JP3478701B2 - Three-phase power factor improving converter - Google Patents

Three-phase power factor improving converter

Info

Publication number
JP3478701B2
JP3478701B2 JP12035897A JP12035897A JP3478701B2 JP 3478701 B2 JP3478701 B2 JP 3478701B2 JP 12035897 A JP12035897 A JP 12035897A JP 12035897 A JP12035897 A JP 12035897A JP 3478701 B2 JP3478701 B2 JP 3478701B2
Authority
JP
Japan
Prior art keywords
phase
converter
power factor
type
phase power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12035897A
Other languages
Japanese (ja)
Other versions
JPH10304663A (en
Inventor
俊彰 長谷見
義明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Priority to JP12035897A priority Critical patent/JP3478701B2/en
Publication of JPH10304663A publication Critical patent/JPH10304663A/en
Application granted granted Critical
Publication of JP3478701B2 publication Critical patent/JP3478701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)
  • Power Conversion In General (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】本発明は、3相3線式交流給電における高
調波電流抑制を目的としたスイッチング式直流安定化電
源装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a switching type DC stabilized power supply device intended to suppress harmonic currents in a three-phase three-wire AC power supply.

【0002】 (2)[0002] (2)

【従来の技術】3相3線式交流給電において、単相の高
調波抑制機能を有するコンバータ3台を各相間に接続
し、その各出力を並列接続して、電源回路を構成する方
法が知られている。
2. Description of the Related Art In three-phase three-wire AC power supply, a method is known in which three converters having a single-phase harmonic suppression function are connected between each phase and their outputs are connected in parallel to form a power supply circuit. Has been.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
構成では各コンバータは制御回路を個別にもつので、各
相電流の高調波成分は低減されるものの、各相電流のバ
ランス、すなわち、各コンバータが分担する負荷は必ら
ずしも同一にはならず、各々の制御回路の出力電圧設定
のわずかなずれにより、各相電流に大きな差が生じる。
このため、負荷バランス機能無しでは従来の構成で電源
回路を実現するのは困難とされた。
However, in the conventional configuration, since each converter has a separate control circuit, the harmonic component of each phase current is reduced, but the balance of each phase current, that is, each converter is The loads to be shared do not necessarily become the same, and a slight difference in the output voltage setting of each control circuit causes a large difference in each phase current.
Therefore, it has been difficult to realize a power supply circuit with the conventional configuration without the load balancing function.

【0004】そこで本発明は、従来技術と同様な回路構
成で、かつ、簡単な方法で、相電流のバランスがとれた
3相力率改善型コンバータを実現する事を目的とする。
Therefore, an object of the present invention is to realize a three-phase power factor improving converter having a circuit configuration similar to that of the prior art and a simple method, in which phase currents are balanced.

【0005】[0005]

【実施例】図1は本回路の実施例である。3相3線式交
流給電において、まずU相とV相間に昇圧チョッパ回路
1が接続されている。この昇圧チョッパ回路1は全波整
流器2、インダクタ3、スイッチ素子4、整流素子5、
コンデンサ6で構成されU相の相電流がU相−N相間の
電圧波形に比例するように、かつ、出力電圧V1が一定
の直流電圧になるように制御回路7で制御されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an embodiment of this circuit. In the three-phase three-wire AC power supply, first, the boost chopper circuit 1 is connected between the U phase and the V phase. The boost chopper circuit 1 includes a full wave rectifier 2, an inductor 3, a switch element 4, a rectifying element 5,
The control circuit 7 is configured so that the U-phase current composed of the capacitor 6 is proportional to the voltage waveform between the U-phase and the N-phase, and that the output voltage V1 is a constant DC voltage.

【0006】次にこの昇圧チョッパ回路1の出力V1を
入力としたDC−DCコンバータ8が接続されている。
DC−DCコンバータ8はスイッチ素子9及び10、ト
ランス11、整流素子 (3) 12及び13、インダクタ14、コンデンサ15で構成
されるフォワード型コンバータで、直流電圧出力V0を
出力するように制御回路16にてスイッチ素子9及び1
0のオンオフのタイミングがコントロールされる。尚、
フォワード型コンバータとは、スイッチング素子がオン
した時に出力に電力を供給する方式であり、ハーフブリ
ッジやフルブリッジ方式のコンバータもこの範囲に含め
る。
Next, a DC-DC converter 8 which receives the output V1 of the boost chopper circuit 1 as an input is connected.
The DC-DC converter 8 is a forward converter including switch elements 9 and 10, a transformer 11, rectifying elements (3) 12 and 13, an inductor 14, and a capacitor 15, and a control circuit 16 that outputs a DC voltage output V0. Switch elements 9 and 1
The on / off timing of 0 is controlled. still,
The forward converter is a method of supplying power to the output when the switching element is turned on, and a half-bridge or full-bridge converter is also included in this range.

【0007】ここでU相−V相間に接続された昇圧チョ
ッパ回路1及びV相−W相関に接続された昇圧チョッパ
回路17及びW相−U相間に接続された昇圧チョッパ回
路18の回路構成は同様であるとし、各々の出力電圧V
1、V2、V3、は一定の入出力条件下でV1=V2=V3と
なるように各々の制御回路は設定されている。
The circuit configurations of the step-up chopper circuit 1 connected between the U-phase and the V-phase, the step-up chopper circuit 17 connected in the V-phase-W correlation, and the step-up chopper circuit 18 connected between the W-phase and the U-phase are as follows. Assuming the same, each output voltage V
The respective control circuits are set so that 1, V2, V3 are V1 = V2 = V3 under constant input / output conditions.

【0008】さらに前記各出力電圧は負荷が増すにつれ
電圧が下降するようなレギュレーション特性をもつ。ま
た各昇圧チョッパ回路の出力にはDC−DCコンバータ
8,19,20が各々接続されている。これらDC−D
Cコンバータは同一の回路構成であり、その出力は並列
接続されて負荷21に供給される。負荷21に供給され
る直流電圧V0は制御回路16により一定に保たれる。
又、制御回路16から各DC−DCコンバータ8,1
9,20のスイッチ素子9,10に送られる駆動信号は
同一である。
Furthermore, each output voltage has a regulation characteristic that the voltage drops as the load increases. Further, DC-DC converters 8, 19 and 20 are connected to the outputs of the boost chopper circuits, respectively. These DC-D
The C converters have the same circuit configuration, and their outputs are connected in parallel and supplied to the load 21. The DC voltage V0 supplied to the load 21 is kept constant by the control circuit 16.
In addition, the control circuit 16 causes each DC-DC converter 8, 1
The drive signals sent to the switch elements 9 and 10 of 9 and 20 are the same.

【0009】このような回路構成において、上記のよう
にDC−DCコンバータ8,19,20の入力電圧が同
じ値でかつ出力電圧が共通であり、主スイッチの駆動信
号も同一であれば、各DC−DCコンバータ8,19,
20の分担する負荷も同一となる。すなわち、各DC−
DCコンバータ8,19,20に入力電圧を供給してい
る昇圧チョッパ回路1,17,18が変換する電力も同
一となり、ここで3相3線 (4) 式交流給電に電圧不平衝が無ければU,V,W相の相電
流も同一となる。
In such a circuit configuration, if the DC-DC converters 8, 19 and 20 have the same input voltage and the same output voltage as described above, and the drive signals of the main switches are also the same, DC-DC converters 8, 19,
The load shared by 20 is also the same. That is, each DC-
The electric power converted by the step-up chopper circuits 1, 17, 18 supplying the input voltage to the DC converters 8, 19, 20 is also the same, and if there is no voltage imbalance in the three-phase three-wire (4) type AC power supply, The phase currents of the U, V and W phases are also the same.

【0010】かりに、ある相間の昇圧チョッパ回路の負
荷が他の昇圧チョッパ回路よりも増加したとしても、そ
の出力電圧は負荷が増すにつれ電圧が下降するレギュレ
ーション特性をもつ為、その後段のDC−DCコンバー
タの入力電圧が下降することで、各DC−DCコンバー
タ8,19,20が分担する負荷電流はバランスする方
向に働く。
Even if the load of the step-up chopper circuit for a certain phase increases more than that of the other step-up chopper circuit, its output voltage has the regulation characteristic that the voltage drops as the load increases. As the input voltage of the converter decreases, the load currents shared by the DC-DC converters 8, 19, 20 work in a balanced direction.

【0011】以上のような方法により、従来の構成では
達成されなかった各相電流の高調波抑制と電流バランス
を同時に満足することが可能となった。
By the method as described above, it becomes possible to simultaneously satisfy harmonic suppression and current balance of each phase current, which cannot be achieved by the conventional structure.

【0012】[0012]

【発明の効果】本発明は、3相3線式交流給電におい
て、非常に簡単な回路構成で相電流の高調波成分の抑制
と各相電流のバランスとを同時に満足するものである。
According to the present invention, in the three-phase three-wire AC power supply, the suppression of the harmonic component of the phase current and the balance of each phase current are simultaneously satisfied with a very simple circuit configuration.

【図面の簡単な説明】[Brief description of drawings]

【図1】3相4線式交流給電における、高調波抑制電源
回路
FIG. 1 is a harmonic suppression power supply circuit for 3-phase 4-wire AC power supply.

【符号の簡単な説明】[Simple explanation of symbols]

1,17,18 昇圧チョッパ回路 2 全波整流器 3,14 インダクタ 4,9,10 スイッチ素子 5,12,13 整流素子 6,15 コンデンサ 7,16 制御回路 8,19,20 DC−DCコンバータ 11 トランス 21 負荷 1,17,18 Boost chopper circuit 2 full wave rectifier 3,14 inductor 4,9,10 switch element 5,12,13 Rectifier 6,15 capacitors 7,16 Control circuit 8, 19, 20 DC-DC converter 11 transformers 21 load

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H02M 3/28 H02J 3/18 H02M 1/12 H02M 7/217 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H02M 3/28 H02J 3/18 H02M 1/12 H02M 7/217

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】3相3線式交流電源各相間に、高調波抑制
機能を有した単相コンバータ3組を接続した回路構成に
於いて、 前記相間の単相入力電源に昇圧チョッパ回路と、この出
力を入力とした絶縁型DC−DCコンバータとを各々接
続し、前記絶縁型DC−DCコンバータの各出力を並列
接続し、かつ同一の制御信号により前記DC−DCコン
バータの主スイッチが駆動することを特徴とした3相力
率改善型コンバータ。
1. A circuit configuration in which three sets of single-phase converters having a harmonic suppression function are connected between each phase of a three-phase three-wire type AC power supply, wherein a single-phase input power supply between the phases is provided with a boost chopper circuit, An insulation type DC-DC converter having this output as an input is respectively connected, each output of the insulation type DC-DC converter is connected in parallel, and the main switch of the DC-DC converter is driven by the same control signal. A three-phase power factor improvement type converter characterized in that
【請求項2】請求項1記載の3相力率改善型コンバータ
に於いて、 前記各々の昇圧チョッパ回路の出力電圧は同一値である
ことを特徴とする3相力率改善型コンバータ。
2. The three-phase power factor improving converter according to claim 1, wherein the output voltages of the boost chopper circuits have the same value.
【請求項3】請求項2記載の3相力率改善型コンバータ
に於いて、 前記各々の昇圧チョッパ回路の出力電圧のレギュレーシ
ョンにより、各々の前記絶縁型DC−DCコンバータの
電流がバランスすることを特徴とする3相力率改善型コ
ンバータ。
3. The three-phase power factor improving converter according to claim 2, wherein the currents of the isolated DC-DC converters are balanced by the regulation of the output voltage of each of the boost chopper circuits. A characteristic three-phase power factor improvement type converter.
【請求項4】請求項1記載の3相力率改善型コンバータ
に於いて、 前記各々の絶縁型DC−DCコンバータはフォワード型
DC−DCコンバータである事を特徴とする3相力率改
善型コンバータ。
4. The three-phase power factor improving type converter according to claim 1, wherein each of the insulation type DC-DC converters is a forward type DC-DC converter. converter.
JP12035897A 1997-04-22 1997-04-22 Three-phase power factor improving converter Expired - Fee Related JP3478701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12035897A JP3478701B2 (en) 1997-04-22 1997-04-22 Three-phase power factor improving converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12035897A JP3478701B2 (en) 1997-04-22 1997-04-22 Three-phase power factor improving converter

Publications (2)

Publication Number Publication Date
JPH10304663A JPH10304663A (en) 1998-11-13
JP3478701B2 true JP3478701B2 (en) 2003-12-15

Family

ID=14784236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12035897A Expired - Fee Related JP3478701B2 (en) 1997-04-22 1997-04-22 Three-phase power factor improving converter

Country Status (1)

Country Link
JP (1) JP3478701B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006197687A (en) * 2005-01-12 2006-07-27 Shindengen Electric Mfg Co Ltd Three-phase rectifying circuit
JP4687177B2 (en) * 2005-03-23 2011-05-25 日本電気株式会社 Power supply system and input current balancing control method
JP2011147325A (en) * 2010-01-18 2011-07-28 Ohira Electronics Co Ltd Three-phase power factor improving circuit
JP2013090456A (en) * 2011-10-18 2013-05-13 Panasonic Corp Power conditioner
JP7102468B2 (en) * 2020-07-28 2022-07-19 株式会社三社電機製作所 Parallel operation power supply
WO2023076278A1 (en) * 2021-10-27 2023-05-04 Mks Instruments, Inc. Power supply apparatus

Also Published As

Publication number Publication date
JPH10304663A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
US8737097B1 (en) Electronically isolated method for an auto transformer 12-pulse rectification scheme suitable for use with variable frequency drives
US6831442B2 (en) Utilizing zero-sequence switchings for reversible converters
CA2202332C (en) Power electronic circuit arrangement
JP3221828B2 (en) Power conversion method and power conversion device
US8587322B2 (en) Methods and apparatus for motor emulation
US20020141216A1 (en) Multi-output power conversion circuit
JPH04197097A (en) High capacity speed varying system for ac motor
WO2007139684A2 (en) Transformerless utility-grid-interactive inverter
JPH03173354A (en) Power conversion circuit
JPH09182441A (en) Three-phase rectifier
JP3478700B2 (en) Three-phase power factor improving converter
JP3530359B2 (en) Three-phase power factor improving converter
WO2006027744A2 (en) Primary paralleled three-phase full-bridge dc-dc converter
JP3337041B2 (en) Control method for single-phase three-wire inverter device
JP3478701B2 (en) Three-phase power factor improving converter
Rehlaender et al. Dual interleaved 3.6 kW LLC converter operating in half-bridge, full-bridge and phase-shift mode as a single-stage architecture of an automotive on-board DC-DC converter
KR20190115364A (en) Single and three phase combined charger
US6297971B1 (en) Phase converter
JP3087955B2 (en) Three-phase converter device
JP3246584B2 (en) AC / DC converter
JPH0777515B2 (en) Single-phase to three-phase conversion circuit
JP3092792B2 (en) Power converter
JP7366076B2 (en) Three-phase inverter and uninterruptible power supply system
JP2862011B2 (en) DC voltage smoothing device without LC filter
KR100298253B1 (en) Direct current ripple decrease circuit of electric power circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees