WO2017199475A1 - Liquid processing unit and liquid processing device - Google Patents

Liquid processing unit and liquid processing device Download PDF

Info

Publication number
WO2017199475A1
WO2017199475A1 PCT/JP2017/003179 JP2017003179W WO2017199475A1 WO 2017199475 A1 WO2017199475 A1 WO 2017199475A1 JP 2017003179 W JP2017003179 W JP 2017003179W WO 2017199475 A1 WO2017199475 A1 WO 2017199475A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid processing
oxygen
space
oxygen concentration
liquid
Prior art date
Application number
PCT/JP2017/003179
Other languages
French (fr)
Japanese (ja)
Inventor
亮 釜井
雄也 鈴木
直毅 吉川
矢口 充雄
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2017199475A1 publication Critical patent/WO2017199475A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a liquid processing unit and a liquid processing apparatus. Specifically, the present invention relates to a liquid processing unit and a liquid processing apparatus for purifying waste water.
  • water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
  • the activated sludge method In the activated sludge method, mud containing microorganisms (activated sludge) and wastewater are mixed in a biological reaction tank, and the air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and stirred. And the waste water is purified.
  • the activated sludge method requires enormous electric power for aeration of the biological reaction tank.
  • a large amount of sludge (a dead body of microorganisms), which is an industrial waste, is generated.
  • the conventional anaerobic treatment method has a problem that a biogas containing a large amount of methane gas having a flammable characteristic odor is generated as a product of anaerobic breathing. Therefore, as a method for overcoming this, a method for suppressing the production of biogas by generating carbon dioxide as a metabolite by using an anaerobic microorganism that releases electrons to a conductive material by metabolism is disclosed. (For example, refer to Patent Document 2).
  • a microbial fuel cell is disclosed as a system for treating wastewater by using anaerobic microorganisms that release electrons by metabolism (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 as an operation method for obtaining a high output in a microbial fuel cell, a high external resistance is connected at the start of startup, and after maintaining this to some extent, the external resistance is gradually increased as the output increases.
  • the anode potential can be controlled by gradually reducing the resistance value of the external circuit.
  • Patent Document 2 it is difficult to connect an external resistor, and therefore the anode potential cannot be controlled.
  • the growth of microorganisms cannot be promoted through the control of the anode potential, and the metabolic rate due to the release of electrons from the microorganisms is reduced.
  • changing the external resistance for each electrode each time is complicated both in terms of system and operation.
  • An object of the present invention is to provide a liquid processing unit capable of suppressing the generation of biogas while reducing the amount of sludge generation and further improving the metabolic rate of microorganisms, and a liquid processing using the liquid processing unit. To provide an apparatus.
  • a liquid processing unit has a first surface and a second surface, and hydrogen ions are provided between the first surface and the second surface.
  • the liquid processing structure which has the space where a hydroxide ion moves is provided.
  • the liquid processing unit further includes an oxygen concentration control unit that mechanically controls the concentration of oxygen supplied to the second surface.
  • the 2nd surface is in contact with the space part which has the gas containing oxygen, and the oxygen concentration control part is attached to the space part.
  • a liquid processing apparatus includes the above-described liquid processing unit, a liquid processing unit, and a processing tank for holding the liquid to be processed therein.
  • FIG. 1 is a perspective view showing an example of a liquid processing apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a sectional view taken along line AA in FIG.
  • FIG. 3 is an exploded perspective view showing a liquid processing unit in the liquid processing apparatus.
  • FIG. 4 is a cross-sectional view showing another example of the liquid processing apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing another example of the liquid processing apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining an oxygen concentration control unit in the liquid processing unit.
  • FIG. 7 is a perspective view showing an example of a liquid processing apparatus according to the second embodiment of the present invention.
  • the liquid processing apparatus 100 includes a liquid processing unit 1 as shown in FIGS. 1 and 2.
  • the liquid processing unit 1 includes a liquid processing structure 40 including the positive electrode 10, the negative electrode 20, and the ion conductive structure 30.
  • the positive electrode 10 is disposed so as to be in contact with one surface 30 a of the ion conduction structure 30, and the negative electrode 20 is in contact with a surface 30 b opposite to the surface 30 a of the ion conduction structure 30. Is arranged.
  • the gas diffusion layer 12 of the positive electrode 10 is in contact with the ionic conduction structural member 30 and the water repellent layer 11 is exposed to the space 50 side.
  • the liquid processing structure 40 is laminated
  • the cassette base 60 is a U-shaped frame member along the outer peripheral portion of the surface 10a of the positive electrode 10, and the upper part is open. That is, the cassette base 60 is a frame member in which the bottom surfaces of the two first columnar members 61 are connected by the second columnar member 62.
  • the side surface 63 of the cassette base 60 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10, and the side surface 64 opposite to the side surface 63 is the outer periphery of the surface 70 a of the plate member 70. It is joined to the part.
  • the liquid processing unit 1 formed by laminating the liquid processing structure 40, the cassette base material 60, and the plate member 70 is disposed inside the processing tank 80 so that the space 50 is formed.
  • the A treatment liquid 90 that is waste water is held inside the treatment tank 80, and the positive electrode 10, the negative electrode 20, and the ion conductive structure 30 are immersed in the treatment liquid 90.
  • the positive electrode 10 includes a water repellent layer 11 having water repellency
  • the plate member 70 is made of a flat plate material that does not transmit the liquid 90 to be processed. Therefore, the to-be-processed liquid 90 hold
  • the oxygen concentration control unit 200 mechanically controls the oxygen concentration inside.
  • the positive electrode 10 As shown in FIGS. 1 and 2, the positive electrode 10 according to the present embodiment includes a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11. .
  • a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11.
  • the water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability.
  • the water repellent layer 11 is configured to allow oxygen to move from the gas phase to the liquid phase while favorably separating the gas phase and the liquid phase in the electrochemical system in the liquid processing unit 1. That is, the water repellent layer 11 can suppress the movement of the liquid 90 to be processed toward the space 50 while passing the oxygen in the space 50 and moving it to the gas diffusion layer 12.
  • “separation” here means physical interruption
  • the water repellent layer 11 is in contact with the space portion 50 having a gas containing oxygen, and diffuses oxygen in the space portion 50.
  • the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused.
  • the water repellent layer 11 since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct
  • the liquid 90 to be treated does not easily penetrate into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the space 50 in the water repellent layer 11 to the surface facing the gas diffusion layer 12. It becomes possible.
  • the water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric.
  • the material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the space 50.
  • Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility.
  • the water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
  • the water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency.
  • a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
  • the water repellent layer 11 may have a function of adjusting the amount of oxygen supplied from the space 50 to the gas diffusion layer 12.
  • a material of such a water repellent layer 11 for example, at least one of silicone rubber and polydimethylsiloxane can be used. Since these materials have high oxygen solubility and oxygen diffusibility derived from the molecular structure of silicone, they are excellent in oxygen permeability. Furthermore, since these materials have small surface free energy, they are excellent in water repellency.
  • Gore-Tex registered trademark formed by combining a film obtained by stretching polytetrafluoroethylene and a polyurethane polymer can be used.
  • the gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material.
  • the gas diffusion layer 12 may be composed of a porous and conductive catalyst.
  • the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface.
  • the shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
  • the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12.
  • the adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12.
  • the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
  • the adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
  • the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail.
  • the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
  • the conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals.
  • the carbon-based material means a material containing carbon as a constituent component.
  • Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, and carbon-based material obtained by compression molding carbon particles are included.
  • Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters. Furthermore, as a conductive material in the gas diffusion layer 12, a metal material such as a mesh and a foam can also be used.
  • Conductive polymer is a general term for conductive polymer compounds.
  • the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit.
  • examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene.
  • An example of the metal conductive material is a stainless mesh. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
  • the shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support.
  • the support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode.
  • the support may be an insulator or a conductor.
  • examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like.
  • Examples of the porous structure support include porous ceramics, porous plastics, and sponges.
  • the support When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like.
  • the support When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
  • the catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten
  • a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
  • the catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms.
  • metal atoms Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium
  • the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
  • the carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
  • the combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected.
  • the nonmetallic atom contains nitrogen and the metallic atom contains iron.
  • the carbon-based material can have particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
  • the nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity.
  • the nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
  • the shape of the carbon-based material is not particularly limited.
  • the carbon-based material may have a particulate shape or may have a sheet shape.
  • the dimension of the carbon-based material having a sheet-like shape is not particularly limited.
  • the carbon-based material may have a minute dimension.
  • the carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
  • the carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
  • the carbon source material for example, graphite or amorphous carbon can be used as described above.
  • the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material.
  • Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used.
  • the metal compound preferably contains iron (III) chloride.
  • the metal compound when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride.
  • the metal compound when the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate.
  • the amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
  • the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus.
  • Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal
  • At least one compound selected from the group consisting of fido can be used.
  • the amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material.
  • the amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
  • a mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
  • the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere.
  • a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom.
  • the heating temperature is preferably in the range of 800 ° C. to 1000 ° C.
  • the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased.
  • the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
  • the carbon-based material may be further acid cleaned.
  • the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
  • the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches
  • the binder for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used.
  • PVDF polyvinylidene fluoride
  • EPDM ethylene-propylene-diene copolymer
  • NAFION registered trademark
  • the negative electrode 20 in this embodiment has a function of supporting microorganisms to be described later and generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the liquid 90 to be treated by the catalytic action of the microorganisms.
  • the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
  • the negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity.
  • the conductor sheet it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet.
  • the conductor sheet may be a laminate in which a plurality of sheets are laminated.
  • hydrogen ions generated in the local battery reaction described later easily move toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It becomes possible to raise.
  • the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
  • the conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, the material constituting the conductor sheet of the negative electrode 20 is, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, and carbon paper, carbon felt, and graphite sheets. One can be used.
  • the microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism capable of decomposing organic compounds or nitrogen-containing compounds in the liquid 90 to be treated.
  • a microorganism capable of decomposing organic compounds or nitrogen-containing compounds in the liquid 90 to be treated is used.
  • an anaerobic microorganism that does not require oxygen for growth is used. Is preferred.
  • Anaerobic microorganisms do not require air for oxidizing and decomposing organic substances in the liquid 90 to be treated. Therefore, the electric power required for sending air can be significantly reduced.
  • the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
  • the microorganism held in the negative electrode 20 is preferably an anaerobic microorganism, for example, an electricity producing bacterium having an extracellular electron transfer mechanism.
  • anaerobic microorganism examples include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
  • Anaerobic microorganisms may be held on the negative electrode 20 by superimposing and fixing a biofilm containing anaerobic microorganisms on the negative electrode 20.
  • anaerobic microorganisms may be held on the surface 20b of the negative electrode 20 opposite to the surface 20a in contact with the ion conductive structure 30.
  • the biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population.
  • EPS extracellular polymeric substance
  • the anaerobic microorganisms may be held on the negative electrode 20 without depending on the biofilm.
  • the anaerobic microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
  • the liquid processing unit 1 of the present embodiment further includes an ion conductive structure 30 that is provided between the positive electrode 10 and the negative electrode 20 and has permeability of hydrogen ions and hydroxide ions. As shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via an ion conductive structure 30.
  • the ion conduction structure 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side.
  • the ionic conduction structural member 30 has a function of transmitting the hydroxide ions generated at the positive electrode 10 and moving it to the negative electrode 20 side. That is, the ion conduction structure 30 can move hydrogen ions and hydroxide ions through the inside thereof. Therefore, the hydrogen ions generated at the negative electrode 20 move inside the ion conductive structure 30 and react with the hydroxide ions generated at the positive electrode 10 to generate water.
  • hydrogen ions generated at the negative electrode 20 are used for the oxygen reduction reaction at the positive electrode 10.
  • hydroxide ions generated at the positive electrode 10 move inside the ion conductive structure 30 and react with hydrogen ions generated at the negative electrode 20 to generate water.
  • the ion conductive structure 30 is not particularly limited as long as it can conduct hydrogen ions and hydroxide ions without significantly inhibiting diffusion. Moreover, you may use the porous membrane which has the pore which can permeate
  • the ion conductive structure 30 may be a sheet having a space (void) for the movement of hydrogen ions and hydroxide ions between the positive electrode 10 and the negative electrode 20. Therefore, it is preferable that the ionic conduction structural member 30 includes at least one selected from the group consisting of a porous sheet, a woven fabric sheet, and a nonwoven fabric sheet.
  • the pore diameter of the ionic conduction structural member 30 is not particularly limited as long as hydrogen ions and hydroxide ions can move between the positive electrode 10 and the negative electrode 20.
  • the ion conductive structure 30 is preferably made of a conductor. That is, in the liquid processing unit 1, the gas diffusion layer 12 of the positive electrode 10 is disposed so as to contact one surface 30 a of the ion conduction structure 30, and the surface 30 b opposite to the surface 30 a of the ion conduction structure 30. It arrange
  • the conductive ion conductive structure 30 is not particularly limited as long as it has a space in which hydrogen ions and hydroxide ions can move and is electrically connected from the negative electrode 20 toward the positive electrode 10. Further, the ionic conduction structural member 30 may extend continuously from the negative electrode 20 toward the positive electrode 10. Or the ion conduction structure 30 may be comprised from the several electrically-conductive part electrically connected. For example, the ion conductive structure 30 may have a configuration in which a plurality of conductive layers are stacked and electrically connected. When the electrical resistance between the positive electrode 10 and the negative electrode 20 in the ionic conduction structural member 30 is kept low, electrons generated by the decomposition of the organic matter easily move, and higher processing efficiency is obtained.
  • At least a part of the material constituting the ionic conduction structural member 30 may extend continuously from the negative electrode 20 toward the positive electrode 10, or may extend so as to cross the space. That is, at least a part of the material constituting the ion conduction structure 30 may extend in a direction perpendicular to the stacking direction X of the positive electrode 10, the negative electrode 20, and the ion conduction structure 30.
  • the material of the conductive ion conductive structure 30 is not particularly limited as long as the conductivity can be ensured.
  • a conductive metal for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel, and titanium can be used.
  • the carbon material for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth, and graphite foil can be used.
  • the conductive polymer material at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylene vinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
  • the ion conduction structure 30 is provided with at least one of a woven fabric-like conductor sheet and a nonwoven fabric-like conductor sheet. Since the woven fabric-like conductor sheet and the nonwoven fabric-like conductor sheet have a large number of pores, the movement of hydrogen ions and hydroxide ions can be facilitated.
  • the ion conductive structure 30 may be a metal plate having a plurality of through holes from the negative electrode 20 to the positive electrode 10.
  • the ion conductive structure 30 includes a non-woven conductor sheet, and it is particularly preferable that the ion conductive structure 30 is made of a non-woven conductor sheet. Since the nonwoven fabric easily changes its thickness and porosity, it is possible to easily improve the transmittance of hydrogen ions and hydroxide ions.
  • the ion conductive structure 30 may be made of an electrical insulator.
  • the positive electrode 10 and the negative electrode 20 are electrically connected, and electrons generated by the negative electrode 20 need to move to the positive electrode 10. Therefore, when the ionic conduction structural member 30 is made of an electrical insulator, the positive electrode 10 and the negative electrode 20 may be electrically connected by an external resistance. Specifically, as shown in FIG. 4, the upper part of the positive electrode 10 and the negative electrode 20 may be connected by a conductive member 110. Further, as shown in FIG. 5, the positive electrode 10 and the negative electrode 20 may be connected by a conductive member 110 inside the ion conduction structure 30.
  • the conductive member 110 is not particularly limited as long as the positive electrode 10 and the negative electrode 20 can be electrically connected.
  • a metal material or a carbon material can be used.
  • the carbon material for example, at least one selected from the group consisting of graphite foil, carbon paper, carbon cloth, and carbon felt can be used.
  • the electrically insulating ion conductive structure 30 is not particularly limited as long as it can conduct hydrogen ions and hydroxide ions without significantly inhibiting diffusion.
  • Examples of the ion conductive structure 30 include a synthetic resin porous body, a glass fiber fabric, and a ceramic porous body.
  • Examples of the synthetic resin porous material include polyolefin, polytetrafluoroethylene, polyvinylidene fluoride, nylon, polyurethane, acrylic resin, polyvinyl chloride, polystyrene, polyimide, phenol resin, epoxy resin, melamine resin, and urea resin.
  • a nonwoven fabric containing at least one resin selected from the above can be mentioned.
  • a porous body of a synthetic resin a structure or a mesh containing the resin and having pores may be used.
  • synthetic resin porous body those that are not decomposed by the components of the liquid 90 to be treated are preferable.
  • microorganisms When microorganisms come into contact with the positive electrode 10, solidified substances are adhered due to secretory components, excessive consumption of oxygen by the microorganisms, formation of a local pH gradient, and the like, and the amount of reaction accompanying electron transfer may decrease. There is. Therefore, it is preferable that the adhesion of microorganisms to the positive electrode 10 is inhibited as much as possible.
  • a method for inhibiting the adhesion of microorganisms to the positive electrode 10 a method using an ion conductive structure 30 having a pore size that does not physically pass through microorganisms, or a method using chemical / biological action of the ion conductive structure 30.
  • Examples of the method utilizing chemical / biological action include a method of fixing a bactericide for sterilizing microorganisms to the ion conduction structure 30.
  • the bactericidal agent for example, various antibiotics including a compound capable of releasing bactericidal silver ions and copper ions and tetracycline can be used.
  • deviates from the pH range which microorganisms can reproduce is mentioned.
  • the surface 10 a of the positive electrode 10 of the liquid processing structure 40 is in contact with the space 50 having a gas containing oxygen.
  • the liquid processing unit 1 includes an oxygen concentration control unit 200 that mechanically controls the concentration of oxygen supplied to the surface 10 a of the positive electrode 10, and the oxygen concentration control unit 200 is attached to the space 50. . Therefore, the space portion 50 can adjust the oxygen concentration by the oxygen concentration control unit 200.
  • an electromotive force is generated with a high external resistance at the beginning of startup, and after maintaining this to some extent, an external force increases with an increase in output. It is preferable to gradually reduce the resistance to a certain value.
  • the anode potential increases stepwise, resulting in an environment in which electrons easily flow through the anode, and the growth of microorganisms is promoted.
  • the oxygen supply amount to the positive electrode 10 is also adjusted by adjusting the oxygen concentration, and the oxygen reduction reaction of the positive electrode 10 is performed. It becomes possible to control the reaction amount. Then, by adjusting the amount of oxygen supplied to the positive electrode 10, it is possible to control the reaction amount of the local battery reaction by the half reaction at each of the positive electrode 10 and the negative electrode 20. As a result, the reaction amount of microorganism metabolism accompanied by electron conduction in the negative electrode 20 can be controlled.
  • the oxygen concentration control unit 200 in the liquid processing unit 1 is adjusted to reduce the oxygen concentration in the space 50 in the state of starting up. As a result, the amount of oxygen supplied to the positive electrode 10 is reduced, and the amount of oxygen reduction at the positive electrode 10 is reduced.
  • the amount of oxygen reduction at the positive electrode 10 decreases, the reaction amount of microorganism metabolism accompanied by electron conduction at the negative electrode 20 decreases accordingly. As a result, the potential at the negative electrode 20 becomes more negative.
  • the oxygen concentration control unit 200 controls the amount of oxygen supplied to the positive electrode 10 and gradually increasing the oxygen concentration in the space 50.
  • the amount of oxygen reduction at the positive electrode 10 increases, the reaction amount of microorganism metabolism accompanied by electron conduction at the negative electrode 20 also increases, and the potential of the negative electrode 20 gradually becomes positive.
  • the total amount of metabolism reaction of microorganisms accompanied by electron conduction is increased, and electric energy can be increased.
  • the anode potential is controlled by adjusting the amount of oxygen supplied to the positive electrode 10 using the oxygen concentration control unit 200. For this reason, it is possible to eliminate the need for the external resistance as compared with the control of the anode potential, which has been achieved by reducing the external resistance stepwise as in the prior art.
  • the configuration of the oxygen concentration control unit 200 is not particularly limited as long as the oxygen concentration in the space 50 can be controlled.
  • the oxygen concentration control unit 200 can be configured as shown in FIG. 6, for example.
  • the space area 50 in contact with the positive electrode 10 is a closed space other than the opening 51 communicating with the atmosphere, and the opening area of the opening 51 is changed. It can be set as a mechanism.
  • the space 50 is provided with an opening 51 that communicates with the atmosphere
  • the oxygen concentration control unit 200A includes a lid 201 that opens and closes the opening 51 and a lid control that controls opening and closing of the lid 201. Part 202. Then, the lid 201 is operated by the lid controller 202, the oxygen concentration in the space 50 is lowered by closing the opening 51, and oxygen in the atmosphere flows into the space 50 by opening the opening 51, It is possible to increase the oxygen concentration in the space 50.
  • the lid control unit 202 may be configured to detect the oxygen concentration in the space 50 and open and close the lid 201 based on the oxygen concentration.
  • the oxygen concentration control unit 200 can be a mechanism that changes the air pressure in the space 50 in contact with the positive electrode 10. That is, the oxygen concentration control unit 200B connects the tank unit 211 in which a gas containing oxygen is stored, the tank unit 211 and the space unit 50, and supplies the gas in the tank unit 211 to the space unit 50; And a detector 213 for detecting the oxygen concentration in the space 50. Furthermore, the oxygen concentration control unit 200B includes a gas supply control unit 214 that controls the amount of gas supplied from the tank unit 211 by the supply unit 212 in accordance with the oxygen concentration detected by the detection unit 213.
  • the oxygen concentration in the space 50 is first detected by the detector 213.
  • the gas supply control unit 214 controls the supply unit 212, and the gas supply from the tank unit 211 to the space 50 is performed. Reduce supply. As a result, the oxygen concentration in the space 50 can be reduced.
  • the gas supply control unit 214 controls the supply unit 212 so that the gas from the tank unit 211 to the space unit 50 is reduced. Increase supply. As a result, the oxygen concentration in the space 50 can be increased.
  • the configuration of the supply unit 212 is not particularly limited, but may be a solenoid valve, for example.
  • the configuration of the detection unit 213 is not particularly limited, and for example, a commercially available oxygen concentration meter can be used.
  • the oxygen concentration control unit 200 can be a mechanism that changes the flow rate of the gas from the opening provided in the space 50 as shown in FIG. That is, the oxygen concentration control unit 200 ⁇ / b> C can include a blower 221 that supplies a gas containing oxygen to the space 50. By using the blower 221, the flow rate of the gas supplied to the space 50 can be changed, and the oxygen concentration can be controlled.
  • the oxygen concentration control unit 200 may be configured to dilute the oxygen concentration in the space 50 with an inert gas such as nitrogen gas.
  • a liquid 90 to be processed containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air or oxygen is supplied to the positive electrode 10. At this time, air is continuously supplied through the oxygen concentration controller 200.
  • the positive electrode 10 shown in FIGS. 1 and 2 air diffuses through the water repellent layer 11 and is diffused by the gas diffusion layer 12.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid 90 to be treated by the catalytic action of microorganisms.
  • the generated hydrogen ions pass through the space inside the ion conduction structure 30 by the liquid to be treated 90 and move to the positive electrode 10 side.
  • the generated electrons move to the ion conductive structure 30 through the conductive sheet of the negative electrode 20 and further move to the gas diffusion layer 12 of the positive electrode 10.
  • Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
  • the above-described local battery reaction (half-cell reaction) is represented by the following formula.
  • Negative electrode 20 C 6 H 12 O 6 + 6H 2 O ⁇ 6CO 2 + 24H + + 24e ⁇ ⁇
  • Positive electrode 10 6O 2 + 24H + + 24e ⁇ ⁇ 12H 2 O
  • Negative electrode 20 4NH 3 ⁇ 2N 2 + 12H + + 12e ⁇
  • Positive electrode 10 3O 2 + 12H + + 12e ⁇ ⁇ 6H 2 O
  • the organic substance and the nitrogen-containing compound in the liquid 90 to be processed can be decomposed by the catalytic action of microorganisms in the negative electrode 20 to purify the liquid 90 to be processed.
  • hydroxide ions may be generated by a reduction reaction of oxygen. Therefore, the generated hydroxide ions may move inside the ion conduction structure 30 and combine with the hydrogen ions generated in the negative electrode 20 to generate water.
  • the liquid processing unit 1 has a first surface 40a and a second surface 40b, and hydrogen ions or hydroxide ions move between the first surface 40a and the second surface 40b.
  • the liquid processing unit 1 includes an oxygen concentration control unit 200 that mechanically controls the concentration of oxygen supplied to the second surface 40b.
  • the second surface 40 b is in contact with the space 50 having a gas containing oxygen, and the oxygen concentration control unit 200 is attached to the space 50.
  • the first surface 40a of the liquid processing structure 40 corresponds to the surface 20b of the negative electrode 20 opposite to the surface 20a that contacts the ion conductive structure 30, and the second surface 40b is the positive electrode. This corresponds to the tenth surface 10a.
  • the liquid processing apparatus 100 includes the liquid processing unit 1 and a processing tank 80 for holding the liquid processing unit 1 and the liquid to be processed 90 inside.
  • the liquid processing apparatus 100 can efficiently oxidize and decompose components (organic substances or nitrogen-containing compounds) contained in the liquid 90 to be processed through an electron transfer reaction. Specifically, organic substances and / or nitrogen-containing compounds contained in the liquid 90 to be treated are decomposed and removed by anaerobic microorganism metabolism, that is, microorganism growth. And since this oxidative decomposition process is performed on anaerobic conditions, the conversion efficiency from an organic substance to the new cell of microorganisms can be suppressed low rather than the case where it is performed on an aerobic condition.
  • the proliferation of microorganisms that is, the generation amount of sludge can be reduced.
  • odorous methane gas is generated in a normal anaerobic process, but in the oxidative decomposition process in the present embodiment, the metabolite is, for example, carbon dioxide gas, and therefore the generation of methane gas can be suppressed.
  • the liquid processing apparatus 100 by using the liquid processing unit 1 described above, the total reaction amount of metabolism of microorganisms accompanied by electron conduction can be increased, so that the purification performance of the liquid 90 to be processed can be further improved. It becomes possible.
  • the processing tank 80 holds the liquid 90 to be processed therein, but may have a configuration in which the liquid 90 to be processed flows.
  • the treatment tank 80 has a wastewater supply port 81 for supplying the treatment liquid 90 to the treatment tank 80 and the treated liquid 90 after the treatment is discharged from the treatment tank 80.
  • a waste water discharge port 82 may be provided.
  • the to-be-processed liquid 90 is continuously supplied through the waste-water supply port 81 and the waste-water discharge port 82.
  • the negative electrode 20 may be modified with, for example, an electron transfer mediator molecule.
  • the to-be-processed liquid 90 in the processing tank 80 may contain the electron transfer mediator molecule.
  • the electron transfer mediator molecule for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
  • AQDS anthraquinone-2,6-disulfonic acid
  • thionine thionine
  • potassium ferricyanide potassium ferricyanide
  • methylviologen methylviologen
  • the liquid processing apparatus 100A includes a liquid processing unit 1A as shown in FIG.
  • the liquid processing unit 1 ⁇ / b> A includes a liquid processing structure 40 ⁇ / b> A including the ion conductive structure 300 and the water repellent layer 11.
  • the water repellent layer 11 is disposed so as to contact one surface 300a of the ion conductive structure 300, and the water repellent layer 11 is exposed to the space 50 side.
  • the liquid processing structure 40A is laminated on the cassette base material 60. As shown in FIG. 7, the side surface 63 of the cassette substrate 60 is joined to the outer peripheral portion of the surface 11 a of the water repellent layer 11, and the side surface 64 opposite to the side surface 63 is the outer periphery of the surface 70 a of the plate member 70. It is joined to the part.
  • the liquid processing unit 1A is arranged inside the processing tank 80 so that the space 50 is formed, and the ion conductive structure 300 is immersed in the liquid 90 to be processed. As in the first embodiment, the oxygen concentration control unit 200 mechanically controls the oxygen concentration inside the space 50.
  • the liquid treatment structure 40A is composed of the ion conduction structure 300 and the water repellent layer 11.
  • the two electrodes are integrally formed by making the both ends of the ion conduction structure 300 function as two electrodes used for a battery reaction.
  • one surface 300a of the ionic conduction structural member 300 functions as a positive electrode
  • the other surface 300b functions as a negative electrode.
  • the conductive ion conduction structure 30 in the first embodiment can be used.
  • the ionic conduction structural member 300 may carry an oxygen reduction catalyst on one surface 300a.
  • the reaction between oxygen that has passed through the water-repellent layer 11 and hydrogen ions that have passed through the space inside the ion conduction structure 300 and moved to the one surface 300a side is promoted, and the reduction reaction efficiency of oxygen is increased. Therefore, more efficient liquid processing can be realized.
  • the oxygen reduction catalyst the catalyst in the first embodiment can be used.
  • anaerobic microorganisms on the other surface 300b functioning as the negative electrode in the ion conductive structure 300.
  • the anaerobic microorganisms may be hold
  • a liquid 90 to be processed containing at least one of an organic substance and a nitrogen-containing compound is supplied to the surface 300b of the ion conductive structure 300, and the water repellent layer 11 is supplied with air or oxygen. At this time, air is continuously supplied through the oxygen concentration controller 200.
  • oxygen passes through the water repellent layer 11 and reaches one surface 300a of the ion conductive structure 300.
  • hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 90 by the catalytic action of microorganisms.
  • the generated hydrogen ions pass through the inside of the ion conductive structure 300 by the liquid 90 to be processed and move to the surface 300a side.
  • the generated electrons move to the surface 300 a through the ion conduction structure 300.
  • hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the surface 300a and consumed as water.
  • the organic substance and the nitrogen-containing compound in the liquid 90 to be processed are decomposed by the catalytic action of the anaerobic microorganisms on the surface 300b of the ion conduction structure 300, and the liquid 90 to be processed is It becomes possible to purify.
  • hydroxide ions may be generated on the surface 300a of the ionic conduction structural member 300 due to a reduction reaction of oxygen. Therefore, the generated hydroxide ions may move inside the ion conduction structure 300 and combine with the hydrogen ions generated on the surface 300b to generate water.
  • the anode potential can be controlled by adjusting the amount of oxygen supplied to the surface 300a of the ion conductive structure 300 using the oxygen concentration control unit 200. Therefore, by adjusting the oxygen concentration control unit 200 and gradually increasing the oxygen concentration in the space 50, it is possible to increase the metabolic reaction amount of the microorganisms supported on the surface 300b and increase the electrical energy. It becomes.
  • the present embodiment has been described above, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment.
  • the liquid treatment apparatus according to the present embodiment can be widely applied to treatment of liquids containing organic substances and nitrogen-containing compounds, for example, wastewater generated from factories of various industries, organic wastewater such as sewage sludge, and the like.
  • the liquid treatment apparatus can be used for improving the environment of the water area.
  • a liquid processing unit capable of suppressing the generation of biogas while reducing the amount of generated sludge and further improving the metabolic amount of microorganisms, and a liquid processing apparatus using the liquid processing unit are provided. Obtainable.
  • Treatment tank 90 Liquid to be treated 100, 100A Liquid treatment apparatus 200, 200A, 200B, 200C Oxygen Concentration control unit 201 Lid unit 202 Lid unit control unit 211 Tank unit 212 Supply unit 213 Detection unit 214 Gas supply control unit 221 Blower

Abstract

A liquid processing unit (1) is provided with a liquid processing structure (40) having a first surface (40a) and a second surface (40b), and having a space between the first surface and the second surface in which hydrogen ions or hydroxide ions move. Furthermore, the liquid processing unit is provided with an oxygen concentration control unit (200) for mechanically controlling the concentration of oxygen supplied to the second surface. Moreover, the second surface is in contact with a hollow section (50) having a gas containing oxygen, and the oxygen concentration control unit is installed in the hollow section. A liquid processing device (100) is provided with the liquid processing unit, and a processing tank (80) for retaining the liquid processing unit and a liquid to be processed (90) therewithin.

Description

液体処理ユニット及び液体処理装置Liquid processing unit and liquid processing apparatus
 本発明は、液体処理ユニット及び液体処理装置に関する。詳細には本発明は、廃水を浄化するための液体処理ユニット及び液体処理装置に関する。 The present invention relates to a liquid processing unit and a liquid processing apparatus. Specifically, the present invention relates to a liquid processing unit and a liquid processing apparatus for purifying waste water.
 従来、廃水中に含まれる有機物等を除去するために、種々の水処理方法が提供されている。具体的には、微生物の好気呼吸を利用する活性汚泥法や、微生物の嫌気呼吸を利用する嫌気性処理法などの水処理方法が提供されている。 Conventionally, various water treatment methods have been provided in order to remove organic substances contained in wastewater. Specifically, water treatment methods such as an activated sludge method utilizing aerobic respiration of microorganisms and an anaerobic treatment method utilizing anaerobic respiration of microorganisms are provided.
 活性汚泥法では、微生物を含んだ泥(活性汚泥)と廃水とを生物反応槽で混合し、微生物が廃水中の有機物を酸化分解するために必要な空気を生物反応槽に送り込んで攪拌することで、廃水を浄化している。しかし、活性汚泥法は、生物反応槽のエアレーションに莫大な電力を要する。また、微生物が酸素呼吸をして活発に代謝を行う結果、産業廃棄物である大量の汚泥(微生物の死骸)が発生してしまう。 In the activated sludge method, mud containing microorganisms (activated sludge) and wastewater are mixed in a biological reaction tank, and the air necessary for the microorganisms to oxidize and decompose organic matter in the wastewater is sent to the biological reaction tank and stirred. And the waste water is purified. However, the activated sludge method requires enormous electric power for aeration of the biological reaction tank. Moreover, as a result of microorganisms breathing oxygen and actively metabolizing, a large amount of sludge (a dead body of microorganisms), which is an industrial waste, is generated.
 これに対し、嫌気性処理法ではエアレーションが不要となることから、活性汚泥法に比べて必要電力量を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量が減少する。このような嫌気性処理法を利用した液体処理装置としては、水素吸蔵合金の粒子を使用した担体に嫌気性微生物を付着させた装置が開示されている(例えば、特許文献1参照)。 On the other hand, since the aerobic treatment method does not require aeration, the amount of electric power required can be greatly reduced compared to the activated sludge method. Moreover, since the free energy which microbes acquire is small, sludge generation amount reduces. As a liquid processing apparatus using such an anaerobic processing method, an apparatus in which an anaerobic microorganism is attached to a carrier using particles of a hydrogen storage alloy is disclosed (for example, see Patent Document 1).
 ただ、従来の嫌気性処理法では、嫌気呼吸の産物として、可燃性で特有の臭気があるメタンガスを多量に含むバイオガスが発生するという問題がある。そのため、これを克服する方法として、代謝により電子を導電性材料に放出する嫌気性微生物を用いることで、代謝生成物として二酸化炭素を発生させ、バイオガスの生成を抑制する方法が開示されている(例えば、特許文献2参照)。 However, the conventional anaerobic treatment method has a problem that a biogas containing a large amount of methane gas having a flammable characteristic odor is generated as a product of anaerobic breathing. Therefore, as a method for overcoming this, a method for suppressing the production of biogas by generating carbon dioxide as a metabolite by using an anaerobic microorganism that releases electrons to a conductive material by metabolism is disclosed. (For example, refer to Patent Document 2).
 代謝により電子を放出する嫌気性微生物を用いることで廃水を処理するシステムとしては、特許文献2の他に、微生物燃料電池が開示されている(例えば、非特許文献1参照)。また、非特許文献1では、微生物燃料電池で高い出力を得るための運転方法として、立ち上げ始めにおいて高めの外部抵抗を接続し、これをある程度維持した後に、出力の増加に伴い外部抵抗を徐々に一定値まで下げていく方法が開示されている。この方法によると、外部抵抗を徐々に下げることで段階的にアノード電位が上がり、結果としてアノードに電子を流しやすい環境が整えられることで、微生物の生育が促進され、より多くの電流が得られるようになると考えられている。 In addition to Patent Document 2, a microbial fuel cell is disclosed as a system for treating wastewater by using anaerobic microorganisms that release electrons by metabolism (for example, see Non-Patent Document 1). In Non-Patent Document 1, as an operation method for obtaining a high output in a microbial fuel cell, a high external resistance is connected at the start of startup, and after maintaining this to some extent, the external resistance is gradually increased as the output increases. Discloses a method of lowering to a certain value. According to this method, the anode potential is gradually increased by gradually reducing the external resistance, and as a result, an environment in which electrons can easily flow through the anode is prepared, so that the growth of microorganisms is promoted and more current can be obtained. It is thought that it will become.
特開平1-47494号公報JP-A-1-47494 国際公開第2014/174742号International Publication No. 2014/174742
 微生物燃料電池のような外部抵抗を接続可能な系においては、外部回路の抵抗値を徐々に小さくしていくことによって、アノード電位を制御することが可能である。しかしながら、例えば特許文献2のような局部電池反応を利用する系においては、外部抵抗を接続することが難しいため、アノード電位を制御できない。その結果、微生物の生育の促進をアノード電位の制御を通じて行うことができず、微生物の電子の放出による代謝量が低下してしまうという問題があった。また、微生物燃料電池のような外部抵抗を接続可能な系においても、各電極に対して外部抵抗を都度変化させることは、システム及び操作の両面において煩雑であるという問題があった。 In a system capable of connecting an external resistance such as a microbial fuel cell, the anode potential can be controlled by gradually reducing the resistance value of the external circuit. However, for example, in a system using a local battery reaction as in Patent Document 2, it is difficult to connect an external resistor, and therefore the anode potential cannot be controlled. As a result, there has been a problem that the growth of microorganisms cannot be promoted through the control of the anode potential, and the metabolic rate due to the release of electrons from the microorganisms is reduced. Further, even in a system capable of connecting an external resistance such as a microbial fuel cell, there is a problem that changing the external resistance for each electrode each time is complicated both in terms of system and operation.
 本発明は、このような従来技術の有する課題に鑑みてなされたものである。そして、本発明の目的は、汚泥発生量を低減しつつもバイオガスの発生を抑制し、さらに微生物の代謝量を向上させることが可能な液体処理ユニット、及び当該液体処理ユニットを用いた液体処理装置を提供することにある。 The present invention has been made in view of such problems of the conventional technology. An object of the present invention is to provide a liquid processing unit capable of suppressing the generation of biogas while reducing the amount of sludge generation and further improving the metabolic rate of microorganisms, and a liquid processing using the liquid processing unit. To provide an apparatus.
 上記課題を解決するために、本発明の第一の態様に係る液体処理ユニットは、第一の面及び第二の面を有し、第一の面と第二の面との間に水素イオン又は水酸化物イオンが移動する空間を有する液体処理構造体を備える。さらに液体処理ユニットは、第二の面に供給する酸素の濃度を機械的に制御する酸素濃度制御部を備える。そして、第二の面は酸素を含む気体を有する空間部と接触しており、空間部には酸素濃度制御部が取り付けられている。 In order to solve the above problems, a liquid processing unit according to a first aspect of the present invention has a first surface and a second surface, and hydrogen ions are provided between the first surface and the second surface. Or the liquid processing structure which has the space where a hydroxide ion moves is provided. The liquid processing unit further includes an oxygen concentration control unit that mechanically controls the concentration of oxygen supplied to the second surface. And the 2nd surface is in contact with the space part which has the gas containing oxygen, and the oxygen concentration control part is attached to the space part.
 本発明の第二の態様に係る液体処理装置は、上述の液体処理ユニットと、液体処理ユニット及び被処理液を内部に保持するための処理槽とを備える。 A liquid processing apparatus according to a second aspect of the present invention includes the above-described liquid processing unit, a liquid processing unit, and a processing tank for holding the liquid to be processed therein.
図1は、本発明の第一実施形態に係る液体処理装置の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of a liquid processing apparatus according to the first embodiment of the present invention. 図2は、図1中のA-A線に沿った断面図である。FIG. 2 is a sectional view taken along line AA in FIG. 図3は、上記液体処理装置における液体処理ユニットを示す分解斜視図である。FIG. 3 is an exploded perspective view showing a liquid processing unit in the liquid processing apparatus. 図4は、本発明の第一実施形態に係る液体処理装置の他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the liquid processing apparatus according to the first embodiment of the present invention. 図5は、本発明の第一実施形態に係る液体処理装置の他の例を示す断面図である。FIG. 5 is a cross-sectional view showing another example of the liquid processing apparatus according to the first embodiment of the present invention. 図6は、上記液体処理ユニットにおける酸素濃度制御部を説明するための概略図である。FIG. 6 is a schematic diagram for explaining an oxygen concentration control unit in the liquid processing unit. 図7は、本発明の第二実施形態に係る液体処理装置の一例を示す斜視図である。FIG. 7 is a perspective view showing an example of a liquid processing apparatus according to the second embodiment of the present invention.
 以下、本実施形態に係る液体処理ユニット及び液体処理装置について詳細に説明する。なお、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, the liquid processing unit and the liquid processing apparatus according to the present embodiment will be described in detail. In addition, the dimension ratio of drawing is exaggerated on account of description, and may differ from an actual ratio.
[第一実施形態]
 本実施形態に係る液体処理装置100は、図1及び図2に示すように、液体処理ユニット1を備えている。そして、液体処理ユニット1は、正極10、負極20及びイオン伝導構造体30からなる液体処理構造体40を備えている。液体処理ユニット1では、イオン伝導構造体30の一方の面30aに正極10が接触するように配置されており、イオン伝導構造体30の面30aと反対側の面30bに負極20が接触するように配置されている。そして、正極10のガス拡散層12がイオン伝導構造体30と接触し、撥水層11が空間部50側に露出している。
[First embodiment]
The liquid processing apparatus 100 according to the present embodiment includes a liquid processing unit 1 as shown in FIGS. 1 and 2. The liquid processing unit 1 includes a liquid processing structure 40 including the positive electrode 10, the negative electrode 20, and the ion conductive structure 30. In the liquid processing unit 1, the positive electrode 10 is disposed so as to be in contact with one surface 30 a of the ion conduction structure 30, and the negative electrode 20 is in contact with a surface 30 b opposite to the surface 30 a of the ion conduction structure 30. Is arranged. The gas diffusion layer 12 of the positive electrode 10 is in contact with the ionic conduction structural member 30 and the water repellent layer 11 is exposed to the space 50 side.
 そして、図3に示すように、液体処理構造体40は、カセット基材60に積層されている。カセット基材60は、正極10における面10aの外周部に沿うU字状の枠部材であり、上部が開口している。つまり、カセット基材60は、2本の第一柱状部材61の底面を第二柱状部材62で連結した枠部材である。そして、図2に示すように、カセット基材60の側面63は、正極10の面10aの外周部と接合されており、側面63の反対側の側面64は、板部材70の面70aの外周部と接合されている。 And as shown in FIG. 3, the liquid processing structure 40 is laminated | stacked on the cassette base material 60. As shown in FIG. The cassette base 60 is a U-shaped frame member along the outer peripheral portion of the surface 10a of the positive electrode 10, and the upper part is open. That is, the cassette base 60 is a frame member in which the bottom surfaces of the two first columnar members 61 are connected by the second columnar member 62. As shown in FIG. 2, the side surface 63 of the cassette base 60 is joined to the outer peripheral portion of the surface 10 a of the positive electrode 10, and the side surface 64 opposite to the side surface 63 is the outer periphery of the surface 70 a of the plate member 70. It is joined to the part.
 図2に示すように、液体処理構造体40、カセット基材60及び板部材70を積層してなる液体処理ユニット1は、空間部50が形成されるように、処理槽80の内部に配置される。処理槽80の内部には廃水である被処理液90が保持されており、正極10、負極20及びイオン伝導構造体30は被処理液90に浸漬されている。 As shown in FIG. 2, the liquid processing unit 1 formed by laminating the liquid processing structure 40, the cassette base material 60, and the plate member 70 is disposed inside the processing tank 80 so that the space 50 is formed. The A treatment liquid 90 that is waste water is held inside the treatment tank 80, and the positive electrode 10, the negative electrode 20, and the ion conductive structure 30 are immersed in the treatment liquid 90.
 後述するように、正極10は撥水性を有する撥水層11を備えており、板部材70は被処理液90を透過しない平板状の板材からなる。そのため、処理槽80の内部に保持された被処理液90とカセット基材60の内部とは隔てられ、液体処理構造体40、カセット基材60及び板部材70により形成された内部空間は空間部50となっている。そして、空間部50では、酸素濃度制御部200によって内部の酸素の濃度が機械的に制御される。 As will be described later, the positive electrode 10 includes a water repellent layer 11 having water repellency, and the plate member 70 is made of a flat plate material that does not transmit the liquid 90 to be processed. Therefore, the to-be-processed liquid 90 hold | maintained inside the process tank 80 and the inside of the cassette base material 60 are separated, and the internal space formed by the liquid processing structure 40, the cassette base material 60, and the plate member 70 is a space part. 50. In the space 50, the oxygen concentration control unit 200 mechanically controls the oxygen concentration inside.
 (正極)
 本実施形態に係る正極10は、図1及び図2に示すように、撥水層11と、撥水層11に接触するように重ねられているガス拡散層12とを備えるガス拡散電極からなる。このような薄板状のガス拡散電極を用いることにより、空間部50中の酸素を正極10中の触媒に容易に供給することが可能になる。
(Positive electrode)
As shown in FIGS. 1 and 2, the positive electrode 10 according to the present embodiment includes a gas diffusion electrode including a water repellent layer 11 and a gas diffusion layer 12 stacked to be in contact with the water repellent layer 11. . By using such a thin plate-like gas diffusion electrode, oxygen in the space 50 can be easily supplied to the catalyst in the positive electrode 10.
 正極10における撥水層11は、撥水性と酸素透過性とを併せ持つ層である。撥水層11は、液体処理ユニット1における電気化学系中の気相と液相とを良好に分離しながら、気相から液相へ向かう酸素の移動を許容するように構成される。つまり、撥水層11は、空間部50中の酸素を透過し、ガス拡散層12へ移動させつつも、被処理液90が空間部50側に移動することを抑制できる。なお、ここでいう「分離」とは、物理的に遮断することをいう。 The water repellent layer 11 in the positive electrode 10 is a layer having both water repellency and oxygen permeability. The water repellent layer 11 is configured to allow oxygen to move from the gas phase to the liquid phase while favorably separating the gas phase and the liquid phase in the electrochemical system in the liquid processing unit 1. That is, the water repellent layer 11 can suppress the movement of the liquid 90 to be processed toward the space 50 while passing the oxygen in the space 50 and moving it to the gas diffusion layer 12. In addition, "separation" here means physical interruption | blocking.
 撥水層11は、酸素を含む気体を有する空間部50と接触しており、空間部50中の酸素を拡散している。そして、撥水層11は、図2に示す構成では、ガス拡散層12に対し酸素を略均一に供給している。そのため、撥水層11は、当該酸素を拡散できるように多孔質体であることが好ましい。なお、撥水層11は撥水性を有するため、結露等により多孔質体の細孔が閉塞し、酸素の拡散性が低下することを抑制できる。また、撥水層11の内部に被処理液90が染み込み難いため、撥水層11における空間部50と接触する面からガス拡散層12と対向する面にかけて、酸素を効率的に流通させることが可能となる。 The water repellent layer 11 is in contact with the space portion 50 having a gas containing oxygen, and diffuses oxygen in the space portion 50. In the configuration shown in FIG. 2, the water repellent layer 11 supplies oxygen to the gas diffusion layer 12 substantially uniformly. Therefore, the water repellent layer 11 is preferably a porous body so that the oxygen can be diffused. In addition, since the water repellent layer 11 has water repellency, it can suppress that the pores of a porous body are obstruct | occluded by dew condensation etc. and oxygen diffusibility falls. In addition, since the liquid 90 to be treated does not easily penetrate into the water repellent layer 11, oxygen can be efficiently circulated from the surface in contact with the space 50 in the water repellent layer 11 to the surface facing the gas diffusion layer 12. It becomes possible.
 撥水層11は、織布又は不織布によりシート状に形成されていることが好ましい。また、撥水層11を構成する材料は、撥水性を有し、空間部50中の酸素を拡散できれば特に限定されない。撥水層11を構成する材料としては、例えば、ポリエチレン、ポリプロピレン、ポリブタジエン、ナイロン、ポリテトラフルオロエチレン(PTFE)、エチルセルロース、ポリ-4-メチルペンテン-1、ブチルゴム及びポリジメチルシロキサン(PDMS)からなる群より選ばれる少なくとも一つを使用することができる。これらの材料は多孔質体を形成しやすく、さらに撥水性も高いため、細孔の閉塞を抑制してガス拡散性を向上させることができる。なお、撥水層11は、撥水層11及びガス拡散層12の積層方向Xに複数の貫通孔を有することが好ましい。 The water repellent layer 11 is preferably formed in a sheet shape from a woven fabric or a non-woven fabric. The material constituting the water repellent layer 11 is not particularly limited as long as it has water repellency and can diffuse oxygen in the space 50. Examples of the material constituting the water repellent layer 11 include polyethylene, polypropylene, polybutadiene, nylon, polytetrafluoroethylene (PTFE), ethyl cellulose, poly-4-methylpentene-1, butyl rubber, and polydimethylsiloxane (PDMS). At least one selected from the group can be used. Since these materials are easy to form a porous body and also have high water repellency, they can suppress clogging of pores and improve gas diffusibility. The water repellent layer 11 preferably has a plurality of through holes in the stacking direction X of the water repellent layer 11 and the gas diffusion layer 12.
 撥水層11は撥水性を高めるために、必要に応じて撥水剤を用いて撥水処理を施してもよい。具体的には、撥水層11を構成する多孔質体にポリテトラフルオロエチレン等の撥水剤を付着させ、撥水性を向上させてもよい。 The water repellent layer 11 may be subjected to a water repellent treatment using a water repellent as necessary in order to enhance water repellency. Specifically, a water repellent such as polytetrafluoroethylene may be attached to the porous body constituting the water repellent layer 11 to improve water repellency.
 撥水層11は、空間部50からガス拡散層12への酸素供給量を調整する機能を有していてもよい。このような撥水層11の材料としては、例えばシリコーンゴム及びポリジメチルシロキサンの少なくともいずれか一方を用いることができる。これらの材料は、シリコーンの分子構造に由来する高い酸素溶解性及び酸素拡散性を有しているため、酸素透過性に優れている。さらにこれらの材料は、表面自由エネルギーが小さいため、撥水性能にも優れている。また、撥水層11としては、ポリテトラフルオロエチレンを延伸加工したフィルムとポリウレタンポリマーを複合化してなるゴアテックス(登録商標)を用いることができる。 The water repellent layer 11 may have a function of adjusting the amount of oxygen supplied from the space 50 to the gas diffusion layer 12. As a material of such a water repellent layer 11, for example, at least one of silicone rubber and polydimethylsiloxane can be used. Since these materials have high oxygen solubility and oxygen diffusibility derived from the molecular structure of silicone, they are excellent in oxygen permeability. Furthermore, since these materials have small surface free energy, they are excellent in water repellency. As the water repellent layer 11, Gore-Tex (registered trademark) formed by combining a film obtained by stretching polytetrafluoroethylene and a polyurethane polymer can be used.
 正極10におけるガス拡散層12は、多孔質な導電性材料と、この導電性材料に担持されている触媒とを備えることが好ましい。なお、ガス拡散層12が、多孔質かつ導電性を有する触媒から構成されてもよい。正極10にこのようなガス拡散層12を備えることで、後述する局部電池反応により生成した電子を負極20と触媒との間で導通させることが可能となる。つまり、後述するように、ガス拡散層12には触媒が担持されており、さらに触媒は酸素還元触媒である。そして、電子が負極20からガス拡散層12を通じて触媒に移動することにより、触媒によって、酸素、水素イオン及び電子による酸素還元反応を進行させることが可能となる。 The gas diffusion layer 12 in the positive electrode 10 preferably includes a porous conductive material and a catalyst supported on the conductive material. The gas diffusion layer 12 may be composed of a porous and conductive catalyst. By providing such a gas diffusion layer 12 in the positive electrode 10, electrons generated by a local battery reaction described later can be conducted between the negative electrode 20 and the catalyst. That is, as will be described later, a catalyst is supported on the gas diffusion layer 12, and the catalyst is an oxygen reduction catalyst. And when an electron moves to the catalyst through the gas diffusion layer 12 from the negative electrode 20, it becomes possible to advance the oxygen reduction reaction by oxygen, a hydrogen ion, and an electron with a catalyst.
 正極10では、安定的な性能を確保するために、酸素が撥水層11及びガス拡散層12を効率よく透過し、触媒に供給されることが好ましい。そのため、ガス拡散層12は、撥水層11と対向する面から反対側の面にかけて、酸素が透過する細孔を多数有する多孔質体であることが好ましい。また、ガス拡散層12の形状は、三次元のメッシュ状であることが特に好ましい。このようなメッシュ状であることにより、ガス拡散層12に対し、高い酸素透過性及び導電性を付与することが可能となる。 In the positive electrode 10, in order to ensure stable performance, it is preferable that oxygen permeate the water-repellent layer 11 and the gas diffusion layer 12 efficiently and be supplied to the catalyst. Therefore, the gas diffusion layer 12 is preferably a porous body having a large number of pores through which oxygen passes from the surface facing the water repellent layer 11 to the opposite surface. The shape of the gas diffusion layer 12 is particularly preferably a three-dimensional mesh. Such a mesh shape makes it possible to impart high oxygen permeability and conductivity to the gas diffusion layer 12.
 正極10において、ガス拡散層12に効率的に酸素を供給するために、撥水層11は、接着剤を介してガス拡散層12と接合していることが好ましい。これにより、ガス拡散層12に対し、拡散した酸素が直接供給され、酸素還元反応を効率的に行うことができる。接着剤は、撥水層11とガス拡散層12との間の接着性を確保する観点から、撥水層11とガス拡散層12との間の少なくとも一部に設けられていることが好ましい。ただ、撥水層11とガス拡散層12との間の接着性を高め、長期間に亘り安定的に酸素をガス拡散層12に供給する観点から、接着剤は撥水層11とガス拡散層12との間の全面に設けられていることがより好ましい。 In the positive electrode 10, the water repellent layer 11 is preferably bonded to the gas diffusion layer 12 via an adhesive in order to efficiently supply oxygen to the gas diffusion layer 12. Thereby, the diffused oxygen is directly supplied to the gas diffusion layer 12, and the oxygen reduction reaction can be performed efficiently. The adhesive is preferably provided on at least a part between the water-repellent layer 11 and the gas diffusion layer 12 from the viewpoint of ensuring the adhesion between the water-repellent layer 11 and the gas diffusion layer 12. However, from the viewpoint of improving the adhesion between the water repellent layer 11 and the gas diffusion layer 12 and supplying oxygen to the gas diffusion layer 12 stably over a long period of time, the adhesive is used as the water repellent layer 11 and the gas diffusion layer. It is more preferable that it is provided on the entire surface between the two.
 接着剤としては酸素透過性を有するものが好ましく、ポリメチルメタクリレート、メタクリル酸-スチレン共重合体、スチレン-ブタジエンゴム、ブチルゴム、ニトリルゴム、クロロプレンゴム及びシリコーンからなる群より選ばれる少なくとも一つを含む樹脂を用いることができる。 The adhesive preferably has oxygen permeability, and includes at least one selected from the group consisting of polymethyl methacrylate, methacrylic acid-styrene copolymer, styrene-butadiene rubber, butyl rubber, nitrile rubber, chloroprene rubber, and silicone. Resin can be used.
 ここで、本実施形態における正極10のガス拡散層12について、さらに詳しく説明する。上述のように、ガス拡散層12は、多孔質な導電性材料と、当該導電性材料に担持されている触媒とを備えるような構成とすることができる。 Here, the gas diffusion layer 12 of the positive electrode 10 in the present embodiment will be described in more detail. As described above, the gas diffusion layer 12 can be configured to include a porous conductive material and a catalyst supported on the conductive material.
 ガス拡散層12における導電性材料は、例えば炭素系物質、導電性ポリマー、半導体及び金属からなる群より選ばれる一種以上の材料から構成することができる。ここで、炭素系物質とは、炭素を構成成分とする物質をいう。炭素系物質の例としては、例えば、グラファイト、活性炭、カーボンブラック、バルカン(登録商標)XC-72R、アセチレンブラック、ファーネスブラック、デンカブラックなどのカーボンパウダー、グラファイトフェルト、カーボンウール、カーボン織布などのカーボンファイバー、カーボンプレート、カーボンペーパー、カーボンディスク、カーボンクロス、カーボンホイル、炭素粒子を圧縮成形した炭素系材料が挙げられる。また、炭素系物質の例として、カーボンナノチューブ、カーボンナノホーン、カーボンナノクラスターのような微細構造物質も挙げられる。さらに、ガス拡散層12における導電性材料としては、メッシュ及び発泡体等の金属材料も用いることができる。 The conductive material in the gas diffusion layer 12 can be composed of, for example, one or more materials selected from the group consisting of carbon-based substances, conductive polymers, semiconductors, and metals. Here, the carbon-based material means a material containing carbon as a constituent component. Examples of carbon-based materials include, for example, carbon powder such as graphite, activated carbon, carbon black, Vulcan (registered trademark) XC-72R, acetylene black, furnace black, Denka black, graphite felt, carbon wool, carbon woven cloth, etc. Carbon fiber, carbon plate, carbon paper, carbon disk, carbon cloth, carbon foil, and carbon-based material obtained by compression molding carbon particles are included. Examples of the carbon-based material also include fine-structured materials such as carbon nanotubes, carbon nanohorns, and carbon nanoclusters. Furthermore, as a conductive material in the gas diffusion layer 12, a metal material such as a mesh and a foam can also be used.
 導電性ポリマーとは、導電性を有する高分子化合物の総称である。導電性ポリマーとしては、例えば、アニリン、アミノフェノール、ジアミノフェノール、ピロール、チオフェン、パラフェニレン、フルオレン、フラン、アセチレン若しくはそれらの誘導体を構成単位とする単一モノマー又は2種以上のモノマーの重合体が挙げられる。具体的には、導電性ポリマーとして、例えば、ポリアニリン、ポリアミノフェノール、ポリジアミノフェノール、ポリピロール、ポリチオフェン、ポリパラフェニレン、ポリフルオレン、ポリフラン、ポリアセチレン等が挙げられる。金属製の導電性材料としては、例えば、ステンレスメッシュが挙げられる。入手の容易性、コスト、耐食性、耐久性等を考慮した場合、導電性材料は炭素系物質であることが好ましい。 Conductive polymer is a general term for conductive polymer compounds. Examples of the conductive polymer include aniline, aminophenol, diaminophenol, pyrrole, thiophene, paraphenylene, fluorene, furan, acetylene, or a polymer of two or more monomers having a structural unit as a constituent unit. Can be mentioned. Specifically, examples of the conductive polymer include polyaniline, polyaminophenol, polydiaminophenol, polypyrrole, polythiophene, polyparaphenylene, polyfluorene, polyfuran, and polyacetylene. An example of the metal conductive material is a stainless mesh. In consideration of availability, cost, corrosion resistance, durability, and the like, the conductive material is preferably a carbon-based substance.
 また、導電性材料の形状は、粉末形状又は繊維形状であることが好ましい。また、導電性材料は、支持体に支持されていてもよい。支持体とは、それ自身が剛性を有し、ガス拡散電極に一定の形状を付与することのできる部材をいう。支持体は絶縁体であっても導電体であってもよい。支持体が絶縁体である場合、支持体としては、例えばガラス、プラスチック、合成ゴム、セラミックス、耐水又は撥水処理した紙、木片などの植物片、骨片、貝殻などの動物片等が挙げられる。多孔質構造の支持体としては、例えば多孔質セラミック、多孔質プラスチック、スポンジ等が挙げられる。支持体が導電体である場合、支持体としては、例えばカーボンペーパー、カーボンファイバー、炭素棒などの炭素系物質、金属、導電性ポリマー等が挙げられる。支持体が導電体の場合には、炭素系材料を担持した導電性材料が支持体の表面上に配置されることで、支持体が集電体としても機能し得る。 The shape of the conductive material is preferably a powder shape or a fiber shape. Further, the conductive material may be supported by a support. The support means a member that itself has rigidity and can give a certain shape to the gas diffusion electrode. The support may be an insulator or a conductor. When the support is an insulator, examples of the support include glass, plastic, synthetic rubber, ceramics, water-resistant or water-repellent treated paper, plant pieces such as wood pieces, bone pieces, animal pieces such as shells, and the like. . Examples of the porous structure support include porous ceramics, porous plastics, and sponges. When the support is a conductor, examples of the support include carbon materials such as carbon paper, carbon fiber, and carbon rod, metals, conductive polymers, and the like. When the support is a conductor, the support can also function as a current collector by disposing a conductive material carrying a carbon-based material on the surface of the support.
 ガス拡散層12における触媒は、白金系触媒、鉄又はコバルトを用いた炭素系触媒、部分酸化したタンタル炭窒化物(TaCNO)及びジルコニウム炭窒化物(ZrCNO)等の遷移金属酸化物系触媒、タングステン又はモリブデンを用いた炭化物系触媒、活性炭等を用いることができる。 The catalyst in the gas diffusion layer 12 is a platinum-based catalyst, a carbon-based catalyst using iron or cobalt, a transition metal oxide-based catalyst such as partially oxidized tantalum carbonitride (TaCNO) and zirconium carbonitride (ZrCNO), tungsten Alternatively, a carbide catalyst using activated molybdenum, activated carbon, or the like can be used.
 ガス拡散層12における触媒は、金属原子がドープされている炭素系材料であることが好ましい。金属原子としては特に限定されないが、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ニッケル、銅、ジルコニウム、ニオブ、モリブデン、ルテニウム、ロジウム、パラジウム、銀、ハフニウム、タンタル、タングステン、レニウム、オスミウム、イリジウム、白金、及び金からなる群より選ばれる少なくとも一種の金属の原子であることが好ましい。この場合、炭素系材料が、特に酸素還元反応を促進させるための触媒として優れた性能を発揮する。炭素系材料が含有する金属原子の量は、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 The catalyst in the gas diffusion layer 12 is preferably a carbon-based material doped with metal atoms. Although it does not specifically limit as a metal atom, Titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zirconium, niobium, molybdenum, ruthenium, rhodium, palladium, silver, hafnium, tantalum, tungsten, rhenium, osmium, iridium It is preferably an atom of at least one metal selected from the group consisting of platinum, and gold. In this case, the carbon-based material exhibits excellent performance as a catalyst for promoting the oxygen reduction reaction. What is necessary is just to set suitably the quantity of the metal atom which carbonaceous material contains so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料には、更に窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子がドープされていることが好ましい。炭素系材料にドープされている非金属原子の量も、炭素系材料が優れた触媒性能を有するように適宜設定すればよい。 It is preferable that the carbon-based material is further doped with one or more nonmetallic atoms selected from nitrogen, boron, sulfur, and phosphorus. What is necessary is just to set suitably the quantity of the nonmetallic atom doped by the carbonaceous material so that carbonaceous material may have the outstanding catalyst performance.
 炭素系材料は、例えばグラファイト及び無定形炭素等の炭素源原料をベースとし、この炭素源原料に金属原子と、窒素、ホウ素、硫黄及びリンから選択される一種以上の非金属原子とをドープすることで得られる。 The carbon-based material is based on a carbon source material such as graphite and amorphous carbon, for example, and the carbon source material is doped with a metal atom and one or more non-metal atoms selected from nitrogen, boron, sulfur and phosphorus. Can be obtained.
 炭素系材料にドープされている金属原子と非金属原子との組み合わせは、適宜選択される。特に、非金属原子が窒素を含み、金属原子が鉄を含むことが好ましい。この場合、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよく、金属原子が鉄のみであってもよい。 The combination of metal atoms and nonmetal atoms doped in the carbon-based material is appropriately selected. In particular, it is preferable that the nonmetallic atom contains nitrogen and the metallic atom contains iron. In this case, the carbon-based material can have particularly excellent catalytic activity. Note that the nonmetallic atom may be only nitrogen, and the metallic atom may be only iron.
 非金属原子が窒素を含み、金属原子がコバルトとマンガンとのうち少なくとも一方を含んでもよい。この場合も、炭素系材料が特に優れた触媒活性を有することができる。なお、非金属原子が窒素のみであってもよい。また、金属原子がコバルトのみ、マンガンのみ、あるいはコバルト及びマンガンのみであってもよい。 The nonmetallic atom may contain nitrogen, and the metallic atom may contain at least one of cobalt and manganese. Also in this case, the carbon-based material can have a particularly excellent catalytic activity. The nonmetallic atom may be only nitrogen. Further, the metal atom may be only cobalt, only manganese, or only cobalt and manganese.
 炭素系材料の形状は特に制限されない。例えば、炭素系材料は、粒子状の形状を有してもよく、またシート状の形状を有してもよい。シート状の形状を有する炭素系材料の寸法は特に制限されず、例えばこの炭素系材料が微小な寸法であってもよい。シート状の形状を有する炭素系材料は、多孔質であってもよい。シート状の形状を有し、かつ、多孔質な炭素系材料は、例えば織布状、不織布状等の形状を有することが好ましい。このような炭素系材料は、導電性材料が無くても、ガス拡散層12を構成することができる。 The shape of the carbon-based material is not particularly limited. For example, the carbon-based material may have a particulate shape or may have a sheet shape. The dimension of the carbon-based material having a sheet-like shape is not particularly limited. For example, the carbon-based material may have a minute dimension. The carbon-based material having a sheet shape may be porous. It is preferable that the porous carbon-based material having a sheet shape has a shape such as a woven fabric shape or a nonwoven fabric shape. Such a carbon-based material can constitute the gas diffusion layer 12 even without a conductive material.
 ガス拡散層12における触媒として構成される炭素系材料は、次のように調製することができる。まず、例えば窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属を含む非金属化合物と、金属化合物と、炭素源原料とを含有する混合物を準備する。そして、この混合物を、800℃以上1000℃以下の温度で、45秒以上600秒未満加熱する。これにより、触媒として構成される炭素系材料を得ることができる。 The carbon-based material configured as a catalyst in the gas diffusion layer 12 can be prepared as follows. First, for example, a mixture containing a nonmetallic compound containing at least one nonmetal selected from the group consisting of nitrogen, boron, sulfur, and phosphorus, a metal compound, and a carbon source material is prepared. And this mixture is heated at the temperature of 800 degreeC or more and 1000 degrees C or less for 45 second or more and less than 600 second. Thereby, the carbonaceous material comprised as a catalyst can be obtained.
 ここで、炭素源原料としては、上述の通り、例えばグラファイト又は無定形炭素を使用することができる。さらに、金属化合物としては、炭素源原料にドープされる非金属原子と配位結合し得る金属原子を含む化合物であれば、特に制限されない。金属化合物は、例えば金属の塩化物、硝酸塩、硫酸塩、臭化物、ヨウ化物、フッ化物などのような無機金属塩、酢酸塩などの有機金属塩、無機金属塩の水和物、及び有機金属塩の水和物からなる群より選ばれる少なくとも一種を使用することができる。例えばグラファイトに鉄がドープされる場合には、金属化合物は塩化鉄(III)を含有することが好ましい。また、グラファイトにコバルトがドープされる場合には、金属化合物は塩化コバルトを含有することが好ましい。また、炭素源原料にマンガンがドープされる場合には、金属化合物は酢酸マンガンを含有することが好ましい。金属化合物の使用量は、例えば炭素源原料に対する金属化合物中の金属原子の割合が5~30質量%の範囲内となるように決定されることが好ましく、更にこの割合が5~20質量%の範囲内となるように決定されることがより好ましい。 Here, as the carbon source material, for example, graphite or amorphous carbon can be used as described above. Further, the metal compound is not particularly limited as long as it is a compound containing a metal atom capable of coordinating with a nonmetal atom doped in the carbon source material. Metal compounds include, for example, metal chlorides, nitrates, sulfates, bromides, iodides, fluorides, etc., inorganic metal salts, organic metal salts such as acetates, inorganic metal salt hydrates, and organic metal salts At least one selected from the group consisting of hydrates can be used. For example, when graphite is doped with iron, the metal compound preferably contains iron (III) chloride. Moreover, when graphite is doped with cobalt, the metal compound preferably contains cobalt chloride. When the carbon source material is doped with manganese, the metal compound preferably contains manganese acetate. The amount of the metal compound used is preferably determined so that, for example, the ratio of the metal atom in the metal compound to the carbon source material is in the range of 5 to 30% by mass, and further this ratio is 5 to 20% by mass. More preferably, it is determined to be within the range.
 非金属化合物は、上記の通り、窒素、ホウ素、硫黄及びリンからなる群より選ばれる少なくとも一種の非金属の化合物であることが好ましい。非金属化合物としては、例えば、ペンタエチレンヘキサミン、エチレンジアミン、テトラエチレンペンタミン、トリエチレンテトラミン、エチレンジアミン、オクチルボロン酸、1,2-ビス(ジエチルホスフィノエタン)、亜リン酸トリフェニル、ベンジルジサルフィドからなる群より選ばれる少なくとも一種の化合物を使用することができる。非金属化合物の使用量は、炭素源原料への非金属原子のドープ量に応じて適宜設定される。非金属化合物の使用量は、金属化合物中の金属原子と、非金属化合物中の非金属原子とのモル比が、1:1~1:2の範囲内となるように決定されることが好ましく、1:1.5~1:1.8の範囲内となるように決定されることがより好ましい。 As described above, the nonmetallic compound is preferably at least one nonmetallic compound selected from the group consisting of nitrogen, boron, sulfur and phosphorus. Non-metallic compounds include, for example, pentaethylenehexamine, ethylenediamine, tetraethylenepentamine, triethylenetetramine, ethylenediamine, octylboronic acid, 1,2-bis (diethylphosphinoethane), triphenyl phosphite, benzyldisal At least one compound selected from the group consisting of fido can be used. The amount of the nonmetallic compound used is appropriately set according to the amount of the nonmetallic atom doped into the carbon source material. The amount of the nonmetallic compound used is preferably determined so that the molar ratio of the metal atom in the metal compound to the nonmetallic atom in the nonmetallic compound is in the range of 1: 1 to 1: 2. More preferably, it is determined to be within the range of 1: 1.5 to 1: 1.8.
 触媒として構成される炭素系材料を調製する際の、非金属化合物と金属化合物と炭素源原料とを含有する混合物は、例えば次のようにして得られる。まず炭素源原料と金属化合物と非金属化合物とを混合し、更に必要に応じてエタノール等の溶媒を加えて全量を調整する。これらを更に超音波分散法により分散させる。続いて、これらを適宜の温度(例えば60℃)で加熱した後に、混合物を乾燥して溶媒を除去する。これにより、非金属化合物と金属化合物と炭素源原料とを含有する混合物が得られる。 A mixture containing a nonmetallic compound, a metal compound, and a carbon source material when preparing a carbon-based material configured as a catalyst is obtained, for example, as follows. First, a carbon source material, a metal compound, and a nonmetal compound are mixed, and if necessary, a solvent such as ethanol is added to adjust the total amount. These are further dispersed by an ultrasonic dispersion method. Subsequently, after heating them at an appropriate temperature (for example, 60 ° C.), the mixture is dried to remove the solvent. Thereby, the mixture containing a nonmetallic compound, a metal compound, and a carbon source raw material is obtained.
 次に、得られた混合物を、例えば還元性雰囲気下又は不活性ガス雰囲気下で加熱する。これにより、炭素源原料に非金属原子がドープされ、さらに非金属原子と金属原子とが配位結合することで金属原子もドープされる。加熱温度は800℃以上1000℃以下の範囲内であることが好ましく、加熱時間は45秒以上600秒未満の範囲内であることが好ましい。加熱時間が短時間であるため、炭素系材料が効率よく製造され、しかも炭素系材料の触媒活性が更に高くなる。なお、加熱処理における、加熱開始時の混合物の昇温速度は、50℃/s以上であることが好ましい。このような急速加熱は、炭素系材料の触媒活性を更に向上する。 Next, the obtained mixture is heated, for example, under a reducing atmosphere or an inert gas atmosphere. Thereby, a non-metallic atom is doped to a carbon source raw material, and also a metallic atom is doped by the coordinate bond of a non-metallic atom and a metallic atom. The heating temperature is preferably in the range of 800 ° C. to 1000 ° C., and the heating time is preferably in the range of 45 seconds to less than 600 seconds. Since the heating time is short, the carbon-based material is efficiently produced, and the catalytic activity of the carbon-based material is further increased. In the heat treatment, the temperature rising rate of the mixture at the start of heating is preferably 50 ° C./s or more. Such rapid heating further improves the catalytic activity of the carbonaceous material.
 また、炭素系材料を、更に酸洗浄してもよい。例えば炭素系材料を、純水中、ホモジナイザーで30分間分散させ、その後この炭素系材料を2M硫酸中に入れて、80℃で3時間攪拌してもよい。この場合、炭素系材料からの金属成分の溶出が抑えられる。 In addition, the carbon-based material may be further acid cleaned. For example, the carbon-based material may be dispersed in pure water with a homogenizer for 30 minutes, and then the carbon-based material may be placed in 2M sulfuric acid and stirred at 80 ° C. for 3 hours. In this case, elution of the metal component from the carbon-based material can be suppressed.
 このような製造方法により、不活性金属化合物及び金属結晶の含有量が著しく低く、かつ、導電性の高い炭素系材料が得られる。 By such a production method, a carbon-based material having a significantly low content of inert metal compound and metal crystal and high conductivity can be obtained.
 ガス拡散層12において、触媒は結着剤を用いて導電性材料に結着していてもよい。つまり、触媒は結着剤を用いて導電性材料の表面及び細孔内部に担持されていてもよい。これにより、触媒が導電性材料から脱離し、酸素還元特性が低下することを抑制できる。結着剤としては、例えばポリテトラフルオロエチレン、ポリフッ化ビニリデン(PVDF)、及びエチレン-プロピレン-ジエン共重合体(EPDM)からなる群より選ばれる少なくとも一つを用いることが好ましい。また、結着剤としては、NAFION(登録商標)を用いることも好ましい。 In the gas diffusion layer 12, the catalyst may be bound to the conductive material using a binder. That is, the catalyst may be supported on the surface of the conductive material and inside the pores using a binder. Thereby, it can suppress that a catalyst detaches | leaves from an electroconductive material and an oxygen reduction characteristic falls. As the binder, for example, at least one selected from the group consisting of polytetrafluoroethylene, polyvinylidene fluoride (PVDF), and ethylene-propylene-diene copolymer (EPDM) is preferably used. Moreover, it is also preferable to use NAFION (registered trademark) as a binder.
 (負極)
 本実施形態における負極20は、後述する微生物を担持し、さらに微生物の触媒作用により、被処理液90中の有機物及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する機能を有する。そのため、本実施形態の負極20は、このような機能を生じさせる構成ならば特に限定されない。
(Negative electrode)
The negative electrode 20 in this embodiment has a function of supporting microorganisms to be described later and generating hydrogen ions and electrons from at least one of an organic substance and a nitrogen-containing compound in the liquid 90 to be treated by the catalytic action of the microorganisms. For this reason, the negative electrode 20 of the present embodiment is not particularly limited as long as it has such a function.
 本実施形態の負極20は、導電性を有する導電体シートに微生物を担持した構造を有する。導電体シートとしては、多孔質の導電体シート、織布状の導電体シート及び不織布状の導電体シートからなる群より選ばれる少なくとも一つを使用することができる。また、導電体シートは複数のシートを積層した積層体でもよい。負極20の導電体シートとして、このような複数の細孔を有するシートを用いることにより、後述する局部電池反応で生成した水素イオンが正極10の方向へ移動しやすくなり、酸素還元反応の速度を高めることが可能となる。また、イオン透過性を向上させる観点から、負極20の導電体シートは、積層方向X、つまり厚さ方向に連続した空間(空隙)を有していることが好ましい。 The negative electrode 20 of the present embodiment has a structure in which microorganisms are supported on a conductive sheet having conductivity. As the conductor sheet, it is possible to use at least one selected from the group consisting of a porous conductor sheet, a woven conductor sheet, and a nonwoven conductor sheet. The conductor sheet may be a laminate in which a plurality of sheets are laminated. By using such a sheet having a plurality of pores as the conductor sheet of the negative electrode 20, hydrogen ions generated in the local battery reaction described later easily move toward the positive electrode 10, and the rate of the oxygen reduction reaction is increased. It becomes possible to raise. From the viewpoint of improving ion permeability, the conductor sheet of the negative electrode 20 preferably has a space (void) continuous in the stacking direction X, that is, in the thickness direction.
 当該導電体シートは、厚さ方向に複数の貫通孔を有する金属板であってもよい。そのため、負極20の導電体シートを構成する材料としては、例えば、アルミニウム、銅、ステンレス鋼、ニッケル及びチタンなどの導電性金属、並びにカーボンペーパー、カーボンフェルト、黒鉛シートからなる群より選ばれる少なくとも一つを用いることができる。 The conductor sheet may be a metal plate having a plurality of through holes in the thickness direction. Therefore, the material constituting the conductor sheet of the negative electrode 20 is, for example, at least one selected from the group consisting of conductive metals such as aluminum, copper, stainless steel, nickel and titanium, and carbon paper, carbon felt, and graphite sheets. One can be used.
 負極20に担持される微生物としては、被処理液90中の有機物、又は窒素を含む化合物を分解する微生物であれば特に限定されないが、例えば増殖に酸素を必要としない嫌気性微生物を使用することが好ましい。嫌気性微生物は、被処理液90中の有機物を酸化分解するための空気を必要としない。そのため、空気を送り込むために必要な電力を大幅に低減することができる。また、微生物が獲得する自由エネルギーが小さいので、汚泥発生量を減少させることが可能となる。 The microorganism supported on the negative electrode 20 is not particularly limited as long as it is a microorganism capable of decomposing organic compounds or nitrogen-containing compounds in the liquid 90 to be treated. For example, an anaerobic microorganism that does not require oxygen for growth is used. Is preferred. Anaerobic microorganisms do not require air for oxidizing and decomposing organic substances in the liquid 90 to be treated. Therefore, the electric power required for sending air can be significantly reduced. Moreover, since the free energy which microbes acquire is small, it becomes possible to reduce the amount of sludge generation.
 負極20に保持される微生物は嫌気性微生物であることが好ましく、例えば細胞外電子伝達機構を有する電気生産細菌であることが好ましい。具体的には、嫌気性微生物として、例えばGeobacter属細菌、Shewanella属細菌、Aeromonas属細菌、Geothrix属細菌、Saccharomyces属細菌が挙げられる。 The microorganism held in the negative electrode 20 is preferably an anaerobic microorganism, for example, an electricity producing bacterium having an extracellular electron transfer mechanism. Specifically, examples of the anaerobic microorganism include Geobacter genus bacteria, Shewanella genus bacteria, Aeromonas genus bacteria, Geothrix genus bacteria, and Saccharomyces genus bacteria.
 負極20に、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、負極20に嫌気性微生物が保持されていてもよい。例えば、負極20におけるイオン伝導構造体30と接触する面20aと反対側の面20bに、嫌気性微生物が保持されていてもよい。なお、バイオフィルムとは、一般に、微生物集団と、微生物集団が生産する菌体外重合体物質(extracellular polymeric substance、EPS)とを含む三次元構造体のことをいう。ただ、嫌気性微生物は、バイオフィルムによらずに負極20に保持されていてもよい。また、嫌気性微生物は、負極20の表面だけでなく、内部に保持されていてもよい。 Anaerobic microorganisms may be held on the negative electrode 20 by superimposing and fixing a biofilm containing anaerobic microorganisms on the negative electrode 20. For example, anaerobic microorganisms may be held on the surface 20b of the negative electrode 20 opposite to the surface 20a in contact with the ion conductive structure 30. The biofilm generally refers to a three-dimensional structure including a microbial population and an extracellular polymeric substance (EPS) produced by the microbial population. However, the anaerobic microorganisms may be held on the negative electrode 20 without depending on the biofilm. The anaerobic microorganisms may be held not only on the surface of the negative electrode 20 but also inside.
 (イオン伝導構造体)
 本実施形態の液体処理ユニット1は、正極10と負極20との間に設けられ、水素イオン及び水酸化物イオンの透過性を有するイオン伝導構造体30をさらに備える。そして、図1及び図2に示すように、負極20は、イオン伝導構造体30を介して正極10と隔てられている。
(Ion conduction structure)
The liquid processing unit 1 of the present embodiment further includes an ion conductive structure 30 that is provided between the positive electrode 10 and the negative electrode 20 and has permeability of hydrogen ions and hydroxide ions. As shown in FIGS. 1 and 2, the negative electrode 20 is separated from the positive electrode 10 via an ion conductive structure 30.
 イオン伝導構造体30は、負極20で生成した水素イオンを透過し、正極10側へ移動させる機能を有している。また、イオン伝導構造体30は、正極10で生成した水酸化物イオンを透過し、負極20側へ移動させる機能を有している。つまり、イオン伝導構造体30は、その内部を水素イオン及び水酸化物イオンが移動することが可能である。そのため、負極20で生成した水素イオンがイオン伝導構造体30の内部を移動し、正極10で生成した水酸化物イオンと反応して水を生成する。または、負極20で生成した水素イオンが、正極10での酸素還元反応に利用される。若しくは、正極10で生成した水酸化物イオンがイオン伝導構造体30の内部を移動し、負極20で生成した水素イオンと反応して水を生成する。 The ion conduction structure 30 has a function of transmitting hydrogen ions generated in the negative electrode 20 and moving the hydrogen ions to the positive electrode 10 side. In addition, the ionic conduction structural member 30 has a function of transmitting the hydroxide ions generated at the positive electrode 10 and moving it to the negative electrode 20 side. That is, the ion conduction structure 30 can move hydrogen ions and hydroxide ions through the inside thereof. Therefore, the hydrogen ions generated at the negative electrode 20 move inside the ion conductive structure 30 and react with the hydroxide ions generated at the positive electrode 10 to generate water. Alternatively, hydrogen ions generated at the negative electrode 20 are used for the oxygen reduction reaction at the positive electrode 10. Alternatively, hydroxide ions generated at the positive electrode 10 move inside the ion conductive structure 30 and react with hydrogen ions generated at the negative electrode 20 to generate water.
 イオン伝導構造体30は、水素イオン及び水酸化物イオンを、拡散を大きく阻害することなく伝導できるならば特に限定されない。また、イオン伝導構造体30として、水素イオン及び水酸化物イオンが透過することが可能な細孔を有する多孔質膜を使用してもよい。つまり、イオン伝導構造体30は、正極10と負極20との間を水素イオン及び水酸化物イオンが移動するための空間(空隙)を有するシートであってもよい。そのため、イオン伝導構造体30は、多孔質のシート、織布状のシート及び不織布状のシートからなる群より選ばれる少なくとも一つを備えることが好ましい。なお、イオン伝導構造体30の細孔径は、正極10と負極20との間を水素イオン及び水酸化物イオンが移動できれば特に限定されない。 The ion conductive structure 30 is not particularly limited as long as it can conduct hydrogen ions and hydroxide ions without significantly inhibiting diffusion. Moreover, you may use the porous membrane which has the pore which can permeate | transmit a hydrogen ion and a hydroxide ion as the ion conduction structure 30. FIG. That is, the ion conductive structure 30 may be a sheet having a space (void) for the movement of hydrogen ions and hydroxide ions between the positive electrode 10 and the negative electrode 20. Therefore, it is preferable that the ionic conduction structural member 30 includes at least one selected from the group consisting of a porous sheet, a woven fabric sheet, and a nonwoven fabric sheet. The pore diameter of the ionic conduction structural member 30 is not particularly limited as long as hydrogen ions and hydroxide ions can move between the positive electrode 10 and the negative electrode 20.
 イオン伝導構造体30は、導電体からなることが好ましい。つまり、液体処理ユニット1では、イオン伝導構造体30の一方の面30aに正極10のガス拡散層12が接触するように配置されており、イオン伝導構造体30の面30aと反対側の面30bに負極20が接触するように配置されている。そのため、イオン伝導構造体30が導電性を有する場合には、正極10と負極20とが短絡する。その結果、負極20で生成した電子が正極10に移動し、正極10において酸素還元反応を生じさせることが可能となる。 The ion conductive structure 30 is preferably made of a conductor. That is, in the liquid processing unit 1, the gas diffusion layer 12 of the positive electrode 10 is disposed so as to contact one surface 30 a of the ion conduction structure 30, and the surface 30 b opposite to the surface 30 a of the ion conduction structure 30. It arrange | positions so that the negative electrode 20 may contact. Therefore, when the ionic conduction structural member 30 has conductivity, the positive electrode 10 and the negative electrode 20 are short-circuited. As a result, electrons generated at the negative electrode 20 move to the positive electrode 10, and an oxygen reduction reaction can be caused at the positive electrode 10.
 導電性のイオン伝導構造体30としては、内部に水素イオン及び水酸化物イオンが移動できる空間を有し、さらに負極20から正極10に向かって電気的に接続されていれば特に限定されない。また、イオン伝導構造体30は、負極20から正極10に向かって連続して延びていてもよい。あるいは、イオン伝導構造体30は、電気的に接続された複数の導電部分から構成されていてもよい。例えば、イオン伝導構造体30は、複数の導電層を積層し、電気的に接続させた構成であってもよい。イオン伝導構造体30における正極10と負極20との間の電気抵抗が低く抑えられていると、有機物の分解により生成した電子が移動しやすくなり、より高い処理効率が得られる。 The conductive ion conductive structure 30 is not particularly limited as long as it has a space in which hydrogen ions and hydroxide ions can move and is electrically connected from the negative electrode 20 toward the positive electrode 10. Further, the ionic conduction structural member 30 may extend continuously from the negative electrode 20 toward the positive electrode 10. Or the ion conduction structure 30 may be comprised from the several electrically-conductive part electrically connected. For example, the ion conductive structure 30 may have a configuration in which a plurality of conductive layers are stacked and electrically connected. When the electrical resistance between the positive electrode 10 and the negative electrode 20 in the ionic conduction structural member 30 is kept low, electrons generated by the decomposition of the organic matter easily move, and higher processing efficiency is obtained.
 さらに、イオン伝導構造体30を構成する材料の少なくとも一部は、負極20から正極10に向かって連続して伸びていてもよく、さらに空間を横切るように伸びていてもよい。つまり、イオン伝導構造体30を構成する材料の少なくとも一部は、正極10、負極20及びイオン伝導構造体30の積層方向Xに垂直な方向に延びていてもよい。 Furthermore, at least a part of the material constituting the ionic conduction structural member 30 may extend continuously from the negative electrode 20 toward the positive electrode 10, or may extend so as to cross the space. That is, at least a part of the material constituting the ion conduction structure 30 may extend in a direction perpendicular to the stacking direction X of the positive electrode 10, the negative electrode 20, and the ion conduction structure 30.
 導電性のイオン伝導構造体30の材料は、導電性を確保できるならば特に限定されないが、例えば導電性金属、炭素材料及び導電性ポリマー材料からなる群より選ばれる少なくとも一種を用いることができる。導電性金属としては、例えば、アルミニウム、銅、ステンレス、ニッケル及びチタンからなる群より選ばれる少なくとも一種を用いることができる。また、炭素材料としては、例えば、カーボンペーパー、カーボンフェルト、カーボンクロス及びグラファイトホイルからなる群より選ばれる少なくとも一種を用いることができる。さらに導電性ポリマー材料としては、ポリアセチレン、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンビニレン)、ポリピロール及びポリ(p-フェニレンスルフィド)からなる群より選ばれる少なくとも一種を用いることができる。 The material of the conductive ion conductive structure 30 is not particularly limited as long as the conductivity can be ensured. For example, at least one selected from the group consisting of a conductive metal, a carbon material, and a conductive polymer material can be used. As the conductive metal, for example, at least one selected from the group consisting of aluminum, copper, stainless steel, nickel, and titanium can be used. As the carbon material, for example, at least one selected from the group consisting of carbon paper, carbon felt, carbon cloth, and graphite foil can be used. Furthermore, as the conductive polymer material, at least one selected from the group consisting of polyacetylene, polythiophene, polyaniline, poly (p-phenylene vinylene), polypyrrole and poly (p-phenylene sulfide) can be used.
 なお、イオン伝導構造体30は、織布状の導電体シート及び不織布状の導電体シートの少なくとも一方を備えることが好ましい。織布状の導電体シート及び不織布状の導電体シートは、多数の細孔を有しているため、水素イオン及び水酸化物イオンの移動を容易にすることができる。また、イオン伝導構造体30は、負極20から正極10にかけて、複数の貫通孔を有する金属板であってもよい。 In addition, it is preferable that the ion conduction structure 30 is provided with at least one of a woven fabric-like conductor sheet and a nonwoven fabric-like conductor sheet. Since the woven fabric-like conductor sheet and the nonwoven fabric-like conductor sheet have a large number of pores, the movement of hydrogen ions and hydroxide ions can be facilitated. In addition, the ion conductive structure 30 may be a metal plate having a plurality of through holes from the negative electrode 20 to the positive electrode 10.
 なお、イオン伝導構造体30は、不織布状の導電体シートを備えることがより好ましく、不織布状の導電体シートからなることが特に好ましい。不織布はその厚みや空隙率を変更しやすいため、水素イオン及び水酸化物イオンの透過率を容易に向上させることが可能となる。 In addition, it is more preferable that the ion conductive structure 30 includes a non-woven conductor sheet, and it is particularly preferable that the ion conductive structure 30 is made of a non-woven conductor sheet. Since the nonwoven fabric easily changes its thickness and porosity, it is possible to easily improve the transmittance of hydrogen ions and hydroxide ions.
 イオン伝導構造体30は、電気絶縁体からなっていてもよい。ただ、液体処理ユニット1では、正極10と負極20とが電気的に接続され、負極20で生成した電子が正極10に移動する必要がある。そのため、イオン伝導構造体30が電気絶縁体からなる場合には、外部抵抗によって正極10と負極20とを電気的に接続すればよい。具体的には、図4に示すように、正極10と負極20との上部を導電部材110により接続してもよい。また、図5に示すように、イオン伝導構造体30の内部において、正極10と負極20とを導電部材110により接続してもよい。 The ion conductive structure 30 may be made of an electrical insulator. However, in the liquid processing unit 1, the positive electrode 10 and the negative electrode 20 are electrically connected, and electrons generated by the negative electrode 20 need to move to the positive electrode 10. Therefore, when the ionic conduction structural member 30 is made of an electrical insulator, the positive electrode 10 and the negative electrode 20 may be electrically connected by an external resistance. Specifically, as shown in FIG. 4, the upper part of the positive electrode 10 and the negative electrode 20 may be connected by a conductive member 110. Further, as shown in FIG. 5, the positive electrode 10 and the negative electrode 20 may be connected by a conductive member 110 inside the ion conduction structure 30.
 導電部材110は正極10と負極20とは電気的に接続できれば特に限定されないが、例えば金属材料や炭素材料を用いることができる。炭素材料としては、例えばグラファイトホイル、カーボンペーパー、カーボンクロス及びカーボンフェルトからなる群より選ばれる少なくとも一つを用いることができる。 The conductive member 110 is not particularly limited as long as the positive electrode 10 and the negative electrode 20 can be electrically connected. For example, a metal material or a carbon material can be used. As the carbon material, for example, at least one selected from the group consisting of graphite foil, carbon paper, carbon cloth, and carbon felt can be used.
 電気絶縁性のイオン伝導構造体30としては、水素イオンおよび水酸化物イオンを、拡散を大きく阻害することなく伝導できるならば特に限定されない。イオン伝導構造体30としては、例えば合成樹脂の多孔質体、ガラス繊維の織物、セラミックの多孔質体などが挙げられる。合成樹脂の多孔質体としては、例えばポリオレフィン、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ナイロン、ポリウレタン、アクリル樹脂、ポリ塩化ビニル、ポリスチレン、ポリイミド、フェノール樹脂、エポキシ樹脂、メラミン樹脂及びユリア樹脂からなる群より選ばれる少なくとも一つの樹脂を含む不織布を挙げることができる。また、合成樹脂の多孔質体としては、当該樹脂を含み、孔を形成した構造体やメッシュなども挙げられる。これらの中でも、合成樹脂の多孔質体としては、被処理液90の成分によって分解されないものが好ましい。 The electrically insulating ion conductive structure 30 is not particularly limited as long as it can conduct hydrogen ions and hydroxide ions without significantly inhibiting diffusion. Examples of the ion conductive structure 30 include a synthetic resin porous body, a glass fiber fabric, and a ceramic porous body. Examples of the synthetic resin porous material include polyolefin, polytetrafluoroethylene, polyvinylidene fluoride, nylon, polyurethane, acrylic resin, polyvinyl chloride, polystyrene, polyimide, phenol resin, epoxy resin, melamine resin, and urea resin. A nonwoven fabric containing at least one resin selected from the above can be mentioned. Moreover, as a porous body of a synthetic resin, a structure or a mesh containing the resin and having pores may be used. Among these, as the synthetic resin porous body, those that are not decomposed by the components of the liquid 90 to be treated are preferable.
 正極10に微生物が接触する場合、その分泌成分による凝固物の固着や、微生物による酸素の過剰な消費、局所的なpH勾配の形成などが生じ、電子の移動に伴う反応量が低下する可能性がある。そのため、微生物の正極10への付着は、可能な限り阻害されることが好ましい。 When microorganisms come into contact with the positive electrode 10, solidified substances are adhered due to secretory components, excessive consumption of oxygen by the microorganisms, formation of a local pH gradient, and the like, and the amount of reaction accompanying electron transfer may decrease. There is. Therefore, it is preferable that the adhesion of microorganisms to the positive electrode 10 is inhibited as much as possible.
 正極10への微生物の付着を阻害する方法としては、物理的に微生物が通らない孔径のイオン伝導構造体30を使用する方法、またはイオン伝導構造体30の化学的・生物的作用を利用する方法が挙げられる。化学的・生物的作用を利用する方法としては、イオン伝導構造体30へ微生物を殺菌するための殺菌剤を固定する方法が挙げられる。殺菌剤としては、例えば殺菌性のある銀イオンや銅イオンを放出する化合物、及びテトラサイクリンをはじめとした各種の抗生物質を用いることができる。また、イオン伝導構造体30自体が、微生物が繁殖可能なpH範囲から外れる局所pHを有する方法が挙げられる。 As a method for inhibiting the adhesion of microorganisms to the positive electrode 10, a method using an ion conductive structure 30 having a pore size that does not physically pass through microorganisms, or a method using chemical / biological action of the ion conductive structure 30. Is mentioned. Examples of the method utilizing chemical / biological action include a method of fixing a bactericide for sterilizing microorganisms to the ion conduction structure 30. As the bactericidal agent, for example, various antibiotics including a compound capable of releasing bactericidal silver ions and copper ions and tetracycline can be used. Moreover, the method by which ion conduction structure 30 itself has local pH which remove | deviates from the pH range which microorganisms can reproduce is mentioned.
 本実施形態に係る液体処理装置100において、図1及び図2に示すように、液体処理構造体40の正極10における面10aは酸素を含む気体を有する空間部50と接触している。そして、液体処理ユニット1は、正極10における面10aに供給する酸素の濃度を機械的に制御する酸素濃度制御部200を備えており、空間部50には酸素濃度制御部200が取り付けられている。そのため、空間部50は、酸素濃度制御部200により酸素濃度を調整することが可能となっている。 In the liquid processing apparatus 100 according to the present embodiment, as shown in FIGS. 1 and 2, the surface 10 a of the positive electrode 10 of the liquid processing structure 40 is in contact with the space 50 having a gas containing oxygen. The liquid processing unit 1 includes an oxygen concentration control unit 200 that mechanically controls the concentration of oxygen supplied to the surface 10 a of the positive electrode 10, and the oxygen concentration control unit 200 is attached to the space 50. . Therefore, the space portion 50 can adjust the oxygen concentration by the oxygen concentration control unit 200.
 ここで、上述のように、微生物燃料電池で高い出力を得るための運転方法として、立ち上げ始めでは高めの外部抵抗で起電力を発生させ、これをある程度維持した後に、出力の増加に伴い外部抵抗を徐々に一定値まで下げていくことが好ましい。このように、外部抵抗を徐々に下げることで、段階的にアノード電位が上がり、結果としてアノードに電子を流しやすい環境となり、微生物の生育が促進される。 Here, as described above, as an operation method for obtaining a high output in the microbial fuel cell, an electromotive force is generated with a high external resistance at the beginning of startup, and after maintaining this to some extent, an external force increases with an increase in output. It is preferable to gradually reduce the resistance to a certain value. Thus, by gradually lowering the external resistance, the anode potential increases stepwise, resulting in an environment in which electrons easily flow through the anode, and the growth of microorganisms is promoted.
 本実施形態では、酸素濃度制御部200により空間部50の酸素濃度を調整することができるため、酸素濃度を調整することにより正極10への酸素供給量も調整し、正極10における酸素還元反応の反応量を制御することが可能となる。そして、正極10への酸素供給量を調整することで、正極10及び負極20の各々での半反応による局部電池反応の反応量を制御することが可能となる。その結果、負極20における電子伝導を伴う微生物の代謝の反応量が制御可能となる。 In the present embodiment, since the oxygen concentration in the space 50 can be adjusted by the oxygen concentration control unit 200, the oxygen supply amount to the positive electrode 10 is also adjusted by adjusting the oxygen concentration, and the oxygen reduction reaction of the positive electrode 10 is performed. It becomes possible to control the reaction amount. Then, by adjusting the amount of oxygen supplied to the positive electrode 10, it is possible to control the reaction amount of the local battery reaction by the half reaction at each of the positive electrode 10 and the negative electrode 20. As a result, the reaction amount of microorganism metabolism accompanied by electron conduction in the negative electrode 20 can be controlled.
 本実施形態に係る液体処理装置100を起動する場合には、立ち上げ始めの状態において、液体処理ユニット1における酸素濃度制御部200を調整し、空間部50の酸素濃度を薄くする。これにより、正極10に供給される酸素量が減少し、正極10における酸素還元量を小さくする。正極10での酸素還元量が小さくなると、それに伴い負極20における電子伝導を伴う微生物の代謝の反応量が小さくなる。その結果、負極20における電位は、より負側となる。 When starting the liquid processing apparatus 100 according to the present embodiment, the oxygen concentration control unit 200 in the liquid processing unit 1 is adjusted to reduce the oxygen concentration in the space 50 in the state of starting up. As a result, the amount of oxygen supplied to the positive electrode 10 is reduced, and the amount of oxygen reduction at the positive electrode 10 is reduced. When the amount of oxygen reduction at the positive electrode 10 decreases, the reaction amount of microorganism metabolism accompanied by electron conduction at the negative electrode 20 decreases accordingly. As a result, the potential at the negative electrode 20 becomes more negative.
 そして、酸素濃度制御部200を調整し、空間部50の酸素濃度を徐々に増加させていくことによって、正極10に供給される酸素量が増え、正極10における酸素還元量が増加する。正極10での酸素還元量が増加すると、それに伴い負極20における電子伝導を伴う微生物の代謝の反応量も増加し、負極20の電位は徐々に正側になる。その結果、電子伝導を伴う微生物の代謝の反応量の総量が大きくなり、電気エネルギーを高めることが可能となる。 Then, by adjusting the oxygen concentration control unit 200 and gradually increasing the oxygen concentration in the space 50, the amount of oxygen supplied to the positive electrode 10 increases and the amount of oxygen reduction at the positive electrode 10 increases. As the amount of oxygen reduction at the positive electrode 10 increases, the reaction amount of microorganism metabolism accompanied by electron conduction at the negative electrode 20 also increases, and the potential of the negative electrode 20 gradually becomes positive. As a result, the total amount of metabolism reaction of microorganisms accompanied by electron conduction is increased, and electric energy can be increased.
 このように、本実施形態の液体処理ユニット1では、酸素濃度制御部200を用いて正極10へ供給する酸素量を調整することで、アノード電位を制御している。そのため、従来のように外部抵抗を段階的に小さくすることによって成し得ていたアノード電位の制御と比べて、外部抵抗を不要とすることが可能となる。 Thus, in the liquid processing unit 1 of the present embodiment, the anode potential is controlled by adjusting the amount of oxygen supplied to the positive electrode 10 using the oxygen concentration control unit 200. For this reason, it is possible to eliminate the need for the external resistance as compared with the control of the anode potential, which has been achieved by reducing the external resistance stepwise as in the prior art.
 本実施形態において、酸素濃度制御部200の構成は、空間部50の酸素濃度を制御できれば特に限定されない。酸素濃度制御部200としては、例えば図6に示す構成とすることができる。 In the present embodiment, the configuration of the oxygen concentration control unit 200 is not particularly limited as long as the oxygen concentration in the space 50 can be controlled. The oxygen concentration control unit 200 can be configured as shown in FIG. 6, for example.
 具体的には、図6(a)に示すように、正極10と接する空間部50を、大気と連通する開口部51以外の箇所を閉鎖空間とした上で、開口部51の開口面積を変化させる機構とすることができる。つまり、空間部50には、大気と連通する開口部51が設けられており、酸素濃度制御部200Aは、開口部51を開閉する蓋部201と、蓋部201の開閉を制御する蓋部制御部202とを有している。そして、蓋部制御部202により蓋部201を稼働し、開口部51を閉じることによって空間部50の酸素濃度を下げ、開口部51を開けることによって大気中の酸素が空間部50に流入し、空間部50の酸素濃度を高めることが可能となる。なお、蓋部制御部202は空間部50の酸素濃度を検知し、その酸素濃度に基づいて蓋部201を開閉する構成であってもよい。 Specifically, as shown in FIG. 6A, the space area 50 in contact with the positive electrode 10 is a closed space other than the opening 51 communicating with the atmosphere, and the opening area of the opening 51 is changed. It can be set as a mechanism. In other words, the space 50 is provided with an opening 51 that communicates with the atmosphere, and the oxygen concentration control unit 200A includes a lid 201 that opens and closes the opening 51 and a lid control that controls opening and closing of the lid 201. Part 202. Then, the lid 201 is operated by the lid controller 202, the oxygen concentration in the space 50 is lowered by closing the opening 51, and oxygen in the atmosphere flows into the space 50 by opening the opening 51, It is possible to increase the oxygen concentration in the space 50. The lid control unit 202 may be configured to detect the oxygen concentration in the space 50 and open and close the lid 201 based on the oxygen concentration.
 酸素濃度制御部200は、図6(b)に示すように、正極10と接する空間部50における空気の圧力を変化させる機構とすることができる。つまり、酸素濃度制御部200Bは、酸素を含む気体が溜められたタンク部211と、タンク部211及び空間部50を繋ぎ、タンク部211内の気体を空間部50に供給する供給部212と、空間部50の酸素濃度を検知する検知部213とを有する。さらに酸素濃度制御部200Bは、検知部213によって検知された酸素濃度に応じて、供給部212によるタンク部211からの気体の供給量を制御する気体供給制御部214を有する。 As shown in FIG. 6B, the oxygen concentration control unit 200 can be a mechanism that changes the air pressure in the space 50 in contact with the positive electrode 10. That is, the oxygen concentration control unit 200B connects the tank unit 211 in which a gas containing oxygen is stored, the tank unit 211 and the space unit 50, and supplies the gas in the tank unit 211 to the space unit 50; And a detector 213 for detecting the oxygen concentration in the space 50. Furthermore, the oxygen concentration control unit 200B includes a gas supply control unit 214 that controls the amount of gas supplied from the tank unit 211 by the supply unit 212 in accordance with the oxygen concentration detected by the detection unit 213.
 酸素濃度制御部200Bでは、まず検知部213により空間部50の酸素濃度を検知する。そして、検知された酸素濃度が高く、空間部50の酸素濃度を低下させる必要がある場合には、気体供給制御部214は供給部212を制御し、タンク部211から空間部50への気体の供給量を減少させる。その結果、空間部50の酸素濃度を低下させることが可能となる。逆に、検知された酸素濃度が低く、空間部50の酸素濃度を高める必要がある場合には、気体供給制御部214は供給部212を制御し、タンク部211から空間部50への気体の供給量を増加させる。その結果、空間部50の酸素濃度を高めることが可能となる。なお、供給部212の構成は特に限定されないが、例えば電磁弁とすることができる。また、検知部213の構成も特に限定されないが、例えば市販の酸素濃度計などを使用することができる。 In the oxygen concentration controller 200B, the oxygen concentration in the space 50 is first detected by the detector 213. When the detected oxygen concentration is high and it is necessary to reduce the oxygen concentration in the space 50, the gas supply control unit 214 controls the supply unit 212, and the gas supply from the tank unit 211 to the space 50 is performed. Reduce supply. As a result, the oxygen concentration in the space 50 can be reduced. On the other hand, when the detected oxygen concentration is low and the oxygen concentration in the space 50 needs to be increased, the gas supply control unit 214 controls the supply unit 212 so that the gas from the tank unit 211 to the space unit 50 is reduced. Increase supply. As a result, the oxygen concentration in the space 50 can be increased. The configuration of the supply unit 212 is not particularly limited, but may be a solenoid valve, for example. Also, the configuration of the detection unit 213 is not particularly limited, and for example, a commercially available oxygen concentration meter can be used.
 また、酸素濃度制御部200は、図6(c)に示すように、空間部50に設けられた開口部からの気体の流速を変化させる機構とすることができる。つまり、酸素濃度制御部200Cは、空間部50に酸素を含む気体を供給するブロアー221を有する構成とすることができる。ブロアー221を用いることで、空間部50に供給する気体の流速を変化させ、酸素濃度を制御することが可能となる。 Moreover, the oxygen concentration control unit 200 can be a mechanism that changes the flow rate of the gas from the opening provided in the space 50 as shown in FIG. That is, the oxygen concentration control unit 200 </ b> C can include a blower 221 that supplies a gas containing oxygen to the space 50. By using the blower 221, the flow rate of the gas supplied to the space 50 can be changed, and the oxygen concentration can be controlled.
 なお、酸素濃度制御部200としては、空間部50の酸素濃度を、窒素ガスなどの不活性ガスにより希釈する機構とすることも可能である。 It should be noted that the oxygen concentration control unit 200 may be configured to dilute the oxygen concentration in the space 50 with an inert gas such as nitrogen gas.
 次に、本実施形態の液体処理装置100に関し、上述の立ち上げ後の作用について説明する。液体処理装置100の動作時には、負極20に、有機性物質及び窒素含有化合物の少なくとも一方を含有する被処理液90を供給し、正極10に空気又は酸素を供給する。この際、空気は、酸素濃度制御部200を通じて連続的に供給される。 Next, regarding the liquid processing apparatus 100 of the present embodiment, the operation after the above-described startup will be described. During operation of the liquid processing apparatus 100, a liquid 90 to be processed containing at least one of an organic substance and a nitrogen-containing compound is supplied to the negative electrode 20, and air or oxygen is supplied to the positive electrode 10. At this time, air is continuously supplied through the oxygen concentration controller 200.
 そして、図1及び図2に示す正極10では、撥水層11を透過してガス拡散層12により空気が拡散する。負極20では、微生物の触媒作用により、被処理液90中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、被処理液90によりイオン伝導構造体30の内部の空間を通過して正極10側へ移動する。また、生成した電子は負極20の導電体シートを通じてイオン伝導構造体30へ移動し、さらに正極10のガス拡散層12に移動する。そして、水素イオン及び電子は、ガス拡散層12に担持された触媒の作用により酸素と結合し、水となって消費される。 In the positive electrode 10 shown in FIGS. 1 and 2, air diffuses through the water repellent layer 11 and is diffused by the gas diffusion layer 12. In the negative electrode 20, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid 90 to be treated by the catalytic action of microorganisms. The generated hydrogen ions pass through the space inside the ion conduction structure 30 by the liquid to be treated 90 and move to the positive electrode 10 side. Further, the generated electrons move to the ion conductive structure 30 through the conductive sheet of the negative electrode 20 and further move to the gas diffusion layer 12 of the positive electrode 10. Hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the gas diffusion layer 12 and consumed as water.
 例えば、被処理液90が有機物としてグルコースを含有する場合、上述した局部電池反応(半セル反応)は、以下の式で表される。
・負極20:C12+6HO→6CO+24H+24e
・正極10:6O+24H+24e→12H
For example, when the liquid 90 to be treated contains glucose as an organic substance, the above-described local battery reaction (half-cell reaction) is represented by the following formula.
Negative electrode 20: C 6 H 12 O 6 + 6H 2 O → 6CO 2 + 24H + + 24e
・ Positive electrode 10: 6O 2 + 24H + + 24e → 12H 2 O
 また、被処理液90が窒素含有化合物としてアンモニアを含有する場合、局部電池反応は、以下の式で表される。
・負極20:4NH→2N+12H+12e
・正極10:3O+12H+12e→6H
Moreover, when the liquid 90 to be processed contains ammonia as a nitrogen-containing compound, the local battery reaction is expressed by the following formula.
Negative electrode 20: 4NH 3 → 2N 2 + 12H + + 12e
Positive electrode 10: 3O 2 + 12H + + 12e → 6H 2 O
 このように、負極20における微生物の触媒作用により、被処理液90中の有機性物質及び窒素含有化合物を分解し、被処理液90を浄化することが可能となる。なお、正極10では酸素の還元反応により水酸化物イオンが生成する場合がある。そのため、生成した水酸化物イオンがイオン伝導構造体30の内部を移動し、負極20で生成した水素イオンと結合して水が生成する場合がある。 As described above, the organic substance and the nitrogen-containing compound in the liquid 90 to be processed can be decomposed by the catalytic action of microorganisms in the negative electrode 20 to purify the liquid 90 to be processed. In the positive electrode 10, hydroxide ions may be generated by a reduction reaction of oxygen. Therefore, the generated hydroxide ions may move inside the ion conduction structure 30 and combine with the hydrogen ions generated in the negative electrode 20 to generate water.
 本実施形態に係る液体処理ユニット1は、第一の面40a及び第二の面40bを有し、第一の面40aと第二の面40bとの間に水素イオン又は水酸化物イオンが移動する空間を有する液体処理構造体40を備える。さらに液体処理ユニット1は、第二の面40bに供給する酸素の濃度を機械的に制御する酸素濃度制御部200を備える。そして、第二の面40bは酸素を含む気体を有する空間部50と接触しており、空間部50には酸素濃度制御部200が取り付けられている。このような構成により、空間部50における酸素濃度を任意に制御することができるため、第一の面40aにおける微生物の生育を促進し、より多くの電流を得ることが可能となる。なお、本実施形態において、液体処理構造体40における第一の面40aは、負極20におけるイオン伝導構造体30と接触する面20aと反対側の面20bに相当し、第二の面40bは正極10の面10aに相当する。 The liquid processing unit 1 according to this embodiment has a first surface 40a and a second surface 40b, and hydrogen ions or hydroxide ions move between the first surface 40a and the second surface 40b. A liquid processing structure 40 having a space to be used. Furthermore, the liquid processing unit 1 includes an oxygen concentration control unit 200 that mechanically controls the concentration of oxygen supplied to the second surface 40b. The second surface 40 b is in contact with the space 50 having a gas containing oxygen, and the oxygen concentration control unit 200 is attached to the space 50. With such a configuration, since the oxygen concentration in the space 50 can be arbitrarily controlled, the growth of microorganisms on the first surface 40a can be promoted, and a larger amount of current can be obtained. In the present embodiment, the first surface 40a of the liquid processing structure 40 corresponds to the surface 20b of the negative electrode 20 opposite to the surface 20a that contacts the ion conductive structure 30, and the second surface 40b is the positive electrode. This corresponds to the tenth surface 10a.
 また、本実施形態に係る液体処理装置100は、液体処理ユニット1と、液体処理ユニット1及び被処理液90を内部に保持するための処理槽80とを備える。このように液体処理装置100は、電子移動反応を介して、被処理液90に含まれる成分(有機物又は窒素含有化合物)を効率的に酸化分解できる。具体的には、被処理液90に含まれる有機物及び/又は窒素含有化合物は、嫌気性微生物の代謝、すなわち微生物の増殖によって分解され除去される。そして、この酸化分解処理は嫌気性条件下で行われるため、好気性条件下で行われる場合よりも、有機物から微生物の新しい細胞への変換効率を低く抑えることができる。このため、活性汚泥法を用いる場合よりも、微生物の増殖、すなわち汚泥の発生量を低減できる。また、通常の嫌気性処理では臭気性のメタンガスが生成されるが、本実施形態における酸化分解処理では、代謝生成物は例えば二酸化炭素ガスであるため、メタンガスの生成を抑制できる。 Moreover, the liquid processing apparatus 100 according to the present embodiment includes the liquid processing unit 1 and a processing tank 80 for holding the liquid processing unit 1 and the liquid to be processed 90 inside. As described above, the liquid processing apparatus 100 can efficiently oxidize and decompose components (organic substances or nitrogen-containing compounds) contained in the liquid 90 to be processed through an electron transfer reaction. Specifically, organic substances and / or nitrogen-containing compounds contained in the liquid 90 to be treated are decomposed and removed by anaerobic microorganism metabolism, that is, microorganism growth. And since this oxidative decomposition process is performed on anaerobic conditions, the conversion efficiency from an organic substance to the new cell of microorganisms can be suppressed low rather than the case where it is performed on an aerobic condition. For this reason, compared with the case where the activated sludge method is used, the proliferation of microorganisms, that is, the generation amount of sludge can be reduced. In addition, odorous methane gas is generated in a normal anaerobic process, but in the oxidative decomposition process in the present embodiment, the metabolite is, for example, carbon dioxide gas, and therefore the generation of methane gas can be suppressed.
 さらに液体処理装置100では、上述の液体処理ユニット1を用いることにより、電子伝導を伴う微生物の代謝の反応量の総量を大きくすることができるため、被処理液90の浄化性能をより高めることが可能となる。 Furthermore, in the liquid processing apparatus 100, by using the liquid processing unit 1 described above, the total reaction amount of metabolism of microorganisms accompanied by electron conduction can be increased, so that the purification performance of the liquid 90 to be processed can be further improved. It becomes possible.
 なお、処理槽80は内部に被処理液90を保持しているが、被処理液90が流通するような構成であってもよい。例えば、図1及び図2に示すように、処理槽80には、被処理液90を処理槽80に供給するための廃水供給口81と、処理後の被処理液90を処理槽80から排出するための廃水排出口82とが設けられていてもよい。そして、被処理液90は、廃水供給口81及び廃水排出口82を通じて連続的に供給されることが好ましい。 Note that the processing tank 80 holds the liquid 90 to be processed therein, but may have a configuration in which the liquid 90 to be processed flows. For example, as shown in FIGS. 1 and 2, the treatment tank 80 has a wastewater supply port 81 for supplying the treatment liquid 90 to the treatment tank 80 and the treated liquid 90 after the treatment is discharged from the treatment tank 80. A waste water discharge port 82 may be provided. And it is preferable that the to-be-processed liquid 90 is continuously supplied through the waste-water supply port 81 and the waste-water discharge port 82. FIG.
 本実施形態に係る負極20には、例えば、電子伝達メディエーター分子が修飾されていてもよい。あるいは、処理槽80内の被処理液90は、電子伝達メディエーター分子を含んでいてもよい。これにより、嫌気性微生物から負極20への電子移動を促進し、より効率的な液体処理を実現できる。 The negative electrode 20 according to this embodiment may be modified with, for example, an electron transfer mediator molecule. Or the to-be-processed liquid 90 in the processing tank 80 may contain the electron transfer mediator molecule. Thereby, the electron transfer from an anaerobic microorganism to the negative electrode 20 is accelerated | stimulated, and more efficient liquid processing is realizable.
 具体的には、嫌気性微生物による代謝機構では、細胞内あるいは最終電子受容体との間で電子の授受が行われる。被処理液90中にメディエーター分子を導入すると、メディエーター分子が代謝の最終電子受容体として作用し、かつ、受け取った電子を負極20へと受け渡す。この結果、負極20における有機物などの酸化分解速度を高めることが可能になる。なお、メディエーター分子が負極20の面20bに担持されていても同様の効果が得られる。このような電子伝達メディエーター分子は、特に限定されない。電子伝達メディエーター分子としては、例えばニュートラルレッド、アントラキノン-2,6-ジスルホン酸(AQDS)、チオニン、フェリシアン化カリウム、及びメチルビオローゲンからなる群より選ばれる少なくとも一つを用いることができる。 Specifically, in the metabolic mechanism by anaerobic microorganisms, electrons are transferred between cells or with the final electron acceptor. When a mediator molecule is introduced into the liquid 90 to be treated, the mediator molecule acts as a final electron acceptor for metabolism, and the received electrons are transferred to the negative electrode 20. As a result, it becomes possible to increase the rate of oxidative decomposition of the organic matter or the like in the negative electrode 20. The same effect can be obtained even if the mediator molecule is supported on the surface 20b of the negative electrode 20. Such an electron transfer mediator molecule is not particularly limited. As the electron transfer mediator molecule, for example, at least one selected from the group consisting of neutral red, anthraquinone-2,6-disulfonic acid (AQDS), thionine, potassium ferricyanide, and methylviologen can be used.
[第二実施形態]
 次に、第二実施形態に係る液体処理ユニット及び液体処理装置について、図面に基づき詳細に説明する。なお、第一実施形態と同一構成には同一符号を付し、重複する説明は省略する。
[Second Embodiment]
Next, the liquid processing unit and the liquid processing apparatus according to the second embodiment will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same structure as 1st embodiment, and the overlapping description is abbreviate | omitted.
 本実施形態に係る液体処理装置100Aは、図7に示すように、液体処理ユニット1Aを備えている。液体処理ユニット1Aは、イオン伝導構造体300及び撥水層11からなる液体処理構造体40Aを備えている。液体処理ユニット1Aでは、イオン伝導構造体300の一方の面300aに撥水層11が接触するように配置され、撥水層11は空間部50側に露出している。 The liquid processing apparatus 100A according to the present embodiment includes a liquid processing unit 1A as shown in FIG. The liquid processing unit 1 </ b> A includes a liquid processing structure 40 </ b> A including the ion conductive structure 300 and the water repellent layer 11. In the liquid processing unit 1A, the water repellent layer 11 is disposed so as to contact one surface 300a of the ion conductive structure 300, and the water repellent layer 11 is exposed to the space 50 side.
 そして、液体処理構造体40Aは、カセット基材60に積層されている。図7に示すように、カセット基材60の側面63は、撥水層11の面11aの外周部と接合されており、側面63の反対側の側面64は、板部材70の面70aの外周部と接合されている。液体処理ユニット1Aは、空間部50が形成されるように、処理槽80の内部に配置され、イオン伝導構造体300は被処理液90に浸漬される。そして、第一実施形態と同様に、空間部50では、酸素濃度制御部200によって内部の酸素の濃度が機械的に制御される。 The liquid processing structure 40A is laminated on the cassette base material 60. As shown in FIG. 7, the side surface 63 of the cassette substrate 60 is joined to the outer peripheral portion of the surface 11 a of the water repellent layer 11, and the side surface 64 opposite to the side surface 63 is the outer periphery of the surface 70 a of the plate member 70. It is joined to the part. The liquid processing unit 1A is arranged inside the processing tank 80 so that the space 50 is formed, and the ion conductive structure 300 is immersed in the liquid 90 to be processed. As in the first embodiment, the oxygen concentration control unit 200 mechanically controls the oxygen concentration inside the space 50.
 本実施形態では、液体処理構造体40Aがイオン伝導構造体300と撥水層11とから構成されている。そして、イオン伝導構造体300の両端部を電池反応に用いる二つの電極として機能させることにより、二つの電極を一体的に形成している。具体的には、イオン伝導構造体300の一方の面300aを正極として機能させ、他方の面300bを負極として機能させている。このため、第一実施形態の正極10及び負極20で使用している集電体を設ける必要がないことから、より簡易な構成を実現できる。 In this embodiment, the liquid treatment structure 40A is composed of the ion conduction structure 300 and the water repellent layer 11. And the two electrodes are integrally formed by making the both ends of the ion conduction structure 300 function as two electrodes used for a battery reaction. Specifically, one surface 300a of the ionic conduction structural member 300 functions as a positive electrode, and the other surface 300b functions as a negative electrode. For this reason, since it is not necessary to provide the current collector used in the positive electrode 10 and the negative electrode 20 of the first embodiment, a simpler configuration can be realized.
 イオン伝導構造体300としては、第一実施形態における導電性のイオン伝導構造体30を用いることができる。また、イオン伝導構造体300は、一方の面300aに酸素還元触媒を担持してもよい。これにより、撥水層11を透過した酸素と、イオン伝導構造体300の内部の空間を透過し、一方の面300a側に移動した水素イオンとの反応を促進し、酸素の還元反応効率を高めることができるので、より効率的な液体処理を実現できる。なお、酸素還元触媒は、第一実施形態における触媒を使用することができる。 As the ion conduction structure 300, the conductive ion conduction structure 30 in the first embodiment can be used. Further, the ionic conduction structural member 300 may carry an oxygen reduction catalyst on one surface 300a. As a result, the reaction between oxygen that has passed through the water-repellent layer 11 and hydrogen ions that have passed through the space inside the ion conduction structure 300 and moved to the one surface 300a side is promoted, and the reduction reaction efficiency of oxygen is increased. Therefore, more efficient liquid processing can be realized. As the oxygen reduction catalyst, the catalyst in the first embodiment can be used.
 イオン伝導構造体300における負極として機能する他方の面300bには、嫌気性微生物を担持することが好ましい。また、面300bに、嫌気性微生物を含むバイオフィルムが重ねられて固定されることで、面300bに嫌気性微生物が保持されていてもよい。 It is preferable to support anaerobic microorganisms on the other surface 300b functioning as the negative electrode in the ion conductive structure 300. Moreover, the anaerobic microorganisms may be hold | maintained at the surface 300b by superimposing the biofilm containing anaerobic microorganisms on the surface 300b, and fixing.
 次に、本実施形態の液体処理装置100Aの作用について説明する。第一実施形態と同様に、液体処理装置100Aの動作時には、イオン伝導構造体300の面300bに、有機性物質及び窒素含有化合物の少なくとも一方を含有する被処理液90を供給し、撥水層11に空気又は酸素を供給する。この際、空気は、酸素濃度制御部200を通じて連続的に供給される。 Next, the operation of the liquid processing apparatus 100A of this embodiment will be described. Similarly to the first embodiment, during the operation of the liquid processing apparatus 100A, a liquid 90 to be processed containing at least one of an organic substance and a nitrogen-containing compound is supplied to the surface 300b of the ion conductive structure 300, and the water repellent layer 11 is supplied with air or oxygen. At this time, air is continuously supplied through the oxygen concentration controller 200.
 そして、撥水層11を透過してイオン伝導構造体300の一方の面300aに酸素が到達する。イオン伝導構造体300の面300bでは、微生物の触媒作用により、被処理液90中の有機性物質及び窒素含有化合物の少なくとも一方から水素イオン及び電子を生成する。生成した水素イオンは、被処理液90によりイオン伝導構造体300の内部を通過して面300a側へ移動する。また、生成した電子はイオン伝導構造体300を介して、面300aに移動する。そして、水素イオン及び電子は、面300aに担持された触媒の作用により酸素と結合し、水となって消費される。 Then, oxygen passes through the water repellent layer 11 and reaches one surface 300a of the ion conductive structure 300. On the surface 300b of the ionic conduction structural member 300, hydrogen ions and electrons are generated from at least one of the organic substance and the nitrogen-containing compound in the liquid to be treated 90 by the catalytic action of microorganisms. The generated hydrogen ions pass through the inside of the ion conductive structure 300 by the liquid 90 to be processed and move to the surface 300a side. In addition, the generated electrons move to the surface 300 a through the ion conduction structure 300. Then, hydrogen ions and electrons are combined with oxygen by the action of the catalyst supported on the surface 300a and consumed as water.
 このように、液体処理装置100Aにおいても、イオン伝導構造体300の面300bにおける嫌気性微生物の触媒作用により、被処理液90中の有機性物質及び窒素含有化合物を分解し、被処理液90を浄化することが可能となる。なお、第一実施形態と同様に、イオン伝導構造体300の面300aでは酸素の還元反応により水酸化物イオンが生成する場合がある。そのため、生成した水酸化物イオンがイオン伝導構造体300の内部を移動し、面300bで生成した水素イオンと結合して水が生成する場合がある。 Thus, also in the liquid processing apparatus 100A, the organic substance and the nitrogen-containing compound in the liquid 90 to be processed are decomposed by the catalytic action of the anaerobic microorganisms on the surface 300b of the ion conduction structure 300, and the liquid 90 to be processed is It becomes possible to purify. As in the first embodiment, hydroxide ions may be generated on the surface 300a of the ionic conduction structural member 300 due to a reduction reaction of oxygen. Therefore, the generated hydroxide ions may move inside the ion conduction structure 300 and combine with the hydrogen ions generated on the surface 300b to generate water.
 さらに、本実施形態の液体処理ユニット1Aでも、酸素濃度制御部200を用いてイオン伝導構造体300の面300aへ供給する酸素量を調整することで、アノード電位を制御することができる。そのため、酸素濃度制御部200を調整し、空間部50の酸素濃度を徐々に増加させていくことによって、面300bに担持された微生物の代謝の反応量を大きくし、電気エネルギーを高めることが可能となる。 Furthermore, also in the liquid processing unit 1A of the present embodiment, the anode potential can be controlled by adjusting the amount of oxygen supplied to the surface 300a of the ion conductive structure 300 using the oxygen concentration control unit 200. Therefore, by adjusting the oxygen concentration control unit 200 and gradually increasing the oxygen concentration in the space 50, it is possible to increase the metabolic reaction amount of the microorganisms supported on the surface 300b and increase the electrical energy. It becomes.
 以上、本実施形態を説明したが、本実施形態はこれらに限定されるものではなく、本実施形態の要旨の範囲内で種々の変形が可能である。また、本実施形態に係る液体処理装置は、有機物や窒素含有化合物を含む液体、例えば各種産業の工場などから発生する排水、下水汚泥などの有機性廃水などの処理に広く適用できる。さらに、液体処理装置は、水域の環境改善などにも利用できる。 Although the present embodiment has been described above, the present embodiment is not limited to these, and various modifications are possible within the scope of the gist of the present embodiment. In addition, the liquid treatment apparatus according to the present embodiment can be widely applied to treatment of liquids containing organic substances and nitrogen-containing compounds, for example, wastewater generated from factories of various industries, organic wastewater such as sewage sludge, and the like. Furthermore, the liquid treatment apparatus can be used for improving the environment of the water area.
 特願2016-098659号(出願日:2016年5月17日)の全内容は、ここに援用される。 The entire contents of Japanese Patent Application No. 2016-098659 (filing date: May 17, 2016) are incorporated herein by reference.
 本発明によれば、汚泥発生量を低減しつつもバイオガスの発生を抑制し、さらに微生物の代謝量を向上させることが可能な液体処理ユニット、及び当該液体処理ユニットを用いた液体処理装置を得ることができる。 According to the present invention, a liquid processing unit capable of suppressing the generation of biogas while reducing the amount of generated sludge and further improving the metabolic amount of microorganisms, and a liquid processing apparatus using the liquid processing unit are provided. Obtainable.
 1,1A 液体処理ユニット
 40,40A 液体処理構造体
 40a 第一の面
 40b 第二の面
 50 空間部
 51 開口部
 80 処理槽
 90 被処理液
 100,100A 液体処理装置
 200,200A,200B,200C 酸素濃度制御部
 201 蓋部
 202 蓋部制御部
 211 タンク部
 212 供給部
 213 検知部
 214 気体供給制御部
 221 ブロアー
1, 1A Liquid treatment unit 40, 40A Liquid treatment structure 40a First surface 40b Second surface 50 Space 51 Opening 80 Treatment tank 90 Liquid to be treated 100, 100A Liquid treatment apparatus 200, 200A, 200B, 200C Oxygen Concentration control unit 201 Lid unit 202 Lid unit control unit 211 Tank unit 212 Supply unit 213 Detection unit 214 Gas supply control unit 221 Blower

Claims (5)

  1.  第一の面及び第二の面を有し、前記第一の面と前記第二の面との間に水素イオン又は水酸化物イオンが移動する空間を有する液体処理構造体と、
     前記第二の面に供給する酸素の濃度を機械的に制御する酸素濃度制御部と、
     を備え、
     前記第二の面は酸素を含む気体を有する空間部と接触しており、前記空間部には前記酸素濃度制御部が取り付けられている、液体処理ユニット。
    A liquid treatment structure having a first surface and a second surface, and having a space in which hydrogen ions or hydroxide ions move between the first surface and the second surface;
    An oxygen concentration controller that mechanically controls the concentration of oxygen supplied to the second surface;
    With
    The liquid processing unit, wherein the second surface is in contact with a space having a gas containing oxygen, and the oxygen concentration controller is attached to the space.
  2.  前記空間部には、大気と連通する開口部が設けられており、
     前記酸素濃度制御部は、前記開口部を開閉する蓋部と、前記蓋部の開閉を制御する蓋部制御部とを有する、請求項1に記載の液体処理ユニット。
    The space portion is provided with an opening communicating with the atmosphere,
    The liquid processing unit according to claim 1, wherein the oxygen concentration control unit includes a lid that opens and closes the opening, and a lid controller that controls opening and closing of the lid.
  3.  前記酸素濃度制御部は、
     前記酸素を含む気体が溜められたタンク部と、
     前記タンク部及び前記空間部を繋ぎ、前記タンク部内の気体を前記空間部に供給する供給部と、
     前記空間部の酸素濃度を検知する検知部と、
     前記検知部によって検知された酸素濃度に応じて、前記供給部による前記タンク部からの気体の供給量を制御する気体供給制御部と、
     を有する、請求項1に記載の液体処理ユニット。
    The oxygen concentration controller is
    A tank part in which the gas containing oxygen is stored;
    A supply section for connecting the tank section and the space section and supplying gas in the tank section to the space section;
    A detector for detecting the oxygen concentration in the space;
    According to the oxygen concentration detected by the detection unit, a gas supply control unit that controls the supply amount of gas from the tank unit by the supply unit,
    The liquid processing unit according to claim 1, comprising:
  4.  前記酸素濃度制御部は、前記空間部に酸素を含む気体を供給するブロアーを有する、請求項1に記載の液体処理ユニット。 The liquid processing unit according to claim 1, wherein the oxygen concentration control unit has a blower for supplying a gas containing oxygen to the space.
  5.  請求項1乃至4のいずれか一項に記載の液体処理ユニットと、
     前記液体処理ユニット及び被処理液を内部に保持するための処理槽と、
     を備える、液体処理装置。
    A liquid processing unit according to any one of claims 1 to 4,
    A treatment tank for holding the liquid treatment unit and the liquid to be treated therein;
    A liquid processing apparatus comprising:
PCT/JP2017/003179 2016-05-17 2017-01-30 Liquid processing unit and liquid processing device WO2017199475A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016098659 2016-05-17
JP2016-098659 2016-05-17

Publications (1)

Publication Number Publication Date
WO2017199475A1 true WO2017199475A1 (en) 2017-11-23

Family

ID=60326540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/003179 WO2017199475A1 (en) 2016-05-17 2017-01-30 Liquid processing unit and liquid processing device

Country Status (1)

Country Link
WO (1) WO2017199475A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107303A1 (en) * 2017-11-30 2019-06-06 パナソニック株式会社 Purification device and purification electrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090232A (en) * 2005-09-28 2007-04-12 Ebara Corp Method and device for treating organic substance-containing waste solution
JP2009093861A (en) * 2007-10-05 2009-04-30 Kajima Corp Microbial fuel cell and diaphragm cassette for the microbial fuel cell
JP2010033823A (en) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd Microorganism electric generation device
WO2013073284A1 (en) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 Microbial power generation device, electrode for microbial power generation device, and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090232A (en) * 2005-09-28 2007-04-12 Ebara Corp Method and device for treating organic substance-containing waste solution
JP2009093861A (en) * 2007-10-05 2009-04-30 Kajima Corp Microbial fuel cell and diaphragm cassette for the microbial fuel cell
JP2010033823A (en) * 2008-07-28 2010-02-12 Kurita Water Ind Ltd Microorganism electric generation device
WO2013073284A1 (en) * 2011-11-16 2013-05-23 国立大学法人豊橋技術科学大学 Microbial power generation device, electrode for microbial power generation device, and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107303A1 (en) * 2017-11-30 2019-06-06 パナソニック株式会社 Purification device and purification electrode
JPWO2019107303A1 (en) * 2017-11-30 2020-11-19 パナソニック株式会社 Purification device and purification electrode
JP7010303B2 (en) 2017-11-30 2022-01-26 パナソニック株式会社 Purification device and purification electrode

Similar Documents

Publication Publication Date Title
JP6368036B2 (en) Electrode structure and microbial fuel cell
JP6438115B2 (en) Microbial fuel cell system
JP6364529B2 (en) Electrode manufacturing method and electrode
WO2017119419A1 (en) Gas diffusion electrode for microbial fuel cells and microbial fuel cell in which same is used
JP6902706B2 (en) Purification unit and purification device
JP6643642B2 (en) Purification unit and purification device
JP6438051B2 (en) Microbial fuel cell system
WO2017199475A1 (en) Liquid processing unit and liquid processing device
WO2017175260A1 (en) Electrode, fuel cell and water treatment device
JP2019076833A (en) Liquid treatment system
WO2017195406A1 (en) Microbial fuel cell and liquid treatment unit using same
JP6703859B2 (en) Microbial fuel cell
WO2018203455A1 (en) Liquid treatment system
WO2019069851A1 (en) Electrode assembly, and microbial fuel cell and water treatment device using same
JP2017148776A (en) Water treatment equipment
JP2017228411A (en) Electrode composite and fuel cell
JP2020099850A (en) Liquid treatment system
JP2020099854A (en) Liquid treatment system
WO2019064889A1 (en) Liquid treatment system
JP2020099853A (en) Liquid treatment system
WO2019078002A1 (en) Liquid processing system
JP2020082006A (en) Liquid treatment system
JP2020099851A (en) Liquid treatment system
WO2019078003A1 (en) Microbial fuel cell, liquid processing system, and liquid processing structure
JP2017228410A (en) Electrode and microbial fuel cell

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17798913

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17798913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP