WO2019078002A1 - Liquid processing system - Google Patents

Liquid processing system Download PDF

Info

Publication number
WO2019078002A1
WO2019078002A1 PCT/JP2018/036985 JP2018036985W WO2019078002A1 WO 2019078002 A1 WO2019078002 A1 WO 2019078002A1 JP 2018036985 W JP2018036985 W JP 2018036985W WO 2019078002 A1 WO2019078002 A1 WO 2019078002A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
negative electrode
treated
dimensional structure
Prior art date
Application number
PCT/JP2018/036985
Other languages
French (fr)
Japanese (ja)
Inventor
直毅 吉川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2019078002A1 publication Critical patent/WO2019078002A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to liquid processing systems.
  • the present invention relates to a liquid treatment system using a microbial fuel cell capable of purifying wastewater and producing electrical energy.
  • a microbial fuel cell is a wastewater treatment device that oxidizes and processes organic substances and nitrogen-containing compounds while converting the chemical energy of organic substances and nitrogen-containing compounds contained in domestic wastewater and industrial wastewater into electrical energy. . And a microbial fuel cell has the characteristics of little generation
  • a microbial fuel cell has a negative electrode carrying a microorganism, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution. And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode.
  • the negative electrode and the positive electrode form a closed circuit by being connected to each other through a load circuit.
  • hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. Then, the generated hydrogen ions move to the positive electrode, and the electrons move to the positive electrode through the load circuit.
  • the hydrogen ions and electrons transferred from the negative electrode combine with oxygen at the positive electrode to be consumed as water. At that time, the electrical energy flowing to the closed circuit is recovered.
  • a container provided with a waste water inlet and outlet, and a microbial fuel comprising a plurality of electrode units arranged in the container along a direction from the inlet to the outlet.
  • a battery wastewater treatment system is disclosed (see, for example, Patent Document 1). And in patent document 1, since several electrode units are arranged along the direction which goes to an outflow port from an inflow port, the organic substance density
  • Patent Document 1 since the waste water flows between the plurality of electrode units arranged along the direction from the inlet to the outlet, the waste water may not easily contact the surface of the electrode unit. Therefore, there is a problem that the contact between the microorganism carried on the electrode unit and the wastewater becomes insufficient, and the microorganism does not act efficiently.
  • the present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a liquid treatment system capable of enhancing the contact between the electrode unit and the wastewater and efficiently performing the power generation by microorganisms and the purification of the wastewater.
  • a liquid treatment system holds a liquid to be treated containing an organic substance, and has a treatment tank having an inlet and an outlet for the treatment liquid, and the inside of the treatment tank. And one or more electrode units provided along the direction from the inlet to the outlet in plan view, at least between the electrode unit and the processing tank, and between the adjacent electrode units. And a three-dimensional structure provided on one side.
  • the electrode unit includes a negative electrode supporting a microorganism and a positive electrode electrically connected to the negative electrode, the negative electrode and the positive electrode being immersed in the liquid to be treated, and at least a part of the positive electrode is exposed to the gas phase.
  • FIG. 1 is a schematic perspective view showing an example of a liquid processing system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a schematic plan view showing an example of the liquid processing system according to the embodiment of the present invention.
  • FIG. 4 is an exploded perspective view showing an electrode unit in the liquid processing system.
  • FIG. 5 is a schematic plan view showing another example of the liquid treatment system according to the embodiment of the present invention.
  • FIG. 6 is a schematic plan view showing another example of the liquid treatment system according to the embodiment of the present invention.
  • FIG. 7 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 8 is a cross-sectional view along the line CC in FIG.
  • FIG. 9 is a graph showing the relationship between the steady-state output and the number of working days in the liquid treatment system of the example and the comparative example.
  • the liquid processing system 100 includes an electrode unit 1 having a positive electrode 10, a microorganism, and a negative electrode 20 electrically connected to the positive electrode 10.
  • the liquid processing system 100 further includes a processing tank 70 which holds the liquid to be treated 60 containing an organic substance inside and further immerses the electrode unit 1 in the liquid to be treated 60.
  • the electrode unit 1 includes an electrode assembly 40 composed of a positive electrode 10, a negative electrode 20, and an ion transfer layer 30, as shown in FIGS.
  • the negative electrode 20 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the positive electrode 10 is disposed in contact with the surface 30 b opposite to the surface 30 a of the ion transfer layer 30.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the ion transfer layer 30, and the water repellent layer 11 is exposed to the gas phase 2 side.
  • the electrode assembly 40 is laminated
  • the cassette base 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the cassette base 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. Then, as shown in FIG. 2, the side surface 53 of the cassette base 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
  • an electrode unit 1 formed by laminating two sets of electrode assemblies 40 and a cassette base 50 is formed inside the processing tank 70 so that the gas phase 2 communicated with the atmosphere is formed. Be placed.
  • a liquid to be treated 60 which is a waste water, is held inside the treatment tank 70, and the gas diffusion layer 12, the negative electrode 20 and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid to be treated 60.
  • the positive electrode 10 is provided with a water repellent layer 11 having water repellency. Therefore, the liquid to be treated 60 held inside the treatment tank 70 and the inside of the cassette base 50 are separated, and the internal space formed by the electrode assembly 40 and the cassette base 50 is the gas phase 2 . Then, in the liquid processing system 100, the gas phase 2 is opened to the outside air, or air is supplied to the gas phase 2 from the outside, for example, by a pump. Further, as shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are each electrically connected to the external circuit 80.
  • the positive electrode 10 As shown in FIG. 2, the positive electrode 10 according to the present embodiment is a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11.
  • a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow the movement of oxygen from the gas phase 2 to the liquid phase while satisfactorily separating the gas phase 2 and the liquid phase in the electrochemical system in the electrode unit 1. That is, while the water repellent layer 11 allows oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12, the liquid 60 can be inhibited from moving to the gas phase 2 side.
  • “separation” means to physically shut off.
  • the water repellent layer 11 is in contact with the gas phase 2 containing oxygen and diffuses the oxygen in the gas phase 2.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly in the configuration shown in FIG. Therefore, it is preferable that the water repellent layer 11 be a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 has water repellency, it is possible to prevent the pores of the porous body from being blocked by condensation or the like and the decrease in the diffusion of oxygen being suppressed.
  • oxygen can be efficiently circulated from the surface of the water repellent layer 11 in contact with the gas phase 2 to the surface facing the gas diffusion layer 12. It becomes possible.
  • the water repellent layer 11 is preferably formed in a sheet shape. Further, the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and oxygen in the gas phase 2 can be diffused.
  • the material constituting the water repellent layer 11 is made of, for example, polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethylcellulose, poly-4-methylpentene-1, butyl rubber and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials easily form a porous body and also have high water repellency, it is possible to suppress clogging of pores and improve gas diffusivity.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction Z of the water repellent layer 11 and the gas diffusion layer 12.
  • a waterproof moisture permeable sheet As the water repellent layer 11, for example, a waterproof moisture permeable sheet can be used.
  • a waterproof moisture-permeable sheet for example, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. and Breslon (registered trademark) manufactured by Nitoms Corporation can be used.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent, if necessary, in order to enhance the water repellency.
  • a water repellent agent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve the water repellency.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be made of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen can permeate from the surface facing the water repellent layer 11 to the surface on the opposite side.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh shape. With such a mesh shape, it is possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably joined to the gas diffusion layer 12 via an adhesive.
  • the adhesive is preferably provided at least in part between the water repellent layer 11 and the gas diffusion layer 12 from the viewpoint of securing the adhesiveness between the water repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is the water repellent layer 11 and the gas diffusion layer More preferably, it is provided on the entire surface between 12 and 12.
  • the adhesive is preferably one having oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be made of, for example, one or more materials selected from the group consisting of carbon-based materials, conductive polymers, semiconductors, and metals.
  • the carbon-based substance refers to a substance having carbon as a component.
  • Examples of carbon-based materials include, for example, graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, carbon powder such as furnace black and denka black, graphite felt, carbon wool, carbon woven fabric, etc.
  • Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, carbon-based material obtained by compression molding of carbon particles can be mentioned.
  • carbon-based material fine structure materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters can also be mentioned.
  • metal materials such as mesh and foam can also be used as the conductive material in the gas diffusion layer 12.
  • the conductive polymer is a generic term for polymer compounds having conductivity.
  • the conductive polymer for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or derivatives thereof as a constitutional unit It can be mentioned.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene and the like.
  • a metal conductive material a stainless steel mesh is mentioned, for example.
  • the conductive material is preferably a carbon-based material.
  • the shape of the conductive material is preferably a powder shape or a fiber shape.
  • the conductive material may be supported by a support.
  • the support refers to a member which itself is rigid and can give the gas diffusion electrode a certain shape.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, paper treated with water or water resistance, water repellent or water repellent, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, etc.
  • Examples of the support having a porous structure include porous ceramic, porous plastic, sponge and the like.
  • the support is a conductor
  • examples of the support include carbon paper, carbon fibers, carbon-based materials such as carbon rods, metals, conductive polymers, and the like.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • a platinum-based catalyst a carbon-based catalyst using iron or cobalt
  • a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO)
  • tungsten tungsten
  • a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • the metal atom is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferable that it is an atom of at least one metal selected from the group consisting of platinum and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for particularly promoting the oxygen reduction reaction.
  • the amount of metal atoms contained in the carbon-based material may be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is preferably further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur and phosphorus.
  • the amount of nonmetal atoms doped in the carbon-based material may also be appropriately set so that the carbon-based material has excellent catalytic performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, and the carbon source material is doped with metal atoms and one or more nonmetal atoms selected from nitrogen, boron, sulfur and phosphorus It is obtained by
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetal atom contains nitrogen and the metal atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen or the metal atom may be only iron.
  • the nonmetal atom may contain nitrogen, and the metal atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetal atom may be only nitrogen.
  • the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet-like shape.
  • the dimensions of the carbon-based material having a sheet-like shape are not particularly limited, and, for example, the carbon-based material may have minute dimensions.
  • the carbonaceous material having a sheet-like shape may be porous. It is preferable that the porous carbon-based material having a sheet-like shape has, for example, a woven-like shape, a non-woven-like shape or the like. Such a carbon-based material can constitute the gas diffusion layer 12 even without the conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, a mixture containing, for example, a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom which can coordinately bond with a nonmetal atom doped in the carbon source material.
  • metal compounds include inorganic metal salts such as metal chlorides, nitrates, sulfates, bromides, iodides and fluorides, organic metal salts such as acetates, hydrates of inorganic metal salts, and organic metal salts It is possible to use at least one selected from the group consisting of hydrates of For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when manganese is doped to the carbon source material, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of metal atoms in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and this ratio is further preferably 5 to 20% by mass More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus as described above.
  • nonmetal compounds include pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, and benzyl disulfide.
  • At least one compound selected from the group consisting of The amount of the nonmetallic compound used is appropriately set according to the doping amount of the nonmetallic atom to the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined such that the molar ratio of the metal atom in the metallic compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be in the range of 1: 1.5 to 1: 1.8.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, the catalyst can be prevented from being desorbed from the conductive material and the oxygen reduction characteristics can be prevented from being degraded.
  • the binder for example, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM). It is also preferable to use NAFION (registered trademark) as a binder.
  • the negative electrode 20 has a function of supporting the below-described microorganism and generating hydrogen ions and electrons from at least one of the organic substance and the nitrogen-containing compound in the liquid 60 by catalytic action of the microorganism. . Therefore, the negative electrode 20 is not particularly limited as long as it has a configuration that produces such a function.
  • the negative electrode 20 has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductive sheet at least one selected from the group consisting of a porous conductive sheet, a woven conductive sheet and a non-woven conductive sheet can be used.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction Z of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20, that is, the thickness direction. Is preferred.
  • the conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductive sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
  • a graphite sheet may be used as the conductive sheet of the negative electrode 20.
  • the negative electrode 20 contains graphite, and the graphene layers in the graphite be arranged along a plane in a direction XY perpendicular to the stacking direction Z of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20.
  • the conductivity in the direction XY perpendicular to the stacking direction Z is improved more than the conductivity in the stacking direction Z. Therefore, the electrons generated by the local cell reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the cell reaction can be further improved.
  • the microorganism carried on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes the organic substance or the nitrogen-containing compound in the liquid to be treated 60 to generate hydrogen ions and electrons.
  • a microorganism for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but it is preferable to use an anaerobic microorganism.
  • Anaerobic microorganisms do not require air for oxidatively decomposing organic substances in the liquid 60 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
  • the microorganism carried on the negative electrode 20 is an anaerobic microorganism
  • Examples of aerobic microorganisms retained on the negative electrode 20 include E. coli, which is an Escherichia bacteria, P. pneumoniae, which is a Pseudomonas bacteria, and B. subtilis, which is a Bacillus bacteria.
  • maintained at the negative electrode 20 are electric production bacteria which have an extracellular electron transfer mechanism, for example.
  • examples of anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
  • a microorganism may be held on the negative electrode 20 by overlapping and fixing a biofilm containing the microorganism on the negative electrode 20.
  • Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the microorganism may be held by the negative electrode 20 without using the biofilm.
  • the microorganism may be held not only on the surface of the negative electrode 20 but also on the inside.
  • an electron transfer mediator molecule may be modified in the negative electrode 20.
  • the liquid to be treated 60 in the treatment tank 70 may contain an electron transfer mediator molecule. Thereby, the electron transfer from the microorganism to the negative electrode 20 can be promoted, and more efficient liquid processing can be realized.
  • the mediator molecule acts as a final electron acceptor for metabolism and transfers the received electron to the negative electrode 20.
  • the electron transfer mediator molecules are not particularly limited.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
  • the electrode unit 1 of the present embodiment further includes an ion transfer layer 30 provided between the positive electrode 10 and the negative electrode 20 and having proton permeability. Then, as shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via the ion transfer layer 30.
  • the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
  • an ion exchange membrane using an ion exchange resin can be used.
  • the ion exchange resin for example, NAFION (registered trademark) manufactured by DuPont Co., Ltd., and Flemion (registered trademark) and Seremion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
  • the ion transfer layer 30 may be a sheet having a space (air gap) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable that the ion transfer layer 30 includes at least one selected from the group consisting of a porous sheet, a woven sheet and a non-woven sheet. Further, the ion transfer layer 30 may be at least one selected from the group consisting of a glass fiber membrane, a synthetic fiber membrane, and a plastic non-woven fabric, and may be a laminate obtained by laminating a plurality of these. Such a porous sheet has a large number of pores inside, so that hydrogen ions can be easily moved. The pore diameter of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
  • the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. Therefore, for example, hydrogen ions can move from the negative electrode 20 to the positive electrode 10 if the negative electrode 20 and the positive electrode 10 are close to each other without being in contact with each other. Therefore, in the liquid treatment system 100, the ion transfer layer 30 is not an essential component. However, by providing the ion transfer layer 30, it is possible to efficiently transfer hydrogen ions from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable to provide the ion transfer layer 30 from the viewpoint of output improvement. A space may be provided between the positive electrode 10 and the ion transfer layer 30, and a space may be provided between the negative electrode 20 and the ion transfer layer 30.
  • the external circuit 80 electrically connected to the negative electrode 20 and the positive electrode 10 is provided in the electrode unit 1, as shown in FIG. 2, the external circuit 80 electrically connected to the negative electrode 20 and the positive electrode 10 is provided.
  • the negative electrode 20 and the positive electrode 10 may be electrically connected directly by using a conductive member without using the external circuit 80.
  • the entire upper portion of the cassette base 50 is open, but may be partially open if air (oxygen) can be introduced into the inside, or the cassette base 50 is closed. It may be
  • the liquid processing system 100 includes a substantially rectangular processing tank 70 that holds the liquid to be processed 60 containing an organic substance therein.
  • the treatment tank 70 is provided with an inlet 71 for supplying the liquid to be treated 60 to the treatment tank 70, and an outlet 72 for discharging the liquid to be treated 60 after treatment from the treatment tank 70.
  • the inlet 71 is provided at the lower part of the front wall 73 of the processing tank 70
  • the outlet 72 is provided at the upper part of the rear wall 74 of the processing tank 70.
  • the liquid to be treated 60 is continuously supplied to the inside of the treatment tank 70 through the inlet 71. Further, as shown in FIGS. 1 and 2, the electrode unit 1 is disposed inside the treatment tank 70 so as to be immersed in the liquid 60 to be treated. Therefore, the liquid to be treated 60 supplied from the inlet 71 of the treatment tank 70 flows in contact with the electrode unit 1 and then is discharged from the outlet 72.
  • the electrode units 1 are preferably arranged along the direction from the inflow port 71 to the outflow port 72 in plan view. Specifically, as shown in FIGS. 1 and 3, in the liquid processing system 100, the inlet 71 is provided on the front wall 73 of the processing tank 70, and the outlet 72 is provided on the rear wall 74 opposite to the front wall 73. It is done. Then, the electrode unit 1 is disposed inside the processing tank 70 so that the film-like negative electrode 20 in the electrode unit 1 is substantially parallel to the direction (X direction) from the inflow port 71 toward the outflow port 72. Is preferred.
  • the concentration of the organic substance in the liquid to be treated 60 in contact with each electrode unit 1 is made comparable. can do. As a result, it is possible to make the amount of power generation of each electrode unit 1 uniform.
  • the liquid processing system 100 includes a three-dimensional structure 90 provided between the electrode unit 1 and the processing tank 70. Specifically, as shown in FIGS. 2 and 3, a three-dimensional structure 90 is provided so as to fill the gap between the negative electrode 20 of the electrode unit 1 and the left wall 75 and the right wall 76 of the processing tank 70. .
  • the three-dimensional structure 90 has a substantially rectangular parallelepiped shape, and is disposed to be in contact with the negative electrode 20 and the left wall 75 and the right wall 76. Then, as shown in FIG. 2, the three-dimensional structure 90 is immersed in the liquid 60 to be treated.
  • a three-dimensional structure 90 is disposed between the electrode unit 1 and the processing tank 70.
  • the liquid to be treated 60 is in a turbulent state, and the diffusivity of the liquid to be treated 60 is enhanced. Therefore, the liquid to be treated 60 easily contacts the negative electrode 20 of the electrode unit 1, and the organic substance in the liquid to be treated 60 can be efficiently decomposed by the microorganisms supported on the negative electrode 20.
  • the liquid to be treated 60 flows while being in contact with the three-dimensional structure 90. Therefore, the three-dimensional structure 90 may be disposed so as to be filled in the entire flow path of the liquid to be treated 60, or may be disposed only in a part of the flow path of the liquid to be treated 60.
  • the three-dimensional structure 90 is provided between the electrode unit 1 and the processing tank 70, as shown in FIGS. 2 and 3, the negative electrode 20 of the electrode unit 1 and the left wall 75 of the processing tank 70.
  • the three-dimensional structure 90 is disposed in the entire space between them.
  • the present embodiment is not limited to such an aspect, and a three-dimensional structure 90 is disposed in a portion between the negative electrode 20 of the electrode unit 1 and the left wall 75 and the right wall 76 of the processing tank 70. It is also good.
  • the upper end 91 of the three-dimensional structure 90 is preferably arranged to be higher than the water surface of the liquid 60 to be treated. Specifically, as shown in FIG. 2, inside the processing tank 70 so that the upper end 91 of the three-dimensional structure 90 is higher than the water surface 61 of the liquid 60 to be treated and the upper end 91 is exposed from the liquid 60 to be treated. It is preferred to be arranged. As a result, the liquid to be treated 60 tends to be in a turbulent state, and the contact between the liquid to be treated 60 and the negative electrode 20 can be further enhanced.
  • the present embodiment is not limited to such an aspect, and the upper end 91 of the three-dimensional structure 90 may be lower than the water surface 61 of the liquid 60 to be treated.
  • the lower end 92 of the three-dimensional structure 90 is in contact with the bottom wall 77 of the processing tank 70.
  • the liquid to be treated 60 tends to be in a turbulent state, and the contact between the liquid to be treated 60 and the negative electrode 20 can be further enhanced.
  • the present embodiment is not limited to such an aspect, and a gap may exist between the lower end 92 of the three-dimensional structure 90 and the bottom wall 77 of the processing tank 70.
  • the three-dimensional structure 90 makes the liquid to be treated 60 in a turbulent state, and enhances the contact between the liquid to be treated 60 and the negative electrode 20. Therefore, as shown in FIG. 3, the three-dimensional structure 90 is preferably disposed upstream of the rear end 1 a of the electrode unit 1 in the flow direction (X direction) of the liquid 60 to be treated. That is, the rear end 93 of the three-dimensional structure 90 is preferably positioned upstream of the rear end 1 a of the electrode unit 1.
  • the three-dimensional structure 90 is preferably located downstream of the front end 1 b of the electrode unit 1 in the flow direction of the liquid to be treated 60. That is, the front end 94 of the three-dimensional structure 90 is preferably located downstream of the front end 1 b of the electrode unit 1. However, the front end 94 of the three-dimensional structure 90 may be located upstream of the front end 1 b of the electrode unit 1 without being limited to such an embodiment.
  • the three-dimensional structure 90 is upstream of the center 1 c of the electrode unit 1 in the flow direction of the to-be-treated liquid 60. It should just be located at the side. Specifically, as shown in FIG. 5, the rear end 93 of the three-dimensional structure 90 may be located upstream of the center 1 c in the flow direction of the liquid to be treated 60 in the electrode unit 1. As a result, the liquid to be treated 60 comes into contact with the three-dimensional structure 90 to be in a turbulent state, so that the liquid to be treated 60 and the negative electrode 20 can be efficiently brought into contact with each other.
  • the shape of the three-dimensional structure 90 is not particularly limited. However, it is preferable that the three-dimensional structure 90 be provided with a porous body having a plurality of holes through which the liquid to be treated 60 can pass. Further, the three-dimensional structure 90 is more preferably made of the porous body. When the liquid to be treated 60 passes through the inside of such a three-dimensional structure 90, the liquid to be treated 60 changes from a laminar flow state to a turbulent state, so that the contact between the liquid to be treated 60 and the negative electrode 20 is improved. Is possible.
  • the size of the pores of the porous body is not particularly limited, but can be, for example, 1 mm to 50 cm.
  • the three-dimensional structure 90 preferably comprises a fibrous body, and more preferably comprises a fibrous body. That is, it is preferable that the three-dimensional structure 90 be provided with a fibrous body in which fibers are aggregated. Since such a fibrous body also has a plurality of holes through which the liquid to be treated 60 can pass, the liquid to be treated 60 can be put in a turbulent state.
  • the fiber which comprises a fibrous body is not specifically limited, At least one of the inorganic fiber which consists of inorganic materials, and the organic fiber which consists of organic materials can be used.
  • the three-dimensional structure 90 preferably comprises a reticulated body, and more preferably consists of a reticulated body. That is, the porous body having a plurality of the above-mentioned holes is preferably a net-like body. Such a reticulated body also has a plurality of holes through which the liquid to be treated 60 can pass, so the liquid to be treated 60 can be put in a turbulent state.
  • the mesh-like body is preferably a porous structure formed by braiding at least one of a metal wire and a nonmetal wire.
  • the nonmetal wire is not particularly limited, and at least one of an inorganic fiber made of an inorganic material and an organic fiber made of an organic material can be used.
  • a water permeable mat typified by an underdrainage material
  • a water permeable mat for example, Hetimaron (registered trademark) manufactured by Shinko Nylon Co., Ltd. and a muddy drain mat manufactured by Yoshihara Kako Co., Ltd. can be used.
  • the material which comprises the three-dimensional structure 90 is not specifically limited, For example, at least one chosen from the group which consists of resin, a metal, a carbon material, and ceramics can be used.
  • resin which comprises the three-dimensional structure 90 at least one chosen from the group which consists of a thermosetting resin, a thermoplastic resin, and an elastomer can be used, for example, polyolefin resin can be used.
  • metal which comprises the three-dimensional structure 90 at least one chosen from the group which consists of aluminum, copper, stainless steel, nickel, and titanium can be used.
  • the carbon material constituting the three-dimensional structure 90 at least one selected from the group consisting of carbon paper, carbon felt, carbon fiber and graphite sheet can be used.
  • the three-dimensional structure 90 preferably has conductivity.
  • the three-dimensional structure 90 has conductivity, in addition to the negative electrode 20 of the electrode unit 1, it becomes possible to support a microorganism on the three-dimensional structure 90. That is, as described above, the negative electrode 20 of the electrode unit 1 generates hydrogen ions and electrons from the organic substance of the liquid to be treated 60 by the catalytic action of the microorganism. The generated electrons move to the positive electrode 10 through the negative electrode 20 and the external circuit 80. Therefore, when the three-dimensional structure 90 has conductivity, an electron generated by the microorganism can be moved to the positive electrode 10 through the three-dimensional structure 90 and the external circuit 80 by supporting the microorganism on the three-dimensional structure 90. . As a result, power generation by the liquid processing system 100 can be performed more efficiently.
  • the operation of the liquid treatment system 100 of the present embodiment will be described.
  • the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the liquid 60, the gas diffusion layer 12, the negative electrode 20, and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid 60, At least a part of the water repellent layer 11 is exposed to the gas phase 2.
  • the liquid to be treated 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20 and air is supplied to the positive electrode 10. At this time, air is continuously supplied through the opening provided at the top of the cassette base 50.
  • the positive electrode 10 oxygen permeates the water repellent layer 11 and diffuses into the gas diffusion layer 12.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the catalytic action of microorganisms.
  • the generated hydrogen ions permeate the ion transfer layer 30, move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10.
  • the generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move to the gas diffusion layer 12 of the positive electrode 10 from the external circuit 80.
  • the hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water.
  • the external circuit 80 recovers the electrical energy flowing to the closed circuit.
  • the electrode unit 1 can degrade at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the action of the microorganism in the negative electrode 20.
  • the liquid to be treated 60 is continuously supplied from the inlet 71 of the treatment tank 70.
  • the supplied liquid to be treated 60 comes in contact with the three-dimensional structure 90 and diffuses in a turbulent state, and thus is efficiently supplied to the negative electrode 20.
  • the organic substance in the liquid 60 to be treated is decomposed by the microorganisms carried on the negative electrode 20.
  • stable power generation characteristics can be obtained from the electrode unit 1.
  • the liquid processing system of the present embodiment may be configured to include one electrode unit 1 inside one processing tank 70 as shown in FIGS. 1 to 3.
  • the present embodiment is not limited to such a configuration.
  • a plurality of electrode units 1 may be provided in one processing tank 70.
  • five electrode units 1 may be provided inside one processing tank 70.
  • the inlet 71 is provided on the front wall 73 of the processing tank 70, and the outlet 72 is a rear wall facing the front wall 73, as in the liquid processing system 100 described above.
  • the five electrode units 1 are disposed inside the processing tank 70 such that the negative electrode 20 is substantially parallel to the direction (X direction) from the inflow port 71 toward the outflow port 72.
  • the three-dimensional structure 90 is provided between the adjacent electrode units 1 in addition to the space between the electrode unit 1 and the processing tank 70. By providing the three-dimensional structure 90 between the adjacent electrode units 1, the liquid to be treated 60 contacts and diffuses the three-dimensional structure 90, and the contact between the liquid to be treated 60 and the negative electrode 20 can be enhanced. .
  • the present embodiment is not limited to such an aspect, and the three-dimensional structure 90 may be disposed in a part between the negative electrode 20 of one electrode unit 1 and the negative electrode 20 of the other electrode unit 1 .
  • a three-dimensional structure 90 is provided also between the adjacent electrode units 1.
  • the present embodiment is not limited to such an aspect, and the three-dimensional structure 90 is not provided between the electrode unit 1 and the processing tank 70, and the three-dimensional structure 90 is provided only between the adjacent electrode units 1. May be
  • the liquid processing system 100, 100A of the present embodiment holds the liquid to be treated 60 containing an organic substance, and includes the treatment tank 70 having the inlet 71 and the outlet 72 of the liquid to be treated 60.
  • the liquid processing system further includes one or more electrode units 1 provided inside the processing tank 70 and arranged in a direction (X direction) from the inlet 71 toward the outlet 72 in plan view.
  • the liquid processing system includes a three-dimensional structure 90 provided in at least one of between the electrode unit 1 and the processing tank 70 and between the adjacent electrode units 1.
  • the electrode unit 1 includes the negative electrode 20 supporting the microorganism and the positive electrode 10 electrically connected to the negative electrode 20, and the negative electrode 20 and the positive electrode 10 are immersed in the liquid 60 to be treated. Is exposed to the gas phase 2.
  • a three-dimensional structure 90 is provided at least between the electrode unit 1 and the processing tank 70 and between the adjacent electrode units 1. Then, the liquid to be treated 60 passes through the inside of the three-dimensional structure 90 and contacts the negative electrode 20, and then flows to the outlet 72. Thereby, the liquid to be treated 60 can be diffused, and the contact between the negative electrode 20 of the electrode unit 1 and the liquid to be treated 60 can be enhanced. As a result, the microorganisms carried on the negative electrode 20 can efficiently perform power generation and purification of the liquid 60 to be treated.
  • the plurality of electrode units 1 are arranged along the direction from the inflow port 71 toward the outflow port 72, whereby the organic substance in the liquid to be treated 60 in contact with each electrode unit 1
  • the concentration of As a result, it is possible to make the amount of power generation of each electrode unit 1 uniform.
  • a silicone resin which is an adhesive agent is applied to a water repellent layer made of polyolefin and then a graphite foil which is a gas diffusion layer is joined to produce a laminated sheet consisting of water repellent layer / silicone adhesive / gas diffusion layer did.
  • a water repellent layer Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. was used.
  • the silicone resin one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used.
  • the graphite foil used was manufactured by Hitachi Chemical Co., Ltd.
  • a gas diffusion electrode was produced by press-forming a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer.
  • the oxygen reduction catalyst was press-molded so that a basis weight might be 6 mg / cm ⁇ 2 >.
  • the oxygen reduction catalyst was prepared as follows. First, a mixed solution was prepared by placing 3 g of carbon black, a 0.1 M aqueous solution of iron (III) chloride, and an ethanol solution of 0.15 M pentaethylenehexamine in a container. As carbon black, ketjen black ECP600 JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of use of the 0.1 M aqueous solution of iron (III) chloride was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total volume was adjusted to 9 mL by further adding ethanol to this mixture. Then, the mixture was ultrasonically dispersed and then dried at a temperature of 60 ° C. in a drier. This yielded a sample containing carbon black, iron (III) chloride, and pentaethylenehexamine.
  • the sample was then packed into one end of a quartz tube, which was subsequently purged with argon.
  • the quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds.
  • the temperature rising rate of the sample at the start of heating was adjusted to 300 ° C./s by inserting the quartz tube into the furnace over 3 seconds.
  • the sample was cooled by flowing argon gas through the quartz tube.
  • an oxygen reduction catalyst was obtained.
  • a positive electrode was manufactured by providing an air intake portion in the water repellent layer of the gas diffusion electrode obtained as described above. And as shown in FIG. 1, the negative electrode which consists of a positive electrode and a carbon material (graphite foil) was installed in the processing tank provided with the inlet and the outlet. Furthermore, a non-woven fabric made of polyolefin, which is an ion transfer layer, was placed between the positive electrode and the negative electrode.
  • the treatment tank used had a capacity of 300 cc.
  • urethane foam which is a three-dimensional structure, was filled between the negative electrode and the right and left walls of the treatment tank.
  • a soft urethane foam U0016 manufactured by Fuji Rubber Industries Ltd. was used as the urethane foam. Therefore, after the liquid to be treated enters the treatment tank through the inlet, it flows through the inside of the urethane foam and is discharged from the outlet.
  • the treatment liquid was filled in the treatment tank so as to be in contact with the positive electrode, the negative electrode, the ion transfer layer, and the urethane foam.
  • a model waste liquid having a total organic carbon (TOC) of 500 mg / L was used as a liquid to be treated.
  • sodium hydrogen carbonate was added as a buffer to a concentration of 5 mM.
  • soil microorganisms were planted on the negative electrode as a source of anaerobic microorganisms that generate electricity.
  • the liquid to be treated was supplied to the treatment tank so that the hydraulic retention time was 12 hours. Furthermore, the liquid to be treated was adjusted to have a water temperature of 30 ° C. And the liquid processing system of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
  • the output remains around 200 mW / m 2 even after 80 days have passed since startup, and it can be seen that good output characteristics can be obtained.
  • the output decreases after 50 days from the start-up. Therefore, it is understood that the liquid to be treated is diffused by providing the three-dimensional structure, and the organic substance is efficiently decomposed by the microorganism, so that stable power generation can be performed.
  • the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 are formed in a rectangular shape.
  • these shapes are not particularly limited, and can be arbitrarily changed according to the size of the liquid treatment system, the desired purification performance, and the like. Also, the area of each layer can be arbitrarily changed as long as the desired function can be exhibited.
  • the liquid treatment system according to the present embodiment can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
  • an organic substance for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
  • liquid treatment system capable of enhancing the contact between the electrode unit and the wastewater and efficiently performing the power generation by microorganisms and the purification of the wastewater.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

A liquid processing system (100, 100A) comprises a processing tank (70) that retains a liquid (60) to be processed including an organic substance, and has an inlet (71) and an outlet (72) for the liquid to be processed. The liquid processing system further comprises one or more electrode units (1) that are provided inside the processing tank and are arranged along a direction from the inlet to the outlet in planar view. Additionally, the liquid processing system comprises a three-dimensional structure (90) that is provided between the electrode unit(s) and the processing tank, and/or between neighboring electrode units. Each electrode unit comprises a negative electrode (20) that supports microorganisms, and a positive electrode (10) that is electrically connected to the negative electrode, wherein the negative electrode and the positive electrode are immersed in the liquid to be processed, and at least one section of the positive electrode is exposed to a gas phase (2).

Description

液体処理システムLiquid treatment system
 本発明は、液体処理システムに関する。詳細には本発明は、廃水を浄化し、かつ、電気エネルギーを生成することが可能な微生物燃料電池を用いた液体処理システムに関する。 The present invention relates to liquid processing systems. In particular, the present invention relates to a liquid treatment system using a microbial fuel cell capable of purifying wastewater and producing electrical energy.
 近年、持続可能なエネルギーとして、バイオマスを利用して発電をする微生物燃料電池が注目されている。微生物燃料電池は、生活廃水や工場廃水に含まれる有機性物質や窒素含有化合物の化学エネルギーを電気エネルギーに変換しつつ、有機性物質や窒素含有化合物を酸化分解して処理する廃水処理装置である。そして、微生物燃料電池は、汚泥の発生が少なく、さらにエネルギー消費が少ない特徴を有する。 In recent years, microbial fuel cells that generate electricity using biomass have attracted attention as sustainable energy. A microbial fuel cell is a wastewater treatment device that oxidizes and processes organic substances and nitrogen-containing compounds while converting the chemical energy of organic substances and nitrogen-containing compounds contained in domestic wastewater and industrial wastewater into electrical energy. . And a microbial fuel cell has the characteristics of little generation | occurence | production of a sludge, and also energy consumption is small.
 微生物燃料電池は、微生物を担持する負極と、酸素を含む気相及び電解液に接触する正極とを有する。そして、有機性物質などを含有する電解液を負極に供給するとともに、酸素を含んだ気体を正極に供給する。負極及び正極は、負荷回路を介して相互に接続することにより閉回路を形成する。負極では、微生物の触媒作用により電解液から水素イオン及び電子を生成する。そして、生成した水素イオンは正極へ移動し、電子は負荷回路を介して正極へ移動する。負極から移動した水素イオン及び電子は正極において酸素と結合し、水となって消費される。その際に、閉回路に流れる電気エネルギーを回収する。 A microbial fuel cell has a negative electrode carrying a microorganism, and a positive electrode in contact with a gas phase containing oxygen and an electrolytic solution. And while supplying the electrolyte solution containing an organic substance etc. to a negative electrode, the gas containing oxygen is supplied to a positive electrode. The negative electrode and the positive electrode form a closed circuit by being connected to each other through a load circuit. At the negative electrode, hydrogen ions and electrons are generated from the electrolytic solution by the catalytic action of microorganisms. Then, the generated hydrogen ions move to the positive electrode, and the electrons move to the positive electrode through the load circuit. The hydrogen ions and electrons transferred from the negative electrode combine with oxygen at the positive electrode to be consumed as water. At that time, the electrical energy flowing to the closed circuit is recovered.
 従来の廃水処理装置としては、廃水の流入口及び流出口を備えた容器と、容器内であって、流入口から流出口に向かう方向に沿って配列された複数の電極ユニットとを備える微生物燃料電池廃水処理システムが開示されている(例えば、特許文献1参照)。そして、特許文献1では、流入口から流出口に向かう方向に沿って複数の電極ユニットが配列されているため、複数の電極ユニットのいずれにおいても廃水中の有機物濃度が同程度になり、電極ユニット当たりの発電量が均一となることが記載されている。 As a conventional waste water treatment apparatus, there is provided a container provided with a waste water inlet and outlet, and a microbial fuel comprising a plurality of electrode units arranged in the container along a direction from the inlet to the outlet. A battery wastewater treatment system is disclosed (see, for example, Patent Document 1). And in patent document 1, since several electrode units are arranged along the direction which goes to an outflow port from an inflow port, the organic substance density | concentration in wastewater becomes equivalent in any of several electrode units, and an electrode unit It is described that the amount of power generation per hit is uniform.
特開2016-147227号公報JP, 2016-147227, A
 しかしながら、特許文献1では、流入口から流出口に向かう方向に沿って配列した複数の電極ユニットの間を廃水が流れるため、廃水が電極ユニットの表面に接触し難くなる場合がある。そのため、電極ユニットに担持されている微生物と廃水との接触が不十分となり、微生物が効率的に作用しないという問題があった。 However, in Patent Document 1, since the waste water flows between the plurality of electrode units arranged along the direction from the inlet to the outlet, the waste water may not easily contact the surface of the electrode unit. Therefore, there is a problem that the contact between the microorganism carried on the electrode unit and the wastewater becomes insufficient, and the microorganism does not act efficiently.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、電極ユニットと廃水との接触を高め、微生物による発電と廃水の浄化とを効率的に行うことが可能な液体処理システムを提供することにある。 The present invention has been made in view of the problems of the prior art. And the object of the present invention is to provide a liquid treatment system capable of enhancing the contact between the electrode unit and the wastewater and efficiently performing the power generation by microorganisms and the purification of the wastewater.
 上記課題を解決するために、本発明の態様に係る液体処理システムは、有機性物質を含む被処理液を保持し、被処理液の流入口及び流出口を有する処理槽と、処理槽の内部に設けられ、平面視において流入口から流出口に向かう方向に沿って配列している、一又は二以上の電極ユニットと、電極ユニットと処理槽との間、及び隣接する電極ユニットの間の少なくとも一方に設けられる立体構造体と、を備える。電極ユニットは、微生物を担持する負極と、負極と電気的に接続された正極とを備え、負極及び正極が被処理液に浸漬し、正極の少なくとも一部が気相に露出する。 In order to solve the above problems, a liquid treatment system according to an aspect of the present invention holds a liquid to be treated containing an organic substance, and has a treatment tank having an inlet and an outlet for the treatment liquid, and the inside of the treatment tank. And one or more electrode units provided along the direction from the inlet to the outlet in plan view, at least between the electrode unit and the processing tank, and between the adjacent electrode units. And a three-dimensional structure provided on one side. The electrode unit includes a negative electrode supporting a microorganism and a positive electrode electrically connected to the negative electrode, the negative electrode and the positive electrode being immersed in the liquid to be treated, and at least a part of the positive electrode is exposed to the gas phase.
図1は、本発明の実施形態に係る液体処理システムの一例を示す概略斜視図である。FIG. 1 is a schematic perspective view showing an example of a liquid processing system according to an embodiment of the present invention. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、本発明の実施形態に係る液体処理システムの一例を示す概略平面図である。FIG. 3 is a schematic plan view showing an example of the liquid processing system according to the embodiment of the present invention. 図4は、液体処理システムにおける電極ユニットを示す分解斜視図である。FIG. 4 is an exploded perspective view showing an electrode unit in the liquid processing system. 図5は、本発明の実施形態に係る液体処理システムの他の例を示す概略平面図である。FIG. 5 is a schematic plan view showing another example of the liquid treatment system according to the embodiment of the present invention. 図6は、本発明の実施形態に係る液体処理システムの他の例を示す概略平面図である。FIG. 6 is a schematic plan view showing another example of the liquid treatment system according to the embodiment of the present invention. 図7は、図6中のB-B線に沿った断面図である。FIG. 7 is a cross-sectional view taken along the line BB in FIG. 図8は、図6中のC-C線に沿った断面図である。FIG. 8 is a cross-sectional view along the line CC in FIG. 図9は、実施例及び比較例の液体処理システムにおける定常出力と稼働日数との関係を示すグラフである。FIG. 9 is a graph showing the relationship between the steady-state output and the number of working days in the liquid treatment system of the example and the comparative example.
 以下、本実施形態に係る液体処理システムについて詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the liquid processing system according to the present embodiment will be described in detail. The dimensional ratios in the drawings are exaggerated for the convenience of description, and may differ from the actual ratios.
 本実施形態に係る液体処理システム100は、図1に示すように、正極10と、微生物を担持し、さらに正極10と電気的に接続された負極20とを有する電極ユニット1を備えている。また、液体処理システム100は、有機性物質を含む被処理液60を内部に保持し、さらに電極ユニット1が被処理液60に浸漬するように配置される処理槽70を備えている。 As shown in FIG. 1, the liquid processing system 100 according to the present embodiment includes an electrode unit 1 having a positive electrode 10, a microorganism, and a negative electrode 20 electrically connected to the positive electrode 10. The liquid processing system 100 further includes a processing tank 70 which holds the liquid to be treated 60 containing an organic substance inside and further immerses the electrode unit 1 in the liquid to be treated 60.
[電極ユニット]
 電極ユニット1は、図1~図3に示すように、正極10、負極20及びイオン移動層30からなる電極接合体40を備えている。電極ユニット1では、イオン移動層30の一方の面30aに負極20が接触するように配置されており、イオン移動層30の面30aと反対側の面30bに正極10が接触するように配置されている。そして、正極10のガス拡散層12がイオン移動層30と接触し、撥水層11が気相2側に露出している。
[Electrode unit]
The electrode unit 1 includes an electrode assembly 40 composed of a positive electrode 10, a negative electrode 20, and an ion transfer layer 30, as shown in FIGS. In the electrode unit 1, the negative electrode 20 is disposed in contact with one surface 30 a of the ion transfer layer 30, and the positive electrode 10 is disposed in contact with the surface 30 b opposite to the surface 30 a of the ion transfer layer 30. ing. The gas diffusion layer 12 of the positive electrode 10 is in contact with the ion transfer layer 30, and the water repellent layer 11 is exposed to the gas phase 2 side.
 そして、図4に示すように、電極接合体40は、カセット基材50に積層されている。カセット基材50は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材50は、2本の第一柱状部材51の底面を第二柱状部材52で連結した枠部材である。そして、図2に示すように、カセット基材50の側面53は、正極10の面10aの外周部と接合されている。 And as shown in FIG. 4, the electrode assembly 40 is laminated | stacked on the cassette base material 50. As shown in FIG. The cassette base 50 is a U-shaped frame member along the outer peripheral portion of the surface 10 a of the positive electrode 10, and the upper portion is open. That is, the cassette base 50 is a frame member in which the bottom surfaces of the two first columnar members 51 are connected by the second columnar member 52. Then, as shown in FIG. 2, the side surface 53 of the cassette base 50 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10.
 図2に示すように、二組の電極接合体40とカセット基材50とを積層してなる電極ユニット1は、大気と連通した気相2が形成されるように、処理槽70の内部に配置される。処理槽70の内部には廃水である被処理液60が保持されており、正極10のガス拡散層12、負極20及びイオン移動層30は被処理液60に浸漬されている。 As shown in FIG. 2, an electrode unit 1 formed by laminating two sets of electrode assemblies 40 and a cassette base 50 is formed inside the processing tank 70 so that the gas phase 2 communicated with the atmosphere is formed. Be placed. A liquid to be treated 60, which is a waste water, is held inside the treatment tank 70, and the gas diffusion layer 12, the negative electrode 20 and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid to be treated 60.
 後述するように、正極10は撥水性を有する撥水層11を備えている。そのため、処理槽70の内部に保持された被処理液60とカセット基材50の内部とは隔てられ、電極接合体40及びカセット基材50により形成された内部空間は気相2となっている。そして、液体処理システム100では、この気相2が外気に開放されるか、あるいはこの気相2へ例えばポンプによって外部から空気が供給されるように構成されている。また、図2に示すように、正極10及び負極20は、それぞれ外部回路80と電気的に接続されている。 As described later, the positive electrode 10 is provided with a water repellent layer 11 having water repellency. Therefore, the liquid to be treated 60 held inside the treatment tank 70 and the inside of the cassette base 50 are separated, and the internal space formed by the electrode assembly 40 and the cassette base 50 is the gas phase 2 . Then, in the liquid processing system 100, the gas phase 2 is opened to the outside air, or air is supplied to the gas phase 2 from the outside, for example, by a pump. Further, as shown in FIG. 2, the positive electrode 10 and the negative electrode 20 are each electrically connected to the external circuit 80.
 (正極)
 本実施形態に係る正極10は、図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、気相2中の酸素を正極10中の触媒に容易に供給することが可能になる。
(Positive electrode)
As shown in FIG. 2, the positive electrode 10 according to the present embodiment is a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked so as to be in contact with the water repellent layer 11. By using such a thin plate-like gas diffusion electrode, it is possible to easily supply the oxygen in the gas phase 2 to the catalyst in the positive electrode 10.
  <撥水層>
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、電極ユニット1における電気化学系中の気相2と液相とを良好に分離しながら、気相2から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、気相2中の酸素を透過してガス拡散層12へ移動させつつも、被処理液60が気相2側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。
<Water-repellent layer>
The water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability. The water repellent layer 11 is configured to allow the movement of oxygen from the gas phase 2 to the liquid phase while satisfactorily separating the gas phase 2 and the liquid phase in the electrochemical system in the electrode unit 1. That is, while the water repellent layer 11 allows oxygen in the gas phase 2 to permeate and move to the gas diffusion layer 12, the liquid 60 can be inhibited from moving to the gas phase 2 side. Here, “separation” means to physically shut off.
 撥水層11は、酸素を含む気相2と接触しており、気相2中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に被処理液60が染み込み難いため、撥水層11における気相2と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。 The water repellent layer 11 is in contact with the gas phase 2 containing oxygen and diffuses the oxygen in the gas phase 2. The water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly in the configuration shown in FIG. Therefore, it is preferable that the water repellent layer 11 be a porous body so that the oxygen can be diffused. In addition, since the water repellent layer 11 has water repellency, it is possible to prevent the pores of the porous body from being blocked by condensation or the like and the decrease in the diffusion of oxygen being suppressed. Further, since the liquid 60 to be treated is difficult to permeate into the water repellent layer 11, oxygen can be efficiently circulated from the surface of the water repellent layer 11 in contact with the gas phase 2 to the surface facing the gas diffusion layer 12. It becomes possible.
 撥水層11は、シート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、気相2中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Zに複数の貫通孔を有することが好ましい。 The water repellent layer 11 is preferably formed in a sheet shape. Further, the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and oxygen in the gas phase 2 can be diffused. The material constituting the water repellent layer 11 is made of, for example, polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethylcellulose, poly-4-methylpentene-1, butyl rubber and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials easily form a porous body and also have high water repellency, it is possible to suppress clogging of pores and improve gas diffusivity. The water repellent layer 11 preferably has a plurality of through holes in the stacking direction Z of the water repellent layer 11 and the gas diffusion layer 12.
 撥水層11としては、例えば防水透湿シートを使用することができる。防水透湿シートとしては、例えば、積水化学工業株式会社製のセルポア(登録商標)、及び株式会社ニトムズ製のブレスロン(登録商標)を用いることができる。 As the water repellent layer 11, for example, a waterproof moisture permeable sheet can be used. As the waterproof moisture-permeable sheet, for example, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. and Breslon (registered trademark) manufactured by Nitoms Corporation can be used.
 撥水層11は、撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。 The water repellent layer 11 may be subjected to a water repellent treatment using a water repellent, if necessary, in order to enhance the water repellency. Specifically, a water repellent agent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve the water repellency.
  <ガス拡散層>
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12が、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を触媒と外部回路80との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が外部回路80からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。
<Gas diffusion layer>
The gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material. The gas diffusion layer 12 may be made of a porous and conductive catalyst. By providing such a gas diffusion layer 12 on the positive electrode 10, it becomes possible to conduct electrons generated by a local cell reaction described later between the catalyst and the external circuit 80. That is, as described later, a catalyst is supported on the gas diffusion layer 12, and the catalyst is an oxygen reduction catalyst. Then, the electrons move from the external circuit 80 to the catalyst through the gas diffusion layer 12 so that the catalyst can promote the oxygen reduction reaction by oxygen, hydrogen ions and electrons.
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。 In the positive electrode 10, in order to ensure stable performance, it is preferable that oxygen permeates the water repellent layer 11 and the gas diffusion layer 12 efficiently and is supplied to the catalyst. Therefore, the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen can permeate from the surface facing the water repellent layer 11 to the surface on the opposite side. Further, the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh shape. With such a mesh shape, it is possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。 In the positive electrode 10, in order to supply oxygen to the gas diffusion layer 12 efficiently, the water repellent layer 11 is preferably joined to the gas diffusion layer 12 via an adhesive. Thus, the diffused oxygen is directly supplied to the gas diffusion layer 12, and the oxygen reduction reaction can be efficiently performed. The adhesive is preferably provided at least in part between the water repellent layer 11 and the gas diffusion layer 12 from the viewpoint of securing the adhesiveness between the water repellent layer 11 and the gas diffusion layer 12. However, from the viewpoint of enhancing adhesion between the water repellent layer 11 and the gas diffusion layer 12 and supplying oxygen to the gas diffusion layer 12 stably over a long period, the adhesive is the water repellent layer 11 and the gas diffusion layer More preferably, it is provided on the entire surface between 12 and 12.
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。 The adhesive is preferably one having oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber and silicone. Resin can be used.
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。 Here, the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail. As described above, the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
 ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。ここで、炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。さらに、ガス拡散層12における導電性材料としては、メッシュ及び発泡体等の金属材料も用いることができる。 The conductive material in the gas diffusion layer 12 can be made of, for example, one or more materials selected from the group consisting of carbon-based materials, conductive polymers, semiconductors, and metals. Here, the carbon-based substance refers to a substance having carbon as a component. Examples of carbon-based materials include, for example, graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, carbon powder such as furnace black and denka black, graphite felt, carbon wool, carbon woven fabric, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, carbon-based material obtained by compression molding of carbon particles can be mentioned. In addition, as an example of the carbon-based material, fine structure materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters can also be mentioned. Furthermore, as the conductive material in the gas diffusion layer 12, metal materials such as mesh and foam can also be used.
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は二種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、例えば、ステンレスメッシュが挙げられる。入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。 The conductive polymer is a generic term for polymer compounds having conductivity. As the conductive polymer, for example, a single monomer or a polymer of two or more monomers having aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene or derivatives thereof as a constitutional unit It can be mentioned. Specifically, examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, polyacetylene and the like. As a metal conductive material, a stainless steel mesh is mentioned, for example. In consideration of availability, cost, corrosion resistance, durability and the like, the conductive material is preferably a carbon-based material.
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。 In addition, the shape of the conductive material is preferably a powder shape or a fiber shape. In addition, the conductive material may be supported by a support. The support refers to a member which itself is rigid and can give the gas diffusion electrode a certain shape. The support may be an insulator or a conductor. When the support is an insulator, examples of the support include glass, plastic, synthetic rubber, ceramics, paper treated with water or water resistance, water repellent or water repellent, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, etc. . Examples of the support having a porous structure include porous ceramic, porous plastic, sponge and the like. When the support is a conductor, examples of the support include carbon paper, carbon fibers, carbon-based materials such as carbon rods, metals, conductive polymers, and the like.
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。 The catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) or zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide-based catalyst using molybdenum, activated carbon or the like can be used.
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms. The metal atom is not particularly limited, but titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferable that it is an atom of at least one metal selected from the group consisting of platinum and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for particularly promoting the oxygen reduction reaction. The amount of metal atoms contained in the carbon-based material may be appropriately set so that the carbon-based material has excellent catalytic performance.
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The carbon-based material is preferably further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur and phosphorus. The amount of nonmetal atoms doped in the carbon-based material may also be appropriately set so that the carbon-based material has excellent catalytic performance.
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。 The carbon-based material is based on a carbon source material such as graphite and amorphous carbon, and the carbon source material is doped with metal atoms and one or more nonmetal atoms selected from nitrogen, boron, sulfur and phosphorus It is obtained by
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。 The combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected. In particular, it is preferable that the nonmetal atom contains nitrogen and the metal atom contains iron. In this case, the carbon-based material can have particularly excellent catalytic activity. The nonmetal atom may be only nitrogen or the metal atom may be only iron.
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。 The nonmetal atom may contain nitrogen, and the metal atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have particularly excellent catalytic activity. The nonmetal atom may be only nitrogen. In addition, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くても、ガス拡散層12を構成することができる。 The shape of the carbon-based material is not particularly limited. For example, the carbon-based material may have a particulate shape or may have a sheet-like shape. The dimensions of the carbon-based material having a sheet-like shape are not particularly limited, and, for example, the carbon-based material may have minute dimensions. The carbonaceous material having a sheet-like shape may be porous. It is preferable that the porous carbon-based material having a sheet-like shape has, for example, a woven-like shape, a non-woven-like shape or the like. Such a carbon-based material can constitute the gas diffusion layer 12 even without the conductive material.
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。 The carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, a mixture containing, for example, a nonmetal compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. Then, the mixture is heated at a temperature of 800 ° C. or more and 1000 ° C. or less for 45 seconds or more and less than 600 seconds. Thereby, a carbon-based material configured as a catalyst can be obtained.
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。 Here, as the carbon source material, as described above, for example, graphite or amorphous carbon can be used. Further, the metal compound is not particularly limited as long as it is a compound containing a metal atom which can coordinately bond with a nonmetal atom doped in the carbon source material. Examples of metal compounds include inorganic metal salts such as metal chlorides, nitrates, sulfates, bromides, iodides and fluorides, organic metal salts such as acetates, hydrates of inorganic metal salts, and organic metal salts It is possible to use at least one selected from the group consisting of hydrates of For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride. In addition, when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When manganese is doped to the carbon source material, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of metal atoms in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and this ratio is further preferably 5 to 20% by mass More preferably, it is determined to be within the range.
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。 The nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus as described above. Examples of nonmetal compounds include pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, and benzyl disulfide. At least one compound selected from the group consisting of The amount of the nonmetallic compound used is appropriately set according to the doping amount of the nonmetallic atom to the carbon source material. The amount of the nonmetallic compound used is preferably determined such that the molar ratio of the metal atom in the metallic compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be in the range of 1: 1.5 to 1: 1.8.
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、NAFION(登録商標)を用いることも好ましい。 In the gas diffusion layer 12, the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, the catalyst can be prevented from being desorbed from the conductive material and the oxygen reduction characteristics can be prevented from being degraded. As the binder, for example, it is preferable to use at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM). It is also preferable to use NAFION (registered trademark) as a binder.
 (負極)
 本実施形態に係る負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、負極20は、このような機能を生じさせる構成ならば特に限定されない。
(Negative electrode)
The negative electrode 20 according to the present embodiment has a function of supporting the below-described microorganism and generating hydrogen ions and electrons from at least one of the organic substance and the nitrogen-containing compound in the liquid 60 by catalytic action of the microorganism. . Therefore, the negative electrode 20 is not particularly limited as long as it has a configuration that produces such a function.
 負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンがイオン移動層30の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、正極10、イオン移動層30及び負極20の積層方向Z、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。 The negative electrode 20 has a structure in which microorganisms are supported on a conductive sheet having conductivity. As the conductive sheet, at least one selected from the group consisting of a porous conductive sheet, a woven conductive sheet and a non-woven conductive sheet can be used. The conductor sheet may be a laminate in which a plurality of sheets are laminated. By using a sheet having such a plurality of pores as the conductive sheet of the negative electrode 20, hydrogen ions generated by the later-described local cell reaction easily move in the direction of the ion transfer layer 30, and the oxygen reduction reaction It is possible to increase the speed. Further, from the viewpoint of improving ion permeability, the conductor sheet of the negative electrode 20 has a space (void) continuous in the stacking direction Z of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20, that is, the thickness direction. Is preferred.
 当該導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属、並びにカーボンペーパー、カーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, as a material constituting the conductive sheet of the negative electrode 20, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, carbon paper, and carbon felt is used. be able to.
 負極20の導電体シートとして、黒鉛シートを用いてもよい。また、負極20は黒鉛を含有し、さらに黒鉛におけるグラフェン層は、正極10、イオン移動層30及び負極20の積層方向Zに垂直な方向XYの面に沿って配列していることが好ましい。グラフェン層がこのように配列していることにより、積層方向Zの導電性よりも、積層方向Zに垂直な方向XYの導電性が向上する。そのため、負極20の局部電池反応により生成した電子を外部回路80へ導通させやすくなり、電池反応の効率をより向上させることが可能となる。 A graphite sheet may be used as the conductive sheet of the negative electrode 20. Further, it is preferable that the negative electrode 20 contains graphite, and the graphene layers in the graphite be arranged along a plane in a direction XY perpendicular to the stacking direction Z of the positive electrode 10, the ion transfer layer 30, and the negative electrode 20. By arranging the graphene layers in this manner, the conductivity in the direction XY perpendicular to the stacking direction Z is improved more than the conductivity in the stacking direction Z. Therefore, the electrons generated by the local cell reaction of the negative electrode 20 can be easily conducted to the external circuit 80, and the efficiency of the cell reaction can be further improved.
 負極20に担持される微生物としては、被処理液60中の有機性物質又は窒素含有化合物を分解して、水素イオン及び電子を生成する微生物であれば特に限定されない。このような微生物としては、例えば、増殖に酸素を必要とする好気性微生物、又は増殖に酸素を必要としない嫌気性微生物を使用することができるが、嫌気性微生物を使用することが好ましい。嫌気性微生物は、被処理液60中の有機性物質を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 The microorganism carried on the negative electrode 20 is not particularly limited as long as it is a microorganism that decomposes the organic substance or the nitrogen-containing compound in the liquid to be treated 60 to generate hydrogen ions and electrons. As such a microorganism, for example, an aerobic microorganism that requires oxygen for growth or an anaerobic microorganism that does not require oxygen for growth can be used, but it is preferable to use an anaerobic microorganism. Anaerobic microorganisms do not require air for oxidatively decomposing organic substances in the liquid 60 to be treated. Therefore, the power required to feed the air can be significantly reduced. In addition, since the free energy obtained by microorganisms is small, it is possible to reduce the amount of sludge generated.
 なお、負極20に担持される微生物が嫌気性微生物である場合には、嫌気性微生物の活動を高めるため、負極20の周囲を嫌気性雰囲気に保つことが好ましい。 When the microorganism carried on the negative electrode 20 is an anaerobic microorganism, it is preferable to keep the periphery of the negative electrode 20 in an anaerobic atmosphere in order to enhance the activity of the anaerobic microorganism.
 負極20に保持される好気性微生物は、例えばEscherichia属細菌である大腸菌、Pseudomonas属細菌である緑濃菌、Bacillus属細菌である枯草菌が挙げられる。また、負極20に保持される嫌気性微生物は、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 Examples of aerobic microorganisms retained on the negative electrode 20 include E. coli, which is an Escherichia bacteria, P. pneumoniae, which is a Pseudomonas bacteria, and B. subtilis, which is a Bacillus bacteria. Moreover, it is preferable that the anaerobic microorganisms hold | maintained at the negative electrode 20 are electric production bacteria which have an extracellular electron transfer mechanism, for example. Specifically, examples of anaerobic microorganisms include, for example, bacteria belonging to the genus Geobacter, bacteria belonging to the genus Shewanella, bacteria belonging to the genus Aeromonas, bacteria belonging to the genus Geothrix, and bacteria belonging to the genus Saccharomyces.
 負極20に、微生物を含むバイオフィルムが重ねられて固定されることで、負極20に微生物が保持されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、微生物は、負極20の表面だけでなく、内部に保持されていてもよい。 A microorganism may be held on the negative electrode 20 by overlapping and fixing a biofilm containing the microorganism on the negative electrode 20. Biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the microorganism may be held by the negative electrode 20 without using the biofilm. The microorganism may be held not only on the surface of the negative electrode 20 but also on the inside.
 負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽70内の被処理液60は、電子伝達メディエーター分子を含んでいてもよい。これにより、微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。 For example, an electron transfer mediator molecule may be modified in the negative electrode 20. Alternatively, the liquid to be treated 60 in the treatment tank 70 may contain an electron transfer mediator molecule. Thereby, the electron transfer from the microorganism to the negative electrode 20 can be promoted, and more efficient liquid processing can be realized.
 具体的には、微生物による代謝機構では、細胞内又は最終電子受容体との間で電子の授受が行われる。被処理液60中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、被処理液60における有機性物質などの酸化分解速度を高めることが可能になる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the mechanism of metabolism by microorganisms, electrons are exchanged within cells or with the final electron acceptor. When a mediator molecule is introduced into the liquid 60 to be treated, the mediator molecule acts as a final electron acceptor for metabolism and transfers the received electron to the negative electrode 20. As a result, it is possible to increase the rate of oxidative decomposition of the organic substance or the like in the liquid 60 to be treated. Such electron transfer mediator molecules are not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methyl viologen can be used.
 (イオン移動層)
 本実施形態の電極ユニット1は、正極10と負極20との間に設けられ、プロトン透過性を有するイオン移動層30をさらに備える。そして、図1及び図2に示すように、負極20は、イオン移動層30を介して正極10と隔てられている。イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有している。
(Ion transfer layer)
The electrode unit 1 of the present embodiment further includes an ion transfer layer 30 provided between the positive electrode 10 and the negative electrode 20 and having proton permeability. Then, as shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via the ion transfer layer 30. The ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
 イオン移動層30としては、例えばイオン交換樹脂を用いたイオン交換膜を使用することができる。イオン交換樹脂としては、例えばデュポン株式会社製のNAFION(登録商標)、並びに旭硝子株式会社製のフレミオン(登録商標)及びセレミオン(登録商標)を用いることができる。 As the ion transfer layer 30, for example, an ion exchange membrane using an ion exchange resin can be used. As the ion exchange resin, for example, NAFION (registered trademark) manufactured by DuPont Co., Ltd., and Flemion (registered trademark) and Seremion (registered trademark) manufactured by Asahi Glass Co., Ltd. can be used.
 また、イオン移動層30として、水素イオンが透過することが可能な細孔を有する多孔質膜を使用してもよい。つまり、イオン移動層30は、負極20から正極10へ水素イオンが移動するための空間(空隙)を有するシートであってもよい。そのため、イオン移動層30は、多孔質のシート、織布状のシート及び不織布状のシートからなる群より選ばれる少なくとも一つを備えることが好ましい。また、イオン移動層30は、ガラス繊維膜、合成繊維膜、及びプラスチック不織布からなる群より選ばれる少なくとも一つを用いることができ、これらを複数積層してなる積層体でもよい。このような多孔質のシートは、内部に多数の細孔を有しているため、水素イオンが容易に移動することが可能となる。なお、イオン移動層30の細孔径は、負極20から正極10に水素イオンが移動できれば特に限定されない。 Alternatively, as the ion transfer layer 30, a porous membrane having pores through which hydrogen ions can pass may be used. That is, the ion transfer layer 30 may be a sheet having a space (air gap) for hydrogen ions to move from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable that the ion transfer layer 30 includes at least one selected from the group consisting of a porous sheet, a woven sheet and a non-woven sheet. Further, the ion transfer layer 30 may be at least one selected from the group consisting of a glass fiber membrane, a synthetic fiber membrane, and a plastic non-woven fabric, and may be a laminate obtained by laminating a plurality of these. Such a porous sheet has a large number of pores inside, so that hydrogen ions can be easily moved. The pore diameter of the ion transfer layer 30 is not particularly limited as long as hydrogen ions can move from the negative electrode 20 to the positive electrode 10.
 なお、上述のように、イオン移動層30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有する。そのため、例えば、負極20と正極10とが接触しない状態で近接していれば、水素イオンが負極20から正極10へ移動することができる。そのため、液体処理システム100において、イオン移動層30は必須の構成要素ではない。ただ、イオン移動層30を設けることにより、負極20から正極10へ水素イオンを効率的に移動させることが可能となるため、出力向上の観点からイオン移動層30を設けることが好ましい。なお、正極10とイオン移動層30との間に間隔が設けられていてもよく、また負極20とイオン移動層30との間も間隔が設けられていてもよい。 As described above, the ion transfer layer 30 has a function of transmitting hydrogen ions generated at the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. Therefore, for example, hydrogen ions can move from the negative electrode 20 to the positive electrode 10 if the negative electrode 20 and the positive electrode 10 are close to each other without being in contact with each other. Therefore, in the liquid treatment system 100, the ion transfer layer 30 is not an essential component. However, by providing the ion transfer layer 30, it is possible to efficiently transfer hydrogen ions from the negative electrode 20 to the positive electrode 10. Therefore, it is preferable to provide the ion transfer layer 30 from the viewpoint of output improvement. A space may be provided between the positive electrode 10 and the ion transfer layer 30, and a space may be provided between the negative electrode 20 and the ion transfer layer 30.
 電極ユニット1では、図2に示すように、負極20及び正極10に電気的に接続する外部回路80を備えている。ただ、電極ユニット1では、外部回路80を介さず、導電部材を用いて、負極20及び正極10が電気的に直接接続されていてもよい。また、電極ユニット1において、カセット基材50は、上部の全体が開口しているが、内部に空気(酸素)を導入することが可能ならば部分的に開口していてもよく、また閉口していてもよい。 In the electrode unit 1, as shown in FIG. 2, the external circuit 80 electrically connected to the negative electrode 20 and the positive electrode 10 is provided. However, in the electrode unit 1, the negative electrode 20 and the positive electrode 10 may be electrically connected directly by using a conductive member without using the external circuit 80. In the electrode unit 1, the entire upper portion of the cassette base 50 is open, but may be partially open if air (oxygen) can be introduced into the inside, or the cassette base 50 is closed. It may be
[処理槽]
 液体処理システム100は、有機性物質を含む被処理液60を内部に保持する、略直方体状の処理槽70を備える。処理槽70には、被処理液60を処理槽70に供給するための流入口71と、処理後の被処理液60を処理槽70から排出するための流出口72とが設けられている。本実施形態において、流入口71は処理槽70の前壁73の下部に設けられ、流出口72は処理槽70の後壁74の上部に設けられている。
[Treatment tank]
The liquid processing system 100 includes a substantially rectangular processing tank 70 that holds the liquid to be processed 60 containing an organic substance therein. The treatment tank 70 is provided with an inlet 71 for supplying the liquid to be treated 60 to the treatment tank 70, and an outlet 72 for discharging the liquid to be treated 60 after treatment from the treatment tank 70. In the present embodiment, the inlet 71 is provided at the lower part of the front wall 73 of the processing tank 70, and the outlet 72 is provided at the upper part of the rear wall 74 of the processing tank 70.
 被処理液60は、流入口71を通じて処理槽70の内部に連続的に供給される。また、図1及び図2に示すように、電極ユニット1は、被処理液60に浸漬するように処理槽70の内部に配置されている。そのため、処理槽70の流入口71から供給された被処理液60は、電極ユニット1に接触しながら流れ、その後、流出口72から排出される。 The liquid to be treated 60 is continuously supplied to the inside of the treatment tank 70 through the inlet 71. Further, as shown in FIGS. 1 and 2, the electrode unit 1 is disposed inside the treatment tank 70 so as to be immersed in the liquid 60 to be treated. Therefore, the liquid to be treated 60 supplied from the inlet 71 of the treatment tank 70 flows in contact with the electrode unit 1 and then is discharged from the outlet 72.
 液体処理システム100において、電極ユニット1は、平面視した際、流入口71から流出口72に向かう方向に沿って配列していることが好ましい。具体的には、図1及び図3のように、液体処理システム100において、流入口71は処理槽70の前壁73に設けられ、流出口72は前壁73に対向する後壁74に設けられている。そして、電極ユニット1における膜状の負極20が、流入口71から流出口72に向かう方向(X方向)に略平行になるように、電極ユニット1が処理槽70の内部に配置されていることが好ましい。これにより、後述するように、液体処理システムの内部に複数の電極ユニット1を配置した場合であっても、各電極ユニット1に接触する被処理液60中の有機性物質の濃度を同程度にすることができる。その結果、各電極ユニット1の発電量を均一化することが可能となる。 In the liquid treatment system 100, the electrode units 1 are preferably arranged along the direction from the inflow port 71 to the outflow port 72 in plan view. Specifically, as shown in FIGS. 1 and 3, in the liquid processing system 100, the inlet 71 is provided on the front wall 73 of the processing tank 70, and the outlet 72 is provided on the rear wall 74 opposite to the front wall 73. It is done. Then, the electrode unit 1 is disposed inside the processing tank 70 so that the film-like negative electrode 20 in the electrode unit 1 is substantially parallel to the direction (X direction) from the inflow port 71 toward the outflow port 72. Is preferred. Thereby, as described later, even when the plurality of electrode units 1 are disposed inside the liquid processing system, the concentration of the organic substance in the liquid to be treated 60 in contact with each electrode unit 1 is made comparable. can do. As a result, it is possible to make the amount of power generation of each electrode unit 1 uniform.
[立体構造体]
 液体処理システム100は、電極ユニット1と処理槽70との間に設けられる立体構造体90を備えている。具体的には、図2及び図3に示すように、電極ユニット1の負極20と処理槽70の左壁75及び右壁76との間を埋めるように、立体構造体90が設けられている。立体構造体90は略直方体の形状であり、負極20並びに左壁75及び右壁76に接触するように配置されている。そして、図2に示すように、立体構造体90は、被処理液60に浸漬している。
[3D structure]
The liquid processing system 100 includes a three-dimensional structure 90 provided between the electrode unit 1 and the processing tank 70. Specifically, as shown in FIGS. 2 and 3, a three-dimensional structure 90 is provided so as to fill the gap between the negative electrode 20 of the electrode unit 1 and the left wall 75 and the right wall 76 of the processing tank 70. . The three-dimensional structure 90 has a substantially rectangular parallelepiped shape, and is disposed to be in contact with the negative electrode 20 and the left wall 75 and the right wall 76. Then, as shown in FIG. 2, the three-dimensional structure 90 is immersed in the liquid 60 to be treated.
 特許文献1のように、電極ユニットの間を単に被処理液が流れる場合には、被処理液は層流状態となるため、被処理液の一部が電極ユニットに接触することなく、流出口から排出される可能性がある。その場合には、被処理液中の有機性物質が微生物により分解され難くなることから、微生物による発電と被処理液の浄化が効率的に行われない。 As in the case of Patent Document 1, when the liquid to be treated simply flows between the electrode units, the liquid to be treated is in a laminar flow state, so a part of the liquid to be treated does not contact the electrode unit, and the outlet May be discharged from In that case, since the organic substance in the liquid to be treated is difficult to be decomposed by the microorganism, the power generation by the microorganism and the purification of the liquid to be treated can not be efficiently performed.
 これに対して、本実施形態の液体処理システム100では、図1に示すように、電極ユニット1と処理槽70との間に立体構造体90が配置されている。立体構造体90を設けることにより、被処理液60が乱流状態となり、被処理液60の拡散性が高まる。そのため、被処理液60が電極ユニット1の負極20と接触しやすくなり、被処理液60中の有機性物質を、負極20に担持されている微生物により効率的に分解することが可能となる。 On the other hand, in the liquid processing system 100 according to the present embodiment, as shown in FIG. 1, a three-dimensional structure 90 is disposed between the electrode unit 1 and the processing tank 70. By providing the three-dimensional structure 90, the liquid to be treated 60 is in a turbulent state, and the diffusivity of the liquid to be treated 60 is enhanced. Therefore, the liquid to be treated 60 easily contacts the negative electrode 20 of the electrode unit 1, and the organic substance in the liquid to be treated 60 can be efficiently decomposed by the microorganisms supported on the negative electrode 20.
 液体処理システム100において、被処理液60は、立体構造体90に接触しながら流れる。そのため、立体構造体90は被処理液60の流路全体に充填されるように配置されていてもよく、また、被処理液60の流路の一部にのみ配置されていてもよい。 In the liquid treatment system 100, the liquid to be treated 60 flows while being in contact with the three-dimensional structure 90. Therefore, the three-dimensional structure 90 may be disposed so as to be filled in the entire flow path of the liquid to be treated 60, or may be disposed only in a part of the flow path of the liquid to be treated 60.
 具体的には、立体構造体90を電極ユニット1と処理槽70との間に設ける場合には、図2及び図3に示すように、電極ユニット1の負極20と処理槽70の左壁75との間の全体に、立体構造体90を配置することが好ましい。同様に、電極ユニット1の負極20と処理槽70の右壁76との間の全体に、立体構造体90を配置することが好ましい。ただ、本実施形態はこのような態様に限定されず、電極ユニット1の負極20と、処理槽70の左壁75及び右壁76との間の一部に、立体構造体90を配置してもよい。 Specifically, when the three-dimensional structure 90 is provided between the electrode unit 1 and the processing tank 70, as shown in FIGS. 2 and 3, the negative electrode 20 of the electrode unit 1 and the left wall 75 of the processing tank 70. Preferably, the three-dimensional structure 90 is disposed in the entire space between them. Similarly, it is preferable to dispose the three-dimensional structure 90 entirely between the negative electrode 20 of the electrode unit 1 and the right wall 76 of the processing tank 70. However, the present embodiment is not limited to such an aspect, and a three-dimensional structure 90 is disposed in a portion between the negative electrode 20 of the electrode unit 1 and the left wall 75 and the right wall 76 of the processing tank 70. It is also good.
 液体処理システム100において、立体構造体90の上端91が被処理液60の水面よりも高くなるように配置されることが好ましい。具体的には、図2に示すように、立体構造体90の上端91が被処理液60の水面61よりも高く、上端91が被処理液60から露出するように、処理槽70の内部に配置されることが好ましい。これにより、被処理液60が乱流状態となり易くなり、被処理液60と負極20との接触をより高めることが可能となる。ただ、本実施形態はこのような態様に限定されず、立体構造体90の上端91が被処理液60の水面61よりも低くなっていてもよい。 In the liquid processing system 100, the upper end 91 of the three-dimensional structure 90 is preferably arranged to be higher than the water surface of the liquid 60 to be treated. Specifically, as shown in FIG. 2, inside the processing tank 70 so that the upper end 91 of the three-dimensional structure 90 is higher than the water surface 61 of the liquid 60 to be treated and the upper end 91 is exposed from the liquid 60 to be treated. It is preferred to be arranged. As a result, the liquid to be treated 60 tends to be in a turbulent state, and the contact between the liquid to be treated 60 and the negative electrode 20 can be further enhanced. However, the present embodiment is not limited to such an aspect, and the upper end 91 of the three-dimensional structure 90 may be lower than the water surface 61 of the liquid 60 to be treated.
 図2において、立体構造体90の下端92は、処理槽70の底壁77と接触している。これにより、被処理液60が乱流状態となり易くなり、被処理液60と負極20との接触をより高めることが可能となる。ただ、本実施形態はこのような態様に限定されず、立体構造体90の下端92と処理槽70の底壁77との間に間隙が存在していてもよい。 In FIG. 2, the lower end 92 of the three-dimensional structure 90 is in contact with the bottom wall 77 of the processing tank 70. As a result, the liquid to be treated 60 tends to be in a turbulent state, and the contact between the liquid to be treated 60 and the negative electrode 20 can be further enhanced. However, the present embodiment is not limited to such an aspect, and a gap may exist between the lower end 92 of the three-dimensional structure 90 and the bottom wall 77 of the processing tank 70.
 上述のように、立体構造体90は、被処理液60を乱流状態とし、被処理液60と負極20との接触を高めている。そのため、図3に示すように、立体構造体90は、被処理液60の流れ方向(X方向)において、電極ユニット1の後端1aよりも上流側に配置することが好ましい。つまり、立体構造体90の後端93は、電極ユニット1の後端1aよりも上流側に位置することが好ましい。 As described above, the three-dimensional structure 90 makes the liquid to be treated 60 in a turbulent state, and enhances the contact between the liquid to be treated 60 and the negative electrode 20. Therefore, as shown in FIG. 3, the three-dimensional structure 90 is preferably disposed upstream of the rear end 1 a of the electrode unit 1 in the flow direction (X direction) of the liquid 60 to be treated. That is, the rear end 93 of the three-dimensional structure 90 is preferably positioned upstream of the rear end 1 a of the electrode unit 1.
 図3に示すように、立体構造体90は、被処理液60の流れ方向において、電極ユニット1の前端1bよりも下流側に位置することが好ましい。つまり、立体構造体90の前端94は、電極ユニット1の前端1bよりも下流側に位置することが好ましい。ただ、このような態様に限定されず、立体構造体90の前端94は、電極ユニット1の前端1bよりも上流側に位置してもよい。 As shown in FIG. 3, the three-dimensional structure 90 is preferably located downstream of the front end 1 b of the electrode unit 1 in the flow direction of the liquid to be treated 60. That is, the front end 94 of the three-dimensional structure 90 is preferably located downstream of the front end 1 b of the electrode unit 1. However, the front end 94 of the three-dimensional structure 90 may be located upstream of the front end 1 b of the electrode unit 1 without being limited to such an embodiment.
 被処理液60を乱流状態とし、被処理液60と負極20との接触を高めるためには、立体構造体90は、被処理液60の流れ方向において、電極ユニット1の中心1cよりも上流側に位置していればよい。具体的には、図5に示すように、立体構造体90の後端93は、電極ユニット1における被処理液60の流れ方向の中心1cよりも上流側に位置していればよい。これにより、被処理液60は立体構造体90と接触して乱流状態となるため、被処理液60と負極20とを効率的に接触させることが可能となる。 In order to make the to-be-treated liquid 60 into a turbulent state and to enhance the contact between the to-be-treated liquid 60 and the negative electrode 20, the three-dimensional structure 90 is upstream of the center 1 c of the electrode unit 1 in the flow direction of the to-be-treated liquid 60. It should just be located at the side. Specifically, as shown in FIG. 5, the rear end 93 of the three-dimensional structure 90 may be located upstream of the center 1 c in the flow direction of the liquid to be treated 60 in the electrode unit 1. As a result, the liquid to be treated 60 comes into contact with the three-dimensional structure 90 to be in a turbulent state, so that the liquid to be treated 60 and the negative electrode 20 can be efficiently brought into contact with each other.
 本実施形態において、立体構造体90の形状は特に限定されない。ただ、立体構造体90は、被処理液60が通過することが可能な孔部を複数有する多孔質体を備えることが好ましい。また、立体構造体90は、当該多孔質体からなることがより好ましい。このような立体構造体90の内部を被処理液60が通過することにより、被処理液60が層流状態から乱流状態となるため、被処理液60と負極20との接触を向上させることが可能となる。なお、多孔質体の孔部の大きさは特に限定されないが、例えば、1mm~50cmとすることができる。 In the present embodiment, the shape of the three-dimensional structure 90 is not particularly limited. However, it is preferable that the three-dimensional structure 90 be provided with a porous body having a plurality of holes through which the liquid to be treated 60 can pass. Further, the three-dimensional structure 90 is more preferably made of the porous body. When the liquid to be treated 60 passes through the inside of such a three-dimensional structure 90, the liquid to be treated 60 changes from a laminar flow state to a turbulent state, so that the contact between the liquid to be treated 60 and the negative electrode 20 is improved. Is possible. The size of the pores of the porous body is not particularly limited, but can be, for example, 1 mm to 50 cm.
 立体構造体90は繊維質体を備えることが好ましく、繊維質体からなることがより好ましい。つまり、立体構造体90は、繊維が集合してなる繊維質体を備えることが好ましい。このような繊維質体も、被処理液60が通過することが可能な孔部を複数有するため、被処理液60を乱流状態とすることができる。なお、繊維質体を構成する繊維は特に限定されず、無機材料からなる無機繊維及び有機材料からなる有機繊維の少なくとも一方を用いることができる。 The three-dimensional structure 90 preferably comprises a fibrous body, and more preferably comprises a fibrous body. That is, it is preferable that the three-dimensional structure 90 be provided with a fibrous body in which fibers are aggregated. Since such a fibrous body also has a plurality of holes through which the liquid to be treated 60 can pass, the liquid to be treated 60 can be put in a turbulent state. In addition, the fiber which comprises a fibrous body is not specifically limited, At least one of the inorganic fiber which consists of inorganic materials, and the organic fiber which consists of organic materials can be used.
 立体構造体90は網状体を備えることが好ましく、網状体からなることがより好ましい。つまり、上述の孔部を複数有する多孔質体は網状体であることが好ましい。このような網状体も、被処理液60が通過することが可能な孔部を複数有するため、被処理液60を乱流状態とすることができる。なお、網状体は、金属線及び非金属線の少なくとも一方を編んで成る多孔質の構造物であることが好ましい。また、非金属線は特に限定されず、無機材料からなる無機繊維及び有機材料からなる有機繊維の少なくとも一方を用いることができる。 The three-dimensional structure 90 preferably comprises a reticulated body, and more preferably consists of a reticulated body. That is, the porous body having a plurality of the above-mentioned holes is preferably a net-like body. Such a reticulated body also has a plurality of holes through which the liquid to be treated 60 can pass, so the liquid to be treated 60 can be put in a turbulent state. The mesh-like body is preferably a porous structure formed by braiding at least one of a metal wire and a nonmetal wire. The nonmetal wire is not particularly limited, and at least one of an inorganic fiber made of an inorganic material and an organic fiber made of an organic material can be used.
 このような立体構造体90としては、例えば、暗渠排水材に代表される透水マットを使用することができる。透水マットとしては、例えば、新光ナイロン株式会社製のヘチマロン(登録商標)、及び株式会社吉原化工製のもやいドレーンマットを用いることができる。 As such a three-dimensional structure 90, for example, a water permeable mat typified by an underdrainage material can be used. As the water-permeable mat, for example, Hetimaron (registered trademark) manufactured by Shinko Nylon Co., Ltd. and a muddy drain mat manufactured by Yoshihara Kako Co., Ltd. can be used.
 立体構造体90を構成する材料は特に限定されず、例えば樹脂、金属、炭素材料及びセラミックスからなる群より選ばれる少なくとも一つを用いることができる。立体構造体90を構成する樹脂としては、熱硬化性樹脂、熱可塑性樹脂及びエラストマーからなる群より選ばれる少なくとも一つを用いることができ、例えばポリオレフィン樹脂を用いることができる。立体構造体90を構成する金属としては、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンからなる群より選ばれる少なくとも一つを用いることができる。立体構造体90を構成する炭素材料としては、カーボンペーパー、カーボンフェルト、炭素繊維及び黒鉛シートからなる群より選ばれる少なくとも一つを用いることができる。 The material which comprises the three-dimensional structure 90 is not specifically limited, For example, at least one chosen from the group which consists of resin, a metal, a carbon material, and ceramics can be used. As resin which comprises the three-dimensional structure 90, at least one chosen from the group which consists of a thermosetting resin, a thermoplastic resin, and an elastomer can be used, for example, polyolefin resin can be used. As a metal which comprises the three-dimensional structure 90, at least one chosen from the group which consists of aluminum, copper, stainless steel, nickel, and titanium can be used. As the carbon material constituting the three-dimensional structure 90, at least one selected from the group consisting of carbon paper, carbon felt, carbon fiber and graphite sheet can be used.
 本実施形態において、立体構造体90は導電性を有することが好ましい。立体構造体90が導電性を有することにより、電極ユニット1の負極20に加えて、立体構造体90に微生物を担持することが可能となる。つまり、上述のように、電極ユニット1の負極20では、微生物の触媒作用により、被処理液60の有機性物質から水素イオン及び電子を生成する。生成した電子は、負極20及び外部回路80を通じて正極10へ移動する。そのため、立体構造体90が導電性を有する場合には、立体構造体90に微生物を担持させることで、微生物により生成した電子を立体構造体90及び外部回路80を通じて正極10へ移動させることができる。その結果、液体処理システム100による発電を、より効率的に行うことが可能となる。 In the present embodiment, the three-dimensional structure 90 preferably has conductivity. When the three-dimensional structure 90 has conductivity, in addition to the negative electrode 20 of the electrode unit 1, it becomes possible to support a microorganism on the three-dimensional structure 90. That is, as described above, the negative electrode 20 of the electrode unit 1 generates hydrogen ions and electrons from the organic substance of the liquid to be treated 60 by the catalytic action of the microorganism. The generated electrons move to the positive electrode 10 through the negative electrode 20 and the external circuit 80. Therefore, when the three-dimensional structure 90 has conductivity, an electron generated by the microorganism can be moved to the positive electrode 10 through the three-dimensional structure 90 and the external circuit 80 by supporting the microorganism on the three-dimensional structure 90. . As a result, power generation by the liquid processing system 100 can be performed more efficiently.
 次に、本実施形態の液体処理システム100の作用について説明する。正極10、負極20及びイオン移動層30からなる電極接合体40が被処理液60に浸漬した場合、正極10のガス拡散層12、負極20及びイオン移動層30が被処理液60に浸漬し、撥水層11の少なくとも一部が気相2に露出する。 Next, the operation of the liquid treatment system 100 of the present embodiment will be described. When the electrode assembly 40 including the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 is immersed in the liquid 60, the gas diffusion layer 12, the negative electrode 20, and the ion transfer layer 30 of the positive electrode 10 are immersed in the liquid 60, At least a part of the water repellent layer 11 is exposed to the gas phase 2.
 液体処理システム100の動作時には、負極20に、有機性物質及び窒素含有化合物の少なくとも一方を含有する被処理液60を供給し、正極10に空気を供給する。この際、空気は、カセット基材50の上部に設けられた開口部を通じて連続的に供給される。 At the time of operation of the liquid treatment system 100, the liquid to be treated 60 containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20 and air is supplied to the positive electrode 10. At this time, air is continuously supplied through the opening provided at the top of the cassette base 50.
 そして、正極10では、撥水層11を透過してガス拡散層12に酸素が拡散する。負極20では、微生物の触媒作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、イオン移動層30を透過して正極10側へ移動し、正極10中のガス拡散層12に到達する。また、生成した電子は負極20の導電体シートを通じて外部回路80へ移動し、さらに外部回路80から正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12中の触媒の作用により酸素と結合し、水となって消費される。このとき、外部回路80によって、閉回路に流れる電気エネルギーを回収する。このように、電極ユニット1は、負極20における微生物の作用により、被処理液60中の有機性物質及び窒素含有化合物の少なくとも一方を分解することができる。 Then, in the positive electrode 10, oxygen permeates the water repellent layer 11 and diffuses into the gas diffusion layer 12. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the catalytic action of microorganisms. The generated hydrogen ions permeate the ion transfer layer 30, move to the positive electrode 10 side, and reach the gas diffusion layer 12 in the positive electrode 10. The generated electrons move to the external circuit 80 through the conductor sheet of the negative electrode 20, and further move to the gas diffusion layer 12 of the positive electrode 10 from the external circuit 80. The hydrogen ions and electrons are combined with oxygen by the action of the catalyst in the gas diffusion layer 12 and consumed as water. At this time, the external circuit 80 recovers the electrical energy flowing to the closed circuit. Thus, the electrode unit 1 can degrade at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 60 by the action of the microorganism in the negative electrode 20.
 ここで、液体処理システム100では、処理槽70の流入口71から被処理液60が連続的に供給される。供給された被処理液60は、立体構造体90と接触し、乱流状態となって拡散することから、負極20に効率的に供給される。そして、被処理液60中の有機性物質は、負極20に担持されている微生物により分解される。このように、負極20に効率的に被処理液60が供給され、有機性物質が微生物により分解されるため、電極ユニット1から安定した発電特性を得ることが可能となる。 Here, in the liquid treatment system 100, the liquid to be treated 60 is continuously supplied from the inlet 71 of the treatment tank 70. The supplied liquid to be treated 60 comes in contact with the three-dimensional structure 90 and diffuses in a turbulent state, and thus is efficiently supplied to the negative electrode 20. Then, the organic substance in the liquid 60 to be treated is decomposed by the microorganisms carried on the negative electrode 20. As described above, since the liquid to be treated 60 is efficiently supplied to the negative electrode 20 and the organic substance is decomposed by microorganisms, stable power generation characteristics can be obtained from the electrode unit 1.
 本実施形態の液体処理システムは、図1~図3に示すように、一つの処理槽70の内部に一つの電極ユニット1を備える構成であってもよい。ただ、本実施形態はこのような構成に限定されず、例えば一つの処理槽70の内部に複数の電極ユニット1を備える構成であってもよい。具体的には、図6~図8に示すように、一つの処理槽70の内部に、五つの電極ユニット1を備えてもよい。このような構成により、被処理液60と電極ユニット1の負極20との接触を高め、微生物による発電と廃水の浄化をより効率的に行うことが可能となる。 The liquid processing system of the present embodiment may be configured to include one electrode unit 1 inside one processing tank 70 as shown in FIGS. 1 to 3. However, the present embodiment is not limited to such a configuration. For example, a plurality of electrode units 1 may be provided in one processing tank 70. Specifically, as shown in FIGS. 6 to 8, five electrode units 1 may be provided inside one processing tank 70. With such a configuration, the contact between the liquid 60 to be treated and the negative electrode 20 of the electrode unit 1 can be enhanced, and power generation by microorganisms and purification of wastewater can be performed more efficiently.
 図6~図8に示す液体処理システム100Aでは、上述の液体処理システム100と同様に、流入口71は処理槽70の前壁73に設けられ、流出口72は前壁73に対向する後壁74に設けられている。そして、負極20が流入口71から流出口72に向かう方向(X方向)に略平行になるように、五つの電極ユニット1が処理槽70の内部に配置されている。 In the liquid processing system 100A shown in FIGS. 6-8, the inlet 71 is provided on the front wall 73 of the processing tank 70, and the outlet 72 is a rear wall facing the front wall 73, as in the liquid processing system 100 described above. Provided in 74. The five electrode units 1 are disposed inside the processing tank 70 such that the negative electrode 20 is substantially parallel to the direction (X direction) from the inflow port 71 toward the outflow port 72.
 そして、立体構造体90は、電極ユニット1と処理槽70との間に加えて、隣接する電極ユニット1の間にも設けられている。隣接する電極ユニット1の間に立体構造体90を設けることにより、被処理液60が立体構造体90に接触して拡散し、被処理液60と負極20との接触を高めることが可能となる。 The three-dimensional structure 90 is provided between the adjacent electrode units 1 in addition to the space between the electrode unit 1 and the processing tank 70. By providing the three-dimensional structure 90 between the adjacent electrode units 1, the liquid to be treated 60 contacts and diffuses the three-dimensional structure 90, and the contact between the liquid to be treated 60 and the negative electrode 20 can be enhanced. .
 なお、立体構造体90を隣接する電極ユニット1の間に設ける場合には、図6に示すように、一方の電極ユニット1の負極20と、他方の電極ユニット1の負極20との間の全体に立体構造体90を配置することが好ましい。ただ、本実施形態はこのような態様に限定されず、一方の電極ユニット1の負極20と、他方の電極ユニット1の負極20との間の一部に立体構造体90を配置してもよい。 In addition, when providing the three-dimensional structure 90 between the adjacent electrode units 1, as shown in FIG. 6, the whole between the negative electrode 20 of one electrode unit 1 and the negative electrode 20 of the other electrode unit 1 It is preferable to arrange the three-dimensional structure 90 in FIG. However, the present embodiment is not limited to such an aspect, and the three-dimensional structure 90 may be disposed in a part between the negative electrode 20 of one electrode unit 1 and the negative electrode 20 of the other electrode unit 1 .
 図6~図8に示す液体処理システム100Aでは、電極ユニット1と処理槽70との間に加えて、隣接する電極ユニット1の間にも立体構造体90が設けられている。しかしながら、本実施形態はこのような態様に限定されず、電極ユニット1と処理槽70との間には立体構造体90を設けず、隣接する電極ユニット1の間にのみ立体構造体90を設けてもよい。 In the liquid processing system 100A shown in FIGS. 6 to 8, in addition to the space between the electrode unit 1 and the processing tank 70, a three-dimensional structure 90 is provided also between the adjacent electrode units 1. However, the present embodiment is not limited to such an aspect, and the three-dimensional structure 90 is not provided between the electrode unit 1 and the processing tank 70, and the three-dimensional structure 90 is provided only between the adjacent electrode units 1. May be
 このように、本実施形態の液体処理システム100,100Aは、有機性物質を含む被処理液60を保持し、被処理液60の流入口71及び流出口72を有する処理槽70を備える。液体処理システムは、さらに、処理槽70の内部に設けられ、平面視において流入口71から流出口72に向かう方向(X方向)に沿って配列している、一又は二以上の電極ユニット1を備える。また、液体処理システムは、電極ユニット1と処理槽70との間、及び隣接する電極ユニット1の間の少なくとも一方に設けられる立体構造体90を備える。そして、電極ユニット1は、微生物を担持する負極20と、負極20と電気的に接続された正極10とを備え、負極20及び正極10が被処理液60に浸漬し、正極10の少なくとも一部が気相2に露出している。 Thus, the liquid processing system 100, 100A of the present embodiment holds the liquid to be treated 60 containing an organic substance, and includes the treatment tank 70 having the inlet 71 and the outlet 72 of the liquid to be treated 60. The liquid processing system further includes one or more electrode units 1 provided inside the processing tank 70 and arranged in a direction (X direction) from the inlet 71 toward the outlet 72 in plan view. Prepare. Further, the liquid processing system includes a three-dimensional structure 90 provided in at least one of between the electrode unit 1 and the processing tank 70 and between the adjacent electrode units 1. Then, the electrode unit 1 includes the negative electrode 20 supporting the microorganism and the positive electrode 10 electrically connected to the negative electrode 20, and the negative electrode 20 and the positive electrode 10 are immersed in the liquid 60 to be treated. Is exposed to the gas phase 2.
 本実施形態の液体処理システム100,100Aでは、電極ユニット1と処理槽70との間、及び隣接する電極ユニット1の間の少なくとも一方に立体構造体90を設けている。そして、被処理液60は、立体構造体90の内部を通過して負極20と接触した後に、流出口72に流れる。これにより、被処理液60を拡散し、電極ユニット1の負極20と被処理液60との接触を高めることができる。その結果、負極20に担持された微生物により、発電と被処理液60の浄化とを効率的に行うことが可能となる。また、液体処理システム100において、複数の電極ユニット1が流入口71から流出口72に向かう方向に沿って配列していることにより、各電極ユニット1に接触する被処理液60中の有機性物質の濃度が同程度となる。その結果、各電極ユニット1の発電量を均一化することが可能となる。 In the liquid processing system 100, 100A of the present embodiment, a three-dimensional structure 90 is provided at least between the electrode unit 1 and the processing tank 70 and between the adjacent electrode units 1. Then, the liquid to be treated 60 passes through the inside of the three-dimensional structure 90 and contacts the negative electrode 20, and then flows to the outlet 72. Thereby, the liquid to be treated 60 can be diffused, and the contact between the negative electrode 20 of the electrode unit 1 and the liquid to be treated 60 can be enhanced. As a result, the microorganisms carried on the negative electrode 20 can efficiently perform power generation and purification of the liquid 60 to be treated. Further, in the liquid processing system 100, the plurality of electrode units 1 are arranged along the direction from the inflow port 71 toward the outflow port 72, whereby the organic substance in the liquid to be treated 60 in contact with each electrode unit 1 The concentration of As a result, it is possible to make the amount of power generation of each electrode unit 1 uniform.
 以下、本実施形態を実施例及び比較例によりさらに詳細に説明するが、本実施形態はこれら実施例に限定されるものではない。 Hereinafter, the present embodiment will be described in more detail by way of examples and comparative examples, but the present embodiment is not limited to these examples.
[実施例]
 まず、ポリオレフィン製撥水層に、接着剤であるシリコーン樹脂を塗布した後、ガス拡散層であるグラファイトホイルを接合することにより、撥水層/シリコーン接着剤/ガス拡散層からなる積層シートを作製した。なお、撥水層は、積水化学工業株式会社製セルポア(登録商標)を使用した。シリコーン樹脂は、信越化学工業株式会社製の一液型RTVゴムKE-3475-Tを使用した。グラファイトホイルは、日立化成工業株式会社製のものを使用した。
[Example]
First, a silicone resin which is an adhesive agent is applied to a water repellent layer made of polyolefin and then a graphite foil which is a gas diffusion layer is joined to produce a laminated sheet consisting of water repellent layer / silicone adhesive / gas diffusion layer did. As the water repellent layer, Cellpore (registered trademark) manufactured by Sekisui Chemical Co., Ltd. was used. As the silicone resin, one-component RTV rubber KE-3475-T manufactured by Shin-Etsu Chemical Co., Ltd. was used. The graphite foil used was manufactured by Hitachi Chemical Co., Ltd.
 次に、グラファイトホイルにおける撥水層とは反対側の面に、酸素還元触媒とPTFE(Aldrich社製)とを混合してなる触媒層をプレス成形することにより、ガス拡散電極を作製した。なお、酸素還元触媒は、目付け量が6mg/cmとなるようにプレス成形した。 Next, a gas diffusion electrode was produced by press-forming a catalyst layer formed by mixing an oxygen reduction catalyst and PTFE (manufactured by Aldrich) on the surface of the graphite foil opposite to the water repellent layer. In addition, the oxygen reduction catalyst was press-molded so that a basis weight might be 6 mg / cm < 2 >.
 なお、酸素還元触媒は、次のように調製した。まず、容器内に、3gのカーボンブラック、0.1Mの塩化鉄(III)水溶液、及び0.15Mのペンタエチレンヘキサミンのエタノール溶液を入れることで、混合液を調製した。なお、カーボンブラックとしては、ライオン・スペシャリティ・ケミカルズ株式会社製ケッチェンブラックECP600JDを使用した。0.1M塩化鉄(III)水溶液の使用量は、カーボンブラックに対する鉄原子の割合が10質量%になるように調整した。この混合液に更にエタノールを加えることで、全量を9mLに調整した。そして、この混合液を超音波分散してから乾燥機で60℃の温度で乾燥させた。これにより、カーボンブラック、塩化鉄(III)、及びペンタエチレンヘキサミンを含有するサンプルを得た。 The oxygen reduction catalyst was prepared as follows. First, a mixed solution was prepared by placing 3 g of carbon black, a 0.1 M aqueous solution of iron (III) chloride, and an ethanol solution of 0.15 M pentaethylenehexamine in a container. As carbon black, ketjen black ECP600 JD manufactured by Lion Specialty Chemicals Co., Ltd. was used. The amount of use of the 0.1 M aqueous solution of iron (III) chloride was adjusted so that the ratio of iron atoms to carbon black was 10% by mass. The total volume was adjusted to 9 mL by further adding ethanol to this mixture. Then, the mixture was ultrasonically dispersed and then dried at a temperature of 60 ° C. in a drier. This yielded a sample containing carbon black, iron (III) chloride, and pentaethylenehexamine.
 そして、このサンプルを石英管の一端部内に詰め入れ、続いてこの石英管内をアルゴンで置換した。この石英管を900℃の炉に入れてから45秒で引き抜いた。石英管を炉に挿入する際には、石英管を炉に3秒間かけて挿入することで、加熱開始時のサンプルの昇温速度を300℃/sに調整した。続いて、石英管内にアルゴンガスを流通させることでサンプルを冷却させた。これにより酸素還元触媒を得た。 The sample was then packed into one end of a quartz tube, which was subsequently purged with argon. The quartz tube was put into a furnace at 900 ° C. and pulled out in 45 seconds. When inserting the quartz tube into the furnace, the temperature rising rate of the sample at the start of heating was adjusted to 300 ° C./s by inserting the quartz tube into the furnace over 3 seconds. Subsequently, the sample was cooled by flowing argon gas through the quartz tube. Thus, an oxygen reduction catalyst was obtained.
 上述のようにして得られたガス拡散電極の撥水層に空気取り入れ部を設けることにより、正極を作製した。そして、図1に示すように、正極、及び炭素材料(グラファイトホイル)からなる負極を、流入口及び流出口を備えた処理槽内に設置した。さらに、正極と負極との間に、イオン移動層であるポリオレフィン製不織布を設置した。なお、処理槽は、容量が300ccのものを使用した。 A positive electrode was manufactured by providing an air intake portion in the water repellent layer of the gas diffusion electrode obtained as described above. And as shown in FIG. 1, the negative electrode which consists of a positive electrode and a carbon material (graphite foil) was installed in the processing tank provided with the inlet and the outlet. Furthermore, a non-woven fabric made of polyolefin, which is an ion transfer layer, was placed between the positive electrode and the negative electrode. The treatment tank used had a capacity of 300 cc.
 さらに、本例では、図2及び図3に示すように、立体構造体であるウレタンフォームを、負極と処理槽の右壁及び左壁との間に充填した。ウレタンフォームとしては、富士ゴム産業株式会社製の軟質ウレタンフォームU0016を使用した。そのため、被処理液は流入口を通じて処理槽内へ入った後、ウレタンフォームの内部を流れて、流出口から排出される構成となっている。 Furthermore, in this example, as shown in FIG. 2 and FIG. 3, urethane foam, which is a three-dimensional structure, was filled between the negative electrode and the right and left walls of the treatment tank. As the urethane foam, a soft urethane foam U0016 manufactured by Fuji Rubber Industries Ltd. was used. Therefore, after the liquid to be treated enters the treatment tank through the inlet, it flows through the inside of the urethane foam and is discharged from the outlet.
 次に、正極、負極及びイオン移動層、並びにウレタンフォームに接するように、被処理液を処理槽内に満たした。被処理液は、全有機体炭素(TOC)が500mg/Lであるモデル廃液を使用した。さらに、被処理液のプロトン供給性を安定させるために、バッファとして、炭酸水素ナトリウムを濃度が5mMとなるように添加した。さらに、発電を行う嫌気性微生物源として、負極に土壌微生物を植種した。 Next, the treatment liquid was filled in the treatment tank so as to be in contact with the positive electrode, the negative electrode, the ion transfer layer, and the urethane foam. As a liquid to be treated, a model waste liquid having a total organic carbon (TOC) of 500 mg / L was used. Furthermore, in order to stabilize the proton supply property of the liquid to be treated, sodium hydrogen carbonate was added as a buffer to a concentration of 5 mM. Furthermore, soil microorganisms were planted on the negative electrode as a source of anaerobic microorganisms that generate electricity.
 そして、水理学的滞留時間が12時間となるように、被処理液を処理槽に供給した。さらに、被処理液は、水温が30℃となるように調整した。そして、正極と負極を負荷回路に接続することにより、本例の液体処理システムを得た。 Then, the liquid to be treated was supplied to the treatment tank so that the hydraulic retention time was 12 hours. Furthermore, the liquid to be treated was adjusted to have a water temperature of 30 ° C. And the liquid processing system of this example was obtained by connecting a positive electrode and a negative electrode to a load circuit.
[比較例]
 立体構造体を設置しなかったこと以外は実施例と同様にして、本例の液体処理システムを得た。
[Comparative example]
The liquid treatment system of this example was obtained in the same manner as the example except that the three-dimensional structure was not installed.
[評価]
 実施例及び比較例の液体処理システムを80日間稼働し、液体処理システムの定常出力を測定した。図9では、実施例及び比較例の液体処理システムにおける稼働日数と定常出力との関係を示した。
[Evaluation]
The liquid treatment systems of Examples and Comparative Examples were operated for 80 days, and the steady-state output of the liquid treatment system was measured. In FIG. 9, the relationship of the working days and steady-state output in the liquid processing system of an Example and a comparative example was shown.
 図9に示すように、実施例の液体処理システムは、立ち上げから80日経過した後でも出力が200mW/m前後で推移しており、良好な出力特性が得られることが分かる。これに対して、比較例の液体処理システムは、立ち上げから50日経過した時点から出力が低下することが分かる。そのため、立体構造体を設けることにより被処理液が拡散し、微生物により有機性物質が効率的に分解されるため、安定的に発電できることが分かる。 As shown in FIG. 9, in the liquid processing system of the example, the output remains around 200 mW / m 2 even after 80 days have passed since startup, and it can be seen that good output characteristics can be obtained. On the other hand, it can be seen that in the liquid processing system of the comparative example, the output decreases after 50 days from the start-up. Therefore, it is understood that the liquid to be treated is diffused by providing the three-dimensional structure, and the organic substance is efficiently decomposed by the microorganism, so that stable power generation can be performed.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。具体的には、図面において、正極10、負極20及びイオン移動層30は、矩形状に形成されている。しかし、これらの形状は特に限定されず、液体処理システムの大きさ、及び所望の浄化性能等により任意に変更することができる。また、各層の面積も所望の機能が発揮できるならば、それぞれ任意に変更することができる。 As mentioned above, although this embodiment was described, this embodiment is not limited to these, A various deformation | transformation is possible within the range of the summary of this embodiment. Specifically, in the drawings, the positive electrode 10, the negative electrode 20, and the ion transfer layer 30 are formed in a rectangular shape. However, these shapes are not particularly limited, and can be arbitrarily changed according to the size of the liquid treatment system, the desired purification performance, and the like. Also, the area of each layer can be arbitrarily changed as long as the desired function can be exhibited.
 そして、本実施形態に係る液体処理システムは、有機性物質を含む液体、例えば各種産業の工場などから発生する廃水、下水などの有機性廃水の処理に広く適用できる。また、水域の環境改善などにも利用できる。 The liquid treatment system according to the present embodiment can be widely applied to the treatment of a liquid containing an organic substance, for example, wastewater generated from factories of various industries, and organic wastewater such as sewage. It can also be used to improve the environment of water areas.
 特願2017-202061号(出願日:2017年10月18日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2017-202061 (filing date: October 18, 2017) are incorporated herein by reference.
 本開示によれば、電極ユニットと廃水との接触を高め、微生物による発電と廃水の浄化とを効率的に行うことが可能な液体処理システムを提供することができる。 According to the present disclosure, it is possible to provide a liquid treatment system capable of enhancing the contact between the electrode unit and the wastewater and efficiently performing the power generation by microorganisms and the purification of the wastewater.
 1 電極ユニット
 2 気相
 10 正極
 20 負極
 60 被処理液
 70 処理槽
 71 流入口
 72 流出口
 90 立体構造体
 100,100A 液体処理システム
Reference Signs List 1 electrode unit 2 gas phase 10 positive electrode 20 negative electrode 60 treated liquid 70 treatment tank 71 inlet 72 outlet 90 three- dimensional structure 100, 100 A liquid processing system

Claims (5)

  1.  有機性物質を含む被処理液を保持し、前記被処理液の流入口及び流出口を有する処理槽と、
     前記処理槽の内部に設けられ、平面視において前記流入口から前記流出口に向かう方向に沿って配列している、一又は二以上の電極ユニットと、
     前記電極ユニットと前記処理槽との間、及び隣接する前記電極ユニットの間の少なくとも一方に設けられる立体構造体と、
     を備え、
     前記電極ユニットは、微生物を担持する負極と、前記負極と電気的に接続された正極とを備え、前記負極及び前記正極が前記被処理液に浸漬し、前記正極の少なくとも一部が気相に露出する、液体処理システム。
    A processing tank holding a liquid containing an organic substance, and having an inlet and an outlet for the liquid;
    One or more electrode units provided inside the processing tank and arranged in a direction from the inlet to the outlet in plan view;
    A three-dimensional structure provided at least one of between the electrode unit and the processing tank and between the adjacent electrode units;
    Equipped with
    The electrode unit includes a negative electrode supporting a microorganism, and a positive electrode electrically connected to the negative electrode, the negative electrode and the positive electrode are immersed in the liquid to be treated, and at least a portion of the positive electrode is in a gas phase. Exposed, liquid handling system.
  2.  前記立体構造体は、前記被処理液が通過することが可能な孔部を複数有する多孔質体を備える、請求項1に記載の液体処理システム。 The liquid treatment system according to claim 1, wherein the three-dimensional structure includes a porous body having a plurality of holes through which the liquid to be treated can pass.
  3.  前記多孔質体は網状体である、請求項2に記載の液体処理システム。 The liquid treatment system according to claim 2, wherein the porous body is a mesh.
  4.  前記立体構造体は導電性を有する、請求項1乃至3のいずれか一項に記載の液体処理システム。 The liquid treatment system according to any one of claims 1 to 3, wherein the three-dimensional structure has conductivity.
  5.  前記被処理液は、前記立体構造体の内部を通過して前記負極と接触した後に、前記流出口に流れる、請求項1乃至4のいずれか一項に記載の液体処理システム。 The liquid processing system according to any one of claims 1 to 4, wherein the liquid to be treated flows into the outlet after passing through the inside of the three-dimensional structure and contacting with the negative electrode.
PCT/JP2018/036985 2017-10-18 2018-10-03 Liquid processing system WO2019078002A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017202061 2017-10-18
JP2017-202061 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019078002A1 true WO2019078002A1 (en) 2019-04-25

Family

ID=66172958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036985 WO2019078002A1 (en) 2017-10-18 2018-10-03 Liquid processing system

Country Status (1)

Country Link
WO (1) WO2019078002A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (en) * 2003-05-14 2004-12-02 Ebara Corp Power generation method and device using organic substance
JP2009266577A (en) * 2008-04-24 2009-11-12 Toshiba Corp Fuel cell and manufacturing method therefor
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus
JP2016147227A (en) * 2015-02-12 2016-08-18 積水化学工業株式会社 Microbial fuel cell wastewater treatment system
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004342412A (en) * 2003-05-14 2004-12-02 Ebara Corp Power generation method and device using organic substance
JP2009266577A (en) * 2008-04-24 2009-11-12 Toshiba Corp Fuel cell and manufacturing method therefor
JP2014213211A (en) * 2013-04-22 2014-11-17 パナソニック株式会社 Liquid treatment apparatus
JP2016147227A (en) * 2015-02-12 2016-08-18 積水化学工業株式会社 Microbial fuel cell wastewater treatment system
JP2017021978A (en) * 2015-07-10 2017-01-26 株式会社明電舎 Microbial fuel cell

Similar Documents

Publication Publication Date Title
JP6438115B2 (en) Microbial fuel cell system
WO2017119419A1 (en) Gas diffusion electrode for microbial fuel cells and microbial fuel cell in which same is used
JP6263270B2 (en) Electrode and fuel cell and water treatment apparatus using the same
US20200317543A1 (en) Purification unit and purification device
JP6643642B2 (en) Purification unit and purification device
US20210280888A1 (en) Microbial fuel cell
JP6438051B2 (en) Microbial fuel cell system
US20190296381A1 (en) Microbial fuel cell and waste liquid treatment system
JP2019076833A (en) Liquid treatment system
WO2019078002A1 (en) Liquid processing system
JP2020087804A (en) Microbial fuel cell and liquid processing unit
WO2017199475A1 (en) Liquid processing unit and liquid processing device
JP6703859B2 (en) Microbial fuel cell
WO2019069851A1 (en) Electrode assembly, and microbial fuel cell and water treatment device using same
WO2018203455A1 (en) Liquid treatment system
WO2017195406A1 (en) Microbial fuel cell and liquid treatment unit using same
JP2017228411A (en) Electrode composite and fuel cell
JP2017148776A (en) Water treatment equipment
WO2019064889A1 (en) Liquid treatment system
JP2020099854A (en) Liquid treatment system
WO2019078003A1 (en) Microbial fuel cell, liquid processing system, and liquid processing structure
JP2020099850A (en) Liquid treatment system
JP2020082006A (en) Liquid treatment system
JP2020099851A (en) Liquid treatment system
JP2020119763A (en) Electrode unit and liquid processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP