JP2019004657A - Single-phase three-wire inverter and voltage compensation device - Google Patents

Single-phase three-wire inverter and voltage compensation device Download PDF

Info

Publication number
JP2019004657A
JP2019004657A JP2017119620A JP2017119620A JP2019004657A JP 2019004657 A JP2019004657 A JP 2019004657A JP 2017119620 A JP2017119620 A JP 2017119620A JP 2017119620 A JP2017119620 A JP 2017119620A JP 2019004657 A JP2019004657 A JP 2019004657A
Authority
JP
Japan
Prior art keywords
phase
inverter
voltage
wire
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017119620A
Other languages
Japanese (ja)
Other versions
JP6863117B2 (en
Inventor
稔久 田重田
Toshihisa Tashigeta
稔久 田重田
博 篠原
Hiroshi Shinohara
博 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017119620A priority Critical patent/JP6863117B2/en
Publication of JP2019004657A publication Critical patent/JP2019004657A/en
Application granted granted Critical
Publication of JP6863117B2 publication Critical patent/JP6863117B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Inverter Devices (AREA)

Abstract

To provide a single-phase three-wire inverter which reduces distortion of an output voltage by controlling a voltage between output lines by providing a phase difference between carriers of phases of the inverter on which PWM control is performed, and a voltage compensation device.SOLUTION: A single-phase three-wire inverter comprises: an inverter part 200 in which a DC power source 201 is connected between DC input terminals of an inverter bridge 202; and a PWM control part 3 which makes an output voltage command of an N phase into zero, varies output voltage commands of an U phase and a V phase and controls output voltages between output lines between U and N phases and between V and N phases to predetermined values in order to generate drive signals for switching elements of the phases by comparing the phase voltage commands with a carrier. In the single-phase three-wire inverter, the PWM control part 3 provides a phase difference between a carrier with respect to the N phase and a carrier with respect to the U phase and the V phase by a delay circuit 6 in such a manner that a voltage waveform between output lines becomes a dipolar modulation waveform during a period in which the output voltage commands of the U phase and the V phase are small.SELECTED DRAWING: Figure 1

Description

本発明は、PWM(パルス幅変調)制御される単相三線式インバータ、及び、この単相三線式インバータにより系統電圧の変動を補償する電圧補償装置に関するものである。   The present invention relates to a single-phase three-wire inverter controlled by PWM (pulse width modulation) and a voltage compensator that compensates for fluctuations in system voltage by the single-phase three-wire inverter.

図3は、PWM制御される単相三線式インバータの従来技術であり、例えば特許文献1に記載されているものである。
図3において、インバータ部200は、直流電源201と、その両極間に接続されたインバータブリッジ202とによって構成されている。インバータブリッジ202は、三相フルブリッジ接続されたIGBT(絶縁ゲートバイポーラトランジスタ)等の半導体スイッチング素子Q〜Qからなり、各相上下アームのスイッチング素子の接続点が、それぞれU相出力端子,N相(中性相)出力端子,V相出力端子として単相三線式電力系統204に接続されている。
FIG. 3 shows a conventional technique of a single-phase three-wire inverter that is PWM-controlled, and is described in, for example, Patent Document 1.
In FIG. 3, the inverter part 200 is comprised by the DC power supply 201 and the inverter bridge 202 connected between the both poles. The inverter bridge 202 includes semiconductor switching elements Q 1 to Q 6 such as IGBTs (insulated gate bipolar transistors) connected in a three-phase full bridge. The connection points of the switching elements of the upper and lower arms of each phase are respectively U-phase output terminals, An N-phase (neutral phase) output terminal and a V-phase output terminal are connected to the single-phase three-wire power system 204.

スイッチング素子Q〜Qを駆動するPWM制御部205は、U相,N相,V相電圧指令とキャリア信号発生器205Cからのキャリア(三角波)とがそれぞれ入力されるPWM制御器205U,205N,205Vを備えている。
U相のPWM制御器205Uは、U相電圧指令とキャリアとを比較してスイッチング素子Q,Qの駆動信号を生成し、N相のPWM制御器205Nは、N相電圧指令(=0)とキャリアとを比較してスイッチング素子Q,Qの駆動信号を生成し、V相のPWM制御器205Vは、V相電圧指令とキャリアとを比較してスイッチング素子Q,Qの駆動信号を生成する。
The PWM controller 205 that drives the switching elements Q 1 to Q 6 receives PWM controllers 205U and 205N to which U-phase, N-phase, and V-phase voltage commands and a carrier (triangular wave) from the carrier signal generator 205C are input, respectively. , 205V.
The U-phase PWM controller 205U compares the U-phase voltage command with the carrier to generate driving signals for the switching elements Q 1 and Q 2 , and the N-phase PWM controller 205N receives the N-phase voltage command (= 0). ) And the carrier to generate drive signals for the switching elements Q 3 and Q 4 , and the V-phase PWM controller 205V compares the V-phase voltage command with the carrier to compare the switching elements Q 5 and Q 6 . A drive signal is generated.

図4は、この従来技術の動作を示す波形図である。図4(a)はPWM制御部205における各相の電圧指令及びキャリアを示し、図4(b)はインバータ部200の出力相電圧を示し、図4(c)はインバータ部200の出力線間電圧(UN間出力電圧,VN間出力電圧)を示している。   FIG. 4 is a waveform diagram showing the operation of this prior art. 4A shows the voltage command and carrier of each phase in the PWM control unit 205, FIG. 4B shows the output phase voltage of the inverter unit 200, and FIG. 4C shows the output line voltage of the inverter unit 200. Voltage (UN output voltage, VN output voltage) is shown.

図4(a)において、U相電圧指令及びV相電圧指令は互いに180°の位相差を持つ正弦波信号であり、N相電圧指令は零である。また、図4(b)に示す各相出力電圧は、直流回路の仮想中性点(直流電源201の電圧の1/2の電位点)に対する電圧となる。なお、図4(c)から明らかなように、インバータ部200の出力線間電圧はユニポーラ変調波形となっている。   In FIG. 4A, the U-phase voltage command and the V-phase voltage command are sine wave signals having a phase difference of 180 ° from each other, and the N-phase voltage command is zero. Each phase output voltage shown in FIG. 4B is a voltage with respect to a virtual neutral point of the DC circuit (a potential point that is 1/2 of the voltage of the DC power supply 201). As can be seen from FIG. 4C, the output line voltage of the inverter unit 200 has a unipolar modulation waveform.

この従来技術によれば、N相の出力電圧を零に制御することにより、UN間及びVN間の線間電圧を容易に制御することができると共に、U相電圧指令及びV相電圧指令の振幅や位相差を個別に与えることで、UN間及びVN間の線間電圧を独立して制御することが可能である。   According to this prior art, by controlling the N-phase output voltage to zero, the line voltage between the UN and VN can be easily controlled, and the amplitudes of the U-phase voltage command and the V-phase voltage command can be controlled. Further, the line voltage between UN and VN can be controlled independently by giving the phase difference individually.

次に、図5は、単相三線式電力系統に連系される電圧補償装置の構成図である。
図5において、柱上変圧器301の二次側(低圧系統)の端子u,vは、連系リアクトル302を介して、半導体スイッチング素子Q11〜Q14からなる単相コンバータ303の交流入力端子u,vに接続されている。
Next, FIG. 5 is a configuration diagram of a voltage compensator linked to a single-phase three-wire power system.
In FIG. 5, terminals u and v on the secondary side (low voltage system) of the pole transformer 301 are connected to an AC input terminal of a single-phase converter 303 including semiconductor switching elements Q 11 to Q 14 via an interconnection reactor 302. connected to u 1 and v 1 .

また、単相コンバータ303の直流出力端子は、直流コンデンサ304を介して、半導体スイッチング素子Q15〜Q20からなる単相三線式インバータ305の直流入力端子に接続されている。
上記インバータ305の交流出力端子u,Nは、連系リアクトル306を介して低圧系統の直列変圧器308の二次側に接続され、交流出力端子v,Nは、連系リアクトル307を介して低圧系統の直列変圧器309の二次側に接続されている。
The DC output terminal of the single-phase converter 303 is connected to the DC input terminal of the single-phase three-wire inverter 305 composed of the semiconductor switching elements Q 15 to Q 20 via the DC capacitor 304.
The AC output terminals u 2 and N of the inverter 305 are connected to the secondary side of the low-voltage system series transformer 308 through the interconnection reactor 306, and the AC output terminals v 2 and N are connected through the interconnection reactor 307. And connected to the secondary side of the low-voltage system series transformer 309.

この従来技術では、インバータ305の出力電圧を、直列変圧器308,309を介して系統電圧に重畳することにより、系統の線間電圧を例えば101±6[V],202±20[V]に制御している。
また、特許文献1に記載された単相三線式インバータと同様に、n相の出力電圧指令を零とし、u相,v相の出力電圧指令を互いに180°の位相差を持つ正弦波信号としてインバータ305を制御することで、un線間電圧及びvn線間電圧をそれぞれ個別に制御可能としている。
In this prior art, the output voltage of the inverter 305 is superimposed on the system voltage via the series transformers 308 and 309, so that the line voltage of the system becomes 101 ± 6 [V], 202 ± 20 [V], for example. I have control.
Similarly to the single-phase three-wire inverter described in Patent Document 1, the n-phase output voltage command is set to zero, and the u-phase and v-phase output voltage commands are converted into sine wave signals having a phase difference of 180 ° from each other. By controlling the inverter 305, the un-line voltage and the vn line voltage can be individually controlled.

特開平7−163153号公報(段落[0007]〜[0009]、図1,図3等)Japanese Patent Laid-Open No. 7-163153 (paragraphs [0007] to [0009], FIG. 1, FIG. 3, etc.)

図3に示したインバータ部200は、単相三線式電力系統204に直接、連系されている。このため、インバータ部200の出力電圧指令には系統の定格電圧付近の値が設定される。
これに対し、図5の電圧補償装置を構成するインバータ305の出力電圧指令は、インバータ305が直列変圧器308,309を介して系統に連系されることから、零から定格電圧まで広範囲の値に設定される。このため、系統電圧が目標とする電圧範囲から大きく逸脱する場合には、インバータ305の出力電圧指令が変化する幅も大きくなる。
The inverter unit 200 shown in FIG. 3 is directly connected to the single-phase three-wire power system 204. For this reason, a value near the rated voltage of the system is set in the output voltage command of the inverter unit 200.
On the other hand, the output voltage command of the inverter 305 constituting the voltage compensator of FIG. 5 has a wide range of values from zero to the rated voltage because the inverter 305 is connected to the system via the series transformers 308 and 309. Set to For this reason, when the system voltage greatly deviates from the target voltage range, the range in which the output voltage command of the inverter 305 changes also increases.

この種の電圧補償装置におけるインバータ305のPWM制御方式として、特許文献1と同様にユニポーラ変調方式を適用した場合、出力電圧指令が小さい時には出力線間電圧波形が歪んでしまう。インバータ305の出力線間電圧は直列変圧器308,309を介して系統に重畳されるので、インバータ305の出力線間電圧の歪みによって系統電圧波形も歪み、その結果、系統に接続された周辺機器の誤動作や破損を招くという問題がある。   As a PWM control method of the inverter 305 in this type of voltage compensator, when the unipolar modulation method is applied as in Patent Document 1, when the output voltage command is small, the output line voltage waveform is distorted. Since the output line voltage of the inverter 305 is superimposed on the system via the series transformers 308 and 309, the system voltage waveform is also distorted due to distortion of the output line voltage of the inverter 305, and as a result, peripheral devices connected to the system There is a problem of causing malfunctions and damages.

そこで、本発明の解決課題は、PWM制御されるインバータの出力線間電圧波形の歪みを低減させるようにした単相三線式インバータ及び電圧補償装置を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a single-phase three-wire inverter and a voltage compensator that can reduce distortion of the output line voltage waveform of an inverter that is PWM controlled.

上記課題を解決するため、請求項1に係る単相三線式インバータは、半導体スイッチング素子を有する一相分の上下アームを三相分、並列接続してインバータブリッジを構成し、前記インバータブリッジの直流入力端子間に直流電源を接続してなるインバータ部と、
前記インバータブリッジの各相の電圧指令とキャリアとを比較して各相の半導体スイッチング素子に対する駆動信号を生成するPWM制御部であって、前記インバータブリッジの第1相の出力電圧指令を零にして第2相及び第3相の出力電圧指令を可変とし、前記第1相と前記第2相との間、及び、前記第1相と前記第3相との間の出力線間電圧をそれぞれ所定値に制御可能としたPWM制御部と、
を備えた単相三線式インバータにおいて、
前記PWM制御部は、
前記第2相及び第3相に対する出力電圧指令が小さい期間では出力線間電圧波形がダイポーラ変調波形となるように、前記第1相に対するキャリアと前記第2相及び前記第3相に対するキャリアとの間に位相差を持たせる手段を有することを特徴とする。
In order to solve the above-mentioned problem, a single-phase three-wire inverter according to claim 1 comprises an inverter bridge in which upper and lower arms for one phase each having a semiconductor switching element are connected in parallel to form an inverter bridge. An inverter unit formed by connecting a DC power source between the input terminals;
A PWM control unit that compares the voltage command of each phase of the inverter bridge with the carrier to generate a drive signal for the semiconductor switching element of each phase, and sets the output voltage command of the first phase of the inverter bridge to zero The output voltage commands for the second phase and the third phase are variable, and the output line voltages between the first phase and the second phase and between the first phase and the third phase are respectively predetermined. PWM control unit that can be controlled to a value;
In a single-phase three-wire inverter equipped with
The PWM control unit
The carrier for the first phase and the carrier for the second phase and the third phase so that the output line voltage waveform becomes a dipolar modulation waveform during a period when the output voltage command for the second phase and the third phase is small. Means is provided for providing a phase difference therebetween.

請求項2に係る単相三線式インバータは、請求項1に記載した単相三線式インバータにおいて、前記第2相及び前記第3相に対するキャリアの位相が等しいことを特徴とする。   A single-phase three-wire inverter according to a second aspect is the single-phase three-wire inverter according to the first aspect, wherein carriers of the second phase and the third phase have the same phase.

請求項3に係る単相三線式インバータは、請求項1に記載した単相三線式インバータにおいて、前記第2相に対するキャリアと前記第3相に対するキャリアとの間に位相差を持たせたことを特徴とする。   The single-phase three-wire inverter according to claim 3 is the single-phase three-wire inverter according to claim 1, wherein a phase difference is provided between the carrier for the second phase and the carrier for the third phase. Features.

請求項4に係る単相三線式インバータは、請求項1に記載した単相三線式インバータにおいて、
前記単相三線式インバータの出力電圧を検出する出力電圧検出手段を更に有し、
前記第1相に対するキャリアと前記第2相及び前記第3相に対するキャリアとの間に位相差を持たせる手段は、前記出力電圧検出手段の検出値に応じて、前記位相差を調整することを特徴とする。
The single-phase three-wire inverter according to claim 4 is the single-phase three-wire inverter according to claim 1,
An output voltage detecting means for detecting an output voltage of the single-phase three-wire inverter;
The means for giving a phase difference between the carrier for the first phase and the carrier for the second phase and the third phase adjusts the phase difference according to the detection value of the output voltage detection means. Features.

請求項5に係る電圧補償装置は、請求項1〜4の何れか1項に記載した前記単相三線式インバータの各相の交流出力端子を単相三線式電力系統に連系させ、前記単相三線式インバータの動作により前記単相三線式電力系統の電圧変動を補償することを特徴とする。   According to a fifth aspect of the present invention, there is provided a voltage compensator that connects an AC output terminal of each phase of the single-phase three-wire inverter according to any one of the first to fourth aspects to a single-phase three-wire power system. The voltage fluctuation of the single-phase three-wire power system is compensated by the operation of the phase three-wire inverter.

請求項6に係る電圧補償装置は、請求項5に記載した電圧補償装置において、前記単相三線式電力系統の電圧値を検出する系統電圧検出手段を更に有し、前記系統電圧検出手段の検出値に応じて、前記位相差を調整することを特徴とする。   A voltage compensation device according to claim 6 is the voltage compensation device according to claim 5, further comprising system voltage detection means for detecting a voltage value of the single-phase three-wire power system, and detection of the system voltage detection means. The phase difference is adjusted according to a value.

本発明によれば、中性相を除く他の二相の出力電圧指令が小さい期間では単相三線式インバータの出力線間電圧波形がダイポーラ変調波形となるようにインバータを制御することにより、出力電圧を広範囲にわたって制御する場合の制御精度を向上させて電圧波形の歪みを低減することができる。
このため、単相三線式インバータを、例えば電圧補償装置に適用して電力系統の電圧変動を補償する場合に、系統に接続された周辺機器の誤動作や破損を防止することができる。
According to the present invention, the output is controlled by controlling the inverter so that the output line voltage waveform of the single-phase three-wire inverter becomes a dipolar modulation waveform in a period in which the output voltage command of the other two phases excluding the neutral phase is small. Control accuracy when controlling the voltage over a wide range can be improved and distortion of the voltage waveform can be reduced.
For this reason, when a single-phase three-wire inverter is applied to, for example, a voltage compensator to compensate for voltage fluctuations in the power system, it is possible to prevent malfunctions and damage of peripheral devices connected to the system.

本発明の実施形態に係る単相三線式インバータの構成図である。1 is a configuration diagram of a single-phase three-wire inverter according to an embodiment of the present invention. 図1の動作を示す波形図である。It is a wave form diagram which shows the operation | movement of FIG. 特許文献1に記載された従来技術の構成図である。It is a block diagram of the prior art described in patent document 1. FIG. 図3の動作を示す波形図である。It is a wave form diagram which shows the operation | movement of FIG. 単相三線式電力系統に連系される電圧補償装置の構成図である。It is a block diagram of the voltage compensation apparatus linked | linked with a single phase three-wire type electric power system.

以下、図に沿って本発明の実施形態を説明する。
図1は、この実施形態に係る単相三線式インバータの構成図である。図1において、インバータ部200の構成は図3と同一であるため、図3と同じ部分には同一の符号を付して説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a single-phase three-wire inverter according to this embodiment. In FIG. 1, the configuration of the inverter unit 200 is the same as that in FIG. 3, and thus the same parts as those in FIG.

インバータブリッジ202の半導体スイッチング素子Q〜Qを駆動するPWM制御部3は、以下のように構成されている。
すなわち、PWM制御部3は、図3と同様にU相,N相,V相電圧指令を生成する電圧指令生成部4を備え、各相電圧指令(N相電圧指令は0)は、駆動信号生成部7を構成するU相,N相,V相のPWM制御器7U,7N,7Vにそれぞれ入力されている。
The PWM control unit 3 that drives the semiconductor switching elements Q 1 to Q 6 of the inverter bridge 202 is configured as follows.
That is, the PWM control unit 3 includes a voltage command generation unit 4 that generates U-phase, N-phase, and V-phase voltage commands, as in FIG. 3, and each phase voltage command (N-phase voltage command is 0) is a drive signal. The signals are input to U-phase, N-phase, and V-phase PWM controllers 7U, 7N, and 7V constituting the generation unit 7, respectively.

また、キャリア信号発生器5から出力されるキャリア(三角波)は、U相,V相のPWM制御器7U,7Vにそのまま入力されると共に、N相のPWM制御器7Nには、遅延回路6により所定の位相だけ遅延されて入力される。
PWM制御器7U,7N,7Vは、入力された電圧指令とキャリアとを比較して駆動信号をそれぞれ生成し、これらの駆動信号により、インバータブリッジ202の各相のスイッチング素子Q〜Qをオン・オフさせるようになっている。
なお、インバータブリッジ202の各相出力端子U,N,Vは、単相三線式電力系統に連系され、あるいは交流負荷に接続されている。
The carrier (triangular wave) output from the carrier signal generator 5 is directly input to the U-phase and V-phase PWM controllers 7U and 7V, and the N-phase PWM controller 7N is connected to the delay circuit 6 by the delay circuit 6. Input is delayed by a predetermined phase.
PWM controller 7U, 7N, 7V is a driving signal generated respectively by comparing the voltage command and the carrier input, these driving signals, the phases of the inverter bridge 202 of the switching element Q 1 to Q 6 It is designed to be turned on and off.
Each phase output terminal U, N, V of inverter bridge 202 is connected to a single-phase three-wire power system or connected to an AC load.

図2は、この実施形態の動作を示す波形図である。
図2(a)はPWM制御部3における各相の電圧指令及びキャリアを示している。図4(a)と同様に、U相電圧指令及びV相電圧指令は互いに180°の位相差を持つ正弦波信号であり、N相電圧指令は零となっている。また、U相及びV相のキャリアは同一であるのに対し、N相のキャリアは、前記遅延回路6の作用により、U相及びV相のキャリアに対して例えば45度の位相差を持たせてある。
FIG. 2 is a waveform diagram showing the operation of this embodiment.
FIG. 2A shows voltage commands and carriers for each phase in the PWM control unit 3. Similar to FIG. 4A, the U-phase voltage command and the V-phase voltage command are sine wave signals having a phase difference of 180 °, and the N-phase voltage command is zero. The U-phase and V-phase carriers are the same, whereas the N-phase carrier has a phase difference of, for example, 45 degrees with respect to the U-phase and V-phase carriers due to the action of the delay circuit 6. It is.

図2(b)はインバータ部200の出力相電圧であり、直流電源201の電圧の1/2の電位点に対する電圧である。この実施形態では、U相及びV相のキャリアとN相のキャリアとの位相差により、N相の出力電圧とU相及びV相の出力電圧との間には位相差が生じている。   FIG. 2B shows an output phase voltage of the inverter unit 200, which is a voltage with respect to a potential point that is ½ of the voltage of the DC power supply 201. In this embodiment, due to the phase difference between the U-phase and V-phase carriers and the N-phase carrier, there is a phase difference between the N-phase output voltage and the U-phase and V-phase output voltages.

図2(c)は、インバータ部200の出力線間電圧(UN間出力電圧,VN間出力電圧)を示している。
図2(b)に示したN相の出力電圧とU相及びV相の出力電圧との間の位相差に起因して、図2(c)では、UN間出力電圧,VN間出力電圧にユニポーラ変調期間とダイポーラ変調期間とが生じている。そして、U相電圧指令,V相電圧指令に対応して、ダイポーラ変調期間においては、UN間出力電圧及びVN間出力電圧の平均値が何れも小さく(零電圧付近に)なっていることが分かる。
FIG. 2C shows the output line voltage (UN output voltage, VN output voltage) of the inverter unit 200.
Due to the phase difference between the N-phase output voltage and the U-phase and V-phase output voltages shown in FIG. 2B, in FIG. A unipolar modulation period and a dipolar modulation period occur. In correspondence with the U-phase voltage command and the V-phase voltage command, the average value of the output voltage between UN and the output voltage between VN is both small (near zero voltage) during the dipolar modulation period. .

言い換えれば、ダイポーラ変調方式では出力線間電圧の平均値を小さく制御可能であるため、出力電圧指令が小さい期間にダイポーラ変調が行われるようにU相及びV相のキャリアとN相のキャリアとの位相差を適宜設定すれば、インバータ部200の出力線間電圧を微小値に制御する精度を高めることができる。   In other words, since the average value of the output line voltage can be controlled to be small in the dipolar modulation method, the U-phase and V-phase carriers and the N-phase carrier are controlled so that dipolar modulation is performed during a period when the output voltage command is small. If the phase difference is appropriately set, the accuracy of controlling the output line voltage of the inverter unit 200 to a minute value can be increased.

これにより、例えばインバータ部200を電圧補償装置として単相三線式電力系統に連系させる際に、インバータ部200のU相及びV相に対する出力電圧指令が零から系統電圧の定格値までの広範囲にわたるような場合であっても、出力線間電圧の高精度な制御が可能になる。   Thus, for example, when the inverter unit 200 is connected to a single-phase three-wire power system as a voltage compensation device, the output voltage command for the U phase and the V phase of the inverter unit 200 covers a wide range from zero to the rated value of the system voltage. Even in such a case, the output line voltage can be controlled with high accuracy.

なお、図1の実施形態では、遅延回路6を用いてU相及びV相のキャリアとN相のキャリアとの間に位相差を持たせているが、遅延回路6を用いずに、キャリア信号発生器5とは別個に設けたキャリア信号発生器により、U相及びV相のキャリアに対して位相差を有するN相のキャリアを発生させても良い。更に、キャリア信号発生器5による単一のキャリア信号と遅延時間(位相差)が異なる二つの遅延回路とを用いて、U相,V相,N相のキャリアの間に順次、位相差を持たせても良い。   In the embodiment of FIG. 1, the delay circuit 6 is used to provide a phase difference between the U-phase and V-phase carriers and the N-phase carrier. An N-phase carrier having a phase difference with respect to the U-phase and V-phase carriers may be generated by a carrier signal generator provided separately from the generator 5. Further, using a single carrier signal by the carrier signal generator 5 and two delay circuits having different delay times (phase differences), a phase difference is sequentially provided between U-phase, V-phase, and N-phase carriers. May be allowed.

要するに、U相及びV相のキャリアとN相のキャリアとの間に位相差を持たせ、あるいは、U相,V相,N相のキャリアの間に順次、位相差を持たせることにより、結果として出力線間電圧(UN間出力電圧,VN間出力電圧)の波形がダイポーラ変調波形となるようにインバータ部200をPWM制御すれば良い。   In short, a result is obtained by providing a phase difference between the U-phase and V-phase carriers and the N-phase carrier, or by sequentially providing a phase difference between the U-phase, V-phase, and N-phase carriers. As described above, the inverter unit 200 may be PWM-controlled so that the waveform of the output line voltage (UN output voltage, VN output voltage) becomes a dipolar modulation waveform.

ここで、例えば特開平7−274517号公報には、同一編成の電気車に搭載され、パンタグラフから共通の変圧器を介して交流電力が供給される複数台のPWMコンバータにおいて、各コンバータに対するキャリアに順次、位相差を持たせるようにした制御装置が開示されている。
しかしながら、この公知技術は、各コンバータのスイッチングのタイミングをずらすことにより、各コンバータに流れる電流波形の山,谷を相殺して高調波成分を低減させるものであり、本発明のように、単相三線式インバータの出力線間電圧波形の一部がダイポーラ変調波形となるように制御する技術とは着想が異なっている。
Here, for example, in Japanese Patent Application Laid-Open No. 7-274517, in a plurality of PWM converters mounted on electric vehicles of the same organization and supplied with AC power from a pantograph through a common transformer, carriers for each converter are used. A control device that sequentially provides a phase difference is disclosed.
However, this known technique reduces the harmonic component by offsetting the peaks and valleys of the current waveform flowing through each converter by shifting the switching timing of each converter. The idea is different from the technique for controlling a part of the output line voltage waveform of the three-wire inverter to be a dipolar modulation waveform.

本発明に係る単相三線式インバータは、単相三線式電力系統に連系される電圧補償装置や分散型発電システムの電源装置として利用することができる。   The single-phase three-wire inverter according to the present invention can be used as a voltage compensator connected to a single-phase three-wire power system or a power supply device for a distributed power generation system.

3:PWM制御部
4:電圧指令生成部
5:キャリア信号発生器
6:遅延回路
7:駆動信号生成部
7U,7N,7V:PWM制御器
200:インバータ部
201:直流電源
202:インバータブリッジ
〜Q:半導体スイッチング素子
U:U相出力端子
N:N相出力端子
V:V相出力端子
3: PWM control unit 4: Voltage command generation unit 5: Carrier signal generator 6: Delay circuit 7: Drive signal generation unit 7U, 7N, 7V: PWM controller 200: Inverter unit 201: DC power supply 202: Inverter bridge Q 1 To Q 6 : Semiconductor switching element U: U-phase output terminal N: N-phase output terminal V: V-phase output terminal

Claims (6)

半導体スイッチング素子を有する一相分の上下アームを三相分、並列接続してインバータブリッジを構成し、前記インバータブリッジの直流入力端子間に直流電源を接続してなるインバータ部と、
前記インバータブリッジの各相の電圧指令とキャリアとを比較して各相の半導体スイッチング素子に対する駆動信号を生成するPWM制御部であって、前記インバータブリッジの第1相の出力電圧指令を零にして第2相及び第3相の出力電圧指令を可変とし、前記第1相と前記第2相との間、及び、前記第1相と前記第3相との間の出力線間電圧をそれぞれ所定値に制御可能としたPWM制御部と、
を備えた単相三線式インバータにおいて、
前記PWM制御部は、
前記第2相及び第3相に対する出力電圧指令が小さい期間では出力線間電圧波形がダイポーラ変調波形となるように、前記第1相に対するキャリアと前記第2相及び前記第3相に対するキャリアとの間に位相差を持たせる手段を有することを特徴とする単相三線式インバータ。
An inverter part formed by connecting an upper and lower arm for one phase having a semiconductor switching element for three phases in parallel to form an inverter bridge, and connecting a DC power source between DC input terminals of the inverter bridge;
A PWM control unit that compares the voltage command of each phase of the inverter bridge with the carrier to generate a drive signal for the semiconductor switching element of each phase, and sets the output voltage command of the first phase of the inverter bridge to zero The output voltage commands for the second phase and the third phase are variable, and the output line voltages between the first phase and the second phase and between the first phase and the third phase are respectively predetermined. PWM control unit that can be controlled to a value;
In a single-phase three-wire inverter equipped with
The PWM control unit
The carrier for the first phase and the carrier for the second phase and the third phase so that the output line voltage waveform becomes a dipolar modulation waveform during a period when the output voltage command for the second phase and the third phase is small. A single-phase three-wire inverter characterized by having means for providing a phase difference therebetween.
請求項1に記載した単相三線式インバータにおいて、
前記第2相及び前記第3相に対するキャリアの位相が等しいことを特徴とする単相三線式インバータ。
In the single-phase three-wire inverter according to claim 1,
A single-phase three-wire inverter characterized in that the phases of carriers for the second phase and the third phase are equal.
請求項1に記載した単相三線式インバータにおいて、
前記第2相に対するキャリアと前記第3相に対するキャリアとの間に位相差を持たせたことを特徴とする単相三線式インバータ。
In the single-phase three-wire inverter according to claim 1,
A single-phase three-wire inverter having a phase difference between a carrier for the second phase and a carrier for the third phase.
請求項1に記載した単相三線式インバータにおいて、
前記単相三線式インバータの出力電圧を検出する出力電圧検出手段を更に有し、
前記第1相に対するキャリアと前記第2相及び前記第3相に対するキャリアとの間に位相差を持たせる手段は、前記出力電圧検出手段の検出値に応じて、前記位相差を調整することを特徴とする単相三線式インバータ。
In the single-phase three-wire inverter according to claim 1,
An output voltage detecting means for detecting an output voltage of the single-phase three-wire inverter;
The means for giving a phase difference between the carrier for the first phase and the carrier for the second phase and the third phase adjusts the phase difference according to the detection value of the output voltage detection means. Characteristic single-phase three-wire inverter.
請求項1〜4の何れか1項に記載した前記単相三線式インバータの各相の交流出力端子を単相三線式電力系統に連系させ、前記単相三線式インバータの動作により前記単相三線式電力系統の電圧変動を補償することを特徴とする電圧補償装置。   The AC output terminal of each phase of the single-phase three-wire inverter according to any one of claims 1 to 4 is connected to a single-phase three-wire power system, and the single-phase three-wire inverter is operated to operate the single-phase three-wire inverter. A voltage compensation device that compensates for voltage fluctuations in a three-wire power system. 請求項5に記載した電圧補償装置において、
前記単相三線式電力系統の電圧値を検出する系統電圧検出手段を更に有し、
前記系統電圧検出手段の検出値に応じて、前記位相差を調整することを特徴とする電圧補償装置。
In the voltage compensation device according to claim 5,
System voltage detecting means for detecting a voltage value of the single-phase three-wire power system,
The voltage compensator, wherein the phase difference is adjusted according to a detection value of the system voltage detection means.
JP2017119620A 2017-06-19 2017-06-19 Single-phase three-wire inverter and voltage compensation device Active JP6863117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017119620A JP6863117B2 (en) 2017-06-19 2017-06-19 Single-phase three-wire inverter and voltage compensation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017119620A JP6863117B2 (en) 2017-06-19 2017-06-19 Single-phase three-wire inverter and voltage compensation device

Publications (2)

Publication Number Publication Date
JP2019004657A true JP2019004657A (en) 2019-01-10
JP6863117B2 JP6863117B2 (en) 2021-04-21

Family

ID=65008144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017119620A Active JP6863117B2 (en) 2017-06-19 2017-06-19 Single-phase three-wire inverter and voltage compensation device

Country Status (1)

Country Link
JP (1) JP6863117B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163153A (en) * 1993-12-08 1995-06-23 Yaskawa Electric Corp Control method for single-phase three-wire inverter
JPH08126368A (en) * 1994-10-24 1996-05-17 Yaskawa Electric Corp Control method for inverter driven ac motor
JPH08140360A (en) * 1994-11-11 1996-05-31 Nishimu Denshi Kogyo Kk Interconnected single-phase three-wire inverter device
JP2014027728A (en) * 2012-07-25 2014-02-06 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
JP2014087160A (en) * 2012-10-23 2014-05-12 Panasonic Corp Power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07163153A (en) * 1993-12-08 1995-06-23 Yaskawa Electric Corp Control method for single-phase three-wire inverter
JPH08126368A (en) * 1994-10-24 1996-05-17 Yaskawa Electric Corp Control method for inverter driven ac motor
JPH08140360A (en) * 1994-11-11 1996-05-31 Nishimu Denshi Kogyo Kk Interconnected single-phase three-wire inverter device
JP2014027728A (en) * 2012-07-25 2014-02-06 Toshiba Mitsubishi-Electric Industrial System Corp Power conversion device
JP2014087160A (en) * 2012-10-23 2014-05-12 Panasonic Corp Power converter

Also Published As

Publication number Publication date
JP6863117B2 (en) 2021-04-21

Similar Documents

Publication Publication Date Title
EP2722978B1 (en) System and method for common-mode elimination in a multi-level converter
US7495410B2 (en) Systems and methods for improved motor drive power factor control
US8730702B2 (en) Very high efficiency three phase power converter
WO2017221339A1 (en) Power conversion device
KR102009512B1 (en) Apparatus and method for generating offset voltage of 3-phase inverter
US9755551B2 (en) Power conversion device
US20110134666A1 (en) Redundant control method for a polyphase converter with distributed energy stores
TW200924366A (en) Matrix converter
WO2017119214A1 (en) Electric power converting device
KR100734050B1 (en) Feed-back control method
EP3382870A1 (en) Inverter apparatus, air conditioner, method of controlling inverter apparatus, and program
CN111034020B (en) Power conversion device and electric power steering device
JPH07163153A (en) Control method for single-phase three-wire inverter
US10003250B2 (en) Modular converter circuit having sub-modules, which are operated in linear operation
JP2014096906A (en) Current source power converter
JP4664166B2 (en) Multi-relative multi-phase power converter
JP6863117B2 (en) Single-phase three-wire inverter and voltage compensation device
WO2018179234A1 (en) H-bridge converter and power conditioner
JPH11252992A (en) Power converter
JP4448294B2 (en) Power converter
JP2014054152A (en) Power conversion device and power control device
AU2021259198B2 (en) Method for controlling a multilevel inverter with a split DC link
JP2005295625A (en) Power converter
WO2024042942A1 (en) Drive control apparatus and drive control method for rotating electrical machine
EP3460992B1 (en) Inverter for an electric machine, electric machine for a vehicle and method for operating an inverter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210315

R150 Certificate of patent or registration of utility model

Ref document number: 6863117

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250