面上设置支撑部 14。 支撑部 14如图 12所示, 设 置在第二高分子聚合物绝缘层 15的四周,其尺寸为高度 20 μ ηι的 2mmx2mm 的小正方形。 支撑部 14包括垂直生长在居间薄膜层 16表面的氧化辞纳米线 阵列 141和包覆氧化辞纳米线阵列的保护层 142 (采用聚曱基丙烯酸曱酯)。  A polyethylene terephthalate film (having a thickness of about 100 μm) is used as the intermediate film layer 16, and a support portion 14 is provided on one surface of the intermediate film layer 16. The support portion 14 is as shown in FIG. The periphery of the second polymer insulating layer 15 is a small square of 2 mm x 2 mm having a height of 20 μm. The support portion 14 includes an oxidized nanowire array 141 and a coated oxidized nanowire vertically grown on the surface of the intermediate film layer 16. The protective layer 142 of the array (using polydecyl methacrylate).
居间薄膜层 16叠放到第一高分子聚合物绝缘层 12的具有微纳凹凸结构 的表面上,然后第二高分子聚合物绝缘层 15的具有微纳凹凸结构面朝向居间 薄膜层 16, 叠放到居间薄膜层 16上, 得到摩擦发电机样品 3#。 该摩擦发电 机的边缘用普通胶布密封。  The intermediate film layer 16 is stacked on the surface of the first polymer polymer insulating layer 12 having the micro/nano concave-convex structure, and then the second polymer polymer insulating layer 15 has the micro-nano-convex structure surface facing the intermediate film layer 16, It was placed on the intermediate film layer 16 to obtain a friction generator sample 3#. The edge of the friction generator is sealed with a common tape.
摩擦发电机样品 3#在 I-V (电流 -电压 )的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 3#发 生周期的弯曲和释放, 摩擦发电机样品 3#的最大输出电压和电流信号分别达 到了 20 V和 4 μΑ。 实施例 4 The friction generator sample 3# exhibits a typical open circuit characteristic in the measurement of IV (current-voltage). Using a stepper motor with periodic oscillations (0.33 Hz and 0.13% deformation) to make a friction generator sample 3# The bending and release of the life cycle, the maximum output voltage and current signal of the friction generator sample 3# reached 20 V and 4 μΑ, respectively. Example 4
如图 7和图 8所示, 本实施例摩擦发电机尺寸为 3 cmx 3cm, 总厚度大 约是 1000μηι。 该摩擦发电机包括第一电极层 21 , 第一高分子聚合物绝缘层 22 , 摩擦电极层 23 , 第二高分子聚合物绝缘层 24, 第二电极层 25和支撑部 26。 第一电极层 21和第二电极层 25为摩擦发电机 2电压或电流的一个输出 端; 所述摩擦电极 23为摩擦发电机 2电压或电流的另一个输出端。  As shown in Figs. 7 and 8, the friction generator of the present embodiment has a size of 3 cm x 3 cm and a total thickness of about 1000 μm. The friction generator includes a first electrode layer 21, a first polymer insulating layer 22, a friction electrode layer 23, a second polymer insulating layer 24, a second electrode layer 25, and a support portion 26. The first electrode layer 21 and the second electrode layer 25 are one output of the voltage or current of the friction generator 2; the friction electrode 23 is the other output of the voltage or current of the friction generator 2.
采用聚酰亚胺薄膜(厚度 lOOum左右)作为第一高分子聚合物绝缘层 22 和第二高分子聚合物绝缘层 24。 第一高分子聚合物绝缘层 22和第二高分子 聚合物绝缘层 24 分别在一个表面上设置支撑部 26, 另一个表面上镀厚度 lOOnm的铝薄膜, 该铝薄膜即为第一电极层 21和第二电极层 25。 支撑部 26 呈条型设置在高分子聚合物绝缘层的两侧, 其尺寸为高度 250 μ ηι 的 3cmx2mm的长方条形。 支撑部 26包括垂直生长在第一高分子聚合物绝缘层 22和第二高分子聚合物绝缘层 24表面的氧化辞纳米线阵列 261和包覆氧化 辞纳米线阵列的保护层 262 (采用聚曱基丙烯酸曱酯)。  A polyimide film (having a thickness of about 100 μm) is used as the first polymer insulating layer 22 and the second polymer insulating layer 24. The first polymer insulating layer 22 and the second polymer insulating layer 24 are respectively provided with a support portion 26 on one surface, and an aluminum film having a thickness of 100 nm is plated on the other surface, and the aluminum film is the first electrode layer 21 And a second electrode layer 25. The support portion 26 is strip-shaped on both sides of the polymer polymer insulating layer, and has a size of a rectangular strip of 3 cm x 2 mm with a height of 250 μ ηι. The support portion 26 includes an oxidized nanowire array 261 vertically grown on the surfaces of the first polymer insulating layer 22 and the second polymer insulating layer 24, and a protective layer 262 coated with an oxidized nanowire array (using polyfluorene) Ethyl acrylate).
采用厚度 100 μηι的铜箔作为摩擦电极 23 , 该铜箔的两个表面采用细砂 纸打磨的方法分别设置不规则的凸起高度在 350-500nm范围内的微纳凹凸结 构。  A copper foil having a thickness of 100 μm was used as the friction electrode 23, and the two surfaces of the copper foil were respectively sanded by a fine sandpaper to form an irregular micro-nano-convex structure having a projection height in the range of 350 to 500 nm.
摩擦电极 23叠放到第一高分子聚合物绝缘层 22的具有支撑部 26的表面 上,然后第二高分子聚合物绝缘层 24的具有支撑部 26的面朝向摩擦电极 23 , 叠放到摩擦电极 23上, 得到摩擦发电机样品 4#。 该摩擦发电机的边缘用普 通胶布密封。  The friction electrode 23 is stacked on the surface of the first polymer insulating layer 22 having the support portion 26, and then the face of the second polymer insulating layer 24 having the support portion 26 faces the friction electrode 23, and is stacked on the friction On the electrode 23, a friction generator sample 4# was obtained. The edge of the friction generator is sealed with a common tape.
摩擦发电机样品 4#在 I-V (电流 -电压)的测量中表现出典型的开路特征。 使用周期振荡 (0.33Hz和 0.13%的形变) 的步进电机使摩擦发电机样品 4#发 生周期的弯曲和释放, 摩擦发电机样品 4#的最大输出电压和电流信号分别达 到了 20 V和 4 μΑ 本发明的摩擦发电机可以应用到各种自驱动系统如触摸屏, 电子显示器, 以及其它个人电子产品中具有潜在的应用价值领域中, 其具有生产成本低、 发电效率高的效果。 The friction generator sample 4# exhibits a typical open circuit characteristic in the measurement of IV (current-voltage). The stepping motor with periodic oscillation (0.33 Hz and 0.13% deformation) caused the friction generator sample 4# to undergo periodic bending and release, and the maximum output voltage and current signal of the friction generator sample 4# reached 20 V and 4 respectively. Α The friction generator of the present invention can be applied to various self-driven systems such as touch screens, electronic displays, and other personal electronic products with potential application value, which has the advantages of low production cost and high power generation efficiency.
上述方案包含首选实施例和备案时发明人所知的该项发明的最佳模式 时, 上述实施例只作为说明性例子给出。 对该说明中揭露的特定实施例的许 多异化, 不偏离该项发明的精神和范围的话, 将是容易鉴别的。 因此, 该项 发明的范围将通过所附的权利要求确定, 而不限于上面特别描述的实施例。  The above embodiments are given by way of illustrative example only in the preferred embodiment and the preferred mode of the invention known to the inventor at the time of filing. Many variations of the specific embodiments disclosed in this specification will be readily apparent without departing from the spirit and scope of the invention. Therefore, the scope of the invention is to be determined by the appended claims

Claims

权 利 要 求 书 Claim
1. 一种摩擦发电机, 其特征在于, 包括依次层叠设置的第一电极层、 第 一高分子聚合物绝缘层和第二电极层; A friction generator, comprising: a first electrode layer, a first polymer insulating layer and a second electrode layer which are sequentially stacked;
其中, 所述第一高分子聚合物绝缘层和第二电极层之间设有支撑部, 所 述支撑部包括氧化辞纳米线阵列和包覆氧化辞纳米线阵列的保护层;  Wherein, a support portion is disposed between the first polymer polymer insulating layer and the second electrode layer, and the support portion includes a oxidized nanowire array and a protective layer covering the oxidized nanowire array;
第一电极层和第二电极层是摩擦发电机的电压或电流的两个输出端。 The first electrode layer and the second electrode layer are two outputs of the voltage or current of the friction generator.
2. 根据权利要求 1所述的摩擦发电机, 其特征在于, 所述第二电极层所 用材料是金属或合金, 所述氧化辞纳米线阵列垂直生长在第一高分子聚合物 绝缘层和第二电极层相对表面的任一表面上。 The friction generator according to claim 1, wherein the material of the second electrode layer is a metal or an alloy, and the oxidized nanowire array is vertically grown on the first polymer insulating layer and The two electrode layers are on either surface of the opposite surface.
3. 根据权利要求 2所述的摩擦发电机, 其特征在于, 第一高分子聚合物 绝缘层与第二电极层相对表面的至少一个表面上设置有微纳凹凸结构, 所述 第一高分子聚合物绝缘层表面上设置的微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构;所述第二电极层表面上设置的微纳凹凸结构为 凸起高度 300ηηι-1μηι的微纳凹凸结构。  The friction generator according to claim 2, wherein at least one surface of the opposite surface of the first polymer insulating layer and the second electrode layer is provided with a micro/nano concave-convex structure, the first polymer The micro/nano concave-convex structure disposed on the surface of the polymer insulating layer is a nano concave-convex structure having a convex height of 50 nm to 300 nm; and the micro-nano concave-convex structure provided on the surface of the second electrode layer is a micro-nano concave-convex structure having a convex height of 300 ηηι-1 μη .
4. 根据权利要求 1所述的摩擦发电机, 其特征在于, 所述摩擦发电机在 第一高分子聚合物绝缘层和第二电极层之间设置有第二高分子聚合物绝缘 层, 所述支撑部设置于第一高分子聚合物绝缘层和第二高分子聚合物绝缘层 之间。  The friction generator according to claim 1, wherein the friction generator is provided with a second polymer insulating layer between the first polymer insulating layer and the second electrode layer. The support portion is disposed between the first polymer insulating layer and the second polymer insulating layer.
5. 根据权利要求 4所述的摩擦发电机, 其特征在于, 所述氧化辞纳米线 阵列垂直生长在第一高分子聚合物绝缘层和第二高分子聚合物绝缘层相对表 面的任一表面上。  The friction generator according to claim 4, wherein the oxidized nanowire array is vertically grown on any surface of the opposite surfaces of the first polymer insulating layer and the second polymer insulating layer. on.
6. 根据权利要求 4或 5所述的摩擦发电机, 其特征在于, 第一高分子聚 合物绝缘层与第二高分子聚合物绝缘层相对表面的至少一个表面上设置有微 纳凹凸结构, 所述 纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构。  The friction generator according to claim 4 or 5, wherein at least one surface of the opposite surface of the first polymer insulating layer and the second polymer insulating layer is provided with a micro/nano concave-convex structure, The nano concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
7. 根据权利要求 4 所述的摩擦发电机, 其特征在于, 所述摩擦发电机进 一步包括居间薄膜层, 该居间薄膜层设置于第一高分子聚合物绝缘层和第二 高分子聚合物绝缘层之间; 所述支撑部设于第一高分子聚合物绝缘层和居间 薄膜层之间, 和 /或居间薄膜层与第二高分子聚合物绝缘层之间; 所述氧化辞 纳米线阵列垂直生长在第一高分子聚合物绝缘层和居间薄膜层相对表面的任 一表面上, 和 /或第二高分子聚合物绝缘层和居间薄膜层相对表面的任一表面 上。 The friction generator according to claim 4, wherein the friction generator further comprises an intermediate film layer disposed on the first polymer insulating layer and the second polymer insulating layer Between the layers; the support portion is disposed on the first polymer insulating layer and the intermediate layer Between the film layers, and/or between the intermediate film layer and the second polymer insulating layer; the oxidized nanowire array is vertically grown on either of the first polymer insulating layer and the opposite surface of the intermediate film layer On the surface, and/or on either surface of the second polymeric insulating layer and the opposing surface of the intermediate film layer.
8. 根据权利要求 7所述的摩擦发电机, 其特征在于, 第一高分子聚合物 绝缘层与居间薄膜层相对表面的至少一个表面上, 和 /或第二高分子聚合物绝 缘层与居间薄膜层相对表面的至少一个表面上, 设置有微纳凹凸结构, 所述 微纳凹凸结构为凸起高度 50nm-300nm的纳米凹凸结构。  The friction generator according to claim 7, wherein at least one surface of the first polymer insulating layer and the opposite surface of the intermediate film layer, and/or the second polymer insulating layer and the intermediate layer On at least one surface of the opposite surface of the film layer, a micro/nano concave-convex structure is provided, and the micro/nano concave-convex structure is a nano concave-convex structure having a convex height of 50 nm to 300 nm.
9. 根据权利要求 7所述的摩擦发电机, 其特征在于, 所述居间薄膜层所 用材料与第一高分子聚合物绝缘层和第二高分子聚合物绝缘层所用材料不 同, 选自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤 维素乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤 维素海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯 醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄 膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任 意一种。  The friction generator according to claim 7, wherein the material of the intermediate film layer is different from the material used for the first polymer polymer insulating layer and the second polymer polymer insulating layer, and is selected from the group consisting of polyacyl groups. Imine film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, Polyethylene adipate film, poly(phenylene terephthalate) film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene copolymer Film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, chlorine Butadiene rubber film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film and polyethylene propylene Phenol carbonate arbitrary one.
10. 根据权利要求 1-9任一项所述的摩擦发电机, 其特征在于, 所述第一 高分子聚合物绝缘层和 /或第二高分子聚合物绝缘层所用材料分别独立的选 自聚酰亚胺薄膜、 苯胺曱 树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰 胺薄膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素 乙酸酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维素 海绵薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯 乙烯丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇 薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄 膜、 聚丙烯腈薄膜、 丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任 意一种。 The friction generator according to any one of claims 1 to 9, wherein the materials for the first polymer insulating layer and/or the second polymer insulating layer are independently selected from the group consisting of Polyimide film, aniline resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate Film, polyethylene adipate film, poly(phenylene terephthalate) film, cellulose sponge film, regenerated sponge film, polyurethane elastomer film, styrene propylene copolymer film, styrene butadiene Copolymer film, rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film , neoprene film, butadiene propylene copolymer film, natural rubber thin Any one of a film, a polyacrylonitrile film, an acrylonitrile vinyl chloride copolymer film, and a polyvinyl propylene glycol carbonate.
11. 根据权利要求 4-10任一项所述的摩擦发电机, 其特征在于, 所述第 二电极层所用材料选自铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合金。  The friction generator according to any one of claims 4 to 10, wherein the material of the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
12. 根据权利要求 1-10任一项所述的摩擦发电机, 其特征在于, 所述第 一电极层所用材料选自铟锡氧化物、 石墨烯、 银纳米线膜、 金属或合金。  The friction generator according to any one of claims 1 to 10, wherein the material for the first electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, metal or alloy.
13. 根据权利要求 2-12任一项所述的摩擦发电机, 其特征在于, 所述金 属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合 金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌 合金或钽合金。  The friction generator according to any one of claims 2 to 12, wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, Phase, tungsten or vanadium; alloys are aluminum alloys, titanium alloys, magnesium alloys, niobium alloys, copper alloys, alloys, manganese alloys, nickel alloys, lead alloys, tin alloys, cadmium alloys, niobium alloys, indium alloys, gallium alloys, Tungsten alloy, molybdenum alloy, niobium alloy or niobium alloy.
14. 根据权利要求 1-13任一项所述的摩擦发电机, 其特征在于, 所述保 护层所用材料是聚曱基丙烯酸曱酯。  The friction generator according to any one of claims 1 to 13, characterized in that the material used for the protective layer is polydecyl methacrylate.
15. 根据权利要求 1-14任一项所述的摩擦发电机, 其特征在于, 所述支 撑部的高度是 20-500 μ ηι。  The friction generator according to any one of claims 1 to 14, characterized in that the height of the support portion is 20-500 μm.
16. 根据权利要求 15所述的摩擦发电机, 其特征在于, 所述支撑部排列 方式为形状为井字, 叉字, 斑马的, 十字的或口字的阵列排列。  16. The friction generator according to claim 15, wherein the support portion is arranged in an array of a shape of a tic-tac, a cross, a zebra, a cross or a word.
17. 一种摩擦发电机, 其特征在于, 所述摩擦发电机包括依次层叠设置 的第一电极层, 第一高分子聚合物绝缘层, 摩擦电极层, 第二高分子聚合物 绝缘层和第二电极层;  A friction generator, comprising: a first electrode layer, a first polymer insulating layer, a friction electrode layer, a second polymer insulating layer, and a first electrode layer which are sequentially stacked; Two electrode layer;
其中所述第一高分子聚合物绝缘层和摩擦电极层之间, 和 /或第二高分子 聚合物绝缘层和摩擦电极层之间设有支撑部, 所述支撑部包括氧化辞纳米线 阵列和包覆氧化辞纳米线阵列的保护层, 所述氧化辞纳米线阵列垂直生长在 高分子聚合物绝缘层和摩擦电极层相对表面的任一表面上;  Wherein a support portion is disposed between the first polymer polymer insulating layer and the friction electrode layer, and/or between the second polymer polymer insulating layer and the friction electrode layer, and the support portion includes an oxidized nanowire array And a protective layer covering the oxidized nanowire array, wherein the oxidized nanowire array is vertically grown on any surface of the opposite surface of the polymer polymer insulating layer and the friction electrode layer;
所述第一电极层和第二电极层为摩擦发电机电压或电流的一个输出端; 所述摩擦电极层为摩擦发电机电压或电流的另一个输出端。  The first electrode layer and the second electrode layer are one output end of a friction generator voltage or current; the friction electrode layer is another output end of a friction generator voltage or current.
18. 根据权利要求 17所述的摩擦发电机, 其特征在于, 第一高分子聚合 物绝缘层与摩擦电极层相对表面的至少一个表面上, 和 /或第二高分子聚合物 绝缘层与摩擦电极层相对表面的至少一个表面上设置有微纳凹凸结构, 所述 高分子聚合物绝缘层表面上设置的微纳凹凸结构为凸起高度 50nm-300nm的 纳米凹凸结构; 所述摩擦电极层表面上设置的微纳凹凸结构为凸起高度 300nm-l μηι的微纳凹凸结构。 The friction generator according to claim 17, wherein at least one surface of the first polymer insulating layer and the opposite surface of the friction electrode layer, and/or the second polymer a micro-nano-convex structure is disposed on at least one surface of the opposite surface of the insulating layer and the friction electrode layer, and the micro-nano-convex structure disposed on the surface of the polymer-polymer insulating layer is a nano-concave structure having a protrusion height of 50 nm to 300 nm; The micro/nano concave-convex structure provided on the surface of the friction electrode layer is a micro/nano concave-convex structure having a convex height of 300 nm to 1 μm.
19. 根据权利要求 17或 18所述的摩擦发电机, 其特征在于, 所述第一 高分子聚合物绝缘层和第二高分子聚合物绝缘层所用材料分别独立的选自聚 酰亚胺薄膜、 苯胺曱醛树脂薄膜、 聚曱醛薄膜、 乙基纤维素薄膜、 聚酰胺薄 膜、 三聚氰胺曱醛薄膜、 聚乙二醇丁二酸酯薄膜、 纤维素薄膜、 纤维素乙酸 酯薄膜、 聚己二酸乙二醇酯薄膜、 聚邻苯二曱酸二烯丙酯薄膜、 纤维素海绵 薄膜、 再生海绵薄膜、 聚氨酯弹性体薄膜、 苯乙烯丙烯共聚物薄膜、 苯乙烯 丁二烯共聚物薄膜、 人造纤维薄膜、 聚丙烯酸酯聚合物薄膜、 聚乙烯醇薄膜、 聚异丁烯薄膜、 聚对苯二曱酸乙二醇酯薄膜、 聚乙烯醇缩丁醛薄膜、 曱醛苯 酚缩聚物薄膜、 氯丁橡胶薄膜、 丁二烯丙烯共聚物薄膜、 天然橡胶薄膜、 聚 丙烯腈薄膜、丙烯腈氯乙烯共聚物薄膜和聚乙烯丙二酚碳酸盐中的任意一种。  The friction generator according to claim 17 or 18, wherein the materials for the first polymer insulating layer and the second polymer insulating layer are independently selected from the group consisting of polyimide films , aniline furfural resin film, polyacetal film, ethyl cellulose film, polyamide film, melamine furfural film, polyethylene glycol succinate film, cellulose film, cellulose acetate film, poly a diethylene glycol film, a poly(phenylene terephthalate) film, a cellulose sponge film, a regenerated sponge film, a polyurethane elastomer film, a styrene propylene copolymer film, a styrene butadiene copolymer film, Rayon film, polyacrylate polymer film, polyvinyl alcohol film, polyisobutylene film, polyethylene terephthalate film, polyvinyl butyral film, furfural phenol condensation film, neoprene Film, butadiene propylene copolymer film, natural rubber film, polyacrylonitrile film, acrylonitrile vinyl chloride copolymer film and polyethylene propylene glycol carbonate Any of them.
20. 根据权利要求 17-19任一项所述的摩擦发电机, 其特征在于, 所述第 一电极层和第二电极层所用材料选自铟锡氧化物、 石墨烯、 银纳米线膜、 金 属或合金, 所述摩擦电极层所用材料是金属或合金; 其中, 金属是金、 银、 铂、 钯、 铝、 镍、 铜、 钛、 铬、 锡、 铁、 锰、 相、 钨或钒; 合金是铝合金、 钛合金、 镁合金、 铍合金、 铜合金、 辞合金、 锰合金、 镍合金、 铅合金、 锡 合金、 镉合金、 铋合金、 铟合金、 镓合金、 钨合金、 钼合金、 铌合金或钽合 金。  The friction generator according to any one of claims 17 to 19, wherein the material of the first electrode layer and the second electrode layer is selected from the group consisting of indium tin oxide, graphene, silver nanowire film, a metal or an alloy, wherein the friction electrode layer is made of a metal or an alloy; wherein the metal is gold, silver, platinum, palladium, aluminum, nickel, copper, titanium, chromium, tin, iron, manganese, phase, tungsten or vanadium; The alloy is aluminum alloy, titanium alloy, magnesium alloy, bismuth alloy, copper alloy, alloy, manganese alloy, nickel alloy, lead alloy, tin alloy, cadmium alloy, bismuth alloy, indium alloy, gallium alloy, tungsten alloy, molybdenum alloy, Niobium alloy or niobium alloy.
21. 根据权利要求 17-20任一项所述的摩擦发电机, 其特征在于, 所述保 护层所用材料是聚曱基丙烯酸曱酯。  The friction generator according to any one of claims 17 to 20, characterized in that the material used for the protective layer is polydecyl methacrylate.
22. 根据权利要求 17-21任一项所述的摩擦发电机, 其特征在于, 所述支 撑部的高度是 20-500 μ m。  The friction generator according to any one of claims 17 to 21, characterized in that the height of the support portion is 20-500 μm.
23. 根据权利要求 22所述的摩擦发电机, 其特征在于, 所述支撑部排列 方式为形状为井字, 叉字, 斑马的, 十字的或口字的阵列排列。  23. The friction generator according to claim 22, wherein the support portion is arranged in an array of a shape of a tic-tac, a cross, a zebra, a cross or a word.
PCT/CN2013/090660 2013-05-16 2013-12-27 Friction power generator WO2014183457A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310181849.9A CN104167950B (en) 2013-05-16 2013-05-16 Friction generator
CN201310181849.9 2013-05-16

Publications (1)

Publication Number Publication Date
WO2014183457A1 true WO2014183457A1 (en) 2014-11-20

Family

ID=51897645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090660 WO2014183457A1 (en) 2013-05-16 2013-12-27 Friction power generator

Country Status (2)

Country Link
CN (1) CN104167950B (en)
WO (1) WO2014183457A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104682768B (en) 2015-03-19 2016-11-30 京东方科技集团股份有限公司 A kind of triboelectricity structure and display device
CN105991064B (en) * 2016-05-06 2018-04-20 纳智源科技(唐山)有限责任公司 Touch sensor and tactile sensing device of robot's sensory perceptual system based on friction generator
CN109606127A (en) * 2018-12-20 2019-04-12 刘山平 A kind of new-energy automobile
CN110995050B (en) * 2019-12-18 2021-03-12 西安电子科技大学 Discharging friction generator
CN113358725A (en) * 2021-05-17 2021-09-07 西安交通大学 Flexible electrochemical glucose sensor electrode and preparation method thereof
CN114747849A (en) * 2022-04-25 2022-07-15 浙江师范大学 Warning umbrella based on friction nanometer generator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084080A1 (en) * 2002-06-22 2004-05-06 Nanosolar, Inc. Optoelectronic device and fabrication method
CN102683573A (en) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set
CN203057022U (en) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 Nanometer friction generator
CN203219203U (en) * 2013-04-12 2013-09-25 纳米新能源(唐山)有限责任公司 Power generation system
CN203377809U (en) * 2013-04-24 2014-01-01 纳米新能源(唐山)有限责任公司 Wind generator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401182A (en) * 1971-10-28 1975-07-16 Science Res Council Electrical generators
JP2003124778A (en) * 2001-10-05 2003-04-25 Samsung Electro Mech Co Ltd One-way surface acoustic wave converter
JP5230926B2 (en) * 2006-11-10 2013-07-10 オリンパス株式会社 Inertial drive actuator
CN202904631U (en) * 2012-11-12 2013-04-24 纳米新能源(唐山)有限责任公司 Electronic tag communicating with electronic reader

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040084080A1 (en) * 2002-06-22 2004-05-06 Nanosolar, Inc. Optoelectronic device and fabrication method
CN102683573A (en) * 2012-05-09 2012-09-19 纳米新能源(唐山)有限责任公司 Nano generator, nano generator set and self-powered system comprising nano generator or nano generator set
CN203057022U (en) * 2012-12-27 2013-07-10 纳米新能源(唐山)有限责任公司 Nanometer friction generator
CN203219203U (en) * 2013-04-12 2013-09-25 纳米新能源(唐山)有限责任公司 Power generation system
CN203377809U (en) * 2013-04-24 2014-01-01 纳米新能源(唐山)有限责任公司 Wind generator

Also Published As

Publication number Publication date
CN104167950A (en) 2014-11-26
CN104167950B (en) 2017-03-08

Similar Documents

Publication Publication Date Title
WO2014044077A1 (en) Multi-layer high-power nano friction-based generator
WO2014183457A1 (en) Friction power generator
CN202949379U (en) High-power nano-friction generator
CN103856096B (en) High power nano friction generator and preparation method thereof
CN202818150U (en) Nano friction generator
US9812993B2 (en) Single electrode triboelectric generator
US10333430B2 (en) Robust triboelectric nanogenerator based on rolling electrification
US9790928B2 (en) Triboelectric generators and sensors
CN202679272U (en) A nanometer generator with mixed piezoelectric and triboelectric films
WO2013181952A1 (en) A hybrid piezoelectric and triboelectric nanogenerator
CN103490005A (en) Method for manufacturing high-electrical-property nano generator based on piezoelectric-frictional effect
US10879817B2 (en) Paper-based triboelectric nanogenerator and method of manufacturing the same
WO2015024392A1 (en) Friction generator with improved power generation effect and preparation method therefor
WO2013170651A1 (en) Friction generator and friction generator unit
WO2013151590A2 (en) Triboelectric generator
CN104578892A (en) Integrated frictional generator and vibration sensor
CN109474200B (en) Friction generator based on miura-ori folding and having piezoelectric enhancement effect
CN104124887B (en) Wind-driven generator
WO2014005434A1 (en) Magnetic-field-driven nanometer friction generator
TW200913757A (en) Structure and manufacturing method of a electrostatic loudspeaker
WO2014206098A1 (en) Surrounding-type unipolar friction nanometer power generator, power generation method, and tracking device
WO2014059807A1 (en) Triboelectricity-based pressure-sensitive cable
WO2014117683A1 (en) Slide-friction nanometer generator set and power generation device
CN103855421B (en) Self-charging film lithium ion battery
CN203722511U (en) Integrated friction generator and vibrating sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13884827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13884827

Country of ref document: EP

Kind code of ref document: A1