JPH07163153A - Control method for single-phase three-wire inverter - Google Patents

Control method for single-phase three-wire inverter

Info

Publication number
JPH07163153A
JPH07163153A JP5340881A JP34088193A JPH07163153A JP H07163153 A JPH07163153 A JP H07163153A JP 5340881 A JP5340881 A JP 5340881A JP 34088193 A JP34088193 A JP 34088193A JP H07163153 A JPH07163153 A JP H07163153A
Authority
JP
Japan
Prior art keywords
phase
current
voltage
neutral
pwm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5340881A
Other languages
Japanese (ja)
Other versions
JP3337041B2 (en
Inventor
Tsuneo Kume
常生 久米
Sumitoshi Sonoda
澄利 園田
Sadao Ishii
佐田夫 石井
Sajiyado Fusein Mohamedo
サジャド フセイン モハメド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP34088193A priority Critical patent/JP3337041B2/en
Publication of JPH07163153A publication Critical patent/JPH07163153A/en
Application granted granted Critical
Publication of JP3337041B2 publication Critical patent/JP3337041B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a single-phase three-wire PWM output voltage from a single DC power supply without requiring any insulating transformer by keeping the current command for one of three-phase output terminals of an inverter bridge constantly at zero as a neutral phase and employing sine wave current commands, having phase difference of 180 deg. for two other phases. CONSTITUTION:A current command generator 11 generates sine wave current commands having phase difference of 180 deg. and corresponding to the system voltage for phases R and S and current amplifiers 12, 13 amplify the difference between the current commands and actual currents detected through current detectors 6, 7 to produce voltage signals eR, eS. PWM controllers 15, 16, 17 compare a triangular signal eC generated from a carrier signal generator 14 with voltage signals eN, eR, eS to produce a drive control signal for a switching element in an inverter bridge 3. The input voltage signal en to the PWM controller 15 for the neutral phase N is set at zero. This method allows linkage with a single-phase three-wire power supply through a simple constitution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】単相3線式配電網と連系し、配電
網に電力を供給することを目的とするインバータ装置
で、太陽光や燃料電池を用いた分散形発電システムに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed power generation system using solar light or a fuel cell, which is an inverter device which is connected to a single-phase three-wire distribution network and supplies electric power to the distribution network.

【0002】[0002]

【従来の技術】単相3線式出力を得るインバータ装置
は、従来以下に示すようになっていた。 (1)単相インバータの出力にトランスを接続し、2次
巻線をセンタータップ形として単相3線式に変換する装
置がある。例えば、特開平5−111165号公報では
図4に示すように、この装置を用いた場合の出力電流分
担の改善方法が述べられている。すなわち、連系リアク
トルを中性線を除く各電圧線の受電端と負荷との間に挿
入し、その負荷側に中性線にセンタータップを接続した
絶縁トランスの2次巻線を接続し、電圧型インバータの
交流出力をこの絶縁トランスの1次側に接続した単相3
線方式における系統連系電力変換装置である。
2. Description of the Related Art An inverter device for obtaining a single-phase three-wire output has been conventionally shown below. (1) There is a device that connects a transformer to the output of a single-phase inverter and converts the secondary winding into a single-tap three-wire system by using a center tap type. For example, Japanese Patent Laid-Open No. 5-111165 discloses a method of improving the output current sharing when using this device, as shown in FIG. That is, the interconnection reactor is inserted between the receiving end of each voltage line except the neutral line and the load, and the secondary winding of the insulation transformer in which the center tap is connected to the neutral line is connected to the load side, Single phase 3 connecting the AC output of the voltage type inverter to the primary side of this isolation transformer
It is a grid-connected power conversion device in the wire system.

【0003】(2)2組の直流電源(平滑コンデンサ)
と2組の単相インバータをハーフブリッジ形にして簡素
化を図る技術が特開平4−165963号公報に開示さ
れている。これを図5に示しており、単相交流を順変換
した直流に基づき、前記交流電源の低電圧の単相3線式
出力を得るようにしている。すなわち、単相の交流電源
を倍電圧整流する順変換用の直流化回路の直列接続され
た出力用の2個の平滑コンデンサと、前記両平滑コンデ
ンサの直列回路両端間の直流電圧が供給される1対の入
力端子間に、ダイオードを逆並列接続した2個のトラン
ジスタスイッチの直列回路からなる第1、第2のハーフ
ブリッジ回路を並列に接続し、前記交流電源の半周期毎
に前記第1のハーフブリッジ回路の一方の入力端子側の
トランジスタスイッチと前記第2のハーフブリッジ回路
の他方の入力端子側のトランジスタスタスイッチのPW
M駆動と、前記第1のハーフブリッジ回路の前記他方の
入力端子側のトランジスタスイッチと前記第2のハーフ
ブリッジ回路の前記一方の入力端子側のトランジスタス
イッチのPWM駆動とに交互に切換わるトランジスタフ
ルブリッジ構成のスイッチング回路と、フィルタ用のコ
イル、コンデンサの直列回路からなり前記両ハーフブリ
ッジ回路の前記両入力端子側のトランジスタスイッチの
接続点それぞれと前記両平滑コンデンサの接続点との間
に設けられた交流フィルタと、前記両交流フィルタの前
記フィルタ用のコイル、コンデンサの接続点及び前記両
平滑コンデンサの接続点それぞれに接続された単相3線
出力用の3個の出力端子とを備え、前記スイッチング回
路のPWM駆動により前記交流電源の倍電圧の単相3線
出力を得るようにする。
(2) Two sets of DC power supplies (smoothing capacitors)
JP-A-4-165963 discloses a technique for simplifying two sets of single-phase inverters by using a half-bridge type. This is shown in FIG. 5, and a low-voltage single-phase three-wire output of the AC power supply is obtained based on the direct current obtained by forward-converting the single-phase AC. That is, two smoothing capacitors connected in series for a direct-current conversion circuit for forward conversion that double-rectifies a single-phase alternating-current power supply, and a direct-current voltage across the series circuits of both smoothing capacitors are supplied. Between a pair of input terminals, first and second half bridge circuits each composed of a series circuit of two transistor switches in which diodes are connected in antiparallel are connected in parallel, and the first half bridge circuit is connected every half cycle of the AC power supply. PW of the transistor switch on one input terminal side of the half bridge circuit and the transistor switch on the other input terminal side of the second half bridge circuit
Transistor full that is alternately switched between M drive and PWM drive of the transistor switch on the other input terminal side of the first half bridge circuit and the transistor switch on the one input terminal side of the second half bridge circuit. It is composed of a switching circuit having a bridge structure, a series circuit of a coil for filtering and a capacitor, and is provided between each connection point of the transistor switches on the both input terminal sides of the both half bridge circuits and the connection point of both the smoothing capacitors. An alternating current filter, and three output terminals for single-phase three-wire output, which are respectively connected to the filter coils of both the alternating current filters, the connection points of the capacitors, and the connection points of the both smoothing capacitors, In order to obtain a single-phase three-wire output of the double voltage of the AC power source by PWM driving of the switching circuit That.

【0004】[0004]

【発明が解決しようとする課題】ところが従来の技術
(1)では、系統とインバータをつなぐための絶縁トラ
ンスが必須であるため重量、コストの点で不利である。
従来の技術(2)では、中性点を持った直流電源かある
いは、2組の直流電源が必要になるといった問題があっ
た。そこで、本発明は、前記絶縁トランスを除去し、一
つの直流電源で単相3線式PWMインバータ装置の制御
方法を得ることを目的とする。また任意の力率で配電系
統との連系運転することを目的とする。
However, the conventional technique (1) is disadvantageous in terms of weight and cost because an insulating transformer for connecting the system and the inverter is essential.
The conventional technique (2) has a problem that a DC power supply having a neutral point or two sets of DC power supplies are required. Therefore, an object of the present invention is to obtain the control method of the single-phase three-wire PWM inverter device by removing the insulating transformer and using one DC power source. In addition, the purpose is to operate the power distribution system at an arbitrary power factor.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するた
め、本発明は電流指令発生器で互いに120°の位相差
をもつ3相正弦波の電流指令を発生し、相毎に前記電流
指令とインバータブリッジの出力電流を検出する電流検
出器から出力される実電流を電流増幅器へ入力し、前記
電流指令と前記実電流との偏差分を増幅して前記電流増
幅器から電圧信号を出力し、相毎に前記電圧信号とキャ
リア信号発生器から出力されるキャリア信号をPWM制
御器へ入力し、前記インバータブリッジのスイッチング
素子をON、OFFする信号を前記PWM制御器から出
力し、DC電源から可変周波数の可変交流電圧に変換す
る電圧形3相PWMインバータ装置の制御方法におい
て、前記インバータブリッジの3相出力端子の1つを中
性相とし、前記中性相の前記電流指令を常に零とし、前
記中性相を除いた残り2つの相の前記電流指令を互いに
180°の位相差をもつ正弦波の電流指令とし、単相3
線式のPWM出力電圧を得る。また、請求項1記載の単
相3線式インバータ装置の制御方法において、前記中性
相を接地し、前記中性相を除いた残り2つの相の前記イ
ンバータブリッジの出力端子に各々平滑用リアクトルの
一端を接続し、前記平滑用リアクトルの他端を単相3線
式系統電源の非接地端子にそれぞれ接続し、前記単相3
線式系統電源の電圧位相に対し同相または一定の位相角
を持つように残り2つの相の前記電流指令を互いに18
0°の位相差をもつ正弦波の前記電流指令を与える。ま
た、電流フィードバックのないオープンループで電圧制
御する電圧形3相PWMインバータ装置の制御方法にお
いて、インバータブリッジの3相出力端子の1つを中性
相とし、前記中性相のPWM制御器へ入力される電圧信
号を常に零とし、前記中性相を除いた残り2つの相の前
記PWM制御器へ入力される互いに180°の位相差を
もつ正弦波の電圧信号を電圧指令信号発生回路で発生さ
せる。
In order to solve the above problems, the present invention generates a three-phase sine wave current command having a phase difference of 120 ° from each other in a current command generator, and generates the current command for each phase. The actual current output from the current detector that detects the output current of the inverter bridge is input to the current amplifier, the deviation between the current command and the actual current is amplified, and the voltage signal is output from the current amplifier. Each time, the voltage signal and the carrier signal output from the carrier signal generator are input to the PWM controller, the signal for turning on and off the switching element of the inverter bridge is output from the PWM controller, and the variable frequency is supplied from the DC power source. In the control method of the voltage type three-phase PWM inverter device for converting into a variable AC voltage, one of the three-phase output terminals of the inverter bridge is set as a neutral phase, and the neutral phase is Said current command always zero, and a current command of the sine wave with the current phase difference command to each other by 180 ° of the neutral phase has been removed the remaining two phases, single phase 3
Obtain the linear PWM output voltage. Also, in the method for controlling a single-phase three-wire inverter device according to claim 1, the neutral phase is grounded, and smoothing reactors are respectively connected to the output terminals of the inverter bridges of the remaining two phases excluding the neutral phase. One end of each of the smoothing reactors and the other end of each of the smoothing reactors is connected to a non-ground terminal of a single-phase three-wire system power source, respectively.
The current commands of the remaining two phases are mutually set to 18 so as to have the same phase or a constant phase angle with respect to the voltage phase of the linear system power supply.
The sine wave current command with a phase difference of 0 ° is given. Further, in a control method of a voltage type three-phase PWM inverter device in which voltage control is performed in an open loop without current feedback, one of the three-phase output terminals of the inverter bridge is set as a neutral phase, and the PWM controller for the neutral phase is input. The voltage command signal generating circuit generates a sinusoidal voltage signal having a phase difference of 180 °, which is input to the PWM controller of the remaining two phases excluding the neutral phase Let

【0006】[0006]

【作用】中性相のPWM制御指令信号をゼロとしている
ので、中性相の出力端子2にはデューティサイクル50
%の方形波電圧Vn が得られる。正弦波で変調された残
りの二つの相電圧Vr 、Vs と前記Vn との差をとるこ
とにより単相3線式の出力を得る。また、系統と接続
し、インバータ出力電流を電流検出器6、7で検出し、
前記二つの相の電流を独立に制御する機能がある。
Since the PWM control command signal for the neutral phase is set to zero, the duty cycle 50 is applied to the output terminal 2 for the neutral phase.
A square wave voltage V n of % is obtained. A single-phase three-wire output is obtained by taking the difference between the remaining two phase voltages V r and V s modulated with a sine wave and the V n . Also, connected to the system, the inverter output current is detected by the current detectors 6 and 7,
It has a function of independently controlling the currents of the two phases.

【0007】[0007]

【実施例】以下、本発明の第1の実施例を図に基づいて
説明する。図において、1は太陽電池や燃料電池等から
なるDC電源、2は平滑コンデンサ、3はインバータブ
リッジ、4、5は平滑リアクトル、6、7は電流検出
器、8、9は系統の電源、10は接地、18、19は負
荷である。11は電流指令発生器で、R相、S相に対し
て、互いに180°の位相差を持ち系統電圧に対応した
正弦波電流指令を発生し、電流増幅器12、13に入力
する。電流増幅器では、電流指令信号と電流検出器6、
7で検出した実電流とを演算し、偏差分を増幅して電圧
信号er 、es とする。15、16、17はPWM制御
器で、図示した三角波比較形PWM方式の場合の機能と
しては比較器である。キャリア信号発生器14で発生す
る三角波の信号ec と電圧信号en 、er 、es とを比
較し、電圧信号がキャリア信号より大きい期間には主回
路ブリッジの上側の素子をそれぞれオンし、電圧信号が
キャリア信号より小さい期間には主回路ブリッジの下側
の素子をそれぞれオンする。中性相(N相)のPWM制
御器15の入力電圧信号en はゼロとする。R相および
S相PWM制御器16、17の入力としては、電流制御
器12、13の出力を用いる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described below with reference to the drawings. In the figure, 1 is a DC power source composed of a solar cell or a fuel cell, 2 is a smoothing capacitor, 3 is an inverter bridge, 4 and 5 are smoothing reactors, 6 and 7 are current detectors, 8 and 9 are system power supplies, 10 Is ground and 18 and 19 are loads. A current command generator 11 generates a sine wave current command corresponding to the system voltage having a phase difference of 180 ° with respect to the R phase and the S phase, and inputs them to the current amplifiers 12 and 13. In the current amplifier, the current command signal and the current detector 6,
The actual current detected in 7 is calculated, and the deviation is amplified to obtain voltage signals e r and e s . Reference numerals 15, 16 and 17 denote PWM controllers, which function as comparators in the illustrated triangular wave comparison type PWM system. Signal e c and the voltage signal e n of the triangular wave generated by the carrier signal generator 14, e r, compares the e s, the period the voltage signal greater than the carrier signal, respectively on the upper side of the element of the main circuit bridge During the period when the voltage signal is smaller than the carrier signal, the elements below the main circuit bridge are turned on. Input voltage signal e n of the PWM controller 15 of the neutral phase (N phase) is assumed to be zero. The outputs of the current controllers 12 and 13 are used as the inputs of the R-phase and S-phase PWM controllers 16 and 17, respectively.

【0008】図3に、図1の回路における各部の波形を
示す。最上段の波形は、PWM制御器15、16、17
へ入力される電圧信号er 、es 、en と三角信号ec
である。er とes は互いに180°の位相差を持つ正
波波である。Vn 、Vs 、Vr は、各相の出力端子の、
直流回路の仮想中性点(DC電源1の半分の電位)に対
する電圧である。VsnはS相N相間、VrnはR相N相間
の出力線間電圧である。15の入力信号はゼロとするの
で、N相の電圧波形Vn は、en とec がPWM制御器
15へ入力されるからデューティサイクル50%の方形
波となる。正弦波で変調されたR相、S相の出力波形と
の差をとると線間電圧Vsn、Vrnが得られる。
FIG. 3 shows the waveform of each part in the circuit of FIG. The waveforms at the top are PWM controllers 15, 16, 17
Voltage signals e r , e s , e n and triangular signal e c input to
Is. e r and e s are positive waves having a phase difference of 180 ° with each other. V n , V s , and V r are the output terminals of each phase,
It is the voltage for the virtual neutral point of the DC circuit (half the potential of the DC power supply 1). V sn is an output line voltage between the S and N phases, and V rn is an output line voltage between the R and N phases. Since the input signal 15 is zero, the voltage waveform V n of the N-phase, e n and e c is because the input to the PWM controller 15 duty cycle 50% of the square wave. The line voltages V sn and V rn can be obtained by taking the difference between the R-phase and S-phase output waveforms modulated by the sine wave.

【0009】この出力端子を平滑リアクトル4、5を介
して系統8、9に接続し、出力電流を電流検出器6、7
で検出し、電流制御ループをかけることにより、系統電
源の電圧と任意の位相角を持った電流指令信号で制御す
ることにより、任意の力率で系統との連系運転制御を行
うことができる。したがって、系統の無効電力補償もで
きる。また、R相とS相の電流を独立に制御することに
より、配電系統や負荷18、19の状況に応じて最適の
パワーフロー制御を行うことができる。系統8、9がな
い場合も、本インバータ装置の制御方法単独で負荷に単
相3線式電力を供給できることは言うまでもない。
This output terminal is connected to the systems 8 and 9 through the smoothing reactors 4 and 5 to output the output currents to the current detectors 6 and 7.
It is possible to perform interconnection operation control with the system at an arbitrary power factor by controlling with a voltage command of the system power supply and a current command signal with an arbitrary phase angle by applying a current control loop. . Therefore, reactive power compensation of the system can also be performed. Further, by controlling the R-phase and S-phase currents independently, optimum power flow control can be performed according to the conditions of the power distribution system and the loads 18, 19. Needless to say, even if the systems 8 and 9 are not provided, the single-phase three-wire power can be supplied to the load by the control method of the present inverter device alone.

【0010】以下、本発明の第2の実施例を図2に示
す。本実施例は、単相3線式独立電源とする例である。
前記図1と同一部分に同一符号を付して重複説明を省略
した図2において、20、21は電圧指令発生回路であ
る。図2の構成が図1と異なる点は、電流検出器6、
7、電流指令発生器11、電流増幅器12、13を使用
せず、電圧指令発生回路20、21で設定した電圧信号
r ’、es ’を発生させ、オープンループで電圧制御
をして単相3線式インバータ装置を構成している点であ
る。電源電圧や負荷の変動による出力電圧の変化を抑制
するための電圧制御ループを付加することは当然可能で
ある。以上の制御原理は、アナログ回路を前提に述べて
いるが、マイクロプロセッサを用いたディジタル方式の
ソフトエアで実行する場合も同様である。
A second embodiment of the present invention will be shown below in FIG. The present embodiment is an example of a single-phase three-wire independent power source.
In FIG. 2 in which the same parts as those in FIG. 1 are designated by the same reference numerals and duplicate description is omitted, reference numerals 20 and 21 denote voltage command generation circuits. 2 is different from that of FIG. 1 in that the current detector 6,
7, the current command generator 11, without using the current amplifier 12, a voltage signal set by the voltage command generating circuit 20,21 e r ', e s' to generate, by the voltage control in an open loop single This is a point that constitutes a phase three-wire inverter device. It is of course possible to add a voltage control loop for suppressing a change in output voltage due to a change in power supply voltage or load. The above control principle is described on the premise of an analog circuit, but the same applies to the case where it is executed by digital soft air using a microprocessor.

【0011】[0011]

【発明の効果】(1)系統とインバータをつなぐための
絶縁トランスを除去し、一つの直流電源で単相3線式P
WMインバータ装置の制御方法が得られる。 (2)簡単な回路構成で単相3線式電源との連系ができ
る。 (3)系統電源の電圧に対して位相角を持った電流指令
信号で制御することにより、任意の力率で連系運転がで
きる。したがって、系統の無効電力補償もできる。 (4)負荷18、19の負荷状態に応じて、二つの相
(R相、S相)の電流を独立に制御することにより各相
独立にパワーフローを制御できる。
EFFECTS OF THE INVENTION (1) The insulation transformer for connecting the system and the inverter is removed, and a single DC power supply is used for a single-phase three-wire type P
A control method for a WM inverter device is obtained. (2) A simple circuit configuration allows interconnection with a single-phase, three-wire power supply. (3) By controlling the current command signal having a phase angle with respect to the voltage of the system power supply, the interconnected operation can be performed at an arbitrary power factor. Therefore, reactive power compensation of the system can also be performed. (4) The power flow can be controlled independently for each phase by independently controlling the currents of the two phases (R phase and S phase) according to the load states of the loads 18 and 19.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例を示すブロック図。FIG. 1 is a block diagram showing a first embodiment of the present invention.

【図2】本発明の第2の実施例を示すブロック図。FIG. 2 is a block diagram showing a second embodiment of the present invention.

【図3】図1の回路における各部の波形を示す。3 shows waveforms at various parts in the circuit of FIG.

【図4】絶縁トランスを用いる従来例。FIG. 4 is a conventional example using an insulating transformer.

【図5】2組の直流電源を用いる従来例。FIG. 5 is a conventional example using two sets of DC power supplies.

【符号の説明】[Explanation of symbols]

1 DC電源 2 平滑コンデンサ 3 インバータブリッジ 4、5 平滑リアクトル 6、7 電流検出器 8、9 系統の電源 10 接地 11 電流指令発生器 12、13 電流増幅器 14 キャリア信号発生器 15、16、17 PWM制御器 18、19 負荷 20、21 電圧指令発生回路 1 DC power supply 2 Smoothing capacitor 3 Inverter bridge 4, 5 Smoothing reactor 6, 7 Current detector 8, 9 system power supply 10 Grounding 11 Current command generator 12, 13 Current amplifier 14 Carrier signal generator 15, 16, 17 PWM control Unit 18, 19 Load 20, 21 Voltage command generation circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 モハメド サジャド フセイン 福岡県北九州市八幡西区黒崎城石2番1号 株式会社安川電機内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mohamed Sajad Hussein 2-1, Kurosaki Shiroishi, Hachimannishi-ku, Kitakyushu, Fukuoka Prefecture Yasukawa Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 電流指令発生器で互いに120°の位相
差をもつ3相正弦波の電流指令を発生し、 相毎に前記電流指令とインバータブリッジの出力電流を
検出する電流検出器から出力される実電流を電流増幅器
へ入力し、 前記電流指令と前記実電流との偏差分を増幅して前記電
流増幅器から電圧信号を出力し、 相毎に前記電圧信号とキャリア信号発生器から出力され
るキャリア信号をPWM制御器へ入力し、 前記インバータブリッジのスイッチング素子をON、O
FFする信号を前記PWM制御器から出力し、 DC電源から可変周波数の可変交流電圧に変換する電圧
形3相PWMインバータ装置の制御方法において、 前記インバータブリッジの3相出力端子の1つを中性相
とし、 前記中性相の前記電流指令を常に零とし、 前記中性相を除いた残り2つの相の前記電流指令を互い
に180°の位相差をもつ正弦波の電流指令とし、 単相3線式のPWM出力電圧を得ることを特徴とする単
相3線式インバータ装置の制御方法。
1. A current command generator generates a three-phase sinusoidal current command having a phase difference of 120 ° from each other, and is output from a current detector that detects the current command and the output current of an inverter bridge for each phase. The actual current is input to the current amplifier, the deviation between the current command and the actual current is amplified, the voltage signal is output from the current amplifier, and the voltage signal and the carrier signal generator are output for each phase. The carrier signal is input to the PWM controller, and the switching element of the inverter bridge is turned on and off.
In a control method of a voltage type three-phase PWM inverter device which outputs a signal for FF from the PWM controller and converts it from a DC power supply into a variable AC voltage of a variable frequency, one of the three-phase output terminals of the inverter bridge is neutral. Phase, the current command of the neutral phase is always zero, and the current commands of the remaining two phases excluding the neutral phase are sinusoidal current commands having a phase difference of 180 ° from each other. A method for controlling a single-phase three-wire inverter device, characterized in that a linear PWM output voltage is obtained.
【請求項2】 請求項1記載の単相3線式インバータ装
置の制御方法において、 前記中性相を接地し、 前記中性相を除いた残り2つの相の前記インバータブリ
ッジの出力端子に各々平滑用リアクトルの一端を接続
し、 前記平滑用リアクトルの他端を単相3線式系統電源の非
接地端子にそれぞれ接続し、 前記単相3線式系統電源の電圧位相に対し同相または一
定の位相角を持つように残り2つの相の前記電流指令を
互いに180°の位相差をもつ正弦波の前記電流指令を
与えることを特徴とする単相3線式インバータ装置の制
御方法。
2. The method for controlling a single-phase three-wire inverter device according to claim 1, wherein the neutral phase is grounded, and the remaining two phases excluding the neutral phase are respectively output terminals of the inverter bridge. One end of the smoothing reactor is connected, and the other end of the smoothing reactor is connected to a non-ground terminal of the single-phase three-wire system power supply, respectively, which is in-phase or constant with respect to the voltage phase of the single-phase three-wire system power supply. A control method of a single-phase three-wire inverter device, characterized in that the current commands of the remaining two phases having a phase angle are given to the sine wave current commands having a phase difference of 180 ° from each other.
【請求項3】 電流フィードバックのないオープンルー
プで電圧制御する電圧形3相PWMインバータ装置の制
御方法において、 インバータブリッジの3相出力端子の1つを中性相と
し、 前記中性相のPWM制御器へ入力される電圧信号を常に
零とし、 前記中性相を除いた残り2つの相の前記PWM制御器へ
入力される互いに180°の位相差をもつ正弦波の電圧
信号を電圧指令信号発生回路で発生させることを特徴と
する単相3線式インバータ装置の制御方法。
3. A method of controlling a voltage type three-phase PWM inverter device for voltage control in an open loop without current feedback, wherein one of three phase output terminals of an inverter bridge is a neutral phase, and the neutral phase PWM control is performed. The voltage command signal is generated as a sine wave voltage signal having a phase difference of 180 ° with respect to the remaining two phases excluding the neutral phase, which is input to the PWM controller. A method for controlling a single-phase three-wire inverter device, which is generated by a circuit.
JP34088193A 1993-12-08 1993-12-08 Control method for single-phase three-wire inverter device Expired - Fee Related JP3337041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34088193A JP3337041B2 (en) 1993-12-08 1993-12-08 Control method for single-phase three-wire inverter device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34088193A JP3337041B2 (en) 1993-12-08 1993-12-08 Control method for single-phase three-wire inverter device

Publications (2)

Publication Number Publication Date
JPH07163153A true JPH07163153A (en) 1995-06-23
JP3337041B2 JP3337041B2 (en) 2002-10-21

Family

ID=18341176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34088193A Expired - Fee Related JP3337041B2 (en) 1993-12-08 1993-12-08 Control method for single-phase three-wire inverter device

Country Status (1)

Country Link
JP (1) JP3337041B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331684A (en) * 1996-06-11 1997-12-22 Fuji Electric Co Ltd Non-insulated type uninterruptible power-supply unit
JPH11262275A (en) * 1998-03-12 1999-09-24 Toshiba Corp Inverter device
JP2001169559A (en) * 1999-12-02 2001-06-22 Tokyo Denki Univ Sine wave inverter
US7167046B2 (en) 2003-11-26 2007-01-23 Yamaha Corporation Class-D amplifier
EP1780882A1 (en) * 2004-07-05 2007-05-02 HONDA MOTOR CO., Ltd. Power supply
JP2008072773A (en) * 2006-09-11 2008-03-27 Univ Of Tokushima Power conversion controller, and power conversion control method and program
CN100459404C (en) * 2005-06-01 2009-02-04 南京航空航天大学 Power amplifier of magnetic bearing switch possessing multiple routes of output, and control method
WO2014064884A1 (en) 2012-10-23 2014-05-01 パナソニック株式会社 Power conversion device
JP2015046974A (en) * 2013-08-27 2015-03-12 京セラ株式会社 Power conversion device and power conversion method
JP2015104286A (en) * 2013-11-27 2015-06-04 京セラ株式会社 Inverter
CN104917398A (en) * 2014-03-11 2015-09-16 沈阳远大电力电子科技有限公司 Four-quadrant high-voltage frequency converter free from network-side reactor
JP2019004657A (en) * 2017-06-19 2019-01-10 富士電機株式会社 Single-phase three-wire inverter and voltage compensation device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331684A (en) * 1996-06-11 1997-12-22 Fuji Electric Co Ltd Non-insulated type uninterruptible power-supply unit
JPH11262275A (en) * 1998-03-12 1999-09-24 Toshiba Corp Inverter device
JP2001169559A (en) * 1999-12-02 2001-06-22 Tokyo Denki Univ Sine wave inverter
KR100775184B1 (en) * 2003-11-26 2007-11-12 야마하 가부시키가이샤 Class-d amplifier
US7167046B2 (en) 2003-11-26 2007-01-23 Yamaha Corporation Class-D amplifier
EP1780882A4 (en) * 2004-07-05 2009-11-11 Honda Motor Co Ltd Power supply
EP1780882A1 (en) * 2004-07-05 2007-05-02 HONDA MOTOR CO., Ltd. Power supply
CN100459404C (en) * 2005-06-01 2009-02-04 南京航空航天大学 Power amplifier of magnetic bearing switch possessing multiple routes of output, and control method
JP2008072773A (en) * 2006-09-11 2008-03-27 Univ Of Tokushima Power conversion controller, and power conversion control method and program
WO2014064884A1 (en) 2012-10-23 2014-05-01 パナソニック株式会社 Power conversion device
JP2014087160A (en) * 2012-10-23 2014-05-12 Panasonic Corp Power converter
US9515577B2 (en) 2012-10-23 2016-12-06 Panasonic Intellectual Property Management Co., Ltd. Power conversion device
JP2015046974A (en) * 2013-08-27 2015-03-12 京セラ株式会社 Power conversion device and power conversion method
JP2015104286A (en) * 2013-11-27 2015-06-04 京セラ株式会社 Inverter
CN104917398A (en) * 2014-03-11 2015-09-16 沈阳远大电力电子科技有限公司 Four-quadrant high-voltage frequency converter free from network-side reactor
JP2019004657A (en) * 2017-06-19 2019-01-10 富士電機株式会社 Single-phase three-wire inverter and voltage compensation device

Also Published As

Publication number Publication date
JP3337041B2 (en) 2002-10-21

Similar Documents

Publication Publication Date Title
US5625539A (en) Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
JP2526992B2 (en) AC output converter parallel operation system
US5212630A (en) Parallel inverter system
US8730702B2 (en) Very high efficiency three phase power converter
US6762947B2 (en) Control method and apparatus to reduce current through DC capacitor linking two static converters
JP3337041B2 (en) Control method for single-phase three-wire inverter device
JP3588932B2 (en) Power converter, control method therefor, and uninterruptible power supply using this power converter
JP2543877B2 (en) Power converter
JP3478700B2 (en) Three-phase power factor improving converter
KR101465973B1 (en) Power converter for fuel cell system using multilevel inverter and method for reducing unbalance of neutral point potential
US5657214A (en) Stepped waveform PWM inverter
Benachour et al. Study and implementation of indirect space vector modulation (ISVM) for direct matrix converter
JPH07322634A (en) Control method of inverter and inverter device
JPH11187576A (en) Distributed power supply
JPH04117137A (en) Parallel multiplex inverter
JP3478701B2 (en) Three-phase power factor improving converter
Biel et al. Control strategy for parallel-connected three-phase inverters
WO2001003490A3 (en) Apparatus for increasing the voltage utilization of three-phase pwm rectifier systems with connection between output center point and artificial mains star point
JP2000037078A (en) Multilevel power converter
JPH01278266A (en) Ac power source
Pires et al. Three-phase multilevel inverter based on LeBlanc transformer
JPH09285014A (en) Inverter device
Korhonen et al. Feedforward control of isolating photovoltaic DC-DC converter to reduce grid-side DC link voltage fluctuation
JP3318918B2 (en) Constant sampling type PWM device for three-phase double voltage AC / DC converter
JP6863117B2 (en) Single-phase three-wire inverter and voltage compensation device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees