WO2021186841A1 - Power conversion device and method for controlling power conversion device - Google Patents

Power conversion device and method for controlling power conversion device Download PDF

Info

Publication number
WO2021186841A1
WO2021186841A1 PCT/JP2020/049081 JP2020049081W WO2021186841A1 WO 2021186841 A1 WO2021186841 A1 WO 2021186841A1 JP 2020049081 W JP2020049081 W JP 2020049081W WO 2021186841 A1 WO2021186841 A1 WO 2021186841A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
voltage command
power conversion
command value
gate pulse
Prior art date
Application number
PCT/JP2020/049081
Other languages
French (fr)
Japanese (ja)
Inventor
矩也 中尾
公久 古川
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to CN202080098287.XA priority Critical patent/CN115176406A/en
Publication of WO2021186841A1 publication Critical patent/WO2021186841A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters

Definitions

  • the present invention relates to a power conversion device and a control method for the power conversion device.
  • the switching element in the power conversion unit operates by inputting a gate pulse signal instructing on or off.
  • PWM Pulse Width Modulation
  • control is generally used as a method for generating a gate pulse signal.
  • a gate pulse signal is generated based on a voltage command value indicating a desired output voltage and a separately generated carrier wave such as a triangular wave.
  • heat is generated due to the switching loss of the switching element. Therefore, in practice, there is an upper limit to the frequency of the carrier wave, and control is performed while suppressing the number of switchings (number of pulses) as much as possible.
  • Patent Document 1 describes a control method in which a carrier wave and an output voltage command are compared with each other to create a PWM pulse, and the carrier wave amplitude or carrier wave frequency is gradually reduced.
  • the power conversion device has a power conversion unit that controls on / off of a plurality of switching elements to convert power, and an on / off of the switching element based on a plurality of phases of first voltage command values that indicate a desired output voltage.
  • a power conversion device including a gate pulse generation unit that generates a gate pulse signal for controlling the above, and the gate pulse generation unit sets the first voltage command value based on each first voltage command value of the plurality of phases.
  • a carrier whose phase is synchronized is generated, and the carrier is added to the first voltage command value to generate a second voltage command value.
  • the control method of the power conversion device is based on a power conversion unit that controls on / off of a plurality of switching elements to convert power and a plurality of phases of first voltage command values that indicate a desired output voltage. It is a control method of a power conversion device including a gate pulse generation unit that generates a gate pulse signal that controls on / off of an element, and is based on the first voltage command value of each of the plurality of phases by the gate pulse generation unit. A carrier whose phase is synchronized with the first voltage command value is generated, and the carrier is added to the first voltage command value to generate a second voltage command value.
  • harmonics can be suppressed even when the carrier frequency cannot be set sufficiently high with respect to the voltage command value.
  • FIG. 1 is a block diagram of a power conversion device 100 according to the first embodiment.
  • the power conversion device 100 includes a power conversion unit 101, a primary side gate pulse generation unit 102, and a secondary side gate pulse generation unit 103.
  • the power conversion device 100 performs bidirectional or unidirectional power conversion between the primary side system 30 which is a three-phase AC system and the secondary side system 40.
  • the primary side system 30 has a neutral wire 30N and an R phase wire 30R, an S phase wire 30S, and a T phase wire 30T in which the voltages of the R phase, the S phase, and the T phase appear, respectively. ..
  • the secondary side system 40 has a neutral wire 40N and a U-phase wire 40U, a V-phase wire 40V, and a W-phase wire 40W in which U-phase, V-phase, and W-phase voltages appear, respectively.
  • a power conversion device 100 similar to that shown in FIG. 1 is provided between the neutral wire 30N and the T-phase wire 30T, and between the neutral wire 40N and the W-phase wire 40W, although not shown. ..
  • a power conversion device 100 similar to that shown in FIG. 1 is provided between the neutral wire 30N and the S phase wire 30S, and between the neutral wire 40N and the V phase wire 40V, although not shown.
  • the voltage amplitude, frequency and phase of the primary side system 30 and the secondary side system 40 are independent of each other.
  • the R-phase, S-phase, and T-phase voltages have a phase difference of "2 ⁇ / 3" from each other at the primary frequency
  • the U-phase, V-phase, and W-phase voltages have "2 ⁇ / 3" from each other at the secondary frequency. It has a phase difference of "/ 3".
  • various power generation facilities and power receiving facilities such as a commercial power supply system, a photovoltaic power generation system, and a motor can be adopted.
  • the power conversion unit 101 has P units (P is a natural number of 2 or more) of converter cells 20-1 to 20-P.
  • converter cells 20-1 to 20-P may be collectively referred to as "converter cell 20".
  • the converter cells 20-1 to 20-P are connected in series between the R phase wire 30R on the primary side and the neutral wire 30N.
  • the secondary side is also connected in series between the U-phase wire 40U and the neutral wire 40N.
  • the primary side control unit 104 detects the voltage and current of the primary side system 30 and outputs the primary side voltage command values VREFR, VREFS, and VREFT.
  • the secondary side control unit 105 detects the voltage and current of the secondary side system 40 and outputs the secondary side voltage command values VREFU, VREFV, and VREFW.
  • the primary side gate pulse generation unit 102 generates gate pulse signals GT11 to GT1P and GT11'to GT1P' for controlling the switching element contained in the primary side of the converter cells 20-1 to 20-P. ..
  • the secondary side gate pulse generation unit 103 has gate pulse signals GT21 to GT2P and GT21'to GT2P' for controlling the switching element contained in the secondary side of the converter cells 20-1 to 20-P. To generate.
  • FIG. 2 is a circuit configuration diagram of converter cell 20-1. Since the converter cells 20-2 to 20-P are the same as the converter cells 20-1, detailed description thereof will be omitted.
  • the converter cell 20-1 includes a pair of primary side terminals 21a and 21b, a pair of secondary side terminals 22a and 22b, AC / DC power converters 23 to 26, capacitors 27 and 28, and a high frequency transformer 29. Have.
  • the AC / DC power converter 23 has four switching elements Q1 to Q4 connected in an H-bridge shape, and an FWD (Free Wheeling Di Cincinnatide, unsigned) connected in antiparallel to these switching elements Q1 to Q4. ing.
  • the switching elements Q1 to Q4 are controlled by the gate pulse signals GT11 to GT1P and GT11'to GT1P'.
  • the AC / DC power converter 26 has four switching elements Q5 to Q8 connected in an H-bridge shape, and an FWD connected to these switching elements Q5 to Q8 in antiparallel.
  • the AC / DC power converters 24 and 25 have four switching elements connected in an H-bridge shape and an FWD connected in antiparallel to these switching elements (both are unsigned).
  • the switching elements Q5 to Q8 are controlled by the gate pulse signals GT11 to GT1P and GT11'to GT1P'.
  • these switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors).
  • the voltage appearing between the primary side terminals 21a and 21b is called the primary side AC terminal voltage V1-1, and the voltage appearing between both ends of the capacitor 27 is called the primary side DC link voltage Vdc1.
  • the AC / DC power converter 23 converts the primary side AC terminal voltage V1-1 and the primary side DC link voltage Vdc1 in both directions or in one direction, and transmits power.
  • the high frequency transformer 29 has a primary winding 29a and a secondary winding 29b, and transmits electric power between the primary winding 29a and the secondary winding 29b at a predetermined frequency.
  • the current input / output from the AC / DC power converters 24 and 25 to / from the high frequency transformer 29 is high frequency.
  • the high frequency is, for example, a frequency of 100 Hz or higher, but it is preferable to adopt a frequency of 1 kHz or higher, and it is more preferable to adopt a frequency of 10 kHz or higher.
  • the AC / DC power converter 24 converts the primary side DC link voltage Vdc1 and the AC voltage appearing in the primary winding 29a in both directions or in one direction to transmit power.
  • the voltage appearing between the secondary side terminals 22a and 22b is called the secondary side AC terminal voltage V2-1, and the voltage appearing between both ends of the capacitor 28 is called the secondary side DC link voltage Vdc2.
  • the AC / DC power converter 25 converts the secondary side DC link voltage Vdc2 and the AC voltage appearing in the secondary winding 29b in both directions or in one direction to transmit power.
  • the AC / DC power converter 26 converts the secondary side AC terminal voltage V2-1 and the secondary side DC link voltage Vdc2 in both directions or in one direction, and transmits power.
  • the primary side gate pulse generation unit 102 has gate pulse signals GT11 to GT1P and GT11'to of "LOW” or "HIGH” based on the primary side voltage command values VREFR, VREFS, and VREFT. Generates GT1P'.
  • the gate signal GT11 is supplied to the switching elements Q1 and Q4 of the AC / DC power converter 23 to control their on / off states. If the gate signal GT11 is "HIGH”, the switching elements Q1 and Q4 are turned on, and if the gate signal GT11 is "LOW”, the switching elements Q1 and Q4 are turned off.
  • the gate signal GT11' is supplied to the switching elements Q2 and Q3 of the AC / DC power converter 23 to control their on / off states.
  • the AC / DC power converter 23 when the switching elements Q1 and Q4 are in the ON state, the voltage appearing between the primary side terminals 21a and 21b is Vdc1, and when the switching elements Q2 and Q3 are in the ON state, the primary side terminals 21a , The voltage appearing between 21b is -Vdc1. Further, when all of the switching elements Q1 to Q4 are in the off state, the voltage appearing between the primary side terminals 21a and 21b is zero. That is, the AC / DC power converter 23 can output voltages of three levels ( ⁇ Vdc1,0, Vdc1).
  • the secondary side gate pulse generation unit 103 has a “LOW” or “HIGH” gate based on the secondary side voltage command values VREFU, VREFV, and VREFW, similarly to the primary side gate pulse generation unit 102.
  • the gate signal GT21 is supplied to the switching elements Q5 and Q8 of the AC / DC power converter 26 to control their on / off states. That is, if the gate signal GT21 is "HIGH”, the switching elements Q5 and Q8 are turned on, and if the gate signal GT21 is "LOW”, the switching elements Q5 and Q8 are turned off.
  • the gate signal GT21' is supplied to the switching elements Q6 and Q7 of the AC / DC power converter 26 to control their on / off states.
  • the AC / DC power converter 26 of the power conversion unit 101 can output three levels ( ⁇ Vdc2, 0, Vdc2) of voltage, similarly to the AC / DC power converter 23.
  • FIG. 3 is a block diagram of the primary side gate pulse generation unit 102.
  • the primary side gate pulse generation unit 102 includes a carrier wave generation unit 300, an adder 301, and comparators CMP11 to CMP1P and CMP11'to CMP1P'.
  • the carrier wave generation unit 300 generates a carrier wave Sm whose phase is synchronized with respect to the voltage command value VREFR based on the voltage command values VREFR, VREFS, and VREFT of the R phase, S phase, and T phase that indicate a desired output voltage. .. Then, the voltage command value VREFR (first voltage command value) and the carrier wave Sm are added by the adder 301, and the voltage command value VREFR'(second voltage command value) is generated.
  • FIG. 3 shows a carrier wave generation unit 300 corresponding to the R phase, but the carrier wave generation unit 300 corresponding to the S phase (not shown) indicates voltage command values of the R phase, S phase, and T phase that indicate a desired output voltage.
  • a carrier wave Sm whose phase is synchronized with respect to the voltage command value VREFS is generated.
  • the voltage command value VREFS first voltage command value
  • the carrier wave Sm are added by the adder 301, and the voltage command value VREFS'(second voltage command value) is generated.
  • the carrier wave generation unit 300 corresponding to the T phase has a voltage command value VREFT based on the voltage command values VREFR, VREFS, and VREFT of the R phase, S phase, and T phase that indicate a desired output voltage. Generates a carrier wave Sm whose phase is synchronized with each other. Then, the voltage command value VREFT (first voltage command value) and the carrier wave Sm are added by the adder 301, and the voltage command value VREFT'(second voltage command value) is generated.
  • the second voltage command value VREFR' has threshold values 1 to P, which are preset with respect to the magnitude of the voltage in the comparators CMP11 to CMP1P and CMP11' to CMP1P'. , And threshold 1'to threshold P', respectively.
  • the comparators CMP11 to CMP1P and CMP11'to CMP1P' generate gate pulse signals GT11 to GT1P and GT11' to GT1P'.
  • the comparator CMP11 sets the gate pulse signal GT11 to LOW when the second voltage command value VREFR'is smaller than the threshold value 1, and the gate pulse when the second voltage command value VREFR'is larger than the threshold value 1.
  • the signal GT11 is set to HIGH.
  • the comparator CMP11' sets the gate pulse signal GT11'to LOW when the second voltage command value VREFR'is larger than the threshold value 1', and the second voltage command value VREFR'is smaller than the threshold value 1'. Sometimes the gate pulse signal GT11'is set to HIGH.
  • the gate pulse signals GT11 and GT11' are output to the converter cell 20-1.
  • the second voltage command value VREFS'and the second voltage command value VREFT' also have threshold values 1 to P and threshold values in the comparators CMP11 to CMP1P and CMP11'to CMP1P'. It is compared with 1'to threshold value P', respectively, and a gate pulse signal is generated.
  • FIG. 4 is a block diagram of the carrier wave generation unit 300 corresponding to the R phase.
  • the carrier wave generation unit 300 includes a voltage command comparison unit 400, a voltage amplitude calculation unit 401, a triangular wave generation unit 402, a subtractor 403, a limiter 404, and a multiplier 405.
  • the carrier wave generation unit 300 corresponding to the S phase and the T phase has the same configuration, and the description thereof will be omitted.
  • the voltage command comparison unit 400 compares the first voltage command values VREFR, VREFS, and VREFT with each other, and outputs the maximum value Vmax and the minimum value Vmin from them.
  • the voltage amplitude calculation unit 401 calculates the voltage amplitude value Va from the first voltage command values VREFR, VREFS, and VREFT according to the following equations (1) to (3).
  • VREFA ⁇ (2/3) ⁇ (VREFR-1 / 2 ⁇ VREFS-1 / 2 ⁇ VREFT) ⁇ ⁇ ⁇ (1)
  • VREFB ⁇ (2/3) ⁇ ( ⁇ (3) / 2 ⁇ VREFS- ⁇ (3) / 2 ⁇ VREFT) ⁇ ⁇ ⁇ (2)
  • Va ⁇ (2/3) ⁇ (VREFA ⁇ 2 + VREFB ⁇ 2) ⁇ ⁇ ⁇ (3)
  • the triangular wave generating unit 402 generates a triangular wave Stri having an amplitude of 1 according to the following equation (4) or (5).
  • Stri (2 / ⁇ ) ⁇ arcsin (sin ((k ⁇ ⁇ / Va) ⁇ (Vmax + Vmin))) ...
  • Stri -(2 / ⁇ ) ⁇ arcsin (sin ((k ⁇ ⁇ / Va) ⁇ (Vmax + Vmin))) ... ⁇ (5)
  • the coefficient k is an odd number of 1 or more. Strictly speaking, the calculation results of the equations (4) and (5) are not triangular waves that increase or decrease linearly, but in the present embodiment, Stri will be referred to as a triangular wave.
  • the triangular wave Stri is a signal having an amplitude of 1 and fluctuating at a frequency 3 k times the frequency of the first voltage command value VREFR (or VREFS, VREFT).
  • VREFR or VREFS, VREFT
  • the subtractor 403 subtracts the voltage amplitude Va from the maximum voltage Vlim that can be output by the power converter 100, and calculates "Vlim-Va".
  • the limiter 404 outputs the calculation result "Vlim-Va" of the subtractor 403 as it is in the case of "Va ⁇ Vlim", and limits the calculation result of the subtractor 403 to zero in the case of "Vlim ⁇ Va”. That is, the limiter 404 limits the calculation result "Vlim-Va” of the subtractor 403 so that it does not become a negative value (so that the minimum value becomes 0 or more).
  • the multiplier 405 generates a carrier wave Sm by multiplying the triangular wave Stri generated by the triangular wave generating unit 402 with the calculation result of the subtractor 403 via the limiter 404. Specifically, the calculation result "Vlim-Va" of the subtractor 403 is multiplied by the multiplier 405 via the limiter 404 to the triangular wave having an amplitude of 1. That is, the value multiplied by the triangular wave Stri by the multiplier 405 corresponds to the amplitude value of the carrier wave Sm (hereinafter, the signal after passing through the limiter 404 is also referred to as the carrier wave amplitude Ma).
  • the carrier wave Sm output by the carrier wave generation unit 300 becomes zero by the action of the limiter 404 when the voltage amplitude Va becomes larger than the maximum voltage Vlim (Vlim ⁇ Va).
  • the primary side gate pulse generating part of the primary side S phase and T phase and the secondary side gate pulse generating part of the secondary side U phase, V phase, and W phase are not shown, but as described above.
  • the main configuration is the same as that of the primary R phase shown in FIG.
  • the primary side S phase the first voltage command value VREFS and the carrier wave Sm are added to generate the second voltage command value VREFS'.
  • the second voltage command value VREFS' is compared with the threshold value in each of a plurality of comparators, and a gate pulse signal is generated.
  • the primary side T phase the first voltage command value VREFT and the carrier wave Sm are added to generate the second voltage command value VREFT'.
  • the second voltage command value VREFT' is compared with the threshold value in each of a plurality of comparators, and a gate pulse signal is generated.
  • the secondary U phase, V phase, and W phase are also configured in the same manner.
  • the carrier wave generator 300 is commonly used in all phases. That is, the carrier wave Sm added to the first voltage command value is common in all phases.
  • the number of series connections P of the converter cells is "1".
  • FIG. 5A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage.
  • the gate pulse signal GT11 is shown by a solid line
  • the gate pulse signal GT11' is shown by a broken line
  • the horizontal axis is the phase
  • the vertical axis is the voltage.
  • FIG. 5C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage.
  • FIG. 5D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S.
  • the horizontal axis is the phase and the vertical axis is the voltage. Is.
  • FIG. 5E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
  • the carrier wave Sm is generated by the carrier wave generation unit 300 based on the first voltage command values VREFR, VREFS, and VREFT, the phases of the carrier wave Sm and the first voltage command value VREFR.
  • the relationship is in sync.
  • the gate pulse signal GT11 obtained from the comparison result between the second voltage command value VREFR', which is the addition result of the carrier wave Sm and the first voltage command value VREFR, and the threshold value, GT11' is the same signal with a phase difference of 180 °.
  • the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary.
  • the second voltage command value VREFR' is controlled so as not to exceed the output voltage range of -1 to 1, and the voltage corresponding to the first voltage command value VREFR can be output with high accuracy.
  • the primary side gate pulse generation unit 102 straddles the threshold value set by the primary voltage command value VREFR'for the magnitude of the voltage a plurality of times within one cycle of the first voltage command value VREFR. This is because the amplitude of the carrier wave is controlled in this way.
  • the line voltage of the power conversion unit 101 appearing between the R phase line 30R and the S phase line 30S corresponds to "VREFR'-VREFS'" and has a sinusoidal waveform as shown in FIG. 5 (d). There is. From this, the influence of the carrier wave Sm does not appear. This is because the carrier wave Sm is a signal that fluctuates in a degree that is a multiple of 3, and cancels each other out in the line voltage. From the result of the harmonic component of the line voltage shown in FIG. 5 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
  • FIG. 6 is a block diagram of the primary side gate pulse generation unit 600 in the comparative example.
  • This comparative example is an example to which the present embodiment is not applied, and is described for comparison with the present embodiment.
  • the difference from the primary side gate pulse generation unit 300 in this embodiment is that the carrier wave generation unit 601 that generates the carrier wave Sm is provided independently. Therefore, the phase relationship between the carrier wave Sm and the voltage command value VREFR is not always synchronized.
  • the operation after the adder 602 adds the first voltage command value VREFR and the carrier wave Sm to generate the second voltage command value VREFR' is the same as that of the primary side gate pulse generator 300 in the present embodiment. ..
  • FIG. 7 (a) to 7 (e) are diagrams showing waveforms of signals and the like in the comparative example shown in FIG.
  • the number of series connections P of the converter cells is "1".
  • FIG. 7A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage.
  • the gate pulse signal GT11 is shown by a solid line
  • the gate pulse signal GT11' is shown by a broken line
  • the horizontal axis is the phase
  • the vertical axis is the voltage.
  • FIG. 7C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage.
  • FIG. 7D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S.
  • the horizontal axis is the phase and the vertical axis is the voltage. Is.
  • FIG. 7E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
  • the carrier wave Sm is a triangular wave that fluctuates at a frequency 12 times the frequency of the first voltage command value VREFR
  • the second voltage command value VREFR' which is the sum of the carrier wave Sm and the first voltage command value VREFR, is the output voltage. Adjusted so that the range-1 to 1 was not exceeded.
  • the phase relationship between the carrier wave Sm and the first voltage command value VREFR is not synchronized.
  • the phase voltage appearing between the R phase line 30R and the neutral line 30N does not have a symmetrical waveform with 180 ° as a boundary, and voltage imbalance occurs. There is. This is because the phase relationship between the carrier wave Sm and the first voltage command value VREFR is not synchronized. This voltage imbalance can contribute to increasing the harmonic content of the output voltage.
  • FIG. 7 (e) it can be confirmed that the harmonic components of the line voltage are distributed as a whole except for the order components that are multiples of 3.
  • the power conversion device 100 generates the carrier wave Sm based on the first voltage command values VREFR, VREFS, and VREFT, and the gate pulse signals GT11 to GT1P for controlling the switching elements Q1 to Q4. , And GT11'to GT1P'.
  • the phase relationship between the carrier wave Sm and the first voltage command values VREFR, VREFS, and VREFT can be synchronized. Even under the condition that the frequency of the carrier wave Sm has an upper limit and the number of switchings (the number of pulses) is small, the power conversion device 100 according to the present embodiment can effectively suppress the harmonics contained in the voltage / current.
  • the power conversion device 100 controls the carrier wave amplitude Ma so that the peak values of the second voltage command values VREFR', VREFS', and VREFT' match the maximum output voltage Vlim of the power conversion unit 101. .. As a result, the error between the first voltage command values VREFR, VREFS, VREFT and the output voltage can be suppressed.
  • the power conversion device 100 can increase the number of switchings (number of pulses) by increasing the number of converter cells connected in series (P) or the coefficient k in the equations (4) and (5). It is possible.
  • the number of series connections P of the converter cells is "2".
  • the frequency of the carrier wave Sm is increased as shown in FIG. 8 (a).
  • the threshold value within the output voltage range is set more finely according to the number of connected converter cells in series, as shown in FIG. 8 (c).
  • the number of times the second voltage command VREFR'crosses the threshold value that is, the number of times of switching (number of pulses) is increased.
  • the power conversion device 100 can output a voltage having a smaller harmonic component.
  • FIG. 9A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage.
  • the gate pulse signal GT11 is shown by a solid line
  • the gate pulse signal GT11' is shown by a broken line
  • the horizontal axis is the phase
  • the vertical axis is the voltage.
  • FIG. 9C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage.
  • FIG. 9D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S.
  • the horizontal axis is the phase and the vertical axis is the voltage. Is.
  • FIG. 9E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
  • the phase relationship between the carrier wave Sm and the first voltage command value VREFR is synchronized.
  • the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary.
  • the second voltage command value VREFR' is controlled so as not to exceed the output voltage range of -1 to 1. From the result of the harmonic component of the line voltage shown in FIG. 9 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
  • FIG. 10 is a block diagram of the power conversion device 1000 according to the third embodiment.
  • the power conversion device 1000 includes a power conversion unit 1001 and a gate pulse generation unit 1002.
  • the power conversion device 1000 performs bidirectional or unidirectional power conversion between the DC system 50 and the three-phase AC system 60.
  • the DC system 50 has a terminal 50P and a terminal 50N.
  • the AC system 60 has a U-phase terminal 60U, a V-phase terminal 60V, and a W-phase terminal 60W.
  • a battery power source can be adopted as the DC system 50, and a motor or the like can be adopted as the AC system 60.
  • the control unit 1003 detects the voltage and current of the DC system 50 and the AC system 60, and outputs the first voltage command values VREFU, VREFV, and VREFW to the gate pulse generation unit 1002.
  • the gate pulse generation unit 1002 generates gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, GTwn for controlling the switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn contained in the power conversion unit 1001. Let me.
  • FIG. 11 shows a circuit configuration diagram of the power conversion unit 1001.
  • the power conversion unit 1001 has a pair of DC system terminals 70a and 70b, a pair of AC system terminals 71a, 71b and 71c, and capacitors 72a and 72b. Further, in the power conversion unit 1001, the switching element Cup and the switching element Qun, the switching element Qvp and the switching element Qvn, and the switching element Qwp and the switching element Qwn are connected in series, and a circuit composed of a pair of these two switching elements is connected in parallel. It is connected to the. That is, each switching element constitutes a three-phase bridge circuit, and the power conversion unit 1001 performs power conversion between DC power and three-phase AC power.
  • each switching element Cup, Qun, Qbp, Qvn, Qwp, Qwn has an FWD connected in antiparallel.
  • these switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn are, for example, MOSFETs.
  • the voltage that appears between both ends of the capacitors 72a and 72b is called the DC link voltage Vdc.
  • the details of the gate pulse generation unit 1002 are the same as those of the primary side gate pulse generation unit 102 shown in FIG. 3, and the description thereof will be omitted.
  • the gate pulse generation unit 1002 generates "LOW" or "HIGH” gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, GTwn based on the first voltage command values VREFU, VREFV, and VREFW. These gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, and GTwn are supplied to the switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn, respectively, and control their on / off states.
  • the power conversion unit 1001 in a circuit consisting of a pair of a switching element Cup and a switching element Qun, a switching element Qvp and a switching element Qvn, and a switching element Qwp and a switching element Qwn, when one of them is in the ON state, the other is always in the OFF state. It is controlled so as to be.
  • the voltage that appears between any two of the AC system terminals 71a, 71b, and 71c of the power conversion unit 1001 is Vdc or -Vdc. That is, the power conversion unit 1001 is a power conversion unit that outputs two levels of voltage.
  • the two-level power conversion device shown in the second embodiment described with reference to FIG. 9 can be applied.
  • the gate pulse signals GTup and GTun in the third embodiment correspond to the gate pulse signals GT11 and GT11'in the second embodiment.
  • the same effect as that of the first embodiment or the second embodiment can be obtained.
  • FIG. 12 is a block diagram of the carrier wave generation unit 1200 according to the fourth embodiment. It differs from the carrier wave generation unit 300 in the first embodiment in that it includes an amplitude adjustment unit 1201 that adjusts the carrier wave amplitude Ma. Also in the fourth embodiment, the block diagram of the power conversion device 100 shown in FIG. 1, the circuit configuration diagram of the converter cell 20 shown in FIG. 2, and the block diagram of the primary side gate pulse generation unit 102 shown in FIG. Has a similar configuration.
  • the output of the limiter 404 is multiplied by the triangular wave Stri by the multiplier 405 via the amplitude adjusting unit 1201.
  • the amplitude adjusting unit 1201 controls the carrier wave amplitude Ma so that the peak values of the second voltage command values VREFR', VREFS', and VREFT' match the maximum output voltage Vlim of the power converter 100. That is, the amplitude adjusting unit 1201 calculates the limiter 404 so that the sum of the amplitude values of the second voltage command values VREFR', VREFS', and VREFT'and the amplitude value of the carrier wave Sm matches the maximum voltage Vlim. To adjust.
  • the number of series connections P of the converter cell 20 is "1".
  • the carrier wave Sm does not have a perfect triangular wave shape, but the phase relationship between the carrier wave Sm and the first voltage command value VREFR is synchronized.
  • the timing at which the first voltage command value VRREF and the carrier wave Sm reach their peak values is different.
  • an amplitude adjusting unit 1201 that adjusts the carrier wave amplitude Ma according to the set value of the coefficient k is added.
  • the gate pulse signals GT11 and GT11' obtained from the comparison result between the addition result VREFR'of the carrier wave Sm and the voltage command value VREFR and the threshold value have a phase difference of 180 °. It becomes the same signal.
  • the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary.
  • the second voltage command value VREFR' is controlled so as not to exceed the output voltage range of -1 to 1, and the voltage corresponding to the first voltage command value VREFR can be output with high accuracy.
  • the line voltage of the power conversion unit 101 appearing between the R phase line 30R and the S phase line 30S corresponds to "VREFR'-VREFS'" and has a sinusoidal waveform as shown in FIG. 13 (d). There is. From the result of the harmonic component of the line voltage shown in FIG. 13 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
  • ⁇ Modification 1> The present invention is not limited to the above-described embodiments, and includes various modifications. For example, each of the above embodiments has been described in detail to aid in understanding of the present invention and is not necessarily limited to those comprising all of the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
  • the AC / DC power converters 23 to 26 shown in FIG. 2 are H-bridges that use switching elements so that they can convert power in both directions. However, if it is sufficient to convert power in one direction, AC / DC power converters An H-bridge using a rectifying element may be applied in a part of 23 to 26.
  • the AC / DC power converter 25 can be replaced with an AC / DC power converter to which four rectifying elements (not shown) are applied.
  • the transformer potential difference of the high-frequency transformer 29 is the same as in each of the above-described embodiments, so that the power conversion device 100 can be configured in a small size and at low cost.
  • the four rectifying elements used in constructing this modification may be a semiconductor diode, a vacuum tube type mercury rectifier, or the like. When a semiconductor is applied, any material such as Si, SiC, and GaN can be applied as the material.
  • the converter cell 20 in each of the above-described embodiments is an AC system on both the primary side and the secondary side.
  • one of the primary side and the secondary side may be a DC system.
  • the AC / DC power converter 26 shown in FIG. 2 it is possible to replace the AC / DC power converter 26 shown in FIG. 2 with a configuration in which the AC / DC power converter 26 is removed.
  • the voltage V1-1 appearing between the terminals 22a and 22b becomes the secondary side DC link voltage Vdc2 appearing at both ends of the capacitor 28.
  • the primary side is an AC system and the secondary side is a DC system, but the primary side may be a DC system and the secondary side may be an AC system.
  • the power conversion devices 100 and 1000 include power conversion units 101 and 1001 that control on / off of a plurality of switching elements Q1 to Q4 and Q5 to Q8 to convert power, and a plurality of phases that indicate a desired output voltage.
  • a carrier Sm whose phase is synchronized with respect to the first voltage command values VREFR, VREFS, and VREFT is generated, and the carrier Sm is added to the first voltage command values VREFR, VREFS, and VREFT.
  • harmonics can be suppressed even when the frequency of the carrier wave cannot be set sufficiently high with respect to the voltage command value.
  • the control method of the power conversion devices 100 and 1000 is to instruct the power conversion units 101 and 1001 that control the on / off of a plurality of switching elements Q1 to Q4 and Q5 to Q8 to convert the power and a desired output voltage.
  • a control method for power conversion devices 100, 1000 including gate pulse generators 102, 103, 1002 for generating GT2P', GTup, GTbp, GTwp, GTun, GTvn, GTwn, wherein the gate pulse generators 102, 103, With 1002, a carrier Sm whose phase is synchronized with respect to the first voltage command values VREFR, VREFS, and VREFT is generated based on the first voltage command values VREFR, VREFS, and VREFT of the plurality of phases, and the carrier Sm is set to the first voltage.
  • the second voltage command values VREFR', VREFS', and VREFT' are generated by adding to the command values VREFR, VREFS, and VREFT.
  • harmonics can be suppressed even when the frequency of the carrier wave cannot be set sufficiently high with respect to the voltage command value.
  • the present invention is not limited to the above-described embodiments, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. Is done. Further, the configuration may be a combination of each of the above-described embodiments and a plurality of modifications.
  • Control unit 1201 ... Vibration adjustment unit, Q1 to Q4, Q5 to Q8, Cup, Qun, Qbp, Qvn, Qwp, Qwn ... Switching element, GT11 to GT1P, GT11'to GT1P'. ⁇ ⁇ Gate pulse signal (primary side), GT21 to GT2P, GT21'to GT2P' ⁇ ⁇ ⁇ Gate pulse signal (secondary side), GTup, GTbp, GTwp ⁇ ⁇ ⁇ Gate pulse signal (upper arm side), GTun , GTvn, GTwn ... Gate pulse signal (lower arm side), VREFR, VREFS, VREFT ... First voltage command value (primary side), VREFU, VREFV, VREFW ...

Abstract

There has been a problem that, when it is impossible to set the frequency of a carrier wave to be sufficiently high with respect to a voltage command value, the symmetry of an output voltage is broken in association with the phase shift between the voltage command value and the carrier wave and harmonic waves contained in the voltage/current generated by a power conversion unit are increased. This power conversion device is provided with: a power conversion unit for converting power by controlling the on/off of a plurality of switching elements; and a gate pulse generation unit for generating a gate pulse signal for controlling the on/off of the plurality of switching elements on the basis of first voltage command values by which desired output voltages are instructed and which have a plurality of phases. The gate pulse generation unit generates, on the basis of the respective first voltage command values having the plurality of phases, carrier waves synchronized with the first voltage command values in phase and generates second voltage command values by adding the carrier waves to the first voltage command values.

Description

電力変換装置、および電力変換装置の制御方法Power converter and control method of power converter
 本発明は、電力変換装置、および電力変換装置の制御方法に関する。 The present invention relates to a power conversion device and a control method for the power conversion device.
 例えば、直流電力と交流電力とを相互に変換する電力変換部には、種々の回路方式が知られている。高電圧用途向けには、単相ブリッジ回路で構成される電力変換部を複数直列に接続するマルチステージ型がよく用いられる。 For example, various circuit methods are known for the power conversion unit that mutually converts DC power and AC power. For high-voltage applications, a multi-stage type in which a plurality of power converters composed of a single-phase bridge circuit are connected in series is often used.
 電力変換部内のスイッチング素子は、オンまたはオフを指示するゲートパルス信号が入力されることで動作する。ゲートパルス信号を生成する方法としては、一般的にPWM(Pulse Width Modulation)制御が用いられる。この制御では、所望の出力電圧を指示する電圧指令値と、別途生成される三角波等の搬送波に基づいてゲートパルス信号を生成する。電力変換部ではスイッチング素子のスイッチング損失に起因する発熱が発生する。そのため、実用上は搬送波の周波数に上限があり、可能な限りスイッチング回数(パルス数)を抑えた制御が行われる。 The switching element in the power conversion unit operates by inputting a gate pulse signal instructing on or off. PWM (Pulse Width Modulation) control is generally used as a method for generating a gate pulse signal. In this control, a gate pulse signal is generated based on a voltage command value indicating a desired output voltage and a separately generated carrier wave such as a triangular wave. In the power conversion unit, heat is generated due to the switching loss of the switching element. Therefore, in practice, there is an upper limit to the frequency of the carrier wave, and control is performed while suppressing the number of switchings (number of pulses) as much as possible.
 特許文献1には、搬送波と出力電圧指令とをそれぞれ比較してPWMパルスを作成し、搬送波振幅または搬送波周波数を徐々に小さくする制御方法が記載されている。 Patent Document 1 describes a control method in which a carrier wave and an output voltage command are compared with each other to create a PWM pulse, and the carrier wave amplitude or carrier wave frequency is gradually reduced.
特開2003-319662号公報Japanese Unexamined Patent Publication No. 2003-319662
 電圧指令値に対して搬送波の周波数を十分に高く設定できない場合に、電力変換部より出力される電圧・電流に含有している高調波の増大が課題であった。 When the carrier frequency could not be set sufficiently high with respect to the voltage command value, the problem was to increase the harmonics contained in the voltage and current output from the power converter.
 本発明による電力変換装置は、複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置であって、前記ゲートパルス生成部は、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する。
 本発明による電力変換装置の制御方法は、複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置の制御方法であって、前記ゲートパルス生成部により、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する。
The power conversion device according to the present invention has a power conversion unit that controls on / off of a plurality of switching elements to convert power, and an on / off of the switching element based on a plurality of phases of first voltage command values that indicate a desired output voltage. A power conversion device including a gate pulse generation unit that generates a gate pulse signal for controlling the above, and the gate pulse generation unit sets the first voltage command value based on each first voltage command value of the plurality of phases. On the other hand, a carrier whose phase is synchronized is generated, and the carrier is added to the first voltage command value to generate a second voltage command value.
The control method of the power conversion device according to the present invention is based on a power conversion unit that controls on / off of a plurality of switching elements to convert power and a plurality of phases of first voltage command values that indicate a desired output voltage. It is a control method of a power conversion device including a gate pulse generation unit that generates a gate pulse signal that controls on / off of an element, and is based on the first voltage command value of each of the plurality of phases by the gate pulse generation unit. A carrier whose phase is synchronized with the first voltage command value is generated, and the carrier is added to the first voltage command value to generate a second voltage command value.
 本発明によれば、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。 According to the present invention, harmonics can be suppressed even when the carrier frequency cannot be set sufficiently high with respect to the voltage command value.
電力変換装置のブロック図である。It is a block diagram of a power conversion device. コンバータセルの回路構成図である。It is a circuit block diagram of a converter cell. 1次側ゲートパルス生成部のブロック図である。It is a block diagram of the primary side gate pulse generation part. 搬送波生成部のブロック図である。It is a block diagram of a carrier wave generation part. (a)~(e)「k=3」とした場合の信号等の波形を示す図である。It is a figure which shows the waveform of the signal and the like when (a)-(e) "k = 3". 比較例における1次側ゲートパルス生成部のブロック図である。It is a block diagram of the primary side gate pulse generation part in the comparative example. (a)~(e)比較例における信号等の波形を示す図である。It is a figure which shows the waveform of the signal or the like in the comparative example (a)-(e). (a)~(e)「k=5」とした場合の信号等の波形を示す図である。It is a figure which shows the waveform of the signal and the like when (a)-(e) "k = 5". (a)~(e)「k=3」とした場合の第2実施形態における信号等の波形を示す図である。It is a figure which shows the waveform of the signal and the like in the 2nd Embodiment in the case of (a)-(e) "k = 3". 第3実施形態における電力変換装置のブロック図である。It is a block diagram of the power conversion apparatus in 3rd Embodiment. 第3実施形態における電力変換部の回路構成図である。It is a circuit block diagram of the power conversion part in 3rd Embodiment. 第4実施形態における搬送波生成部のブロック図である。It is a block diagram of the carrier wave generation part in 4th Embodiment. (a)~(e)「k=4」とした場合の第4実施形態における信号等の波形を示す図である。It is a figure which shows the waveform of the signal and the like in the 4th Embodiment in the case of (a)-(e) "k = 4".
[第1実施形態] 図1は、第1実施形態による電力変換装置100のブロック図である。
 電力変換装置100は、電力変換部101と、1次側ゲートパルス生成部102と、2次側ゲートパルス生成部103と、を備えている。電力変換装置100は、何れも3相交流系統である1次側系統30と、2次側系統40との間で、双方向または一方向の電力変換を行うものである。ここで、1次側系統30は、中性線30Nと、R相、S相、T相の電圧がそれぞれ現れるR相線30R、S相線30S、T相線30Tと、を有している。また、2次側系統40は、中性線40Nと、U相、V相、W相の電圧がそれぞれ現れるU相線40U、V相線40V、W相線40Wと、を有している。ここで、中性線30Nと、T相線30Tとの間、および、中性線40NとW相線40Wとの間には、図示省略したが図1と同様の電力変換装置100が設けられる。また、中性線30Nと、S相線30Sとの間、および中性線40NとV相線40Vとの間には、図示省略したが図1と同様の電力変換装置100が設けられる。
[First Embodiment] FIG. 1 is a block diagram of a power conversion device 100 according to the first embodiment.
The power conversion device 100 includes a power conversion unit 101, a primary side gate pulse generation unit 102, and a secondary side gate pulse generation unit 103. The power conversion device 100 performs bidirectional or unidirectional power conversion between the primary side system 30 which is a three-phase AC system and the secondary side system 40. Here, the primary side system 30 has a neutral wire 30N and an R phase wire 30R, an S phase wire 30S, and a T phase wire 30T in which the voltages of the R phase, the S phase, and the T phase appear, respectively. .. Further, the secondary side system 40 has a neutral wire 40N and a U-phase wire 40U, a V-phase wire 40V, and a W-phase wire 40W in which U-phase, V-phase, and W-phase voltages appear, respectively. Here, a power conversion device 100 similar to that shown in FIG. 1 is provided between the neutral wire 30N and the T-phase wire 30T, and between the neutral wire 40N and the W-phase wire 40W, although not shown. .. Further, a power conversion device 100 similar to that shown in FIG. 1 is provided between the neutral wire 30N and the S phase wire 30S, and between the neutral wire 40N and the V phase wire 40V, although not shown.
 1次側系統30と2次側系統40とは、電圧振幅、周波数および位相が互いに独立している。そして、R相、S相、T相電圧は、1次側周波数において互いに「2π/3」の位相差を有し、U相、V相、W相電圧は、2次側周波数において互いに「2π/3」の位相差を有する。1次側および2次側系統30,40としては、例えば商用電源系統、太陽光発電システム、モータ等、様々な発電設備や受電設備を採用することができる。 The voltage amplitude, frequency and phase of the primary side system 30 and the secondary side system 40 are independent of each other. The R-phase, S-phase, and T-phase voltages have a phase difference of "2π / 3" from each other at the primary frequency, and the U-phase, V-phase, and W-phase voltages have "2π / 3" from each other at the secondary frequency. It has a phase difference of "/ 3". As the primary side and secondary side systems 30 and 40, various power generation facilities and power receiving facilities such as a commercial power supply system, a photovoltaic power generation system, and a motor can be adopted.
 電力変換部101は、P台(Pは2以上の自然数)のコンバータセル20-1~20-Pを有している。以下、コンバータセル20-1~20-Pを「コンバータセル20」と総称することがある。コンバータセル20-1~20-Pは、1次側のR相線30Rと中性線30Nとの間に直列に接続されている。また、2次側も同様に、U相線40Uと中性線40Nとの間に直列に接続されている。 The power conversion unit 101 has P units (P is a natural number of 2 or more) of converter cells 20-1 to 20-P. Hereinafter, converter cells 20-1 to 20-P may be collectively referred to as "converter cell 20". The converter cells 20-1 to 20-P are connected in series between the R phase wire 30R on the primary side and the neutral wire 30N. Similarly, the secondary side is also connected in series between the U-phase wire 40U and the neutral wire 40N.
 1次側制御部104は、1次側系統30の電圧と電流を検出し、1次側電圧指令値VREFR,VREFS,VREFTを出力する。同様に、2次側制御部105は、2次側系統40の電圧と電流を検出し、2次側電圧指令値VREFU,VREFV,VREFWを出力する。 The primary side control unit 104 detects the voltage and current of the primary side system 30 and outputs the primary side voltage command values VREFR, VREFS, and VREFT. Similarly, the secondary side control unit 105 detects the voltage and current of the secondary side system 40 and outputs the secondary side voltage command values VREFU, VREFV, and VREFW.
 1次側ゲートパルス生成部102は、コンバータセル20-1~20-Pの1次側に内包されているスイッチング素子を制御するためのゲートパルス信号GT11~GT1PおよびGT11’~GT1P’を発生させる。同様に、2次側ゲートパルス生成部103は、コンバータセル20-1~20-Pの2次側に内包されているスイッチング素子を制御するためのゲートパルス信号GT21~GT2PおよびGT21’~GT2P’を発生させる。 The primary side gate pulse generation unit 102 generates gate pulse signals GT11 to GT1P and GT11'to GT1P' for controlling the switching element contained in the primary side of the converter cells 20-1 to 20-P. .. Similarly, the secondary side gate pulse generation unit 103 has gate pulse signals GT21 to GT2P and GT21'to GT2P' for controlling the switching element contained in the secondary side of the converter cells 20-1 to 20-P. To generate.
 図2は、コンバータセル20-1の回路構成図である。コンバータセル20-2~20-Pはコンバータセル20-1と同一であるため、その詳細な説明は省略する。
 コンバータセル20-1は、一対の1次側端子21a,21bと、一対の2次側端子22a,22bと、交直電力変換器23~26と、コンデンサ27,28と、高周波トランス29と、を有している。
FIG. 2 is a circuit configuration diagram of converter cell 20-1. Since the converter cells 20-2 to 20-P are the same as the converter cells 20-1, detailed description thereof will be omitted.
The converter cell 20-1 includes a pair of primary side terminals 21a and 21b, a pair of secondary side terminals 22a and 22b, AC / DC power converters 23 to 26, capacitors 27 and 28, and a high frequency transformer 29. Have.
 交直電力変換器23は、Hブリッジ状に接続された4個のスイッチング素子Q1~Q4と、これらスイッチング素子Q1~Q4に逆並列に接続されたFWD(Free Wheeling Diоde,符号なし)とを有している。スイッチング素子Q1~Q4は、ゲートパルス信号GT11~GT1PおよびGT11’~GT1P’により制御される。 The AC / DC power converter 23 has four switching elements Q1 to Q4 connected in an H-bridge shape, and an FWD (Free Wheeling Diоde, unsigned) connected in antiparallel to these switching elements Q1 to Q4. ing. The switching elements Q1 to Q4 are controlled by the gate pulse signals GT11 to GT1P and GT11'to GT1P'.
 また、交直電力変換器26は、Hブリッジ状に接続された4個のスイッチング素子Q5~Q8と、これらスイッチング素子Q5~Q8に逆並列に接続されたFWDとを有している。同様に、交直電力変換器24,25は、Hブリッジ状に接続された4個のスイッチング素子と、これらスイッチング素子に逆並列に接続されたFWDとを有している(共に符号なし)。スイッチング素子Q5~Q8は、ゲートパルス信号GT11~GT1PおよびGT11’~GT1P’により制御される。
 なお、本実施形態において、これらスイッチング素子は、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。
Further, the AC / DC power converter 26 has four switching elements Q5 to Q8 connected in an H-bridge shape, and an FWD connected to these switching elements Q5 to Q8 in antiparallel. Similarly, the AC / DC power converters 24 and 25 have four switching elements connected in an H-bridge shape and an FWD connected in antiparallel to these switching elements (both are unsigned). The switching elements Q5 to Q8 are controlled by the gate pulse signals GT11 to GT1P and GT11'to GT1P'.
In this embodiment, these switching elements are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effective Transistors).
 1次側端子21a,21bの間に現れる電圧を1次側AC端子間電圧V1-1と呼び、コンデンサ27の両端の間に現れる電圧を1次側DCリンク電圧Vdc1と呼ぶ。そして、交直電力変換器23は、1次側AC端子間電圧V1-1と1次側DCリンク電圧Vdc1とを双方向または一方向に変換し、電力を伝送する。 The voltage appearing between the primary side terminals 21a and 21b is called the primary side AC terminal voltage V1-1, and the voltage appearing between both ends of the capacitor 27 is called the primary side DC link voltage Vdc1. Then, the AC / DC power converter 23 converts the primary side AC terminal voltage V1-1 and the primary side DC link voltage Vdc1 in both directions or in one direction, and transmits power.
 高周波トランス29は、1次巻線29aと、2次巻線29bとを有し、1次巻線29aと2次巻線29bとの間で、所定の周波数で電力を伝送する。交直電力変換器24、25が高周波トランス29との間で入出力する電流は高周波である。ここで、高周波とは、例えば100Hz以上の周波数であるが、1kHz以上の周波数を採用することが好ましく、10kHz以上の周波数を採用することがより好ましい。交直電力変換器24は1次側DCリンク電圧Vdc1と、1次巻線29aに現れる交流電圧とを双方向または一方向に変換し、電力を伝送する。 The high frequency transformer 29 has a primary winding 29a and a secondary winding 29b, and transmits electric power between the primary winding 29a and the secondary winding 29b at a predetermined frequency. The current input / output from the AC / DC power converters 24 and 25 to / from the high frequency transformer 29 is high frequency. Here, the high frequency is, for example, a frequency of 100 Hz or higher, but it is preferable to adopt a frequency of 1 kHz or higher, and it is more preferable to adopt a frequency of 10 kHz or higher. The AC / DC power converter 24 converts the primary side DC link voltage Vdc1 and the AC voltage appearing in the primary winding 29a in both directions or in one direction to transmit power.
 2次側端子22a,22bの間に現れる電圧を2次側AC端子間電圧V2-1と呼び、コンデンサ28の両端の間に現れる電圧を2次側DCリンク電圧Vdc2と呼ぶ。交直電力変換器25は2次側DCリンク電圧Vdc2と、2次巻線29bに現れる交流電圧とを双方向または一方向に変換し、電力を伝送する。そして、交直電力変換器26は、2次側AC端子間電圧V2-1と、2次側DCリンク電圧Vdc2とを双方向または一方向に変換し、電力を伝送する。 The voltage appearing between the secondary side terminals 22a and 22b is called the secondary side AC terminal voltage V2-1, and the voltage appearing between both ends of the capacitor 28 is called the secondary side DC link voltage Vdc2. The AC / DC power converter 25 converts the secondary side DC link voltage Vdc2 and the AC voltage appearing in the secondary winding 29b in both directions or in one direction to transmit power. Then, the AC / DC power converter 26 converts the secondary side AC terminal voltage V2-1 and the secondary side DC link voltage Vdc2 in both directions or in one direction, and transmits power.
 ここで、1次側ゲートパルス生成部102(図1参照)は、1次側電圧指令値VREFR,VREFS,VREFTに基づいて“LOW”あるいは“HIGH”のゲートパルス信号GT11~GT1PおよびGT11’~GT1P’を発生する。コンバータセル20-1を例にとると、ゲート信号GT11が交直電力変換器23のスイッチング素子Q1,Q4に供給され、これらのオン/オフ状態を制御する。ゲート信号GT11が“HIGH”であればスイッチング素子Q1,Q4はオン状態になり、ゲート信号GT11が“LOW”であれば、スイッチング素子Q1,Q4はオフ状態になる。同様に、ゲート信号GT11’は、交直電力変換器23のスイッチング素子Q2,Q3に供給され、これらのオン/オフ状態を制御する。 Here, the primary side gate pulse generation unit 102 (see FIG. 1) has gate pulse signals GT11 to GT1P and GT11'to of "LOW" or "HIGH" based on the primary side voltage command values VREFR, VREFS, and VREFT. Generates GT1P'. Taking the converter cell 20-1 as an example, the gate signal GT11 is supplied to the switching elements Q1 and Q4 of the AC / DC power converter 23 to control their on / off states. If the gate signal GT11 is "HIGH", the switching elements Q1 and Q4 are turned on, and if the gate signal GT11 is "LOW", the switching elements Q1 and Q4 are turned off. Similarly, the gate signal GT11'is supplied to the switching elements Q2 and Q3 of the AC / DC power converter 23 to control their on / off states.
 交直電力変換器23では、スイッチング素子Q1,Q4がオン状態の時、1次側端子21a,21bの間に現れる電圧はVdc1となり、スイッチング素子Q2,Q3がオン状態の時、1次側端子21a,21bの間に現れる電圧は-Vdc1となる。また、スイッチング素子Q1~Q4の全てがオフ状態の時、1次側端子21a,21bの間に現れる電圧はゼロである。すなわち、交直電力変換器23は、3レベル(-Vdc1,0,Vdc1)の電圧を出力することが可能である。 In the AC / DC power converter 23, when the switching elements Q1 and Q4 are in the ON state, the voltage appearing between the primary side terminals 21a and 21b is Vdc1, and when the switching elements Q2 and Q3 are in the ON state, the primary side terminals 21a , The voltage appearing between 21b is -Vdc1. Further, when all of the switching elements Q1 to Q4 are in the off state, the voltage appearing between the primary side terminals 21a and 21b is zero. That is, the AC / DC power converter 23 can output voltages of three levels (−Vdc1,0, Vdc1).
 2次側ゲートパルス生成部103(図1参照)は、1次側ゲートパルス生成部102と同様に、2次側電圧指令値VREFU,VREFV,VREFWに基づいて“LOW”あるいは“HIGH”のゲートパルス信号GT21~GT2PおよびGT21’~GT2P’を発生する。コンバータセル20-1を例にとると、ゲート信号GT21は交直電力変換器26のスイッチング素子Q5,Q8に供給され、これらのオン/オフ状態を制御する。すなわち、ゲート信号GT21が“HIGH”であればスイッチング素子Q5,Q8はオン状態になり、ゲート信号GT21が“LOW”であれば、スイッチング素子Q5,Q8はオフ状態になる。同様に、ゲート信号GT21’は、交直電力変換器26のスイッチング素子Q6,Q7に供給され、これらのオン/オフ状態を制御する。 The secondary side gate pulse generation unit 103 (see FIG. 1) has a “LOW” or “HIGH” gate based on the secondary side voltage command values VREFU, VREFV, and VREFW, similarly to the primary side gate pulse generation unit 102. Pulse signals GT21 to GT2P and GT21'to GT2P'are generated. Taking the converter cell 20-1 as an example, the gate signal GT21 is supplied to the switching elements Q5 and Q8 of the AC / DC power converter 26 to control their on / off states. That is, if the gate signal GT21 is "HIGH", the switching elements Q5 and Q8 are turned on, and if the gate signal GT21 is "LOW", the switching elements Q5 and Q8 are turned off. Similarly, the gate signal GT21'is supplied to the switching elements Q6 and Q7 of the AC / DC power converter 26 to control their on / off states.
 交直電力変換器26では、スイッチング素子Q5,Q8がオン状態の時、2次側端子22a,22bの間に現れる電圧はVdc2となり、スイッチング素子Q6,Q7がオン状態の時、1次側端子22a,22bの間に現れる電圧は-Vdc2となる。また、スイッチング素子Q5~Q8の全てがオフ状態の時、2次側端子22a,22bの間に現れる電圧はゼロである。すなわち、電力変換部101の交直電力変換器26は、交直電力変換器23と同様に、3レベル(-Vdc2,0,Vdc2)の電圧を出力することが可能である。 In the AC / DC power converter 26, when the switching elements Q5 and Q8 are in the ON state, the voltage appearing between the secondary side terminals 22a and 22b is Vdc2, and when the switching elements Q6 and Q7 are in the ON state, the primary side terminal 22a , The voltage appearing between 22b is -Vdc2. Further, when all of the switching elements Q5 to Q8 are in the off state, the voltage appearing between the secondary side terminals 22a and 22b is zero. That is, the AC / DC power converter 26 of the power conversion unit 101 can output three levels (−Vdc2, 0, Vdc2) of voltage, similarly to the AC / DC power converter 23.
 図3は、1次側ゲートパルス生成部102のブロック図である。1次側ゲートパルス生成部102は、搬送波生成部300と、加算器301と、比較器CMP11~CMP1PおよびCMP11’~CMP1P’と、を有する。 FIG. 3 is a block diagram of the primary side gate pulse generation unit 102. The primary side gate pulse generation unit 102 includes a carrier wave generation unit 300, an adder 301, and comparators CMP11 to CMP1P and CMP11'to CMP1P'.
 搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFRに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFR(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFR’(第二電圧指令値)が生成される。 The carrier wave generation unit 300 generates a carrier wave Sm whose phase is synchronized with respect to the voltage command value VREFR based on the voltage command values VREFR, VREFS, and VREFT of the R phase, S phase, and T phase that indicate a desired output voltage. .. Then, the voltage command value VREFR (first voltage command value) and the carrier wave Sm are added by the adder 301, and the voltage command value VREFR'(second voltage command value) is generated.
 図3では、R相に対応する搬送波生成部300を示すが、図示省略したS相に対応する搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFSに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFS(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFS’(第二電圧指令値)が生成される。 FIG. 3 shows a carrier wave generation unit 300 corresponding to the R phase, but the carrier wave generation unit 300 corresponding to the S phase (not shown) indicates voltage command values of the R phase, S phase, and T phase that indicate a desired output voltage. Based on VREFR, VREFS, and VREFT, a carrier wave Sm whose phase is synchronized with respect to the voltage command value VREFS is generated. Then, the voltage command value VREFS (first voltage command value) and the carrier wave Sm are added by the adder 301, and the voltage command value VREFS'(second voltage command value) is generated.
 また、図示省略したT相に対応する搬送波生成部300は、所望の出力電圧を指示するR相、S相、T相の電圧指令値VREFR,VREFS,VREFTに基づいて、電圧指令値VREFTに対して位相が同期した搬送波Smを生成する。そして、加算器301で電圧指令値VREFT(第一電圧指令値)と搬送波Smが加算され、電圧指令値VREFT’(第二電圧指令値)が生成される。 Further, the carrier wave generation unit 300 corresponding to the T phase (not shown) has a voltage command value VREFT based on the voltage command values VREFR, VREFS, and VREFT of the R phase, S phase, and T phase that indicate a desired output voltage. Generates a carrier wave Sm whose phase is synchronized with each other. Then, the voltage command value VREFT (first voltage command value) and the carrier wave Sm are added by the adder 301, and the voltage command value VREFT'(second voltage command value) is generated.
 図3に示すように、第二電圧指令値VREFR’は、比較器CMP11~CMP1PおよびCMP11’~CMP1P’において、電圧の大きさに対して予め設定された、しきい値1~しきい値P、およびしきい値1’~しきい値P’とそれぞれ比較される。比較器CMP11~CMP1PおよびCMP11’~CMP1P’により、ゲートパルス信号GT11~GT1PおよびGT11’~GT1P’が生成される。例えば、比較器CMP11は第二電圧指令値VREFR’がしきい値1よりも小さいときにゲートパルス信号GT11をLOWにし、第二電圧指令値VREFR’がしきい値1よりも大きいときにゲートパルス信号GT11をHIGHにする。また、比較器CMP11’は第二電圧指令値VREFR’がしきい値1’よりも大きいときにゲートパルス信号GT11’をLOWにし、第二電圧指令値VREFR’がしきい値1’よりも小さいときにゲートパルス信号GT11’をHIGHにする。ゲートパルス信号GT11、GT11’は、コンバータセル20-1へ出力される。 As shown in FIG. 3, the second voltage command value VREFR'has threshold values 1 to P, which are preset with respect to the magnitude of the voltage in the comparators CMP11 to CMP1P and CMP11' to CMP1P'. , And threshold 1'to threshold P', respectively. The comparators CMP11 to CMP1P and CMP11'to CMP1P' generate gate pulse signals GT11 to GT1P and GT11' to GT1P'. For example, the comparator CMP11 sets the gate pulse signal GT11 to LOW when the second voltage command value VREFR'is smaller than the threshold value 1, and the gate pulse when the second voltage command value VREFR'is larger than the threshold value 1. The signal GT11 is set to HIGH. Further, the comparator CMP11'sets the gate pulse signal GT11'to LOW when the second voltage command value VREFR'is larger than the threshold value 1', and the second voltage command value VREFR'is smaller than the threshold value 1'. Sometimes the gate pulse signal GT11'is set to HIGH. The gate pulse signals GT11 and GT11'are output to the converter cell 20-1.
 他の比較器CMP12~CMP1Pおよび比較器CMP12’~CMP1P’についても、設定されるしきい値が異なる点を除き、動作は同様である。 The operations of the other comparators CMP12 to CMP1P and the comparators CMP12'to CMP1P'are the same except that the set threshold values are different.
 図示省略するが、第二電圧指令値VREFS’、第二電圧指令値VREFT’も同様に、比較器CMP11~CMP1PおよびCMP11’~CMP1P’において、しきい値1~しきい値Pおよびしきい値1’~しきい値P’とそれぞれ比較され、ゲートパルス信号を発生する。 Although not shown, the second voltage command value VREFS'and the second voltage command value VREFT' also have threshold values 1 to P and threshold values in the comparators CMP11 to CMP1P and CMP11'to CMP1P'. It is compared with 1'to threshold value P', respectively, and a gate pulse signal is generated.
 図4は、R相に対応する搬送波生成部300のブロック図である。搬送波生成部300は、電圧指令比較部400と、電圧振幅演算部401と、三角波発生部402と、減算器403と、リミッタ404と、乗算器405を有する。S相、T相に対応する搬送波生成部300も同様の構成でありその説明を省略する。 FIG. 4 is a block diagram of the carrier wave generation unit 300 corresponding to the R phase. The carrier wave generation unit 300 includes a voltage command comparison unit 400, a voltage amplitude calculation unit 401, a triangular wave generation unit 402, a subtractor 403, a limiter 404, and a multiplier 405. The carrier wave generation unit 300 corresponding to the S phase and the T phase has the same configuration, and the description thereof will be omitted.
 電圧指令比較部400は、第一電圧指令値VREFR,VREFS,VREFTを互いに比較し、それらの中から最大値Vmaxと最小値Vminを出力する。 The voltage command comparison unit 400 compares the first voltage command values VREFR, VREFS, and VREFT with each other, and outputs the maximum value Vmax and the minimum value Vmin from them.
 電圧振幅演算部401は、第一電圧指令値VREFR,VREFS,VREFTから以下の式(1)~(3)に従い、電圧振幅値Vaを演算する。
 VREFA=√(2/3)・(VREFR―1/2・VREFS―1/2・VREFT)     ・・・(1)
 VREFB=√(2/3)・(√(3)/2・VREFS―√(3)/2・VREFT)     ・・・(2)
 Va=√(2/3)√(VREFA^2+VREFB^2)      ・・・(3)
The voltage amplitude calculation unit 401 calculates the voltage amplitude value Va from the first voltage command values VREFR, VREFS, and VREFT according to the following equations (1) to (3).
VREFA = √ (2/3) ・ (VREFR-1 / 2 ・ VREFS-1 / 2 ・ VREFT) ・ ・ ・ (1)
VREFB = √ (2/3) ・ (√ (3) / 2 ・ VREFS-√ (3) / 2 ・ VREFT) ・ ・ ・ (2)
Va = √ (2/3) √ (VREFA ^ 2 + VREFB ^ 2) ・ ・ ・ (3)
 また、三角波発生部402は、以下の式(4)あるいは(5)に従い、振幅が1となる三角波Striを発生する。
 [k=1,5,9,13,…]の場合、式(4)に従い、 Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) ・・・(4)
 [k=3,7,11,15,…]の場合、式(5)に従い、 Stri=-(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))・・・(5) 
Further, the triangular wave generating unit 402 generates a triangular wave Stri having an amplitude of 1 according to the following equation (4) or (5).
In the case of [k = 1,5,9,13, ...], Stri = (2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) ... (4)
In the case of [k = 3,7,11,15, ...], Stri =-(2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) ...・ (5)
 式(4)、式(5)において、係数kは1以上の奇数である。式(4)、式(5)の演算結果は、厳密には直線に増減する三角波とはならないが、本実施形態においてはStriを三角波と称して説明する。三角波Striは、振幅が1であり、かつ第一電圧指令値VREFR(あるいはVREFS,VREFT)の周波数の3k倍の周波数で変動する信号である。なお、“arcsin”はsinの逆関数を表す。 In equations (4) and (5), the coefficient k is an odd number of 1 or more. Strictly speaking, the calculation results of the equations (4) and (5) are not triangular waves that increase or decrease linearly, but in the present embodiment, Stri will be referred to as a triangular wave. The triangular wave Stri is a signal having an amplitude of 1 and fluctuating at a frequency 3 k times the frequency of the first voltage command value VREFR (or VREFS, VREFT). In addition, "arcsin" represents the inverse function of sin.
 減算器403は、電力変換装置100が出力可能な最大電圧Vlimから電圧振幅Vaを減算し、「Vlim-Va」を演算する。最大電圧Vlimは、電力変換部101が出力可能な最大電圧である。例えば、コンバータセルの直列接続数Pが3の場合、各コンバータセルの1次側DCリンク電圧がVdc1であるとすれば、「Vlim=3・Vdc1」である。 The subtractor 403 subtracts the voltage amplitude Va from the maximum voltage Vlim that can be output by the power converter 100, and calculates "Vlim-Va". The maximum voltage Vlim is the maximum voltage that can be output by the power conversion unit 101. For example, when the number of series connections P of the converter cells is 3, if the primary side DC link voltage of each converter cell is Vdc1, it is “Vlim = 3 · Vdc1”.
 リミッタ404は、「Va≦Vlim」の場合は減算器403の演算結果「Vlim-Va」をそのまま出力し、「Vlim<Va」の場合は減算器403の演算結果をゼロに制限する。すなわち、リミッタ404は、減算器403の演算結果「Vlim-Va」が負の値とならないように(最小値が0以上となるように)制限する。 The limiter 404 outputs the calculation result "Vlim-Va" of the subtractor 403 as it is in the case of "Va≤Vlim", and limits the calculation result of the subtractor 403 to zero in the case of "Vlim <Va". That is, the limiter 404 limits the calculation result "Vlim-Va" of the subtractor 403 so that it does not become a negative value (so that the minimum value becomes 0 or more).
 乗算器405は、三角波発生部402で生成された三角波Striと、リミッタ404を介した減算器403の演算結果を乗算して搬送波Smを生成する。具体的には、減算器403の演算結果「Vlim-Va」は、リミッタ404を介して乗算器405にて振幅が1の三角波に乗算される。すなわち、乗算器405にて三角波Striに乗算される値は、搬送波Smの振幅値に相当する(以下、リミッタ404通過後の信号を搬送波振幅Maとも呼ぶ)。搬送波生成部300が出力する搬送波Smは、電圧振幅Vaが最大電圧Vlimより大きくなる場合(Vlim<Va)、リミッタ404の働きによりゼロとなる。 The multiplier 405 generates a carrier wave Sm by multiplying the triangular wave Stri generated by the triangular wave generating unit 402 with the calculation result of the subtractor 403 via the limiter 404. Specifically, the calculation result "Vlim-Va" of the subtractor 403 is multiplied by the multiplier 405 via the limiter 404 to the triangular wave having an amplitude of 1. That is, the value multiplied by the triangular wave Stri by the multiplier 405 corresponds to the amplitude value of the carrier wave Sm (hereinafter, the signal after passing through the limiter 404 is also referred to as the carrier wave amplitude Ma). The carrier wave Sm output by the carrier wave generation unit 300 becomes zero by the action of the limiter 404 when the voltage amplitude Va becomes larger than the maximum voltage Vlim (Vlim <Va).
 なお、1次側S相、T相の1次側ゲートパルス生成部および2次側U相、V相、W相の2次側ゲートパルス生成部については図示を省略するが、前述したように、主な構成は図3で示した1次側R相と同様である。例えば、1次側S相では、第一電圧指令値VREFSと搬送波Smが加算され、第二電圧指令値VREFS’が生成される。その後、第二電圧指令値VREFS’は、複数ある比較器においてしきい値とそれぞれ比較され、ゲートパルス信号を発生する。1次側T相では、第一電圧指令値VREFTと搬送波Smが加算され、第二電圧指令値VREFT’が生成される。その後、第二電圧指令値VREFT’は、複数ある比較器においてしきい値とそれぞれ比較され、ゲートパルス信号を発生する。2次側U相、V相、W相についても同様の要領で構成される。搬送波生成部300は、全ての相で共通して用いる。すなわち、全ての相で第一電圧指令値に加算される搬送波Smは共通である。 The primary side gate pulse generating part of the primary side S phase and T phase and the secondary side gate pulse generating part of the secondary side U phase, V phase, and W phase are not shown, but as described above. The main configuration is the same as that of the primary R phase shown in FIG. For example, in the primary side S phase, the first voltage command value VREFS and the carrier wave Sm are added to generate the second voltage command value VREFS'. After that, the second voltage command value VREFS'is compared with the threshold value in each of a plurality of comparators, and a gate pulse signal is generated. In the primary side T phase, the first voltage command value VREFT and the carrier wave Sm are added to generate the second voltage command value VREFT'. After that, the second voltage command value VREFT'is compared with the threshold value in each of a plurality of comparators, and a gate pulse signal is generated. The secondary U phase, V phase, and W phase are also configured in the same manner. The carrier wave generator 300 is commonly used in all phases. That is, the carrier wave Sm added to the first voltage command value is common in all phases.
 図5(a)~図5(e)は、式(5)において「k=3」とした場合の信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を-1~1としており(Vlim=Vdc1=1)、しきい値1と1’をそれぞれ0.5,-0.5としている。 5 (a) to 5 (e) are diagrams showing waveforms of signals and the like when “k = 3” is set in the equation (5). However, the number of series connections P of the converter cells is "1". Further, the output voltage range of the power conversion unit 101 is set to -1 to 1 (Vlim = Vdc1 = 1), and the threshold values 1 and 1'are set to 0.5 and −0.5, respectively.
 図5(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図5(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図5(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図5(d)は、第二電圧指令値VREFR’-第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図5(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。 FIG. 5A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage. In FIG. 5B, the gate pulse signal GT11 is shown by a solid line, the gate pulse signal GT11'is shown by a broken line, the horizontal axis is the phase, and the vertical axis is the voltage. FIG. 5C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage. FIG. 5D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S. The horizontal axis is the phase and the vertical axis is the voltage. Is. FIG. 5E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
 図5(a)に示すように、搬送波Smは、搬送波生成部300にて第一電圧指令値VREFR,VREFS,VREFTに基づいて生成されることから、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。これにより、図5(b)に示すように、搬送波Smと第一電圧指令値VREFRとの加算結果である第二電圧指令値VREFR’としきい値との比較結果から得られるゲートパルス信号GT11,GT11’は180°の位相差をもった同一の信号となる。 As shown in FIG. 5A, since the carrier wave Sm is generated by the carrier wave generation unit 300 based on the first voltage command values VREFR, VREFS, and VREFT, the phases of the carrier wave Sm and the first voltage command value VREFR. The relationship is in sync. As a result, as shown in FIG. 5B, the gate pulse signal GT11 obtained from the comparison result between the second voltage command value VREFR', which is the addition result of the carrier wave Sm and the first voltage command value VREFR, and the threshold value, GT11'is the same signal with a phase difference of 180 °.
 そして、図5(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である-1~1を超過しないように制御されており、第一電圧指令値VREFRに相当する電圧を精度よく出力できている。これは、1次側ゲートパルス生成部102により、第一電圧指令値VREFRの1周期内に、第二電圧指令値VREFR’が電圧の大きさに対して設定されるしきい値を複数回跨ぐように搬送波の振幅を制御しているためである。 Then, as shown in FIG. 5C, the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary. Further, the second voltage command value VREFR'is controlled so as not to exceed the output voltage range of -1 to 1, and the voltage corresponding to the first voltage command value VREFR can be output with high accuracy. This is because the primary side gate pulse generation unit 102 straddles the threshold value set by the primary voltage command value VREFR'for the magnitude of the voltage a plurality of times within one cycle of the first voltage command value VREFR. This is because the amplitude of the carrier wave is controlled in this way.
 R相線30RとS相線30Sの間に現れる電力変換部101の線間電圧は、「VREFR’-VREFS’」に相当し、図5(d)に示すように正弦波状の波形となっている。このことから、搬送波Smの影響は現れていない。これは、搬送波Smが3の倍数の次数で変動する信号であり、線間電圧において互いに相殺されるためである。図5(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。 The line voltage of the power conversion unit 101 appearing between the R phase line 30R and the S phase line 30S corresponds to "VREFR'-VREFS'" and has a sinusoidal waveform as shown in FIG. 5 (d). There is. From this, the influence of the carrier wave Sm does not appear. This is because the carrier wave Sm is a signal that fluctuates in a degree that is a multiple of 3, and cancels each other out in the line voltage. From the result of the harmonic component of the line voltage shown in FIG. 5 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
 図6は、比較例における1次側ゲートパルス生成部600のブロック図である。この比較例は、本実施形態を適用しない例であり、本実施形態と比較するために記載した。本実施形態における1次側ゲートパルス生成部300との違いは、搬送波Smを発生する搬送波生成部601が独立して設けられている点である。そのため、搬送波Smと電圧指令値VREFRの位相関係は必ずしも同期するとは限らない。 FIG. 6 is a block diagram of the primary side gate pulse generation unit 600 in the comparative example. This comparative example is an example to which the present embodiment is not applied, and is described for comparison with the present embodiment. The difference from the primary side gate pulse generation unit 300 in this embodiment is that the carrier wave generation unit 601 that generates the carrier wave Sm is provided independently. Therefore, the phase relationship between the carrier wave Sm and the voltage command value VREFR is not always synchronized.
 加算器602にて、第一電圧指令値VREFRと搬送波Smを加算して第二電圧指令値VREFR’を生成した後の動作は、本実施形態における1次側ゲートパルス生成部300と同一である。 The operation after the adder 602 adds the first voltage command value VREFR and the carrier wave Sm to generate the second voltage command value VREFR'is the same as that of the primary side gate pulse generator 300 in the present embodiment. ..
 図7(a)~図7(e)は、図6に示した比較例における信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を-1~1としており(Vlim=Vdc1=1)、しきい値1としきい値1’をそれぞれ0.5,-0.5としている。 7 (a) to 7 (e) are diagrams showing waveforms of signals and the like in the comparative example shown in FIG. However, the number of series connections P of the converter cells is "1". Further, the output voltage range of the power conversion unit 101 is set to -1 to 1 (Vlim = Vdc1 = 1), and the threshold value 1 and the threshold value 1'are set to 0.5 and −0.5, respectively.
 図7(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図7(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図7(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図7(d)は、第二電圧指令値VREFR’-第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図7(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。 FIG. 7A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage. In FIG. 7B, the gate pulse signal GT11 is shown by a solid line, the gate pulse signal GT11'is shown by a broken line, the horizontal axis is the phase, and the vertical axis is the voltage. FIG. 7C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage. FIG. 7D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S. The horizontal axis is the phase and the vertical axis is the voltage. Is. FIG. 7E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
 比較例において、搬送波Smは、第一電圧指令値VREFRの周波数の12倍の周波数で変動する三角波とし、搬送波Smと第一電圧指令値VREFRの和である第二電圧指令値VREFR’が出力電圧範囲―1~1を超過しないように調整した。 In the comparative example, the carrier wave Sm is a triangular wave that fluctuates at a frequency 12 times the frequency of the first voltage command value VREFR, and the second voltage command value VREFR', which is the sum of the carrier wave Sm and the first voltage command value VREFR, is the output voltage. Adjusted so that the range-1 to 1 was not exceeded.
 図7(a)に示すように、搬送波Smと第一電圧指令値VREFRの位相関係は同期していない。そして、図7(c)に示すように、R相線30Rと中性線30Nの間に現れる相電圧は、180°を境に対称の波形とはなっておらず、電圧アンバランスが生じている。これは、搬送波Smと第一電圧指令値VREFRの位相関係が同期していないことが原因である。この電圧アンバランスは、出力電圧の高調波成分を増大させる一因となる可能性がある。図7(e)に示すように、線間電圧の高調波成分は、3の倍数の次数成分を除き、全体的に分布していることが確認できる。 As shown in FIG. 7A, the phase relationship between the carrier wave Sm and the first voltage command value VREFR is not synchronized. Then, as shown in FIG. 7C, the phase voltage appearing between the R phase line 30R and the neutral line 30N does not have a symmetrical waveform with 180 ° as a boundary, and voltage imbalance occurs. There is. This is because the phase relationship between the carrier wave Sm and the first voltage command value VREFR is not synchronized. This voltage imbalance can contribute to increasing the harmonic content of the output voltage. As shown in FIG. 7 (e), it can be confirmed that the harmonic components of the line voltage are distributed as a whole except for the order components that are multiples of 3.
 以上のように、本実施形態による電力変換装置100は、第一電圧指令値VREFR,VREFS,VREFTに基づいて搬送波Smを発生し、スイッチング素子Q1~Q4を制御するためのゲートパルス信号GT11~GT1P、およびGT11’~GT1P’を発生する。 As described above, the power conversion device 100 according to the present embodiment generates the carrier wave Sm based on the first voltage command values VREFR, VREFS, and VREFT, and the gate pulse signals GT11 to GT1P for controlling the switching elements Q1 to Q4. , And GT11'to GT1P'.
 これにより、搬送波Smと第一電圧指令値VREFR,VREFS,VREFTの位相関係を同期させることができる。搬送波Smの周波数に上限があり、スイッチング回数(パルス数)が少なくなる条件であっても、本実施形態による電力変換装置100は電圧・電流に含有する高調波を効果的に抑制できる。 As a result, the phase relationship between the carrier wave Sm and the first voltage command values VREFR, VREFS, and VREFT can be synchronized. Even under the condition that the frequency of the carrier wave Sm has an upper limit and the number of switchings (the number of pulses) is small, the power conversion device 100 according to the present embodiment can effectively suppress the harmonics contained in the voltage / current.
 さらに、本実施形態による電力変換装置100は、第二電圧指令値VREFR’,VREFS’,VREFT’のピーク値が電力変換部101の最大出力電圧Vlimと一致するように、搬送波振幅Maを制御する。これにより、第一電圧指令値VREFR,VREFS,VREFTと出力電圧との間の誤差を抑制できる。 Further, the power conversion device 100 according to the present embodiment controls the carrier wave amplitude Ma so that the peak values of the second voltage command values VREFR', VREFS', and VREFT' match the maximum output voltage Vlim of the power conversion unit 101. .. As a result, the error between the first voltage command values VREFR, VREFS, VREFT and the output voltage can be suppressed.
 本実施形態による電力変換装置100は、コンバータセルの直列接続数(P)、あるいは式(4)、式(5)における係数kを大きくすることで、スイッチング回数(パルス数)を増加させることが可能である。 The power conversion device 100 according to the present embodiment can increase the number of switchings (number of pulses) by increasing the number of converter cells connected in series (P) or the coefficient k in the equations (4) and (5). It is possible.
 図8(a)~図8(e)は、本実施形態において「k=5」とした場合の信号等の波形を示す図である。ただし、コンバータセルの直列接続数Pは「2」である。また、電力変換部101の出力電圧範囲を-1~1としており(Vlim=(Vdc1)/2=1)、しきい値1としきい値1’をそれぞれ0.25,-0.25、しきい値2としきい値2’をそれぞれ0.75,-0.75としている。 8 (a) to 8 (e) are diagrams showing waveforms of signals and the like when "k = 5" is set in this embodiment. However, the number of series connections P of the converter cells is "2". Further, the output voltage range of the power conversion unit 101 is set to -1 to 1 (Vlim = (Vdc1) / 2 = 1), and the threshold value 1 and the threshold value 1'are set to 0.25 and -0.25, respectively. The threshold value 2 and the threshold value 2'are set to 0.75 and -0.75, respectively.
 図5(a)~図5(e)に示す波形と比較すると、図8(a)に示すように、搬送波Smの周波数が増大している。さらにコンバータセルの直列接続数に応じて出力電圧範囲内のしきい値が、図8(c)に示すように、より細かく設定されている。これにより、第二電圧指令VREFR’がしきい値を跨ぐ回数、すなわち、スイッチング回数(パルス数)が増加している。その結果、図8(e)に示すように、電力変換装置100は、より高調波成分の少ない電圧を出力することができている。 Compared with the waveforms shown in FIGS. 5 (a) to 5 (e), the frequency of the carrier wave Sm is increased as shown in FIG. 8 (a). Further, the threshold value within the output voltage range is set more finely according to the number of connected converter cells in series, as shown in FIG. 8 (c). As a result, the number of times the second voltage command VREFR'crosses the threshold value, that is, the number of times of switching (number of pulses) is increased. As a result, as shown in FIG. 8E, the power conversion device 100 can output a voltage having a smaller harmonic component.
[第2実施形態] 第1実施形態では、複数のコンバータセル20を直列接続したマルチステージ型の電力変換装置100において、各コンバータセル20が3レベルの電圧を出力する場合について説明した。第2実施形態では、各コンバータセル20が2レベルの電圧を出力する場合について、図9を参照して、説明する。なお、第2実施形態でも、図1に示した電力変換装置100のブロック図、図2に示したコンバータセル20の回路構成図、図3に示した1次側ゲートパルス生成部102のブロック図、図4に示した搬送波生成部300のブロック図は同様の構成である。 [Second Embodiment] In the first embodiment, in the multi-stage type power conversion device 100 in which a plurality of converter cells 20 are connected in series, a case where each converter cell 20 outputs a voltage of three levels has been described. In the second embodiment, the case where each converter cell 20 outputs a voltage of two levels will be described with reference to FIG. Also in the second embodiment, the block diagram of the power conversion device 100 shown in FIG. 1, the circuit configuration diagram of the converter cell 20 shown in FIG. 2, and the block diagram of the primary side gate pulse generation unit 102 shown in FIG. , The block diagram of the carrier wave generation unit 300 shown in FIG. 4 has the same configuration.
 第2実施形態では、図2に示すコンバータセル20-1の構成において、1次側にある交直電力変換器23が2レベルの電圧を出力するためには、スイッチング素子Q1~Q4の全てがオフ状態にある期間を無くし、スイッチング素子Q1とQ4、あるいはスイッチング素子Q2とQ3のいずれかのペアが必ずオン状態になるように制御する。これにより、電力変換部101の交直電力変換器23は、2レベル(-Vdc1,Vdc1)の電圧を出力する。 In the second embodiment, in the configuration of the converter cell 20-1 shown in FIG. 2, in order for the AC / DC power converter 23 on the primary side to output a voltage of two levels, all of the switching elements Q1 to Q4 are turned off. The period of the state is eliminated, and control is performed so that any pair of the switching elements Q1 and Q4 or the switching elements Q2 and Q3 is always turned on. As a result, the AC / DC power converter 23 of the power conversion unit 101 outputs two levels (−Vdc1, Vdc1) of voltage.
 図9(a)~図9(e)は、「k=3」とした場合の第2実施形態における信号等の波形を示す図である。ただし、コンバータセル20の直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を-1~1としており(Vlim=Vdc1=1)、しきい値1としきい値1’はいずれも0としている。 9 (a) to 9 (e) are diagrams showing waveforms of signals and the like in the second embodiment when “k = 3” is set. However, the number of series connections P of the converter cell 20 is "1". Further, the output voltage range of the power conversion unit 101 is set to -1 to 1 (Vlim = Vdc1 = 1), and the threshold value 1 and the threshold value 1'are both set to 0.
 図9(a)は、第一電圧指令値VREFR、および搬送波Smを示し、横軸は位相、縦軸は電圧である。図9(b)は、ゲートパルス信号GT11を実線で、ゲートパルス信号GT11’を破線で示し、横軸は位相、縦軸は電圧である。図9(c)は、第二電圧指令値VREFR’、およびR相線30Rと中性線30N間の相電圧を示し、横軸は位相、縦軸は電圧である。図9(d)は、第二電圧指令値VREFR’-第二電圧指令値VREFS’、およびR相線30RとS相線30S間の線間電圧を示し、横軸は位相、縦軸は電圧である。図9(e)は、線間電圧の高調波成分を示し、横軸は次数、縦軸は電圧である。 FIG. 9A shows the first voltage command value VREFR and the carrier wave Sm, where the horizontal axis is the phase and the vertical axis is the voltage. In FIG. 9B, the gate pulse signal GT11 is shown by a solid line, the gate pulse signal GT11'is shown by a broken line, the horizontal axis is the phase, and the vertical axis is the voltage. FIG. 9C shows the second voltage command value VREFR'and the phase voltage between the R phase line 30R and the neutral line 30N, with the horizontal axis representing the phase and the vertical axis representing the voltage. FIG. 9D shows the second voltage command value VREFR'-the second voltage command value VREFS', and the line voltage between the R phase line 30R and the S phase line 30S. The horizontal axis is the phase and the vertical axis is the voltage. Is. FIG. 9E shows the harmonic component of the line voltage, the horizontal axis is the order, and the vertical axis is the voltage.
 第1実施形態と同様に、図9(a)に示すように、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。図9(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である-1~1を超過しないように制御されている。図9(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。 Similar to the first embodiment, as shown in FIG. 9A, the phase relationship between the carrier wave Sm and the first voltage command value VREFR is synchronized. As shown in FIG. 9C, the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary. Further, the second voltage command value VREFR'is controlled so as not to exceed the output voltage range of -1 to 1. From the result of the harmonic component of the line voltage shown in FIG. 9 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
 以上のように、複数のコンバータセル20を直列接続したマルチステージ型の電力変換装置100において、各コンバータセル20が2レベルの電圧を出力する場合であっても、第1実施形態と同様の効果が得られる。 As described above, in the multi-stage type power conversion device 100 in which a plurality of converter cells 20 are connected in series, even when each converter cell 20 outputs a voltage of two levels, the same effect as that of the first embodiment is obtained. Is obtained.
[第3実施形態] 第1実施形態および第2実施形態では、図1に示すマルチステージ型の電力変換装置100を対象としたが、その他の形式の電力変換装置に適用してもよい。図10は、第3実施形態における電力変換装置1000のブロック図である。 [Third Embodiment] In the first embodiment and the second embodiment, the multi-stage type power conversion device 100 shown in FIG. 1 is targeted, but it may be applied to other types of power conversion devices. FIG. 10 is a block diagram of the power conversion device 1000 according to the third embodiment.
 図10に示すように、電力変換装置1000は、電力変換部1001と、ゲートパルス生成部1002と、を備えている。電力変換装置1000は、直流系統50と、三相の交流系統60との間で、双方向または一方向の電力変換を行う。ここで、直流系統50は、端子50Pと端子50Nを有している。また、交流系統60は、U相端子60Uと、V相端子60Vと、W相端子60Wと、を有している。一例として、直流系統50としてはバッテリ電源、交流系統60としてはモータ等を採用することができる。 As shown in FIG. 10, the power conversion device 1000 includes a power conversion unit 1001 and a gate pulse generation unit 1002. The power conversion device 1000 performs bidirectional or unidirectional power conversion between the DC system 50 and the three-phase AC system 60. Here, the DC system 50 has a terminal 50P and a terminal 50N. Further, the AC system 60 has a U-phase terminal 60U, a V-phase terminal 60V, and a W-phase terminal 60W. As an example, a battery power source can be adopted as the DC system 50, and a motor or the like can be adopted as the AC system 60.
 制御部1003は、直流系統50と交流系統60の電圧と電流を検出し、第一電圧指令値VREFU,VREFV,VREFWをゲートパルス生成部1002へ出力する。
 ゲートパルス生成部1002は、電力変換部1001に内包されているスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnを制御するためのゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnを発生させる。
The control unit 1003 detects the voltage and current of the DC system 50 and the AC system 60, and outputs the first voltage command values VREFU, VREFV, and VREFW to the gate pulse generation unit 1002.
The gate pulse generation unit 1002 generates gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, GTwn for controlling the switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn contained in the power conversion unit 1001. Let me.
 図11は、電力変換部1001の回路構成図を示したものである。
 電力変換部1001は、一対の直流系統端子70a,70bと、一対の交流系統端子71a,71b,71cと、コンデンサ72a,72bと、を有している。また、電力変換部1001は、スイッチング素子Qupとスイッチング素子Qun、スイッチング素子Qvpとスイッチング素子Qvn、スイッチング素子Qwpとスイッチング素子Qwnが直列に接続され、これらの2つのスイッチング素子の対からなる回路が並列に接続されている。すなわち、各スイッチング素子は三相ブリッジ回路を構成し、電力変換部1001は、直流電力と三相交流電力と間で電力変換を行う。また、各スイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnは、逆並列に接続されたFWDを有している。本実施形態において、これらスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnは、例えばMOSFETである。なお、電力変換部1001において、コンデンサ72a,72bの両端の間に現れる電圧をDCリンク電圧Vdcと呼ぶ。
FIG. 11 shows a circuit configuration diagram of the power conversion unit 1001.
The power conversion unit 1001 has a pair of DC system terminals 70a and 70b, a pair of AC system terminals 71a, 71b and 71c, and capacitors 72a and 72b. Further, in the power conversion unit 1001, the switching element Cup and the switching element Qun, the switching element Qvp and the switching element Qvn, and the switching element Qwp and the switching element Qwn are connected in series, and a circuit composed of a pair of these two switching elements is connected in parallel. It is connected to the. That is, each switching element constitutes a three-phase bridge circuit, and the power conversion unit 1001 performs power conversion between DC power and three-phase AC power. Further, each switching element Cup, Qun, Qbp, Qvn, Qwp, Qwn has an FWD connected in antiparallel. In the present embodiment, these switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn are, for example, MOSFETs. In the power conversion unit 1001, the voltage that appears between both ends of the capacitors 72a and 72b is called the DC link voltage Vdc.
 ゲートパルス生成部1002の詳細は、図3に示した1次側ゲートパルス生成部102と同様であり、その説明を省略する。ゲートパルス生成部1002は、第一電圧指令値VREFU,VREFV,VREFWに基づいて、“LOW”あるいは“HIGH”のゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnを発生する。これらのゲートパルス信号GTup,GTun,GTvp,GTvn,GTwp,GTwnは、それぞれスイッチング素子Qup,Qun,Qvp,Qvn,Qwp,Qwnに供給され、これらのオン/オフ状態を制御する。 The details of the gate pulse generation unit 1002 are the same as those of the primary side gate pulse generation unit 102 shown in FIG. 3, and the description thereof will be omitted. The gate pulse generation unit 1002 generates "LOW" or "HIGH" gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, GTwn based on the first voltage command values VREFU, VREFV, and VREFW. These gate pulse signals GTup, GTun, GTbp, GTvn, GTwp, and GTwn are supplied to the switching elements Cup, Qun, Qbp, Qvn, Qwp, and Qwn, respectively, and control their on / off states.
 電力変換部1001において、スイッチング素子Qupとスイッチング素子Qun、スイッチング素子Qvpとスイッチング素子Qvn、スイッチング素子Qwpとスイッチング素子Qwnの対からなる回路において、いずれか一方がオン状態の場合、他方は必ずオフ状態となるように制御する。 In the power conversion unit 1001, in a circuit consisting of a pair of a switching element Cup and a switching element Qun, a switching element Qvp and a switching element Qvn, and a switching element Qwp and a switching element Qwn, when one of them is in the ON state, the other is always in the OFF state. It is controlled so as to be.
 電力変換部1001の交流系統端子71a,71b,71cのいずれか2つの端子間に現れる電圧は、Vdcあるいは-Vdcとなる。すなわち、電力変換部1001は、2レベルの電圧を出力する電力変換部である。 The voltage that appears between any two of the AC system terminals 71a, 71b, and 71c of the power conversion unit 1001 is Vdc or -Vdc. That is, the power conversion unit 1001 is a power conversion unit that outputs two levels of voltage.
 このことから、第3実施形態では、図9を参照して説明した第2実施形態に示す2レベルの電力変換装置を適用することができる。ただし、第3実施形態におけるゲートパルス信号GTup,GTunは、第2実施形態におけるゲートパルス信号GT11,GT11’に対応する。ゲートパルス信号GTvp,GTvn,GTwp,GTwnについても同様である。第3実施形態においても、第1実施形態あるいは第2実施形態と同様の効果が得られる。 From this, in the third embodiment, the two-level power conversion device shown in the second embodiment described with reference to FIG. 9 can be applied. However, the gate pulse signals GTup and GTun in the third embodiment correspond to the gate pulse signals GT11 and GT11'in the second embodiment. The same applies to the gate pulse signals GTvp, GTvn, GTwp, and GTwn. Also in the third embodiment, the same effect as that of the first embodiment or the second embodiment can be obtained.
[第4実施形態] 第4実施形態では、係数kを2以上の偶数を設定した場合の制御について説明する。
 図12は、第4実施形態における搬送波生成部1200のブロック図である。第1実施形態における搬送波生成部300とは、搬送波振幅Maを調整する振幅調整部1201を備える点が異なる。なお、第4実施形態でも、図1に示した電力変換装置100のブロック図、図2に示したコンバータセル20の回路構成図、図3に示した1次側ゲートパルス生成部102のブロック図は同様の構成である。
[Fourth Embodiment] In the fourth embodiment, the control when the coefficient k is set to an even number of 2 or more will be described.
FIG. 12 is a block diagram of the carrier wave generation unit 1200 according to the fourth embodiment. It differs from the carrier wave generation unit 300 in the first embodiment in that it includes an amplitude adjustment unit 1201 that adjusts the carrier wave amplitude Ma. Also in the fourth embodiment, the block diagram of the power conversion device 100 shown in FIG. 1, the circuit configuration diagram of the converter cell 20 shown in FIG. 2, and the block diagram of the primary side gate pulse generation unit 102 shown in FIG. Has a similar configuration.
 図14に示すように、リミッタ404の出力は、振幅調整部1201を介して乗算器405にて三角波Striに乗算される。
 振幅調整部1201は、第二電圧指令値VREFR’,VREFS’,VREFT’のピーク値が電力変換装置100の最大出力電圧Vlimと一致するように、搬送波振幅Maを制御する。すなわち、振幅調整部1201は、第二電圧指令値VREFR’,VREFS’,VREFT’の振幅値と、搬送波Smの振幅値との和が、最大電圧Vlimと一致するように、リミッタ404の演算結果を調整する。
As shown in FIG. 14, the output of the limiter 404 is multiplied by the triangular wave Stri by the multiplier 405 via the amplitude adjusting unit 1201.
The amplitude adjusting unit 1201 controls the carrier wave amplitude Ma so that the peak values of the second voltage command values VREFR', VREFS', and VREFT' match the maximum output voltage Vlim of the power converter 100. That is, the amplitude adjusting unit 1201 calculates the limiter 404 so that the sum of the amplitude values of the second voltage command values VREFR', VREFS', and VREFT'and the amplitude value of the carrier wave Sm matches the maximum voltage Vlim. To adjust.
 係数kを2以上の偶数を設定する場合、三角波発生部402は、次式(6)に従い、三角波Striを発生する。
 [k=2,4,6,8,…]の場合、 Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin)))      ・・・(6)
When the coefficient k is set to an even number of 2 or more, the triangular wave generating unit 402 generates the triangular wave Stri according to the following equation (6).
In the case of [k = 2,4,6,8, ...], Stri = (2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) ... (6)
 図13(a)~図13(e)は、「k=4」とした場合の第4実施形態における信号等の波形を示す図である。ただし、コンバータセル20の直列接続数Pは「1」である。また、電力変換部101の出力電圧範囲を-1~1としており(Vlim=Vdc1=1)、しきい値1としきい値1’をそれぞれ0.5,-0.5としている。 13 (a) to 13 (e) are diagrams showing waveforms of signals and the like in the fourth embodiment when "k = 4" is set. However, the number of series connections P of the converter cell 20 is "1". Further, the output voltage range of the power conversion unit 101 is set to -1 to 1 (Vlim = Vdc1 = 1), and the threshold value 1 and the threshold value 1'are set to 0.5 and −0.5, respectively.
 図13(a)に示すように、搬送波Smは完全な三角波状とはならないが、搬送波Smと第一電圧指令値VREFRの位相関係は同期している。ただし、第一電圧指令値VRREFと搬送波Smがピーク値となるタイミングがずれている。なお、kを1以上の奇数(k=1,3,5,…)に設定する場合では、第一電圧指令値VRREFと搬送波Smがピーク値となるタイミングが一致する。このことから、第4実施形態では、他の実施形態と同様の効果を得るために、係数kの設定値に応じて搬送波振幅Maを調整する振幅調整部1201が付加されている。 As shown in FIG. 13A, the carrier wave Sm does not have a perfect triangular wave shape, but the phase relationship between the carrier wave Sm and the first voltage command value VREFR is synchronized. However, the timing at which the first voltage command value VRREF and the carrier wave Sm reach their peak values is different. When k is set to an odd number of 1 or more (k = 1, 3, 5, ...), The timing at which the first voltage command value VRREF and the carrier wave Sm become peak values coincide with each other. For this reason, in the fourth embodiment, in order to obtain the same effect as in the other embodiments, an amplitude adjusting unit 1201 that adjusts the carrier wave amplitude Ma according to the set value of the coefficient k is added.
 また、図13(b)に示すように、搬送波Smと電圧指令値VREFRとの加算結果VREFR’としきい値との比較結果から得られるゲートパルス信号GT11,GT11’は180°の位相差をもった同一の信号となる。そして、図13(c)に示すように、R相線30Rと中性線30Nの間に現れる電力変換部101の相電圧は180°を境に対称の波形となっている。また、第二電圧指令値VREFR’は出力電圧範囲である-1~1を超過しないように制御されており、第一電圧指令値VREFRに相当する電圧を精度よく出力できている。R相線30RとS相線30Sの間に現れる電力変換部101の線間電圧は、「VREFR’-VREFS’」に相当し、図13(d)に示すように正弦波状の波形となっている。図13(e)に示す線間電圧の高調波成分の結果からも、線間電圧に3の倍数の次数の高調波成分が現れないことが確認できる。 Further, as shown in FIG. 13B, the gate pulse signals GT11 and GT11' obtained from the comparison result between the addition result VREFR'of the carrier wave Sm and the voltage command value VREFR and the threshold value have a phase difference of 180 °. It becomes the same signal. Then, as shown in FIG. 13C, the phase voltage of the power conversion unit 101 appearing between the R phase line 30R and the neutral line 30N has a symmetrical waveform with 180 ° as a boundary. Further, the second voltage command value VREFR'is controlled so as not to exceed the output voltage range of -1 to 1, and the voltage corresponding to the first voltage command value VREFR can be output with high accuracy. The line voltage of the power conversion unit 101 appearing between the R phase line 30R and the S phase line 30S corresponds to "VREFR'-VREFS'" and has a sinusoidal waveform as shown in FIG. 13 (d). There is. From the result of the harmonic component of the line voltage shown in FIG. 13 (e), it can be confirmed that the harmonic component of the order of a multiple of 3 does not appear in the line voltage.
<変形例1> なお、本発明は上述の各実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上述の各実施形態は本発明に対する理解を助けるために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 <Modification 1> The present invention is not limited to the above-described embodiments, and includes various modifications. For example, each of the above embodiments has been described in detail to aid in understanding of the present invention and is not necessarily limited to those comprising all of the described configurations. Further, it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is possible to add / delete / replace other configurations with respect to a part of the configurations of each embodiment.
 上述の各実施形態に対して可能な変形は、例えば以下のようなものである。
 図2に示した交直電力変換器23~26は、双方向に電力を変換できるようにスイッチング素子を用いたHブリッジを適用したが、一方向に電力を変換できればよい場合は、交直電力変換器23~26の一部において、整流素子を用いたHブリッジを適用してもよい。その一例としては、交直電力変換器25を、4個の整流素子(図示省略)を適用した交直電力変換器に置換できる。本変形例においても、高周波トランス29のトランス電位差は、上述の各実施形態と同様になるため、電力変換装置100を小型かつ安価に構成することができる。本変形例を構成する際に用いる4個の整流素子は、半導体ダイオード、あるいは真空管式の水銀整流器等であってもよい。半導体を適用する場合に、その材質はSi、SiC、GaN等、任意のものを適用できる。
Possible modifications for each of the above embodiments are, for example:
The AC / DC power converters 23 to 26 shown in FIG. 2 are H-bridges that use switching elements so that they can convert power in both directions. However, if it is sufficient to convert power in one direction, AC / DC power converters An H-bridge using a rectifying element may be applied in a part of 23 to 26. As an example, the AC / DC power converter 25 can be replaced with an AC / DC power converter to which four rectifying elements (not shown) are applied. Also in this modification, the transformer potential difference of the high-frequency transformer 29 is the same as in each of the above-described embodiments, so that the power conversion device 100 can be configured in a small size and at low cost. The four rectifying elements used in constructing this modification may be a semiconductor diode, a vacuum tube type mercury rectifier, or the like. When a semiconductor is applied, any material such as Si, SiC, and GaN can be applied as the material.
<変形例2> 上述の各実施形態におけるコンバータセル20は、1次側および2次側が共に交流系統である場合を想定している。しかし、1次側または2次側のうち一方が直流系統であってもよい。その一例としては、図2に示す交直電力変換器26を除去した構成に置き換えることが可能である。この場合、端子22a,22bの間に現れる電圧V1-1は、コンデンサ28の両端に現れる2次側DCリンク電圧Vdc2となる。なお、本変形例では、1次側を交流系統とし、2次側を直流系統とした例を示したが、1次側を直流系統とし、2次側を交流系統としてもよい。 <Modification 2> It is assumed that the converter cell 20 in each of the above-described embodiments is an AC system on both the primary side and the secondary side. However, one of the primary side and the secondary side may be a DC system. As an example thereof, it is possible to replace the AC / DC power converter 26 shown in FIG. 2 with a configuration in which the AC / DC power converter 26 is removed. In this case, the voltage V1-1 appearing between the terminals 22a and 22b becomes the secondary side DC link voltage Vdc2 appearing at both ends of the capacitor 28. In this modified example, the primary side is an AC system and the secondary side is a DC system, but the primary side may be a DC system and the secondary side may be an AC system.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)電力変換装置100,1000は、複数のスイッチング素子Q1~Q4、Q5~Q8のオンオフを制御して電力を変換する電力変換部101,1001と、所望の出力電圧を指示する複数相の第一電圧指令値VREFR,VREFS,VREFTに基づいてスイッチング素子Q1~Q4、Q5~Q8のオンオフを制御するゲートパルス信号GT11~GT1P,GT11’~GT1P’、GT21~GT2P,GT21’~GT2P’、GTup,GTvp,GTwp、GTun,GTvn,GTwnを生成するゲートパルス生成部102、103、1002とを備える電力変換装置であって、ゲートパルス生成部102、103、1002は、複数相の各第一電圧指令値VREFR,VREFS,VREFTに基づいて、第一電圧指令値VREFR,VREFS,VREFTに対して位相が同期した搬送波Smを生成し、搬送波Smを第一電圧指令値VREFR,VREFS,VREFTに加算して第二電圧指令値VREFR’,VREFS’,VREFT’を生成する。これにより、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。
According to the embodiment described above, the following effects can be obtained.
(1) The power conversion devices 100 and 1000 include power conversion units 101 and 1001 that control on / off of a plurality of switching elements Q1 to Q4 and Q5 to Q8 to convert power, and a plurality of phases that indicate a desired output voltage. Gate pulse signals GT11 to GT1P, GT11'to GT1P', GT21 to GT2P, GT21' to GT2P', which control the on / off of switching elements Q1 to Q4 and Q5 to Q8 based on the first voltage command values VREFR, VREFS, and VREFT. It is a power conversion device including gate pulse generation units 102, 103, 1002 that generate GTup, GTbp, GTwp, GTun, GTvn, GTwn, and the gate pulse generation units 102, 103, 1002 are the first of each of a plurality of phases. Based on the voltage command values VREFR, VREFS, and VREFT, a carrier Sm whose phase is synchronized with respect to the first voltage command values VREFR, VREFS, and VREFT is generated, and the carrier Sm is added to the first voltage command values VREFR, VREFS, and VREFT. Then, the second voltage command values VREFR', VREFS', and VREFT'are generated. As a result, harmonics can be suppressed even when the frequency of the carrier wave cannot be set sufficiently high with respect to the voltage command value.
(2)電力変換装置100,1000の制御方法は、複数のスイッチング素子Q1~Q4、Q5~Q8のオンオフを制御して電力を変換する電力変換部101,1001と、所望の出力電圧を指示する複数相の第一電圧指令値VREFR,VREFS,VREFTに基づいてスイッチング素子Q1~Q4、Q5~Q8のオンオフを制御するゲートパルス信号GT11~GT1P,GT11’~GT1P’、GT21~GT2P,GT21’~GT2P’、GTup,GTvp,GTwp、GTun,GTvn,GTwnを生成するゲートパルス生成部102、103、1002とを備える電力変換装置100,1000の制御方法であって、ゲートパルス生成部102、103、1002により、複数相の各第一電圧指令値VREFR,VREFS,VREFTに基づいて、第一電圧指令値VREFR,VREFS,VREFTに対して位相が同期した搬送波Smを生成し、搬送波Smを第一電圧指令値VREFR,VREFS,VREFTに加算して第二電圧指令値VREFR’,VREFS’,VREFT’を生成する。これにより、電圧指令値に対して搬送波の周波数を十分に高く設定できない場合であっても、高調波を抑制できる。 (2) The control method of the power conversion devices 100 and 1000 is to instruct the power conversion units 101 and 1001 that control the on / off of a plurality of switching elements Q1 to Q4 and Q5 to Q8 to convert the power and a desired output voltage. Gate pulse signals GT11 to GT1P, GT11'to GT1P', GT21 to GT2P, GT21'- A control method for power conversion devices 100, 1000 including gate pulse generators 102, 103, 1002 for generating GT2P', GTup, GTbp, GTwp, GTun, GTvn, GTwn, wherein the gate pulse generators 102, 103, With 1002, a carrier Sm whose phase is synchronized with respect to the first voltage command values VREFR, VREFS, and VREFT is generated based on the first voltage command values VREFR, VREFS, and VREFT of the plurality of phases, and the carrier Sm is set to the first voltage. The second voltage command values VREFR', VREFS', and VREFT'are generated by adding to the command values VREFR, VREFS, and VREFT. As a result, harmonics can be suppressed even when the frequency of the carrier wave cannot be set sufficiently high with respect to the voltage command value.
 本発明は、上述の各実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の各実施形態と複数の変形例とを組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiments, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. Is done. Further, the configuration may be a combination of each of the above-described embodiments and a plurality of modifications.
 100,1000・・・電力変換装置、101,1001・・・電力変換部、102・・・1次側ゲートパルス生成部、103・・・2次側ゲートパルス生成部、104・・・1次側制御部、105・・・2次側制御部、20-1~20-P・・・コンバータセル、300               ,600,1200・・・搬送波生成部、CMP11~CMP1P・・・比較器、CMP11’~CMP1P’・・・比較器、400・・・電圧指令比較部、401・・・電圧振幅演算部、402  ・・・三角波発生部、404・・・リミッタ、1002・・・ゲートパルス生成部、1003・・・制御部、1201・・・振幅調整部、Q1~Q4、Q5~Q8、Qup、Qun、Qvp、Qvn、Qwp、Qwn・・・スイッチング素子、GT11~GT1P,GT11’~GT1P’・・・ゲートパルス信号(1次側)、GT21~GT2P,GT21’~GT2P’・・・ゲートパルス信号(2次側)、GTup,GTvp,GTwp・・・ゲートパルス信号(上アーム側)、GTun,GTvn,GTwn・・・ゲートパルス信号(下アーム側)、VREFR,VREFS,VREFT・・・第一電圧指令値(1次側)、VREFU,VREFV,VREFW・・・第一電圧指令値(2次側)、VREFR’,VREFS’,VREFT’・・・第二電圧指令値(1次側)、VREFU’,VREFV’,VREFW’・・・第二電圧指令値(2次側)、Sm・・・搬送波、Stri・・・三角波、Ma・・・搬送波振幅、Va・・・電圧振幅、Vlim・・・最大電圧。 100, 1000 ... Power conversion device, 101, 1001 ... Power conversion unit, 102 ... Primary side gate pulse generation unit, 103 ... Secondary side gate pulse generation unit, 104 ... Primary Side control unit, 105 ... Secondary side control unit, 20-1 to 20-P ... Converter cell, 300, 600, 1200 ... Carrier generator, CMP11 to CMP1P ... Comparer, CMP11' ~ CMP1P'・ ・ ・ Comparison device, 400 ・ ・ ・ Voltage command comparison unit, 401 ・ ・ ・ Voltage amplitude calculation unit, 402 ・ ・ ・ Triangular wave generation unit, 404 ・ ・ ・ Limiter, 1002 ・ ・ ・ Gate pulse generation unit, 1003 ... Control unit, 1201 ... Vibration adjustment unit, Q1 to Q4, Q5 to Q8, Cup, Qun, Qbp, Qvn, Qwp, Qwn ... Switching element, GT11 to GT1P, GT11'to GT1P'.・ ・ Gate pulse signal (primary side), GT21 to GT2P, GT21'to GT2P' ・ ・ ・ Gate pulse signal (secondary side), GTup, GTbp, GTwp ・ ・ ・ Gate pulse signal (upper arm side), GTun , GTvn, GTwn ... Gate pulse signal (lower arm side), VREFR, VREFS, VREFT ... First voltage command value (primary side), VREFU, VREFV, VREFW ... First voltage command value (2) Next side), VREFR', VREFS', VREFT'... Second voltage command value (primary side), VREFU', VREFV', VREFW'... Second voltage command value (secondary side), Sm.・ ・ Carrier, Stri ・ ・ ・ Triangular wave, Ma ・ ・ ・ Carrier amplitude, Va ・ ・ ・ Voltage amplitude, Vlim ・ ・ ・ Maximum voltage.

Claims (9)

  1.  複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置であって、
     前記ゲートパルス生成部は、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する電力変換装置。
    A power converter that controls the on / off of a plurality of switching elements to convert power, and a gate pulse signal that controls the on / off of the switching element based on a multi-phase first voltage command value that indicates a desired output voltage are generated. A power conversion device including a gate pulse generator
    The gate pulse generator generates a carrier wave whose phase is synchronized with the first voltage command value based on each first voltage command value of the plurality of phases, and adds the carrier wave to the first voltage command value. A power converter that generates a second voltage command value.
  2.  請求項1に記載の電力変換装置において、
     前記ゲートパルス生成部は、前記第一電圧指令値の1周期内に、前記第二電圧指令値が電圧の大きさに対して予め設定されたしきい値を複数回跨ぐように前記搬送波の振幅を制御し、前記第二電圧指令値と前記しきい値との比較結果に基づいて前記ゲートパルス信号を生成する電力変換装置。
    In the power conversion device according to claim 1,
    The gate pulse generator has an amplitude of the carrier wave so that the second voltage command value straddles a preset threshold value with respect to the magnitude of the voltage a plurality of times within one cycle of the first voltage command value. A power conversion device that controls the above and generates the gate pulse signal based on the comparison result between the second voltage command value and the threshold value.
  3.  請求項2に記載の電力変換装置において、
     前記ゲートパルス生成部は、搬送波生成部を含み、
     前記搬送波生成部は、電圧指令比較部と、電圧振幅演算部と、三角波発生部と、減算器と、リミッタと、乗算器と、を含み、
     前記電圧指令比較部は、各相の前記第一電圧指令値を互いに比較してそれらの中から最大値Vmaxと最小値Vminを出力し、
     電圧振幅演算部は、各相の前記第一電圧指令値をもとに電圧振幅Vaを演算し、
     前記三角波発生部は、下式にもとづいて振幅が1となる三角波Striを生成し、
     前記減算器は、前記電力変換装置が出力可能な最大電圧Vlimから前記電圧振幅Vaを減算した結果を出力し、
     前記リミッタは、前記減算器の演算結果が負の値とならないように制限し、
     前記乗算器は、前記三角波Striと、前記リミッタを介した前記減算器の演算結果を乗算して前記搬送波を生成する電力変換装置。
     [k=1,5,9,13,…]の場合、 Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) [k=3,7,11,15,…]の場合、 Stri=-(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) ただし、kは1以上の奇数(k=1,3,5,…)を表す。
    In the power conversion device according to claim 2,
    The gate pulse generation unit includes a carrier wave generation unit.
    The carrier wave generation unit includes a voltage command comparison unit, a voltage amplitude calculation unit, a triangle wave generator, a subtractor, a limiter, and a multiplier.
    The voltage command comparison unit compares the first voltage command values of each phase with each other and outputs the maximum value Vmax and the minimum value Vmin from them.
    The voltage amplitude calculation unit calculates the voltage amplitude Va based on the first voltage command value of each phase, and then calculates the voltage amplitude Va.
    The triangular wave generating unit generates a triangular wave Stri having an amplitude of 1 based on the following equation.
    The subtractor outputs the result of subtracting the voltage amplitude Va from the maximum voltage Vlim that can be output by the power converter.
    The limiter limits the operation result of the subtractor so that it does not become a negative value.
    The multiplier is a power conversion device that generates the carrier wave by multiplying the triangular wave Stri by the calculation result of the subtractor via the limiter.
    In the case of [k = 1,5,9,13, ...], Stri = (2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) [k = 3,7,11, In the case of [15, ...], Stri =-(2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) However, k is an odd number of 1 or more (k = 1,3,5). ...).
  4.  請求項2に記載の電力変換装置において、
     前記ゲートパルス生成部は、搬送波生成部を含み、
     前記搬送波生成部は、電圧指令比較部と、電圧振幅演算部と、三角波発生部と、減算器と、リミッタと、振幅調整部と、乗算器と、を含み、
     前記電圧指令比較部は、各相の前記第一電圧指令値を互いに比較してそれらの中から最大値Vmaxと最小値Vminを出力し、
     電圧振幅演算部は、各相の前記第一電圧指令値をもとに電圧振幅Vaを演算し、
     前記三角波発生部は、下式にもとづいて振幅が1となる三角波Striを生成し、
     前記減算器は、前記電力変換装置が出力可能な最大電圧Vlimから前記電圧振幅Vaを減算した結果を出力し、
     前記リミッタは、前記減算器の演算結果が負とならないように制限し、
     前記振幅調整部は、前記第二電圧指令値の振幅値と、前記搬送波の振幅値との和が、前記最大電圧Vlimと一致するように、前記リミッタの演算結果を調整し、
     前記乗算器は、前記三角波Striと、前記リミッタを介した前記減算器の演算結果を乗算して前記搬送波を生成する電力変換装置。
     [k=2,4,6,8,…]の場合、 Stri=(2/π)・arcsin(sin((k・π/Va)・(Vmax+Vmin))) ただし、kは2以上の偶数(k=2,4,6,…)を表す。
    In the power conversion device according to claim 2,
    The gate pulse generation unit includes a carrier wave generation unit.
    The carrier wave generation unit includes a voltage command comparison unit, a voltage amplitude calculation unit, a triangular wave generation unit, a subtractor, a limiter, an amplitude adjustment unit, and a multiplier.
    The voltage command comparison unit compares the first voltage command values of each phase with each other and outputs the maximum value Vmax and the minimum value Vmin from them.
    The voltage amplitude calculation unit calculates the voltage amplitude Va based on the first voltage command value of each phase, and then calculates the voltage amplitude Va.
    The triangular wave generating unit generates a triangular wave Stri having an amplitude of 1 based on the following equation.
    The subtractor outputs the result of subtracting the voltage amplitude Va from the maximum voltage Vlim that can be output by the power converter.
    The limiter limits the calculation result of the subtractor so that it does not become negative.
    The amplitude adjusting unit adjusts the calculation result of the limiter so that the sum of the amplitude value of the second voltage command value and the amplitude value of the carrier wave matches the maximum voltage Vlim.
    The multiplier is a power conversion device that generates the carrier wave by multiplying the triangular wave Stri by the calculation result of the subtractor via the limiter.
    In the case of [k = 2,4,6,8, ...], Stri = (2 / π) · arcsin (sin ((k · π / Va) · (Vmax + Vmin))) However, k is an even number of 2 or more ( k = 2, 4, 6, ...).
  5.  請求項2から請求項4までの何れか一項に記載の電力変換装置において、
     前記電力変換部は、正、負、ゼロの3レベルの電圧を出力する電力変換装置。
    In the power conversion device according to any one of claims 2 to 4.
    The power conversion unit is a power conversion device that outputs three levels of voltage, positive, negative, and zero.
  6.  請求項2から請求項4までの何れか一項に記載の電力変換装置において、
     前記電力変換部は、正、負の2レベルの電圧を出力する電力変換装置。
    In the power conversion device according to any one of claims 2 to 4.
    The power conversion unit is a power conversion device that outputs two levels of positive and negative voltages.
  7.  請求項2から請求項4までの何れか一項に記載の電力変換装置において、
     前記電力変換部は、直流電力と三相交流電力と間で電力変換を行う電力変換装置。
    In the power conversion device according to any one of claims 2 to 4.
    The power conversion unit is a power conversion device that converts power between DC power and three-phase AC power.
  8.  複数のスイッチング素子のオンオフを制御して電力を変換する電力変換部と、所望の出力電圧を指示する複数相の第一電圧指令値に基づいて前記スイッチング素子のオンオフを制御するゲートパルス信号を生成するゲートパルス生成部とを備える電力変換装置の制御方法であって、
     前記ゲートパルス生成部により、前記複数相の各第一電圧指令値に基づいて、第一電圧指令値に対して位相が同期した搬送波を生成し、前記搬送波を前記第一電圧指令値に加算して第二電圧指令値を生成する電力変換装置の制御方法。
    A power converter that controls the on / off of a plurality of switching elements to convert power, and a gate pulse signal that controls the on / off of the switching element based on a multi-phase first voltage command value that indicates a desired output voltage are generated. It is a control method of a power conversion device including a gate pulse generator.
    The gate pulse generator generates a carrier wave whose phase is synchronized with the first voltage command value based on each first voltage command value of the plurality of phases, and adds the carrier wave to the first voltage command value. A control method for a power converter that generates a second voltage command value.
  9.  請求項8に記載の電力変換装置の制御方法において、
     前記ゲートパルス生成部により、前記第一電圧指令値の1周期内に、前記第二電圧指令値が電圧の大きさに対して予め設定されたしきい値を複数回跨ぐように前記搬送波の振幅を制御し、前記第二電圧指令値と前記しきい値との比較結果に基づいて前記ゲートパルス信号を生成する電力変換装置の制御方法。
    In the control method of the power conversion device according to claim 8,
    The amplitude of the carrier so that the second voltage command value straddles a preset threshold value for the magnitude of the voltage a plurality of times within one cycle of the first voltage command value by the gate pulse generation unit. A control method of a power conversion device that controls the above and generates the gate pulse signal based on the comparison result between the second voltage command value and the threshold value.
PCT/JP2020/049081 2020-03-18 2020-12-28 Power conversion device and method for controlling power conversion device WO2021186841A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080098287.XA CN115176406A (en) 2020-03-18 2020-12-28 Power conversion device and control method for power conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020048508A JP2021151077A (en) 2020-03-18 2020-03-18 Power conversion device and control method of power conversion device
JP2020-048508 2020-03-18

Publications (1)

Publication Number Publication Date
WO2021186841A1 true WO2021186841A1 (en) 2021-09-23

Family

ID=77770755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049081 WO2021186841A1 (en) 2020-03-18 2020-12-28 Power conversion device and method for controlling power conversion device

Country Status (3)

Country Link
JP (1) JP2021151077A (en)
CN (1) CN115176406A (en)
WO (1) WO2021186841A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319662A (en) * 2002-04-17 2003-11-07 Fuji Electric Co Ltd Multiple-level inverter control method
WO2010137162A1 (en) * 2009-05-29 2010-12-02 トヨタ自動車株式会社 Control device and control method for alternating current motor
JP2018007294A (en) * 2016-06-27 2018-01-11 東芝三菱電機産業システム株式会社 Power conversion device and control method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003319662A (en) * 2002-04-17 2003-11-07 Fuji Electric Co Ltd Multiple-level inverter control method
WO2010137162A1 (en) * 2009-05-29 2010-12-02 トヨタ自動車株式会社 Control device and control method for alternating current motor
JP2018007294A (en) * 2016-06-27 2018-01-11 東芝三菱電機産業システム株式会社 Power conversion device and control method therefor

Also Published As

Publication number Publication date
JP2021151077A (en) 2021-09-27
CN115176406A (en) 2022-10-11

Similar Documents

Publication Publication Date Title
US10224830B2 (en) System and method for controlling a back-to-back three-level converter with voltage ripple compensation
Rodríguez et al. High-voltage multilevel converter with regeneration capability
EP2270968B1 (en) Power Transmission Method and Power Transmission Apparatus
WO2014196013A1 (en) Power conversion device
US10218285B2 (en) Medium voltage hybrid multilevel converter and method for controlling a medium voltage hybrid multilevel converter
EP2779403B1 (en) Power conversion system and method
US11223297B2 (en) Modular multipoint power converter and method of operating it
RU2562251C2 (en) Method of formation of output voltage and device for method implementation
JP6104736B2 (en) Power converter
JP2013162658A (en) Power conversion device
WO2019171568A1 (en) Power conversion device
Nguyen et al. Predictive nearest-level control algorithm for modular multilevel converters with reduced harmonic distortion
KR102409013B1 (en) power converter
JP5047210B2 (en) Power converter
JP3200283B2 (en) Inverter control method and inverter control device
JP4019263B2 (en) AC-AC direct conversion power converter
Sau et al. Reduction of capacitor ripple voltage and current in Modular Multilevel Converter based variable speed drives
WO2021186841A1 (en) Power conversion device and method for controlling power conversion device
JP4015795B2 (en) Power converter
Tewari et al. Indirect matrix converter based open-end winding AC drives with zero common-mode voltage
WO2018179234A1 (en) H-bridge converter and power conditioner
Chai et al. Space vector PWM for three-to-five phase indirect matrix converters with d 2-q 2 vector elimination
JP6935359B2 (en) Series multiplex power converter
Bhasker et al. Modeling of modular multilevel converter for grid application
JP6867816B2 (en) Converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20926040

Country of ref document: EP

Kind code of ref document: A1