CN103259444A - 一种逆变电源装置 - Google Patents

一种逆变电源装置 Download PDF

Info

Publication number
CN103259444A
CN103259444A CN2012100356996A CN201210035699A CN103259444A CN 103259444 A CN103259444 A CN 103259444A CN 2012100356996 A CN2012100356996 A CN 2012100356996A CN 201210035699 A CN201210035699 A CN 201210035699A CN 103259444 A CN103259444 A CN 103259444A
Authority
CN
China
Prior art keywords
switching device
circuit
output
inverter
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2012100356996A
Other languages
English (en)
Inventor
耿后来
张海明
倪华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sungrow Power Supply Co Ltd
Original Assignee
Sungrow Power Supply Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sungrow Power Supply Co Ltd filed Critical Sungrow Power Supply Co Ltd
Priority to CN2012100356996A priority Critical patent/CN103259444A/zh
Publication of CN103259444A publication Critical patent/CN103259444A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

本发明公开了一种逆变电源装置,用于将直流电源输出的直流电转换成交流电,包括前级电流馈电电路和后级逆变电路,所述电流馈电电路包括:依次串接的全桥变换器、隔离变压器和整流电路;所述后级逆变电路为双BUCK逆变电路。利用本发明逆变电源装置,可以在保证能量转换效率的情况下,降低控制的复杂度,方便无功调节和功率扩容。

Description

一种逆变电源装置
技术领域
本发明涉及电压转换技术领域,具体涉及一种逆变电源装置。
背景技术
目前,在光伏发电领域,还是以一体式并网发电为主。光伏并网发电系统通过并网逆变器将太阳能电池板的直流电转换成与电网电压同频、同相的交流电并输送给电网,因此,并网逆变器是光伏并网发电系统的核心设备,它的可靠性、高效性和安全性会影响到整个发电系统,直接关系到电站发电量及运行稳定。
光伏并网微逆变器(简称微逆变器)与单个光伏组件相连,可以将光伏组件输出的直流电直接变换成交流电并传输到电网,并保证输出电流与电网电压频率、相位完全一致。在两级式光伏并网发电系统中,并网逆变器只需进行逆变控制,光伏阵列最大功率点跟踪(MPPT)由前级DC/DC变换器完成,并网逆变器通过控制DC/DC变换器的输出电压实现系统功率平衡。
在现有技术中,微逆变器拓扑结构大部分以反激式前级结合后级工频换向来实现,如图1所示。其中,前级中的开关管Q1通过软开关进行控制,后级中的四个开关管T1-T4工频切换将电容C1端能量传输到电网,图2是图1所示微逆变器中间电容C1两端的电压波形。
由图2可以看出,传统微型逆变器前级反激式电路输出的不是恒定的直流电,无法实现无功调节。另外,在这种结构的微逆变器中,变压器T不仅要用于储能,而且还要用于传输能量,因此需要开气隙,故前级反激式电路无法将功率做大,即使功率做大,效率也很低。而且,为了实现软开关,不仅需要选用较高性能的控制器,而且设计上比较复杂,有时还需要增加一些辅助电路。
发明内容
本发明实施例针对上述现有技术存在的问题,提供一种逆变电源装置,在保证能量转换效率的情况下,降低控制的复杂度,方便功率扩容。
为此,本发明实施例提供如下技术方案:
一种逆变电源装置,用于将直流电源输出的直流电转换成交流电,包括前级电流馈电电路和后级逆变电路,所述电流馈电电路包括:依次串接的全桥变换器、隔离变压器和整流电路;所述后级逆变电路为双BUCK逆变电路。
优选地,所述全桥变换器包括:第一电感、第一开关器件、第二开关器件、第三开关器件和第四开关器件;
第一电感的第一端连接所述直流电源的正端,第一电感的第二端连接第一开关器件的第一端和第三开关器件的第一端,第二开关器件的第二端和第四开关器件的第二端连接所述直流电源的负端;
第一开关器件的第二端与第二开关器件的第一端一起连接到所述隔离变压器的原边的同名端,第三开关器件的第二端与第四开关器件的第一端一起连接到所述隔离变压器的原边的异名端。
优选地,所述第一开关器件和第四开关器件以第一脉冲信号触发动作,第二开关器件和第三开关器件以第二脉冲信号触发动作,所述第一脉冲信号和所述第二脉冲不同,并且在任意时刻,所述第一开关器件和第二开关器件中有至少一个导通。
优选地,所述整流电路为全波整流电路,包括:四个二极管,其中第一二极管的阳极和第三二极管的阴极一起连接到所述隔离变压器的副边的同名端,第二二极管的阳极和第四二极管的阴极一起连接到所述隔离变压器的副边的异名端;
第一二极管的阴极与第二二极管的阴极相连并作为所述电流馈电电路的第一输出端;
第三二极管的阳极与第四二极管的阳极相连并作为所述电流馈电电路的第二输出端。
优选地,所述双BUCK逆变电路包括:
储能电路,连接在所述电流馈电电路的两个输出端之间,用于滤除所述电流馈电电路输出电压中的高频分量;
第一BUCK电路和第二BUCK电路,所述第一BUCK电路和第二BUCK电路串联连接后并联在所述电流馈电电路的两个输出端之间,所述第一BUCK电路与所述第二BUCK电路分别与所述电流馈电电路的一个输出端相连,所述第一BUCK电路和第二BUCK电路用于将所述电流馈电电路输出的直流电压转换为较低的直流电压并输出;
全桥逆变电路,分别与所述第一BUCK电路和第二BUCK电路相连,用于将所述第一BUCK电路和第二BUCK电路输出的直流电压转换为交流电压。
优选地,所述储能电路包括:
串联连接的第一电容和第二电容,所述第一电容和第二电容的连接处形成中点电位并输出;
所述第一BUCK电路和所述第二BUCK电路的串联连接点与所述中点电位相连。
优选地,所述第一BUCK电路包括:第九开关器件,第五二极管和第二电感,其中,第九开关器件的第一端连接所述电流馈电电路的第一输出端,第九开关器件的第二端连接第二电感的第一端和第五二极管的阴极,第二电感的第二端作为所述第一BUCK电路的输出端连接到所述全桥逆变电路;
所述第二BUCK电路包括:第十开关器件,第六二极管和第三电感,其中,第十开关器件的第二端连接所述电流馈电电路的第二输出端,第十开关器件的第一端连接第三电感的第一端和第六二极管的阳极,第三电感的第二端作为所述第二BUCK电路的输出端连接到所述全桥逆变电路;
第五二极管的阳极与第六二极管的阴极相连,用于获得所述储能电路输出的中点电位。
优选地,所述全桥逆变电路包括:四个开关器件,其中:
第五开关器件的第一端和第六开关器件的第一端一起连接到所述第一BUCK电路的输出端;
第七开关器件的第二端和第八开关器件的第二端一起连接到所述第二BUCK电路的输出端;
第五开关器件的第二端与第七开关器件的第一端相连作为所述逆变电源装置的一个输出端,第六开关器件的第二端与第八开关器件的第一端相连作为所述逆变电源装置的另一个输出端。
优选地,在一个工作周期内的前半周期,第九开关器件和第十开关器件以同步的高频脉冲信号触发动作,第五开关器件和第八开关器件导通,第六开关器件和第七开关器件关断;在一个工作周期内的后半周期,第九开关器件和第十开关器件以同步的高频脉冲信号触发动作,第五开关器件和第八开关器件关断,第六开关器件和第七开关器件导通。
优选地,所述双BUCK逆变电路还包括:
滤波电路,连接在所述第一BUCK电路的输出端与所述第二BUCK电路的输出端之间,用于滤除所述第一BUCK电路和第二BUCK电路输出的直流电压中的高频分量。
本发明实施例提供的逆变电源装置,采用前级全桥馈电和后级双Buck加全桥逆变的两级拓扑结构,不仅适用于微逆变器的应用场合,而且还适用于小功率带隔离应用的场合。前级采用电流馈电方式,相对于现有技术中反激式前级拓扑结构而言,更利于功率扩容。而且,前级电流馈电拓扑结构中的开关器件不需要考虑直通的问题,无需死区控制,不仅控制更简单,而且由于具有瞬时阻抗很高的电感的存在,使得开关器件可以实现零电压导通和关断,减少了开关损耗,提高了整体效率。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。
图1是现有技术中微逆变器拓扑结构示意图;
图2是图1所示微逆变器中间电容C1两端的电压波形;
图3是本发明实施例逆变电源装置的原理示意图
图4是本发明实施例逆变电源装置的一种具体拓扑结构示意图;
图5是本发明实施例中开关器件S1至S4的驱动波形及电感电流及变压器原边电压电流波形示意图;
图6是本发明实施例中前级电流馈电电路在图5所示驱动信号下第一阶段时的电流回路示意图;
图7是本发明实施例中前级电流馈电电路在图5所示驱动信号下第二阶段时的电流回路示意图;
图8是本发明实施例中前级电流馈电电路在图5所示驱动信号下第三阶段时的电流回路示意图;
图9是本发明实施例中前级电流馈电电路在图5所示驱动信号下第四阶段时的电流回路示意图;
图10是本发明实施例中后级逆变电路工作过程中各开关器件的驱动信号示意图;
图11是本发明实施例中后级逆变电路在电网电压正半周期PWM脉冲触发导通时的电流回路示意图;
图12是本发明实施例中后级逆变电路在电网电压正半周期PWM脉冲关断时的电流回路示意图;
图13是本发明实施例中后级逆变电路在电网电压负半周期PWM脉冲触发导通时的电流回路示意图;
图14是本发明实施例中后级逆变电路在电网电压负半周期PWM脉冲关断时的电流回路示意图。
具体实施方式
为了使本技术领域的人员更好地理解本发明实施例的方案,下面结合附图和实施方式对本发明实施例作进一步的详细说明。
如图3所示,是本发明实施例逆变电源装置的原理示意图。
该逆变电源装置用于将直流电源30输出的直流电转换成交流电,包括前级电流馈电电路31和后级逆变电路32。其中,所述电流馈电电路31包括:依次串接的全桥变换器311、隔离变压器312和整流电路313;所述后级逆变电路32具体为双BUCK逆变电路。
所述双BUCK逆变电路32的一种具体结构包括:储能电路321、第一BUCK电路322、第二BUCK电路323和全桥逆变电路324。其中:
储能电路321连接在所述电流馈电电路31的两个输出端之间,用于滤除所述电流馈电电路31输出电压中的高频分量。
第一BUCK电路322和第二BUCK电路323串联连接后并联在所述电流馈电电路31的两个输出端之间,所述第一BUCK电路322与所述第二BUCK电路323分别与所述电流馈电电路31的一个输出端相连,所述第一BUCK电路322和第二BUCK电路323用于将所述电流馈电电路输出的直流电压转换为较低的直流电压并输出。
上述第一BUCK电路322和第二BUCK电路323的串联连接点与储能电路321输出的中点电位相连。
全桥逆变电路324分别与所述第一BUCK电路322和第二BUCK电路323相连,用于将所述第一BUCK电322路和第二BUCK电路323输出的直流电压转换为交流电压。
需要说明的是,在该实施例中,还可进一步包括:滤波电路(未图示),连接在所述第一BUCK电路的输出端与所述第二BUCK电路的输出端之间,用于滤除所述第一BUCK电路和第二BUCK电路输出的直流电压中的高频分量。所述输出滤波电路可以是L型,LC型、LCL型等拓扑结构。
图4是本发明实施例逆变电源装置的一种具体拓扑结构示意图。
在该实施例中,电流馈电电路31中的全桥变换器包括:第一电感L1、第一开关器件S1、第二开关器件S2、第三开关器件S3和第四开关器件S4。其中:
第一电感L1的第一端连接直流电源30的正端,第一电感L1的第二端连接第一开关器件S1的第一端和第三开关器件S3的第一端,第二开关器件S2的第二端和第四开关器件S4的第二端连接直流电源30的负端。
第一开关器件S1的第二端与第二开关器件S2的第一端一起连接到隔离变压器T的原边的同名端,第三开关器件S3的第二端与第四开关器件S4的第一端一起连接到隔离变压器T的原边的异名端。
在该实施例中,电流馈电电路31中的整流电路为全波整流电路,包括:四个二极管,分别是第一二极管D1、第二二极管D2、第三二极管D3和第四二极管D4。其中:
第一二极管D1的阳极和第三二极管D3的阴极一起连接到隔离变压器T的副边的同名端,第二二极管D2的阳极和第四二极管D4的阴极一起连接到隔离变压器T的副边的异名端;
第一二极管D1的阴极与第二二极管D2的阴极相连,其连接点作为所述电流馈电电路31的第一输出端;
第三二极管D3的阳极与第四二极管D4的阳极相连,其连接点作为所述电流馈电电路31的第二输出端。
在该实施例中,后级逆变电路32中串联连接的第一电容C1和第二电容C2构成上述储能电路,第一电容C1的一端连接所述电流馈电电路31的第一输出端,另一端与第二电容C2相连,第二电容C2的一端连接所述电流馈电电路31的第二输出端,另一端与第一电容C1相连,第一电容C1和第二电容C2的连接处形成上述中点电位并输出。
需要说明的是,上述第一电容C1和第二电容C2可采用结构对称的电容,电气性能相同,串联后并接在电流馈电电路31的两个输出端之间,起到吸收直流母线中电压纹波和储能的作用;第一电容C1和第二电容C2的连接处形成直流电源电压的中点电位,起到电压箝位的作用,可有效抑制共模漏电流,提高能量转换效率。
第九开关器件S9、第五二极管D5和第二电感L2构成上述第一BUCK电路。其中,第九开关器件S9的第一端连接所述电流馈电电路31的第一输出端,第九开关器件S9的第二端连接第二电感L2的第一端和第五二极管D5的阴极,第二电感L2的第二端作为所述第一BUCK电路的输出端连接到所述全桥逆变电路。
第十开关器件S10、第六二极管D6和第三电感L3构成上述第二BUCK电路。其中,第十开关器件S10的第一端连接所述电流馈电电路31的第二输出端,第十开关器件S10的第二端连接第三电感L3的第一端和第六二极管D6的阳极,第三电感L3的第二端作为所述第二BUCK电路的输出端连接到所述全桥逆变电路。
第五二极管D5的阳极与第六二极管D6的阴极相连,用于获得所述储能电路输出的中点电位。
第五开关器件S5、第六开关器件S6、第七开关器件S7和第八开关器件S8构成上述全桥逆变电路。
在该实施例中,每个开关器件分别具有一第一端和一第二端。其中:
第五开关器件S5的第一端和第六开关器件S6的第一端一起连接到所述第一BUCK电路的输出端。
第七开关器件S7的第二端和第八开关器件S8的第二端一起连接到所述第二BUCK电路的输出端。
第五开关器件S5的第二端与第七开关器件S7的第一端相连作为所述逆变电源装置的一个输出端,第六开关器件S6的第二端与第八开关器件S8的第一端相连作为所述逆变电源装置的另一个输出端。
上述第一开关器件S1至第十开关器件S10可以是MOSFET,相应地,上述开关器件的第一端是指MOSFET的D极,第二端是指MOSFET的S极。
上述第一开关器件S1至第十开关器件S10也可以是IGBT,相应地,上述开关器件的第一端是指IGBT的集电极,第二端是指IGBT的发射极。
上述直流电源30可以是一发电机,比如太阳能发电机。
在该实施例中,后级逆变电路中的滤波电路具体为第三电容C3,其两端分别与第二电感L2的第二端和第三电感L3的第二端相连。由于第一电容C1和第二电容C2的存在,第三电容C3可以选取容值较小的电容,例如薄膜电容,寿命长,增加了逆变器的可靠性和寿命。
下面结合图4对本发明实施例逆变电源装置中前级电流馈电电路的工作原理做详细说明。
如图5所示,是开关器件S1至S4的驱动波形及电感电流及变压器原边电压电流波形示意图。
由图5可以看出,第一开关器件S1和第四开关器件S4以第一脉冲信号触发动作,第二开关器件S2和第三开关器件S3以第二脉冲信号触发动作,所述第一脉冲信号和所述第二脉冲不同,并且在任意时刻,所述第一开关器件S1和第二开关器件S2中有至少一个导通。
当第一开关器件S1、第四开关器件S4导通、第二开关器件S2、第三开关器件S3关断时,流经第一电感L1的电流i1经变压器T原边、第一开关器件S1、第四开关器件S4构成回路,同时第一二极管D1、第四二极管D4以及变压器的副边构成回路,传递到负载端。
当第二开关器件S2、第三开关器件S3导通,第一开关器件S1、第四开关器件S4关断时,第二电感L2储能,流经第一电感L1的电流i1经变压器T原边、第二开关器件S2、第三开关器件S3构成回路,同时第二二极管D2、第三二极管D3以及变压器的副边构成回路,传递到负载端。
当第一开关器件S1至第四开关器件S4同时导通时,第一电感L1直接接在直流电源PV两端,处于储能状态,电流i1线性增长。此时变压器T一次侧短路,不向二次侧传递能量,负载端仅靠电容C(电容C可以看作是电容C1和电容C2的等效电容)放电维持。
本发明实施例中前级电流馈电电路的一个工作周期分为四个阶段,如图5所示,从t0开始,到t4结束。下面分别对这四个阶段进行详细说明。
第一阶段t0-t1:在t0时刻,第二开关器件S2、第三开关器件S3关断。该阶段第一开关器件S1和第四开关器件S4处于导通状态,第二开关器件S2和第三开关器件S3处于关断状态。变压器T二次侧、第一二极管D1、第四二极管D4导通,第二二极管D2、第三二极管D3反向截止。能量由变压器T传递到负载,并给电容C充电。
在第一阶段的电流回路如图6所示,具体如下:
变压器一次侧电流回路:PV→L1→S1→T→S4→PV;
变压器二次侧电流回路:T→D1→C及负载→D4→T。
第二阶段t1-t2:在t1时刻,第二开关器件S2、第三开关器件S3导通,此时,第一开关器件S1至第四开关器件S4均处于导通状态;第一电感L1直接接在直流电源PV两端,流经第一电感L1的电流i1线性增长,变压器T一次绕组被第二开关器件S2、第四开关器件S4短路,无能量向二次侧传递。二极管D1、D4、D2、D3均反向截止,负载侧由电容C放电维持。
在第二阶段的电流回路如图7所示,具体如下:
变压器一次侧电流回路:PV→L1→S1及S3→S2及S4→PV;
变压器二次侧电流回路:C→负载→C。
第三阶段t2-t3:在t2时刻,第一开关器件S1、第四开关器件S4关断。该阶段第二开关器件S2和第三开关器件S3处于导通状态,第一开关器件S1和第四开关器件S4处于关断状态。变压器T二次侧、第二二极管D2、第三二极管D3导通,第一二极管D1、第四二极管D4反向截止。能量由变压器T传递到负载,并给电容C充电。
在第三阶段的电流回路如图8所示,具体如下:
变压器一次侧电流回路:PV→L1→S3→T→S2→PV;
变压器二次侧电流回路:T→D2→C及负载→D3→T。
第四阶段t3-t4:在t3时刻,第一开关器件S1、第四开关器件S4开通,此时第一开关器件S1至第四开关器件S4均处于导通状态。第一电感L1直接接在直流电源PV两端,流经第一电感L1的电流i1线性增长,变压器T一次绕组被第一开关器件S1、第二开关器件S2短路,无能量向二次侧传递。二极管D1、D4、D2、D3均反向截止,负载侧由电容C放电维持。
在第四阶段的电流回路如图9所示,具体如下:
变压器一次侧电流回路:PV→L1→S1及S3→S2及S4→PV;
变压器二次侧电流回路:C→负载→C。
上述t0-t4为一个完整周期,之后的电路状态重复之前的四个阶段。
需要说明的是,上述储能电容C可以看作是后级逆变电路中两个储能电容C1、C2的等效电容。
下面继续结合图4对本发明实施例逆变电源装置中后级逆变电路的工作原理做详细说明。
后级逆变电路的一个工作周期由前半周期和后半周期组成,对应的逆变电路在一个工作周期内的工作过程分为两个阶段,分别是电网电压为正时的工作阶段和电网电压为负时的工作阶段。
一个工作周期中,后级逆变电路中各开关器件的一种驱动信号波形如图10所示。
在第一阶段0~T/2(T表示一个开关周期,即电网电压信号周期),对应于电网电压为正时的工作阶段,第九开关器件S9和第十开关器件S10以同步的高频脉冲信号触发动作,第五开关器件S5和第八开关器件S8的驱动信号保持高电平,处于导通状态,第六开关器件S6和第七开关器件S7的驱动信号保持低电平,处于关断状态。
在该阶段,当第九开关器件S9和第十开关器件S10导通时,第五二极管D5和第六二极管D6承受反向电压,处于阻断状态,电流回路为:Vdc+→S9→L2→S5→AC→S8→L3→S10→Vdc-,如图11所示。
在该阶段,当第九开关器件S9和第十开关器件S10关断时,第二电感L2和第三电感L3中的电流不能突变,第五二极管D5和第六二极管D6导通,形成续流回路:L2→S5→AC→S8→L3→D6→D5→L2,如图12所示。
在第二阶段T/2~T,对应于电网电压为负时的工作阶段,第九开关器件S9和第十开关器件S10以同步的高频脉冲信号触发动作,第五开关器件S5和第八开关器件S8的驱动信号保持低电平,处于关断状态,第六开关器件S6和第七开关器件S7的驱动信号保持高电平,处于导通状态。
在该阶段,当第九开关器件S9和第十开关器件S10导通时,第五二极管D5和第六二极管D6承受反向电压,处于阻断状态,电流回路为:Vdc+→S9→L2→S6→AC→S7→L3→S10→Vdc-,如图13所示。
在该阶段,当第九开关器件S9和第十开关器件S10关断时,第二电感L2和第三电感L3中的电流不能突变,第五二极管D5和第六二极管D6导通,形成续流回路:L2→S6→AC→S7→L3→D6→D5→L2,如图14所示。
上述高频脉冲信号可以是PWM脉冲信号。
需要说明的是,本发明实施例中的前级电流馈电路和后级逆变电路可以独立工作,换言之,前级开关器件S1至开关器件S4的驱动与后级开关器件的驱动可以独立控制,互不影响。
由上述工作过程可以看出,本发明实施例提供的逆变电源装置,采用前级全桥馈电和后级双BUCK加全桥逆变的两级拓扑结构,不仅适用于微逆变器的应用场合,而且还适用于小功率带隔离应用的场合。前级采用电流馈电方式,相对于现有技术中反激式前级拓扑结构而言,更利于功率扩容。而且,前级电流馈电拓扑结构中的开关器件不需要考虑直通的问题,无需死区控制,不仅控制更简单,而且由于具有瞬时阻抗很高的电感的存在,使得开关器件可以实现零电压导通和关断,减少了开关损耗,提高了整体效率。另外,通过前级隔离变压器的电气隔离,很好地解决了漏电流的问题,无需增加漏电流吸收装置,更利于提高效率。后级逆变电路中的开关器件不同于普通全桥逆变电路使用PWM调制,S5、S8和S6、S7两对开关器件实现工频换相,输出的控制通过调节双BUCK电路的开关器件S9、S10的脉宽实现。
另外,由于前级电流馈电电路输出恒定的直流电,从而可以使后级逆变电路进行高频逆变,实现无功调节。
以上对本发明实施例进行了详细介绍,本文中应用了具体实施方式对本发明进行了阐述,以上实施例的说明只是用于帮助理解本发明的设备;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种逆变电源装置,用于将直流电源输出的直流电转换成交流电,其特征在于,包括前级电流馈电电路和后级逆变电路,所述电流馈电电路包括:依次串接的全桥变换器、隔离变压器和整流电路;所述后级逆变电路为双BUCK逆变电路。
2.根据权利要求1所述的逆变电源装置,其特征在于,所述全桥变换器包括:第一电感、第一开关器件、第二开关器件、第三开关器件和第四开关器件;
第一电感的第一端连接所述直流电源的正端,第一电感的第二端连接第一开关器件的第一端和第三开关器件的第一端,第二开关器件的第二端和第四开关器件的第二端连接所述直流电源的负端;
第一开关器件的第二端与第二开关器件的第一端一起连接到所述隔离变压器的原边的同名端,第三开关器件的第二端与第四开关器件的第一端一起连接到所述隔离变压器的原边的异名端。
3.根据权利要求2所述的逆变电源装置,其特征在于,所述第一开关器件和第四开关器件以第一脉冲信号触发动作,第二开关器件和第三开关器件以第二脉冲信号触发动作,所述第一脉冲信号和所述第二脉冲不同,并且在任意时刻,所述第一开关器件和第二开关器件中有至少一个导通。
4.根据权利要求1所述的逆变电源装置,其特征在于,所述整流电路为全波整流电路,包括:四个二极管,其中第一二极管的阳极和第三二极管的阴极一起连接到所述隔离变压器的副边的同名端,第二二极管的阳极和第四二极管的阴极一起连接到所述隔离变压器的副边的异名端;
第一二极管的阴极与第二二极管的阴极相连并作为所述电流馈电电路的第一输出端;
第三二极管的阳极与第四二极管的阳极相连并作为所述电流馈电电路的第二输出端。
5.根据权利要求1所述的逆变电源装置,其特征在于,所述双BUCK逆变电路包括:
储能电路,连接在所述电流馈电电路的两个输出端之间,用于滤除所述电流馈电电路输出电压中的高频分量;
第一BUCK电路和第二BUCK电路,所述第一BUCK电路和第二BUCK电路串联连接后并联在所述电流馈电电路的两个输出端之间,所述第一BUCK电路与所述第二BUCK电路分别与所述电流馈电电路的一个输出端相连,所述第一BUCK电路和第二BUCK电路用于将所述电流馈电电路输出的直流电压转换为较低的直流电压并输出;
全桥逆变电路,分别与所述第一BUCK电路和第二BUCK电路相连,用于将所述第一BUCK电路和第二BUCK电路输出的直流电压转换为交流电压。
6.根据权利要求5所述的逆变电源装置,其特征在于,所述储能电路包括:
串联连接的第一电容和第二电容,所述第一电容和第二电容的连接处形成中点电位并输出;
所述第一BUCK电路和所述第二BUCK电路的串联连接点与所述中点电位相连。
7.根据权利要求6所述的逆变电源装置,其特征在于,
所述第一BUCK电路包括:第九开关器件,第五二极管和第二电感,其中,第九开关器件的第一端连接所述电流馈电电路的第一输出端,第九开关器件的第二端连接第二电感的第一端和第五二极管的阴极,第二电感的第二端作为所述第一BUCK电路的输出端连接到所述全桥逆变电路;
所述第二BUCK电路包括:第十开关器件,第六二极管和第三电感,其中,第十开关器件的第二端连接所述电流馈电电路的第二输出端,第十开关器件的第一端连接第三电感的第一端和第六二极管的阳极,第三电感的第二端作为所述第二BUCK电路的输出端连接到所述全桥逆变电路;
第五二极管的阳极与第六二极管的阴极相连,用于获得所述储能电路输出的中点电位。
8.根据权利要求7所述的逆变电源装置,其特征在于,所述全桥逆变电路包括:四个开关器件,其中:
第五开关器件的第一端和第六开关器件的第一端一起连接到所述第一BUCK电路的输出端;
第七开关器件的第二端和第八开关器件的第二端一起连接到所述第二BUCK电路的输出端;
第五开关器件的第二端与第七开关器件的第一端相连作为所述逆变电源装置的一个输出端,第六开关器件的第二端与第八开关器件的第一端相连作为所述逆变电源装置的另一个输出端。
9.根据权利要求8所述的逆变电源装置,其特征在于,在一个工作周期内的前半周期,第九开关器件和第十开关器件以同步的高频脉冲信号触发动作,第五开关器件和第八开关器件导通,第六开关器件和第七开关器件关断;在一个工作周期内的后半周期,第九开关器件和第十开关器件以同步的高频脉冲信号触发动作,第五开关器件和第八开关器件关断,第六开关器件和第七开关器件导通。
10.根据权利要求5至9任一项所述的逆变电源装置,其特征在于,所述双BUCK逆变电路还包括:
滤波电路,连接在所述第一BUCK电路的输出端与所述第二BUCK电路的输出端之间,用于滤除所述第一BUCK电路和第二BUCK电路输出的直流电压中的高频分量。
CN2012100356996A 2012-02-16 2012-02-16 一种逆变电源装置 Pending CN103259444A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2012100356996A CN103259444A (zh) 2012-02-16 2012-02-16 一种逆变电源装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2012100356996A CN103259444A (zh) 2012-02-16 2012-02-16 一种逆变电源装置

Publications (1)

Publication Number Publication Date
CN103259444A true CN103259444A (zh) 2013-08-21

Family

ID=48963191

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2012100356996A Pending CN103259444A (zh) 2012-02-16 2012-02-16 一种逆变电源装置

Country Status (1)

Country Link
CN (1) CN103259444A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464147A (zh) * 2014-02-28 2017-02-22 施密徳豪泽股份公司 频率转换器
CN108566106A (zh) * 2018-06-22 2018-09-21 林福祥 一种逆变器托扑结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625539A (en) * 1994-05-30 1997-04-29 Sharp Kabushiki Kaisha Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
US5932995A (en) * 1998-03-03 1999-08-03 Magnetek, Inc. Dual buck converter with coupled inductors
US20050275386A1 (en) * 2002-06-23 2005-12-15 Powerlynx A/S Power converter
CN101820230A (zh) * 2010-02-26 2010-09-01 韩新建 高频隔离型并网逆变器
WO2011099280A1 (ja) * 2010-02-09 2011-08-18 パナソニック株式会社 電力変換装置及びそれを備える燃料電池システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625539A (en) * 1994-05-30 1997-04-29 Sharp Kabushiki Kaisha Method and apparatus for controlling a DC to AC inverter system by a plurality of pulse-width modulated pulse trains
US5932995A (en) * 1998-03-03 1999-08-03 Magnetek, Inc. Dual buck converter with coupled inductors
US20050275386A1 (en) * 2002-06-23 2005-12-15 Powerlynx A/S Power converter
WO2011099280A1 (ja) * 2010-02-09 2011-08-18 パナソニック株式会社 電力変換装置及びそれを備える燃料電池システム
CN101820230A (zh) * 2010-02-26 2010-09-01 韩新建 高频隔离型并网逆变器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464147A (zh) * 2014-02-28 2017-02-22 施密徳豪泽股份公司 频率转换器
US10432128B2 (en) 2014-02-28 2019-10-01 Schmidhauser Ag Frequency converter
CN106464147B (zh) * 2014-02-28 2020-10-09 施密徳豪泽股份公司 频率转换器
CN108566106A (zh) * 2018-06-22 2018-09-21 林福祥 一种逆变器托扑结构

Similar Documents

Publication Publication Date Title
US11128236B2 (en) Multi-winding single-stage multi-input boost type high-frequency link's inverter with simultaneous/time-sharing power supplies
CN101980437B (zh) 一种五电平并网逆变器
CN101895223B (zh) 双Cuk升降压输出并联型逆变器
CN103001511B (zh) 一种电压变换器及其运行方法
CN103023362A (zh) 一种无桥逆变电路与太阳能无桥逆变器
Hu et al. Ultrahigh step-up DC–DC converter for distributed generation by three degrees of freedom (3DoF) approach
CN102185480B (zh) 一种双向隔离直流变换器
CN107134937B (zh) 一种三电平多脉冲输出无变压器型逆变电路
CN102522897A (zh) 大升降压比的双向直流变换器
CN105048490A (zh) 低电流应力的光伏微逆变器及其数字控制装置
Cha et al. A novel three-phase high power current-fed DC/DC converter with active clamp for fuel cells
CN102629836B (zh) 一种新的两级式交流光伏模块
CN111342693B (zh) 一种升降压型光伏并网逆变器
CN113541486B (zh) 交错二极管电容网络高增益zvt直流变换器及辅助电路
CN108199603B (zh) 多绕组分时供电隔离反激直流斩波型单级多输入逆变器
CN100492845C (zh) 一种三开关单级升降压型逆变器
CN106208788A (zh) 一种基于aac的多模块电压源型逆变器
CN108199602B (zh) 多绕组分时供电正激直流斩波型单级多输入高频链逆变器
CN108023496B (zh) 串联同时选择开关电压型单级多输入低频环节逆变器
CN103259440B (zh) 一种逆变电源装置
CN103259444A (zh) 一种逆变电源装置
Zhang et al. A hybrid control method for photovoltaic grid-connected interleaved flyback micro-inverter to achieve high efficiency in wide load range
CN103259441A (zh) 一种逆变电源装置
CN203859551U (zh) 一种z源储能变流控制装置
CN108054946B (zh) 内置并联分时选择开关电压型单级多输入低频环节逆变器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20130821