WO2017138133A1 - Hot water/cold water air-conditioning system - Google Patents

Hot water/cold water air-conditioning system Download PDF

Info

Publication number
WO2017138133A1
WO2017138133A1 PCT/JP2016/054038 JP2016054038W WO2017138133A1 WO 2017138133 A1 WO2017138133 A1 WO 2017138133A1 JP 2016054038 W JP2016054038 W JP 2016054038W WO 2017138133 A1 WO2017138133 A1 WO 2017138133A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermo
water
hot
temperature
control
Prior art date
Application number
PCT/JP2016/054038
Other languages
French (fr)
Japanese (ja)
Inventor
篤志 河村
進一 内野
美藤 尚文
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2017566480A priority Critical patent/JP6537641B2/en
Priority to PCT/JP2016/054038 priority patent/WO2017138133A1/en
Priority to CN201690000321.4U priority patent/CN208436403U/en
Publication of WO2017138133A1 publication Critical patent/WO2017138133A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a hot / cold water air conditioning system for heating or cooling a room by sending hot water or cold water generated by a heat pump heat source device to a hot / cold water air conditioner.
  • a heat pump hot water heating system that performs hot water supply or heating using a heat pump cycle
  • hot water heated from a heat pump cycle refrigerant through a heat exchanger is supplied to an indoor radiator or hot water storage tank that performs heating, and then used.
  • a heating hot water circulation circuit is provided for returning the hot water to the heat exchanger of the heat pump cycle.
  • the heating hot water circulation circuit is provided with a forward temperature sensor for detecting the forward temperature of the supplied hot water.
  • the forward temperature control that is quick and easy to control with respect to the change of the heat pump capacity (operating frequency of the compressor) in the heat pump cycle is mainly performed.
  • the heat pump cycle heat source side operates the compressor Implement frequency control and operate the compressor with minimum supply capacity. If the amount of heat supplied by the operation with this minimum supply capacity is larger than the heat radiation amount on the air conditioning hot water supply load side, the going temperature of the heating hot water circulation circuit exceeds the target going temperature. There may be a state of so-called ON / OFF cycle operation where the thermo ON / OFF is intermittently generated in a short period of time.
  • the operating point temperature of the thermo ON / OFF is set. It is corrected. That is, when it is detected that the number of stoppages of the compressor within a predetermined time is increased, the preset target value of the refrigerant evaporating temperature or condensing temperature is changed, and the actual evaporating temperature or condensing temperature is changed. Control to reduce the deviation is performed. Moreover, in the air conditioning apparatus described in Patent Document 2, the thermo-off operating point temperature and the thermo-on operating point temperature set as initial values are corrected according to the duration of the thermo-off to prevent the thermo-off time from being shortened. Yes.
  • the extension of the thermo-ON / OFF time interval in the heat pump heat source machine is a target value or initial value that is a criterion for starting the thermo-ON / OFF operation. This is done by changing the threshold value. Therefore, there is a problem that the problem of inflow of liquid refrigerant to the compressor that may occur when the supply capacity of the heat pump heat source side exceeds the air conditioning hot water supply load and the accompanying decrease in the oil concentration of the refrigeration oil cannot be avoided. There is.
  • the present invention has been made in order to solve the above-described problems. Even if the supply capacity on the heat pump heat source side exceeds the air conditioning hot water supply load, the thermo pump ON / OFF cycle operation of the heat pump heat source machine is performed. It aims at preventing and suppressing the fall of the oil concentration in a compressor.
  • a hot / cold water air conditioning system includes a heat pump heat source unit having a compressor, an air conditioner that performs indoor air conditioning, a circular circulation channel that connects the heat pump heat source unit and the air conditioning unit in a ring shape, and water in the circulation channel
  • a water circulation pump that circulates the water
  • a water temperature sensor that detects the temperature of water that flows out of the heat pump heat source device by the operation of the water circulation pump
  • a control device that controls the thermo ON / OFF of the heat pump heat source device.
  • thermo-ON When the difference between the set target water temperature and the outgoing water temperature is the first temperature difference, the device is thermo-ON, and when the difference between the target water temperature and the outgoing water temperature is the second temperature difference, the thermo ON / OFF normal control is performed.
  • Thermo-ON / OFF suppression control for thermo-ON / OFF at a time interval longer than the thermo-ON / OFF time interval of normal control ON / OFF The thermo-ON / OFF control means to be executed and the switching means for switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control are executed.
  • thermo ON / OFF control means is forced to stop the compressor based on the refrigerant temperature in the compressor when the thermo ON / OFF normal control is switched to the thermo ON / OFF suppression control by the switching means.
  • thermo ON / OFF cycle operation is being executed in the thermo ON / OFF suppression control that is executed after the thermo ON / OFF cycle operation state is confirmed.
  • Set the forced stop time to forcibly stop the compressor based on the refrigerant temperature of the compressor at the time, add the passage of the forced stop time to the thermo-ON condition, and the temperature of the outgoing water temperature that occurred during the forced stop Based on the change, the operating point temperature of the thermo OFF is changed. Therefore, it is possible to suppress the thermo ON / OFF cycle operation while taking into account the operation state of the compressor.
  • thermo ON / OFF cycle operation As a result, even if the minimum supply capacity of the heat pump heat source machine exceeds the required heat quantity of the air conditioning equipment, it is possible to prevent the thermo ON / OFF cycle operation and to suppress the decrease in oil concentration in the compressor.
  • a high-efficiency and long-life hot / cold water air conditioning system can be provided.
  • FIG. 1 is a block diagram showing a schematic configuration of a hot / cold water air-conditioning system according to Embodiment 1 of the present invention.
  • the hot / cold water air conditioning system shown in FIG. 1 includes a heat pump heat source unit 1 that can perform either hot water heating or cold water cooling, a hot / cold water air conditioner 2 (air conditioner) for indoor air conditioning, and a heat pump.
  • the heat source unit 1 and the hot / cold water air conditioner 2 are connected in a ring to form a circulation channel, a water circulation pump 3 for circulating water in the circulation channel, and the operation of the water circulation pump 3 from the heat pump heat source unit 1
  • An outgoing water temperature sensor 5 for detecting the temperature of hot water or cold water flowing out (hereinafter referred to as water temperature) and a control device 6 are provided.
  • the hot / cold water air conditioner 2 heats or cools the indoor space according to hot water or cold water flowing from the heat pump heat source unit 1 through the pipe 4.
  • the water circulation pump 3 rotates at a constant rotational speed when AC power is applied under the control of the control device 6.
  • FIG. 2 is a refrigerant circuit diagram illustrating a schematic configuration of the heat pump heat source apparatus illustrated in FIG. 1.
  • the heat pump heat source unit 1 includes a compressor 103, a four-way valve 104, a water heat exchanger 102, a first expansion valve 106, an intermediate pressure receiver 105, a second expansion valve 107, and an air heat exchanger 101, which are sequentially arranged.
  • a refrigerant circuit is configured by connecting with piping.
  • the configuration of the refrigerant circuit is an example and is not limited.
  • the compressor 103 includes an inverter device and the like, and finely changes the capacity for sucking and compressing the refrigerant in accordance with the operation frequency controlled by the control device 6.
  • the four-way valve 104 switches so that the refrigerant from the compressor 103 flows into the water heat exchanger 102 during the hot water heating operation, and switches so that the refrigerant from the air heat exchanger 101 is sucked into the compressor 103.
  • the four-way valve 104 switches so that the refrigerant from the compressor 103 flows into the air heat exchanger 101 during the cold water cooling operation, and switches so that the refrigerant from the water heat exchanger 102 is sucked into the compressor 103.
  • the switching of the four-way valve 104 is performed by the control device 6.
  • the water heat exchanger 102 performs heat exchange between the refrigerant flowing in the refrigerant circuit and the water flowing in the pipe.
  • This water heat exchanger 102 acts as a radiator (condenser) during the hot water heating operation, and heats the water flowing in the piping. Further, the water heat exchanger 102 acts as a heat absorber (evaporator) during the cold water cooling operation, and cools the water flowing in the piping.
  • the water heat exchanger 102 is built in the heat pump heat source unit 1. However, for example, the water heat exchanger 102 may be provided separately from the heat pump heat source unit 1.
  • the hot / cold water air conditioner 2 may be provided.
  • the first expansion valve 106 adjusts the flow rate of the refrigerant to adjust (depressurize) the pressure of the refrigerant flowing through the water heat exchanger 102, for example.
  • the intermediate pressure receiver 105 is provided between the first expansion valve 106 and the second expansion valve 107 in the refrigerant circuit, and accumulates excess refrigerant in the refrigerant circuit.
  • a suction pipe connected from the four-way valve 104 to the suction side of the compressor 103 passes through the intermediate pressure receiver 105.
  • the intermediate pressure receiver 105 can exchange heat between the refrigerant passing through the suction pipe and the surplus refrigerant, and has a function as an internal heat exchanger.
  • the second expansion valve 107 adjusts the pressure by adjusting the flow rate of the refrigerant in the same manner as the first expansion valve 106.
  • the air heat exchanger 101 is, for example, a fin-and-tube heat exchanger that performs heat exchange between refrigerant and outside air sent by a blower.
  • the air heat exchanger 101 acts as a heat absorber (evaporator) during hot water heating operation, and acts as a radiator (condenser) during cold water cooling operation.
  • R410A or R407C which is an HFC mixed refrigerant
  • R32 which is an HFC single refrigerant having a low global warming potential
  • a hydrofluoroolefin-based refrigerant HFO1234yf, HFO1234ze, etc.
  • an HC-based R290 (propane) or R1270 (propylene) single or mixed refrigerant may be used.
  • the above-described control device 6 controls the ON / OFF operation of the compressor 103 and the operation frequency of the compressor 103 based on the water temperature detected by the outgoing water temperature sensor 5. Further, the control device 6 is based on the indoor set temperature set by the user's remote control operation, the indoor temperature obtained by the air conditioning of the hot / cold water air conditioner 2, the water temperature detected by the outgoing water temperature sensor 5, and the like. 1 operation is controlled.
  • the circulating water discharged from the water circulation pump 3 is cooled by the water heat exchanger 102 of the heat pump heat source unit 1.
  • the cooled chilled water is supplied to the hot / cold water air conditioner 2 and exchanges heat with the room air (heat absorption) to cool the room. Then, the cold water whose temperature has been raised by the heat exchange is again sucked into the water circulation pump 3 and sent to the heat pump heat source unit 1 for circulation.
  • FIG. 3 is a block diagram showing the control device of the hot / cold water air-conditioning system according to Embodiment 1 and the components that perform input / output between the control device.
  • the control device 6 includes a thermo ON / OFF control means 61, a switching means 62, and a return means 63.
  • the thermo ON / OFF control means 61 is configured to perform thermo ON / OFF normal control in which the thermo ON / OFF is repeated at predetermined time intervals based on the incoming water temperature input from the outgoing water temperature sensor 5, and the thermo ON / OFF is predetermined.
  • Thermo ON / OFF suppression control executed at a time interval longer than the time interval is executed.
  • the switching means 62 performs switching from the thermo ON / OFF normal control to the thermo ON / OFF suppression control based on the outgoing water temperature input from the outgoing water temperature sensor 5 and the operating frequency of the compressor 103.
  • the return means 63 performs a return from the thermo ON / OFF suppression control to the thermo ON / OFF normal control based on the incoming water temperature and the operating frequency of the compressor 103.
  • FIG. 4 is a flowchart showing the control operation of the compressor in the hot water heating operation of the hot / cold water air conditioning system according to the first embodiment. The control shown in the flowchart of FIG.
  • control device 6 drives the four-way valve 104 to connect the discharge side of the compressor 103 and the water heat exchanger 102, and connects the air heat exchanger 101 and the suction side of the compressor 103.
  • control device 6 drives the compressor 103 to discharge the refrigerant and circulates in the refrigerant circuit.
  • control apparatus 6 rotates the water circulation pump 3 with a fixed rotational speed, circulates the water in the piping 4, and starts the driving
  • thermo ON / OFF control means 61 of the control device 6 starts the thermo ON / OFF normal control of the compressor 103 in step S1.
  • the thermo ON / OFF control means 61 reads the water temperature detected by the incoming water temperature sensor 5, and then compares the read water temperature with the target water temperature to control the thermo ON / OFF and operating frequency of the compressor 103. To do.
  • This target water temperature is, for example, a value set by a user's remote control operation. If the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 is equal to or lower than the target outgoing water temperature Tt ⁇ T1 (first temperature difference, for example, 0.5 deg), the thermo is turned ON. On the other hand, if the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 is equal to or higher than the target outgoing water temperature Tt + T2 (second temperature difference, for example, 2 deg), the thermo is turned off.
  • the switching determination to the thermo ON / OFF suppression control is performed during the operation by the thermo ON / OFF normal control in step S1.
  • the switching unit 62 checks whether or not the operating frequency of the compressor 103 of the heat pump heat source apparatus 1 is the minimum frequency (for example, 25 Hz). If it is confirmed that the operating frequency of the compressor 103 is not the minimum frequency, the process proceeds to step S3. The fact that the compressor 103 is operated at a frequency higher than the minimum frequency can be determined that the minimum supply capacity of the heat pump heat source unit 1 does not exceed the amount of heat required for the hot / cold water air conditioner 2.
  • step S3 the determination count number Ncount, which is a variable used for switching determination from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control, is reset to zero.
  • the determination count number Ncount is a variable that is incremented by 1 when the switching of the thermo ON / OFF in a short time is detected.
  • the switching unit 62 resets the determination count number Ncount to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
  • step S4 the switching means 62 checks whether or not the thermo is turned off within a predetermined time TA (first predetermined time, for example, 10 minutes) after the thermo is turned on. If the time interval from the thermo-ON to the thermo-OFF is longer than the predetermined time TA, that is, that the operation by the thermo-ON has exceeded the predetermined time TA, it can be determined that the thermo-ON / OFF cycle operation is not in the state. Therefore, if it is confirmed that the thermo is not turned off within the predetermined time TA after the thermo is turned on, the process proceeds to step S3, and the determination count number Ncount is reset to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
  • TA first predetermined time, for example, 10 minutes
  • step S4 If it is confirmed in step S4 that the thermo is turned off within a predetermined time TA after the thermo is turned on, the process proceeds to step S5.
  • step S5 in the state where the required heat quantity of the hot / cold water air conditioner 2 is smaller than the operation capacity at the minimum frequency of the compressor 103, the thermo OFF is performed before the predetermined time TA has elapsed from the thermo ON. This is the case.
  • step S5 it is checked whether or not the determination count number Ncount is zero. If the determination count number Ncount is not zero, the process proceeds to step S6.
  • step S6 the switching unit 62 checks whether or not a predetermined time TB (second predetermined time, for example, 10 minutes) has elapsed since 1 was added to the determination count number Ncount last time.
  • a predetermined time TB second predetermined time, for example, 10 minutes
  • step S6 When it is confirmed in step S6 that the predetermined time TB has elapsed, it is confirmed that the time from the thermo ON to the time when the thermo is turned off is shorter than the predetermined time TA, and then from the thermo ON again. This is a case where the predetermined time TB has elapsed until it is confirmed that the time until the thermo-OFF is shorter than the predetermined time TA. Therefore, it is determined that there is no thermo-ON / OFF cycle operation. Therefore, in this case, the process proceeds to step S3, and the switching unit 62 resets the determination count number Ncount to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
  • step S5 if it is confirmed in step S5 that the determination count number Ncount is zero, the process of step S6 is skipped and the process of step S7 is executed.
  • step S5 although thermo-ON / OFF is not repeated in a short time, thermo-OFF is confirmed within a predetermined time TA from thermo-ON, and thermo-ON / OFF cycle operation may have started. There is. Therefore, in this case, the process of step S6 is not performed, and 1 is added to the determination count number Ncount in step S7.
  • step S8 the switching means 62 checks whether or not the determination count number Ncount is equal to or greater than a predetermined number.
  • the case where the determination count number Ncount is less than a certain number is a case where the thermo-ON / OFF in a short time does not occur frequently in a state where the compressor 103 is operated at the lowest frequency. This is a case where the vehicle is not in the OFF cycle operation state. In this case, it is determined that even if the thermo-ON / OFF normal control is continued, the life of each component constituting the refrigerant circuit is not affected, and the problem of suction of the liquid refrigerant in the compressor 103 does not occur. it can. Therefore, if the determination count number Ncount is less than the predetermined number, the control returns to step S1, and the thermo-ON / OFF normal control by the thermo-ON / OFF control means 61 is continued.
  • thermo-ON / OFF normal control performs switching from the thermo ON / OFF normal control to the thermo ON / OFF suppression control.
  • Steps S2 to S8 described above are processing procedures executed by the switching means 62, and a process for determining switching to the thermo ON / OFF suppression control while the thermo ON / OFF normal control is being performed. It is a procedure.
  • the thermo ON / OFF control means 61 performs the following control. After the thermo-ON, when the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 does not reach the target outgoing water temperature Tt + T2, and the difference is large, the thermo ON / OFF control means 61 changes the operating frequency of the compressor 103. Increase the heat supply.
  • the thermo-ON / OFF control means 61 adjusts the compressor 103 so that the supply capacity of the heat pump heat source unit 1 and the heat radiation amount of the hot / cold water air conditioner 2 are balanced. Reduce the operating frequency gradually to maintain the temperature of the incoming water temperature.
  • the minimum frequency of the heat pump heat source machine 1 It can be considered that the minimum supply capacity in operation is larger than the heat radiation amount of the hot / cold water air conditioner 2.
  • the supply capacity of the heat pump heat source unit 1 becomes zero.
  • the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 decreases and becomes equal to or lower than the target outgoing water temperature Tt ⁇ T1 again, the thermo-ON is performed.
  • the minimum supply capability in the minimum frequency operation of the heat pump heat source apparatus 1 is larger than the heat radiation amount of the hot / cold water air conditioner 2, so the thermo pump is turned off again.
  • thermo ON the compressor 103 is operated at the minimum frequency
  • thermo OFF the compressor 103 is stopped
  • the switching means 62 determines whether or not the ON / OFF cycle operation has been performed within a certain period of time by the processes in steps S2 to S8 described above.
  • thermo ON / OFF suppression control executed in step S9 will be described.
  • the thermo ON / OFF control means 61 forcibly stops the compressor 103 without comparing the forward water temperature detection temperature Tm detected by the forward water temperature sensor 5 with the target forward water temperature Tt.
  • the forced stop time ⁇ is, for example, 10 minutes.
  • the outgoing water temperature detection temperature Tm is compared with the target outgoing water temperature Tt.
  • the thermo ON / OFF control means 61 performs thermo ON when the outgoing water temperature detection temperature Tm becomes equal to or lower than the target outgoing water temperature Tt ⁇ T1.
  • the predetermined threshold T3 third temperature difference, for example, 5 deg
  • the forced stop time ⁇ of the compressor 103 set in the thermo-ON / OFF suppression control is the refrigerant temperature (for example, the compressor) when the determination count number Ncount reaches a certain number during the thermo-ON operation. 103). In other words, it is determined by the refrigerant temperature in the compressor 103 when the switching means 62 switches from the thermo ON / OFF normal control to the thermo ON / OFF suppression control. When the refrigerant temperature is relatively high, the forced stop time ⁇ is set to be relatively long.
  • the threshold T3 used for comparing the forward water temperature detection temperature Tm and the target forward water temperature Tt is the value after the thermo-ON / OFF suppression control is started.
  • the first thermo OFF is confirmed, it is set according to the degree of decrease in the going water temperature during the forced stop time ⁇ .
  • the operating point temperature of the thermo OFF is corrected based on the degree of decrease in the outgoing water temperature during the forced stop time ⁇ . Therefore, if the refrigerant temperature is relatively high and the forced stop time ⁇ is set to be long, the drop in the going water temperature becomes larger, so the threshold T3 is set high.
  • the forced stop time ⁇ and the threshold value T3 differ depending on the performance of the heat pump heat source apparatus 1, and therefore, the forced stop time ⁇ and the threshold value T3 are set based on a result of a test that actually generates a thermo ON / OFF cycle operation.
  • thermo ON / OFF suppression control the forward water temperature detection temperature Tm detected by the forward water temperature sensor 5 is compared with the forward water temperature upper limit value Tx, and when the forward water temperature detection temperature Tm exceeds the forward water temperature upper limit value Tx, The thermo ON / OFF control means 61 executes a process for stopping the compressor 103.
  • the forward water temperature upper limit value Tx is set by the user using a remote controller or the like. This process prevents the hot water having a temperature higher than the allowable upper limit temperature from flowing into the hot / cold water air conditioner 2 due to the high temperature of the outgoing water, thereby preventing malfunction of the operation of the hot / cold water air conditioner 2.
  • the return means 63 performs the return determination to the thermo-ON / OFF normal control.
  • the return means 63 determines whether or not the compressor 103 is continuously operating at a frequency higher than the minimum operating frequency for a predetermined time (third predetermined time) (for example, the minimum operating frequency is 25 Hz and the predetermined time If it is 60 minutes, it is checked whether or not it is continuously operating at 26 Hz for 60 minutes).
  • the control returns to step S9 again and the thermo ON / OFF suppression control by the thermo ON / OFF control means 61 is continued.
  • the minimum supply capacity of the heat pump heat source unit 1 is less than the heat dissipation amount of the hot / cold water air conditioner 2, and the thermo ON / OFF Even if the normal control is performed, it can be determined that the possibility of the thermo-ON / OFF cycle operation is low. Accordingly, in this case, the process proceeds to step S3, and the return means 63 resets the determination count number Ncount to zero, returns to step S1, and controls the thermo ON / OFF control means 61 from the thermo ON / OFF suppression control to the thermo ON. / OFF Return to normal control.
  • FIG. 5 is a time chart showing the operating state of the compressor in the hot water heating operation in the conventional hot / cold water air conditioning system
  • FIG. 6 is the time showing the operating state of the compressor in the hot water heating operation in the hot / cold water air conditioning system according to Embodiment 1. It is a chart.
  • the time chart of FIG. 5 and FIG. 6 has shown the driving
  • thermo ON / OFF normal control is executed as shown in FIG. Since the responsiveness of the water temperature detected by the going water temperature sensor 5 is fast, the water temperature becomes equal to or higher than the target water temperature immediately after the thermo-ON, and the thermo-OFF (operation of the compressor 103 of the heat pump heat source unit 1 is stopped). Even if the compressor 103 is stopped, the water circulation pump 3 is driven and the circulating water flows. Therefore, after the thermo is turned off, the water temperature soon becomes lower than the target water temperature, and the thermo is turned on. That is, the compressor 103 is in a thermo ON / OFF cycle operation, and the heat pump heat source unit 1 is in an ON / OFF operation.
  • thermo ON / OFF normal control when the thermo ON / OFF at a short time interval reaches a predetermined number of times and the thermo ON / OFF cycle operation is detected, the thermo ON / OFF normal control suppresses the thermo ON / OFF normal control. Switch to control.
  • the thermo ON / OFF suppression control when the operation is switched to the thermo ON / OFF suppression control, that is, when the thermo ON / OFF reaches a predetermined number of times, the forced stop time is based on the refrigerant temperature such as the suction heating degree of the compressor 103, for example. Is set. Then, the passage of the forced stop time is added to the condition for turning on the thermo.
  • thermo-ON / OFF time interval the number of thermo-ON / OFF times without impairing the comfort of air conditioning.
  • thermo ON / OFF normal control is also performed in the cold water cooling operation in the same processing procedure as the flowchart shown in FIG. Executed.
  • the refrigerant flow is reversed from that in the hot water heating operation by switching the four-way valve 104. That is, the air heat exchanger 101 acts as a radiator (condenser), and the water heat exchanger 102 acts as a heat absorber (evaporator) to cool the water flowing through the water heat exchanger 102.
  • Thermo ON / OFF suppression control in the cold water cooling operation is executed in the same manner as in step S9 described above.
  • the forced stop time is set based on the refrigerant temperature of the compressor 103 when the thermo ON / OFF reaches a predetermined number of times.
  • the passage of the forced stop time of the compressor 103 is added to the condition of the thermo ON, and the operating point temperature of the thermo OFF after the next time is corrected based on the temperature rise of the forward water temperature that occurs during the forced stop time.
  • the control device 6 has the minimum supply capacity of the heat pump heat source unit 1 exceeding the amount of heat dissipation or heat absorption required by the hot / cold water air-conditioning equipment 2.
  • the thermo ON / OFF normal control is switched to the thermo thermo ON / OFF suppression control, while the minimum supply capacity of the heat pump heat source unit 1 is hot / cold water air conditioning equipment
  • the operation is switched from the thermo ON / OFF suppression control to the thermo ON / OFF normal control.
  • thermo-ON / OFF suppression control conditions for thermo-ON and thermo-OFF are set based on the refrigerant temperature of the compressor 103 when it is determined that the thermo-ON / OFF cycle operation is in progress. Therefore, even when the minimum supply capacity of the heat pump heat source device 1 is larger than the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner 2 or the heat absorption amount in the case of cold water cooling, the thermo-ON / OFF cycle operation can be suppressed. As a result, the thermo ON / OFF cycle operation can be prevented, and the decrease in the oil concentration in the compressor 103 can be suppressed, and a high-efficiency and long-life hot / cold water air conditioning system can be provided.
  • FIG. FIG. 7 is a block diagram showing a schematic configuration of a hot / cold water air-conditioning system according to Embodiment 2 of the present invention.
  • the second embodiment includes an auxiliary heater 7 that heats the circulating water between the heat pump heat source unit 1 and the outgoing water temperature sensor 5 in the hot / cold water air conditioning system of the first embodiment.
  • the auxiliary heater 7 In the hot water heating operation, when the supply capacity of the heat pump heat source unit 1 is insufficient, the circulating water is heated using the auxiliary heater 7 as an auxiliary heat source. Power supply to the auxiliary heater 7 is performed by the control device 6.
  • the control operation of the compressor 103 in the hot water heating operation or the cold water cooling operation is the same as the flowchart shown in FIG. That is, the control device 6 performs intermittent switching of the thermo ON / OFF in a short time in a state where the minimum supply capacity of the heat pump heat source unit 1 exceeds the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2. If detected, the thermo-ON / OFF normal control is switched to the thermo-ON / OFF suppression control.
  • thermo ON / OFF suppression control is switched to the thermo ON / OFF normal control. Then, in the thermo ON / OFF suppression control, the control device 6 determines the conditions for the thermo ON and the thermo OFF based on the refrigerant temperature of the compressor 103 at the time when it is determined that the thermo ON / OFF cycle operation is in progress. Set.
  • thermo-ON / OFF cycle operation can be suppressed in a state where the operation state 103 is taken into consideration, and the same effect as in the first embodiment can be obtained.
  • FIG. 8 is a block diagram illustrating a schematic configuration of the hot / cold water air-conditioning system according to the third embodiment.
  • the third embodiment includes the hot water storage tank 9 in which the heat exchanger 8 is built in the hot / cold water air conditioning system of the second embodiment.
  • One end of the heat exchanger 8 is connected to the branch pipe 12a (branch point) inserted in the pipe 4 between the auxiliary heater 7 and the hot / cold water air conditioner 2 via the pipe 12, and the other end of the heat exchanger 8 is connected.
  • the hot water storage tank 9 is connected in parallel to the hot / cold water air conditioner 2 via the pipe 12.
  • a tank water temperature sensor 10 for detecting the water temperature in the hot water storage tank 9 heated by the heat exchanger 8 is attached to the hot water storage tank 9.
  • the control device 6 selects one of the hot water heating operation, the cold water cooling operation, and the hot water supply operation in accordance with, for example, a user's remote control operation.
  • the control device 6 drives the electric three-way valve 11 so that water (hot water or cold water) circulates between the heat pump heat source unit 1 and the hot / cold water air conditioner 2 as described above. To do.
  • the control apparatus 6 drives the electric three-way valve 11 so that warm water circulates between the heat pump heat source unit 1 and the heat exchanger 8 during the hot water supply operation.
  • the operation of the compressor 103 in the operation of the hot water heating operation or the cold water cooling operation and the operation of the hot water supply operation is the same as the flowchart shown in FIG. 4, and the second embodiment has been described above. Street. Therefore, even if the minimum supply capacity of the heat pump heat source unit 1 by controlling the operation frequency of the compressor 103 is larger than the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner 2 or the heat absorption amount in the case of cold water cooling, the compressor The thermo-ON / OFF cycle operation can be suppressed in a state where the operation state 103 is taken into account, and the same effect as in the first and second embodiments can be obtained.
  • the auxiliary heater 7 is provided between the heat pump heat source unit 1 and the hot / cold water air conditioner 2, but the present invention is not limited to this. It is good also as a structure which connects the heat pump heat source machine 1 and the hot / cold water air-conditioning apparatus 2 without going through the auxiliary heater 7.
  • the control device 6 repeats the state where the minimum supply capacity of the heat pump heat source unit 1 is larger than the required heat amount of the hot / cold water air conditioner 2 and the thermo ON / OFF is shorter than a predetermined time interval. Has reached the predetermined number of times, the thermo-ON / OFF normal control is switched to the thermo-ON / OFF suppression control. Therefore, even when the minimum supply capacity of the heat pump heat source device 1 is larger than the required heat quantity of the hot / cold water air conditioner 2, it is possible to prevent the thermo ON / OFF cycle operation.
  • the thermo-ON / OFF control means 61 of the control device 6 has a relatively high refrigerant temperature in the compressor 103 when it is determined that the thermo-ON / OFF cycle operation is being performed.
  • the threshold value corrected based on the changed outgoing water temperature during the forced stop time also becomes relatively large. That is, the thermo-ON condition and the thermo-OFF operating point are set in consideration of the operation state of the compressor 103. Therefore, in the thermo ON / OFF suppression control, the thermo ON / OFF time interval can be extended, and the inflow of liquid refrigerant in the compressor 103 and the accompanying decrease in the oil concentration of the refrigerating machine oil can be prevented.
  • the switching means 62 is operated when the operation frequency of the compressor 103 is not the minimum frequency in the operation with the thermo-ON, when the operation with the thermo-ON continues for a predetermined time TA, and until the thermo-ON is turned off.
  • the determination count number Ncount is reset and the thermo-ON / OFF normal control is continued. Therefore, switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression normal control can be executed accurately.
  • the return means 63 is such that the compressor 103 of the heat pump heat source unit 1 operates at an operating frequency higher than the minimum operating frequency, for example, for 60 minutes.
  • the thermo ON / OFF suppression control is switched to the thermo ON / OFF normal control. Therefore, the end of the thermo ON / OFF suppression control can be accurately executed.

Abstract

A hot water/cold water air-conditioning system equipped with: a heat pump heat source machine having a compressor; an air conditioner; piping that forms a water circulation passage by connecting the heat pump heat source machine and the air conditioner in a circular arrangement; a water circulation pump that circulates water in the water circulation passage; a water temperature sensor that detects the temperature of the outgoing water from the heat pump heat source machine; and a control device that executes a thermo on/off control for controlling thermo on/off on the basis of the difference between a target water temperature that has been set and the temperature of the outgoing water. If it is determined that a thermo on/off cycle operation is being executed in the compressor, the control device switches to a thermo on/off suppression control. In the thermo on/off suppression control the control device sets the thermo on and thermo off operating conditions on the basis of the temperature of the refrigerant in the compressor at the time it is determined that the thermo on/off cycle operation is being executed.

Description

温冷水空調システムHot / cold water air conditioning system
 本発明は、ヒートポンプ熱源機により生成された温水または冷水を温冷水空調機器に送って室内を暖房または冷房する温冷水空調システムに関するものである。 The present invention relates to a hot / cold water air conditioning system for heating or cooling a room by sending hot water or cold water generated by a heat pump heat source device to a hot / cold water air conditioner.
 ヒートポンプサイクルを利用する給湯や暖房を行うヒートポンプ温水暖房システムでは、ヒートポンプサイクルの冷媒から熱交換器を介して加熱された温水を、暖房を行う室内放熱器や貯湯タンクに供給し、その後、利用した温水をヒートポンプサイクルの熱交換器に戻す暖房温水循環回路を有している。その供給する温水を制御するために、暖房温水循環回路には、供給される温水の往き温度を検出する往き温度センサーが設けられている。 In a heat pump hot water heating system that performs hot water supply or heating using a heat pump cycle, hot water heated from a heat pump cycle refrigerant through a heat exchanger is supplied to an indoor radiator or hot water storage tank that performs heating, and then used. A heating hot water circulation circuit is provided for returning the hot water to the heat exchanger of the heat pump cycle. In order to control the supplied hot water, the heating hot water circulation circuit is provided with a forward temperature sensor for detecting the forward temperature of the supplied hot water.
 これまでのヒートポンプ温水暖房システムでは、主として、ヒートポンプサイクルにおけるヒートポンプ容量(圧縮機の運転周波数)の変化に対して、応答性が速く制御しやすい往き温度制御が行われている。このような往き温度制御では、温水暖房システムの負荷側にある室内放熱器の効率が低い場合や、季節の中間期など必要とする空調給湯負荷が小さい場合、ヒートポンプサイクル熱源側は圧縮機の運転周波数制御を実施し、最小供給能力で圧縮機を運転する。この最小供給能力の運転により供給される熱量が空調給湯負荷側の放熱量より大きいと、暖房温水循環回路の往き温度が目標往き温度を超えるため、供給能力を下げるべく、圧縮機の運転が、サーモON/OFFが短期間で断続的に発生するいわゆるON/OFFサイクル運転の状態になることがある。 In the conventional heat pump hot water heating system, the forward temperature control that is quick and easy to control with respect to the change of the heat pump capacity (operating frequency of the compressor) in the heat pump cycle is mainly performed. In such forward temperature control, when the efficiency of the indoor radiator on the load side of the hot water heating system is low, or when the required air conditioning hot water supply load is small, such as in the middle of the season, the heat pump cycle heat source side operates the compressor Implement frequency control and operate the compressor with minimum supply capacity. If the amount of heat supplied by the operation with this minimum supply capacity is larger than the heat radiation amount on the air conditioning hot water supply load side, the going temperature of the heating hot water circulation circuit exceeds the target going temperature. There may be a state of so-called ON / OFF cycle operation where the thermo ON / OFF is intermittently generated in a short period of time.
 特許文献1に記載の空気調和装置では、ヒートポンプ熱源側の供給能力が空調給湯負荷を超えている場合にON/OFFサイクル運転となることを回避するために、サーモON/OFFの動作点温度を補正している。すなわち、所定時間内の圧縮機の停止回数が多くなっていることが検出されると、予め設定された冷媒の蒸発温度または凝縮温度の目標値を変更し、実際の蒸発温度または凝縮温度との偏差を小さくする制御が行われる。また、特許文献2に記載の空気調和装置では、初期値として設定されたサーモオフ動作点温度およびサーモオン動作点温度をサーモオフの持続時間に応じて補正し、サーモオフの時間が短くなることを防止している。 In the air conditioner described in Patent Document 1, in order to avoid the ON / OFF cycle operation when the supply capacity on the heat pump heat source side exceeds the air conditioning hot water supply load, the operating point temperature of the thermo ON / OFF is set. It is corrected. That is, when it is detected that the number of stoppages of the compressor within a predetermined time is increased, the preset target value of the refrigerant evaporating temperature or condensing temperature is changed, and the actual evaporating temperature or condensing temperature is changed. Control to reduce the deviation is performed. Moreover, in the air conditioning apparatus described in Patent Document 2, the thermo-off operating point temperature and the thermo-on operating point temperature set as initial values are corrected according to the duration of the thermo-off to prevent the thermo-off time from being shortened. Yes.
特開2002-61925号公報JP 2002-61925 A 特開2008-209029号公報JP 2008-209029 A
 特許文献1および特許文献2に記載の空気調和装置における制御では、ヒートポンプ熱源機におけるサーモON/OFFの時間間隔の拡張は、サーモON/OFFの動作の開始の判定基準となる目標値若しくは初期値等の閾値を変更することにより行われている。従って、ヒートポンプ熱源側の供給能力が空調給湯負荷を超えている場合に発生する可能性のある圧縮機への液冷媒の流入、およびそれに伴う冷凍機油の油濃度の低下という問題は回避できないという問題がある。 In the control in the air conditioner described in Patent Literature 1 and Patent Literature 2, the extension of the thermo-ON / OFF time interval in the heat pump heat source machine is a target value or initial value that is a criterion for starting the thermo-ON / OFF operation. This is done by changing the threshold value. Therefore, there is a problem that the problem of inflow of liquid refrigerant to the compressor that may occur when the supply capacity of the heat pump heat source side exceeds the air conditioning hot water supply load and the accompanying decrease in the oil concentration of the refrigeration oil cannot be avoided. There is.
 本発明は、上記のような課題を解決するためになされたものであり、ヒートポンプ熱源側の供給能力が空調給湯負荷を超えた場合であっても、ヒートポンプ熱源機のサーモON/OFFサイクル運転を防止すると共に圧縮機における油濃度の低下を抑制することを目的とする。 The present invention has been made in order to solve the above-described problems. Even if the supply capacity on the heat pump heat source side exceeds the air conditioning hot water supply load, the thermo pump ON / OFF cycle operation of the heat pump heat source machine is performed. It aims at preventing and suppressing the fall of the oil concentration in a compressor.
 本発明に係る温冷水空調システムは、圧縮機を有するヒートポンプ熱源機と、室内の空調を行う空調機器と、ヒートポンプ熱源機と空調機器とを環状に接続したて循環水路と、循環水路内の水を循環させる水循環ポンプと、水循環ポンプの運転によってヒートポンプ熱源機から流出する水の温度である往き水温を検出する水温センサーと、ヒートポンプ熱源機のサーモON/OFFを制御する制御装置とを備え、制御装置は、設定される目標水温と往き水温との差分が第1温度差のときサーモONし、目標水温と往き水温との差分が第2温度差のときサーモOFFするサーモON/OFF通常制御と、サーモON/OFF通常制御のサーモON/OFFの時間間隔より長い時間間隔でサーモON/OFFするサーモON/OFF抑制制御とを実行する、サーモON/OFF制御手段と、サーモON/OFF通常制御からサーモON/OFF抑制制御へ切り替える切替手段とを有し、切替手段は、ヒートポンプ熱源機の最小供給能力が空調機器の必要熱量よりも大きく、かつ、サーモON/OFFが所定の時間間隔より短い時間間隔で繰り返される回数をカウントする変数が所定値に達した場合、サーモON/OFF通常制御からサーモON/OFF抑制制御への切替を実行し、サーモON/OFF制御手段は、切替手段によりサーモON/OFF通常制御からサーモON/OFF抑制制御へ切り替えられたときの圧縮機における冷媒温度に基づいて、圧縮機を停止する強制停止時間を設定し、強制停止時間中に発生する往き水温度の変化に基づいて第3温度差を設定し、強制停止時間が経過し、かつ目標水温と往き水温との差分が第1温度差のときサーモONし、目標水温と往き水温との差分が第3温度差のとき、サーモOFFするものである。 A hot / cold water air conditioning system according to the present invention includes a heat pump heat source unit having a compressor, an air conditioner that performs indoor air conditioning, a circular circulation channel that connects the heat pump heat source unit and the air conditioning unit in a ring shape, and water in the circulation channel A water circulation pump that circulates the water, a water temperature sensor that detects the temperature of water that flows out of the heat pump heat source device by the operation of the water circulation pump, and a control device that controls the thermo ON / OFF of the heat pump heat source device. When the difference between the set target water temperature and the outgoing water temperature is the first temperature difference, the device is thermo-ON, and when the difference between the target water temperature and the outgoing water temperature is the second temperature difference, the thermo ON / OFF normal control is performed. Thermo-ON / OFF suppression control for thermo-ON / OFF at a time interval longer than the thermo-ON / OFF time interval of normal control ON / OFF The thermo-ON / OFF control means to be executed and the switching means for switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control are executed. If the variable for counting the number of times that the thermo ON / OFF is repeated at a time interval shorter than the predetermined time interval reaches a predetermined value, the control from the thermo ON / OFF normal control to the thermo ON / OFF suppression control is performed. The thermo ON / OFF control means is forced to stop the compressor based on the refrigerant temperature in the compressor when the thermo ON / OFF normal control is switched to the thermo ON / OFF suppression control by the switching means. Set the stop time, set the third temperature difference based on the change of the incoming water temperature that occurs during the forced stop time, and forcibly stop During has passed, and the difference between the target temperature and forward water temperature and thermo-ON time of the first temperature difference, when the difference between the target temperature and forward water temperature of the third temperature difference is for thermo OFF.
 本発明に係る温冷水空調システムによると、サーモON/OFFサイクル運転の状態が確認されて実行されるサーモON/OFF抑制制御において、サーモON/OFFサイクル運転が実行されていることが確認された時点での圧縮機の冷媒温度に基づいて圧縮機を強制的に停止する強制停止時間を設定し、強制停止時間の経過をサーモONの条件に加えると共に、強制停止中に生じた往き水温の温度変化に基づいて、サーモOFFの動作点温度を変更している。従って、圧縮機の運転状態を加味しながらサーモON/OFFサイクル運転を抑制することができる。その結果、ヒートポンプ熱源機の最小供給能力が空調機器の必要熱量を超えている場合であっても、サーモON/OFFサイクル運転を防止すると共に、圧縮機における油濃度の低下を抑制することができ、高効率かつ高寿命な温冷水空調システムを提供することができる。 According to the hot / cold water air conditioning system according to the present invention, it has been confirmed that the thermo ON / OFF cycle operation is being executed in the thermo ON / OFF suppression control that is executed after the thermo ON / OFF cycle operation state is confirmed. Set the forced stop time to forcibly stop the compressor based on the refrigerant temperature of the compressor at the time, add the passage of the forced stop time to the thermo-ON condition, and the temperature of the outgoing water temperature that occurred during the forced stop Based on the change, the operating point temperature of the thermo OFF is changed. Therefore, it is possible to suppress the thermo ON / OFF cycle operation while taking into account the operation state of the compressor. As a result, even if the minimum supply capacity of the heat pump heat source machine exceeds the required heat quantity of the air conditioning equipment, it is possible to prevent the thermo ON / OFF cycle operation and to suppress the decrease in oil concentration in the compressor. A high-efficiency and long-life hot / cold water air conditioning system can be provided.
本発明の実施の形態1に係る温冷水空調システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hot / cold water air conditioning system which concerns on Embodiment 1 of this invention. 図1に示すヒートポンプ熱源機の概略構成を示す冷媒回路図である。It is a refrigerant circuit figure which shows schematic structure of the heat pump heat source machine shown in FIG. 本発明の実施の形態1に係る温冷水空調システムの制御装置と、該制御装置との間で入出力が行われる構成要素とを示すブロック図である。It is a block diagram which shows the control apparatus of the hot / cold water air conditioning system which concerns on Embodiment 1 of this invention, and the component by which input / output is performed between this control apparatus. 本発明の実施の形態1に係る温冷水空調システムの温水暖房運転における圧縮機の制御動作を示すフローチャートである。It is a flowchart which shows the control action of the compressor in the warm water heating operation of the warm / cold water air-conditioning system which concerns on Embodiment 1 of this invention. 従来の温冷水空調システムにおいて温水暖房運転における圧縮機の運転状態を示すタイムチャートである。It is a time chart which shows the driving | running state of the compressor in warm water heating operation in the conventional warm / cold water air-conditioning system. 本発明の実施の形態1に係る温冷水空調システムにおいて温水暖房運転における圧縮機の運転状態を示すタイムチャートである。It is a time chart which shows the driving | running state of the compressor in warm water heating operation in the warm / cold water air-conditioning system which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る温冷水空調システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hot / cold water air conditioning system which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る温冷水空調システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the hot / cold water air conditioning system which concerns on Embodiment 3 of this invention.
 以下に、本発明における温冷水空調システムの実施の形態を図面に基づいて詳細に説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、以下の図面においては各構成部材の大きさは実際の装置とは異なる場合がある。 Hereinafter, embodiments of a hot / cold water air conditioning system according to the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments described below. In the following drawings, the size of each component may be different from that of an actual apparatus.
実施の形態1.
 図1は、本発明の実施の形態1に係る温冷水空調システムの概略構成を示すブロック図である。図1に示す温冷水空調システムは、温水暖房または冷水冷房のいずれかの運転を行うことができるヒートポンプ熱源機1と、室内の空調を行うための温冷水空調機器2(空調機器)と、ヒートポンプ熱源機1と温冷水空調機器2とを環状に接続して循環水路を形成する配管4と、その循環水路内の水を循環させる水循環ポンプ3と、水循環ポンプ3の運転によってヒートポンプ熱源機1から流出する温水または冷水の温度(以下、水温という)を検出する往き水温センサー5と、制御装置6とを備えている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a schematic configuration of a hot / cold water air-conditioning system according to Embodiment 1 of the present invention. The hot / cold water air conditioning system shown in FIG. 1 includes a heat pump heat source unit 1 that can perform either hot water heating or cold water cooling, a hot / cold water air conditioner 2 (air conditioner) for indoor air conditioning, and a heat pump. The heat source unit 1 and the hot / cold water air conditioner 2 are connected in a ring to form a circulation channel, a water circulation pump 3 for circulating water in the circulation channel, and the operation of the water circulation pump 3 from the heat pump heat source unit 1 An outgoing water temperature sensor 5 for detecting the temperature of hot water or cold water flowing out (hereinafter referred to as water temperature) and a control device 6 are provided.
 温冷水空調機器2は、ヒートポンプ熱源機1から配管4を介して流入する温水または冷水に応じて、室内の空間を暖房または冷房する。水循環ポンプ3は、制御装置6の制御によって交流電源が印加されたときに一定の回転速度で回転する。この水循環ポンプ3を用いることにより、水循環ポンプ3の回転数を制御する必要がないので、制御アルゴリズムを比較的シンプルで低コストにできる。 The hot / cold water air conditioner 2 heats or cools the indoor space according to hot water or cold water flowing from the heat pump heat source unit 1 through the pipe 4. The water circulation pump 3 rotates at a constant rotational speed when AC power is applied under the control of the control device 6. By using this water circulation pump 3, since it is not necessary to control the rotation speed of the water circulation pump 3, the control algorithm can be made relatively simple and low cost.
 ここで、ヒートポンプ熱源機1の構成について、図2を用いて説明する。図2は、図1に示すヒートポンプ熱源機の概略構成を示す冷媒回路図である。ヒートポンプ熱源機1は、圧縮機103、四方弁104、水熱交換器102、第1膨張弁106、中圧レシーバ105、第2膨張弁107、および空気熱交換器101を備え、これらを順次に配管で接続して冷媒回路が構成されている。この冷媒回路の構成は、一例であって、限定されるものではない。 Here, the configuration of the heat pump heat source machine 1 will be described with reference to FIG. FIG. 2 is a refrigerant circuit diagram illustrating a schematic configuration of the heat pump heat source apparatus illustrated in FIG. 1. The heat pump heat source unit 1 includes a compressor 103, a four-way valve 104, a water heat exchanger 102, a first expansion valve 106, an intermediate pressure receiver 105, a second expansion valve 107, and an air heat exchanger 101, which are sequentially arranged. A refrigerant circuit is configured by connecting with piping. The configuration of the refrigerant circuit is an example and is not limited.
 圧縮機103は、インバータ装置等を備え、制御装置6により制御される運転周波数に応じて、冷媒を吸入圧縮して吐出する容量を細かく変化させる。四方弁104は、温水暖房運転時に圧縮機103からの冷媒が水熱交換器102に流れるように切り替えると共に、空気熱交換器101からの冷媒が圧縮機103に吸入されるように切り替える。また、四方弁104は、冷水冷房運転時に圧縮機103からの冷媒が空気熱交換器101に流れるように切り替えると共に、水熱交換器102からの冷媒が圧縮機103に吸入されるように切り替える。この四方弁104の切り替えは、制御装置6によって行われる。 The compressor 103 includes an inverter device and the like, and finely changes the capacity for sucking and compressing the refrigerant in accordance with the operation frequency controlled by the control device 6. The four-way valve 104 switches so that the refrigerant from the compressor 103 flows into the water heat exchanger 102 during the hot water heating operation, and switches so that the refrigerant from the air heat exchanger 101 is sucked into the compressor 103. The four-way valve 104 switches so that the refrigerant from the compressor 103 flows into the air heat exchanger 101 during the cold water cooling operation, and switches so that the refrigerant from the water heat exchanger 102 is sucked into the compressor 103. The switching of the four-way valve 104 is performed by the control device 6.
 水熱交換器102は、冷媒回路を流れる冷媒と配管内を流れる水との熱交換を行う。この水熱交換器102は、温水暖房運転時に放熱器(凝縮器)として作用し、配管内を流れる水を加熱する。また、水熱交換器102は、冷水冷房運転時に吸熱器(蒸発器)として作用し、配管内を流れる水を冷却する。なお、本実施の形態1では、水熱交換器102をヒートポンプ熱源機1に内蔵させているが、例えば水熱交換器102をヒートポンプ熱源機1から分離して独立に設けるようにしてもよいし、温冷水空調機器2内に設けてもよい。 The water heat exchanger 102 performs heat exchange between the refrigerant flowing in the refrigerant circuit and the water flowing in the pipe. This water heat exchanger 102 acts as a radiator (condenser) during the hot water heating operation, and heats the water flowing in the piping. Further, the water heat exchanger 102 acts as a heat absorber (evaporator) during the cold water cooling operation, and cools the water flowing in the piping. In the first embodiment, the water heat exchanger 102 is built in the heat pump heat source unit 1. However, for example, the water heat exchanger 102 may be provided separately from the heat pump heat source unit 1. The hot / cold water air conditioner 2 may be provided.
 第1膨張弁106は、冷媒の流量を調整して、例えば水熱交換器102を流れる冷媒の圧力を調整(減圧)する。中圧レシーバ105は、冷媒回路の第1膨張弁106と第2膨張弁107との間に設けられ、冷媒回路の余剰冷媒を溜める。中圧レシーバ105には、四方弁104から圧縮機103の吸入側に接続されている吸入配管が通過している。この中圧レシーバ105は、吸入配管を通過する冷媒と余剰冷媒との熱交換を行うことができ、内部熱交換器としての機能を備えている。 The first expansion valve 106 adjusts the flow rate of the refrigerant to adjust (depressurize) the pressure of the refrigerant flowing through the water heat exchanger 102, for example. The intermediate pressure receiver 105 is provided between the first expansion valve 106 and the second expansion valve 107 in the refrigerant circuit, and accumulates excess refrigerant in the refrigerant circuit. A suction pipe connected from the four-way valve 104 to the suction side of the compressor 103 passes through the intermediate pressure receiver 105. The intermediate pressure receiver 105 can exchange heat between the refrigerant passing through the suction pipe and the surplus refrigerant, and has a function as an internal heat exchanger.
 また、第2膨張弁107は、第1膨張弁106と同様に、冷媒の流量を調整して、圧力を調整する。第1膨張弁106および第2膨張弁107には、制御装置6からの指示に基づいて弁の開度を変化させることができる電子膨張弁が用いられている。空気熱交換器101は、冷媒と送風機により送られる外気との熱交換を行う、例えばフィンアンドチューブ型熱交換器である。この空気熱交換器101は、温水暖房運転時には吸熱器(蒸発器)として作用し、冷水冷房運転時には放熱器(凝縮器)として作用する。 Also, the second expansion valve 107 adjusts the pressure by adjusting the flow rate of the refrigerant in the same manner as the first expansion valve 106. As the first expansion valve 106 and the second expansion valve 107, an electronic expansion valve capable of changing the opening degree of the valve based on an instruction from the control device 6 is used. The air heat exchanger 101 is, for example, a fin-and-tube heat exchanger that performs heat exchange between refrigerant and outside air sent by a blower. The air heat exchanger 101 acts as a heat absorber (evaporator) during hot water heating operation, and acts as a radiator (condenser) during cold water cooling operation.
 ヒートポンプ熱源機1の冷媒回路を流れる冷媒として、例えば、HFC系の混合冷媒であるR410AあるいはR407C、さらには、地球温暖化係数が低いHFC系の単一冷媒であるR32のいずれかを用いてもよい。また、これらに代えて、ハイドロフルオロオレフィン系の冷媒(HFO1234yf、HFO1234zeなど)、HC系のR290(プロパン)あるいはR1270(プロピレン)の単一または混合冷媒のいずれかを用いてもよい。 As the refrigerant flowing through the refrigerant circuit of the heat pump heat source apparatus 1, for example, either R410A or R407C which is an HFC mixed refrigerant, or R32 which is an HFC single refrigerant having a low global warming potential may be used. Good. Instead of these, either a hydrofluoroolefin-based refrigerant (HFO1234yf, HFO1234ze, etc.), an HC-based R290 (propane) or R1270 (propylene) single or mixed refrigerant may be used.
 上述の制御装置6は、往き水温センサー5により検出される水温に基づいて、圧縮機103のON/OFF運転、圧縮機103の運転周波数を制御する。また、制御装置6は、利用者のリモコン操作によって設定された室内設定温度、温冷水空調機器2の空調によって得られる室内温度、往き水温センサー5により検出される水温などを基に、ヒートポンプ熱源機1の運転を制御する。 The above-described control device 6 controls the ON / OFF operation of the compressor 103 and the operation frequency of the compressor 103 based on the water temperature detected by the outgoing water temperature sensor 5. Further, the control device 6 is based on the indoor set temperature set by the user's remote control operation, the indoor temperature obtained by the air conditioning of the hot / cold water air conditioner 2, the water temperature detected by the outgoing water temperature sensor 5, and the like. 1 operation is controlled.
 上述のように構成された温冷水空調システムにおいて、温水暖房運転または冷水冷房運転を行っているときの水サイクルについて説明する。温水暖房運転においては、一定の回転速度で回転する水循環ポンプ3により、水がヒートポンプ熱源機1と温冷水空調機器2との間を循環する。水循環ポンプ3から吐出される循環水は、ヒートポンプ熱源機1に流入し、ヒートポンプ熱源機1の水熱交換器102を通過しながら加熱される。加熱された循環水の温水は、温冷水空調機器2へ供給されて室内の空気と熱交換(放熱)し、室内を暖房する。そして、その熱交換によって温度が下がった温水は、再び水循環ポンプ3に吸引され、ヒートポンプ熱源機1へ送り込まれて循環する。 The water cycle when the hot water heating operation or the cold water cooling operation is performed in the hot / cold water air conditioning system configured as described above will be described. In the hot water heating operation, water circulates between the heat pump heat source unit 1 and the hot / cold water air conditioner 2 by the water circulation pump 3 that rotates at a constant rotational speed. Circulating water discharged from the water circulation pump 3 flows into the heat pump heat source unit 1 and is heated while passing through the water heat exchanger 102 of the heat pump heat source unit 1. The heated hot water of the circulating water is supplied to the hot / cold water air conditioner 2 to exchange heat (radiate heat) with the air in the room to heat the room. Then, the hot water whose temperature has been lowered by the heat exchange is again sucked into the water circulation pump 3 and sent to the heat pump heat source unit 1 for circulation.
 冷水冷房運転においては、水循環ポンプ3から吐出される循環水は、ヒートポンプ熱源機1の水熱交換器102により冷却される。冷却された循環水の冷水は、温冷水空調機器2へ供給されて室内の空気と熱交換(吸熱)し、室内を冷房する。そして、その熱交換により温度が上がった冷水は、再び水循環ポンプ3に吸引され、ヒートポンプ熱源機1へ送り込まれて循環する。 In the cold water cooling operation, the circulating water discharged from the water circulation pump 3 is cooled by the water heat exchanger 102 of the heat pump heat source unit 1. The cooled chilled water is supplied to the hot / cold water air conditioner 2 and exchanges heat with the room air (heat absorption) to cool the room. Then, the cold water whose temperature has been raised by the heat exchange is again sucked into the water circulation pump 3 and sent to the heat pump heat source unit 1 for circulation.
 図3は、実施の形態1に係る温冷水空調システムの制御装置と、該制御装置との間で入出力が行われる構成要素とを示すブロック図である。制御装置6は、サーモON/OFF制御手段61と、切替手段62と、復帰手段63とを備えている。サーモON/OFF制御手段61は、往き水温センサー5から入力される往き水温度に基づいて、サーモON/OFFが所定の時間間隔で繰り返されるサーモON/OFF通常制御と、サーモON/OFFが所定の時間間隔より長い時間間隔で実行されるサーモON/OFF抑制制御とを実行する。切替手段62は、往き水温センサー5から入力される往き水温度と圧縮機103の運転周波数とに基づいて、サーモON/OFF通常制御からサーモON/OFF抑制制御への切替えを実行する。復帰手段63は、往き水温度と圧縮機103の運転周波数とに基づいて、サーモON/OFF抑制制御からサーモON/OFF通常制御への復帰を実行する。 FIG. 3 is a block diagram showing the control device of the hot / cold water air-conditioning system according to Embodiment 1 and the components that perform input / output between the control device. The control device 6 includes a thermo ON / OFF control means 61, a switching means 62, and a return means 63. The thermo ON / OFF control means 61 is configured to perform thermo ON / OFF normal control in which the thermo ON / OFF is repeated at predetermined time intervals based on the incoming water temperature input from the outgoing water temperature sensor 5, and the thermo ON / OFF is predetermined. Thermo ON / OFF suppression control executed at a time interval longer than the time interval is executed. The switching means 62 performs switching from the thermo ON / OFF normal control to the thermo ON / OFF suppression control based on the outgoing water temperature input from the outgoing water temperature sensor 5 and the operating frequency of the compressor 103. The return means 63 performs a return from the thermo ON / OFF suppression control to the thermo ON / OFF normal control based on the incoming water temperature and the operating frequency of the compressor 103.
 次に、この温冷水空調システムにおいて温水暖房運転における圧縮機103の制御ついて、図4に基づいて説明をする。図4は、実施の形態1に係る温冷水空調システムの温水暖房運転における圧縮機の制御動作を示すフローチャートである。図4のフローチャートに示す制御は制御装置6が実行する。 Next, the control of the compressor 103 in the hot water heating operation in this hot / cold water air conditioning system will be described with reference to FIG. FIG. 4 is a flowchart showing the control operation of the compressor in the hot water heating operation of the hot / cold water air conditioning system according to the first embodiment. The control shown in the flowchart of FIG.
 まず、制御装置6は、四方弁104を駆動して、圧縮機103の吐出側と水熱交換器102とを接続すると共に、空気熱交換器101と圧縮機103の吸入側とを接続する。次いで、制御装置6は、圧縮機103を駆動して冷媒を吐出させ、冷媒回路内を循環させる。そして、制御装置6は、水循環ポンプ3を一定の回転速度で回転させて配管4内の水を循環させ、温水暖房の運転を開始する。 First, the control device 6 drives the four-way valve 104 to connect the discharge side of the compressor 103 and the water heat exchanger 102, and connects the air heat exchanger 101 and the suction side of the compressor 103. Next, the control device 6 drives the compressor 103 to discharge the refrigerant and circulates in the refrigerant circuit. And the control apparatus 6 rotates the water circulation pump 3 with a fixed rotational speed, circulates the water in the piping 4, and starts the driving | operation of warm water heating.
 その後、制御装置6のサーモON/OFF制御手段61は、ステップS1で、圧縮機103のサーモON/OFF通常制御を開始する。まず、サーモON/OFF制御手段61は、往き水温センサー5により検出された水温を読み込み、次いで、読み込んだ水温と目標水温とを比較して、圧縮機103のサーモON/OFFおよび運転周波数を制御する。この目標水温は、例えばユーザーのリモコン操作によって設定された値である。往き水温センサー5により検知した往き水温検知温度Tmが、目標往き水温Tt-T1(第1温度差、例えば、0.5deg)以下であれば、サーモONとなる。一方、往き水温センサー5により検知した往き水温検知温度Tmが、目標往き水温Tt+T2(第2温度差、例えば、2deg)以上あれば、サーモOFFとなる。 Thereafter, the thermo ON / OFF control means 61 of the control device 6 starts the thermo ON / OFF normal control of the compressor 103 in step S1. First, the thermo ON / OFF control means 61 reads the water temperature detected by the incoming water temperature sensor 5, and then compares the read water temperature with the target water temperature to control the thermo ON / OFF and operating frequency of the compressor 103. To do. This target water temperature is, for example, a value set by a user's remote control operation. If the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 is equal to or lower than the target outgoing water temperature Tt−T1 (first temperature difference, for example, 0.5 deg), the thermo is turned ON. On the other hand, if the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 is equal to or higher than the target outgoing water temperature Tt + T2 (second temperature difference, for example, 2 deg), the thermo is turned off.
 本実施の形態1では、ステップS1のサーモON/OFF通常制御による運転中に、サーモON/OFF抑制制御への切替判定を実施する。その内容について、以下に説明する。ステップS2で、切替手段62は、ヒートポンプ熱源機1の圧縮機103の運転周波数が最小周波数(例えば、25Hz)であるか否かをチェックする。圧縮機103の運転周波数が最小周波数でないことが確認されたらステップS3へ進む。圧縮機103が最小周波数より大きい周波数で運転されているということは、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要熱量を上回っていないと判断できる。そこで、ステップS3では、サーモON/OFF通常制御からサーモON/OFF抑制制御への切替判定に用いる変数である判定カウント数Ncountをゼロにリセットする。判定カウント数Ncountは、短時間でのサーモON/OFFの切替が検出されたときに1インクリメントされる変数である。切替手段62は、判定カウント数Ncountをゼロにリセットする。その後、制御はステップS1へ戻り、サーモON/OFF制御手段61によるサーモON/OFF通常制御が継続される。 In the first embodiment, the switching determination to the thermo ON / OFF suppression control is performed during the operation by the thermo ON / OFF normal control in step S1. The contents will be described below. In step S2, the switching unit 62 checks whether or not the operating frequency of the compressor 103 of the heat pump heat source apparatus 1 is the minimum frequency (for example, 25 Hz). If it is confirmed that the operating frequency of the compressor 103 is not the minimum frequency, the process proceeds to step S3. The fact that the compressor 103 is operated at a frequency higher than the minimum frequency can be determined that the minimum supply capacity of the heat pump heat source unit 1 does not exceed the amount of heat required for the hot / cold water air conditioner 2. Therefore, in step S3, the determination count number Ncount, which is a variable used for switching determination from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control, is reset to zero. The determination count number Ncount is a variable that is incremented by 1 when the switching of the thermo ON / OFF in a short time is detected. The switching unit 62 resets the determination count number Ncount to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
 ステップS2で、圧縮機103の運転周波数が最小周波数であることが確認されたら、ステップS4へ進む。ステップS4では、切替手段62は、サーモONしてから所定時間TA(第1の所定時間、例えば、10分)以内にサーモOFFしたか否かをチェックする。サーモONからサーモOFFまでの時間間隔が所定時間TAより長い、すなわちサーモONによる運転が所定時間TA以上経過しているということは、サーモON/OFFサイクル運転の状態にはないと判断できる。従って、サーモONしてから所定時間TA以内にサーモOFFしていないことが確認されたらステップS3へ進み、判定カウント数Ncountをゼロにリセットする。その後、制御はステップS1へ戻り、サーモON/OFF制御手段61によるサーモON/OFF通常制御が継続される。 If it is confirmed in step S2 that the operating frequency of the compressor 103 is the minimum frequency, the process proceeds to step S4. In step S4, the switching means 62 checks whether or not the thermo is turned off within a predetermined time TA (first predetermined time, for example, 10 minutes) after the thermo is turned on. If the time interval from the thermo-ON to the thermo-OFF is longer than the predetermined time TA, that is, that the operation by the thermo-ON has exceeded the predetermined time TA, it can be determined that the thermo-ON / OFF cycle operation is not in the state. Therefore, if it is confirmed that the thermo is not turned off within the predetermined time TA after the thermo is turned on, the process proceeds to step S3, and the determination count number Ncount is reset to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
 ステップS4で、サーモONしてから所定時間TA以内にサーモOFFしたことが確認されたら、ステップS5へ進む。ステップS5へ進む場合とは、圧縮機103の最小周波数での運転能力よりも温冷水空調機器2の必要熱量が小さくなっている状態において、サーモONから所定時間TAが経過する前にサーモOFFになった場合である。ステップS5では、判定カウント数Ncountがゼロであるか否かをチェックする。判定カウント数Ncountがゼロではない場合は、ステップS6へ進む。 If it is confirmed in step S4 that the thermo is turned off within a predetermined time TA after the thermo is turned on, the process proceeds to step S5. In the case of proceeding to step S5, in the state where the required heat quantity of the hot / cold water air conditioner 2 is smaller than the operation capacity at the minimum frequency of the compressor 103, the thermo OFF is performed before the predetermined time TA has elapsed from the thermo ON. This is the case. In step S5, it is checked whether or not the determination count number Ncount is zero. If the determination count number Ncount is not zero, the process proceeds to step S6.
 ステップS6で、切替手段62は、前回、判定カウント数Ncountに1を加えてから所定時間TB(第2の所定時間、例えば、10分)が経過しているか否かをチェックする。ステップS6において所定時間TBが経過していないことが確認される場合とは、サーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認されてから所定時間TBが経過する前に、再びサーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認される場合である。すなわち、サーモON/OFFサイクル運転が開始されている可能性がある。そこで、この場合はステップS7へ進み、判定カウント数Ncountに1を加える。 In step S6, the switching unit 62 checks whether or not a predetermined time TB (second predetermined time, for example, 10 minutes) has elapsed since 1 was added to the determination count number Ncount last time. When it is confirmed in step S6 that the predetermined time TB has not elapsed, it is confirmed that the time from the thermo ON to the thermo OFF is shorter than the predetermined time TA before the predetermined time TB elapses. This is a case where it is confirmed that the time from the thermo ON again to the thermo OFF is shorter than the predetermined time TA. That is, the thermo ON / OFF cycle operation may be started. Therefore, in this case, the process proceeds to step S7, and 1 is added to the determination count number Ncount.
 ステップS6で、所定時間TBが経過していることが確認される場合とは、前回、サーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認されてから、再び、サーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認されるまで、所定時間TBが経過している場合である。従って、サーモON/OFFサイクル運転の状態にはないと判断される。そこで、この場合はステップS3へ進み、切替手段62は、判定カウント数Ncountをゼロにリセットする。その後、制御はステップS1へ戻り、サーモON/OFF制御手段61によるサーモON/OFF通常制御が継続される。 When it is confirmed in step S6 that the predetermined time TB has elapsed, it is confirmed that the time from the thermo ON to the time when the thermo is turned off is shorter than the predetermined time TA, and then from the thermo ON again. This is a case where the predetermined time TB has elapsed until it is confirmed that the time until the thermo-OFF is shorter than the predetermined time TA. Therefore, it is determined that there is no thermo-ON / OFF cycle operation. Therefore, in this case, the process proceeds to step S3, and the switching unit 62 resets the determination count number Ncount to zero. Thereafter, the control returns to step S1, and the thermo ON / OFF normal control by the thermo ON / OFF control means 61 is continued.
 一方、ステップS5において、判定カウント数Ncountをゼロであることが確認されたら、ステップS6の処理はスキップし、ステップS7の処理が実行される。ステップS5において、短時間でのサーモON/OFFの繰り返しは発生していないものの、サーモONから所定時間TA以内にサーモOFFが確認されており、サーモON/OFFサイクル運転が開始されている可能性がある。そこで、この場合は、ステップS6の処理は行われず、ステップS7で判定カウント数Ncountに1が加えられる。 On the other hand, if it is confirmed in step S5 that the determination count number Ncount is zero, the process of step S6 is skipped and the process of step S7 is executed. In step S5, although thermo-ON / OFF is not repeated in a short time, thermo-OFF is confirmed within a predetermined time TA from thermo-ON, and thermo-ON / OFF cycle operation may have started. There is. Therefore, in this case, the process of step S6 is not performed, and 1 is added to the determination count number Ncount in step S7.
 ステップS7の処理の後、ステップS8へ進み、切替手段62は、判定カウント数Ncountが一定回数以上であるか否かをチェックする。判定カウント数Ncountが一定回数未満である場合とは、圧縮機103が最低周波数で運転されている状態において、短時間でのサーモON/OFFが頻繁には起きていない場合であり、サーモON/OFFサイクル運転の状態にはない場合である。この場合は、サーモON/OFF通常制御を継続しても、冷媒回路を構成する各部品の寿命に影響を与えることはなく、また圧縮機103内における液冷媒の吸入という問題も生じないと判断できる。従って、判定カウント数Ncountが一定回数未満である場合、制御はステップS1へ戻り、サーモON/OFF制御手段61によるサーモON/OFF通常制御が継続される。 After the process of step S7, the process proceeds to step S8, and the switching means 62 checks whether or not the determination count number Ncount is equal to or greater than a predetermined number. The case where the determination count number Ncount is less than a certain number is a case where the thermo-ON / OFF in a short time does not occur frequently in a state where the compressor 103 is operated at the lowest frequency. This is a case where the vehicle is not in the OFF cycle operation state. In this case, it is determined that even if the thermo-ON / OFF normal control is continued, the life of each component constituting the refrigerant circuit is not affected, and the problem of suction of the liquid refrigerant in the compressor 103 does not occur. it can. Therefore, if the determination count number Ncount is less than the predetermined number, the control returns to step S1, and the thermo-ON / OFF normal control by the thermo-ON / OFF control means 61 is continued.
 一方、判定カウント数Ncountが一定回数に達している場合とは、圧縮機103が最低周波数で運転されている状態において、サーモONからサーモOFFへの切替えおよびサーモOFFからサーモONへの切替えが、それぞれ所定時間TA、TB以下の時間間隔で繰り返し実行される場合である。すなわち、サーモON/OFFサイクル運転が実行されていると判断される。この場合は、サーモON/OFF通常制御を継続すると、冷媒回路を構成する各部品の寿命に影響を与える可能性があり、また圧縮機103内において液冷媒が吸入される可能性もある。従って、切替手段62は、サーモON/OFF通常制御からサーモON/OFF抑制制御への切替えを実行する。判定カウント数Ncountが一定回数に達していることが確認されたらステップS9へ進み、サーモON/OFF制御手段61によるサーモON/OFF抑制制御が開始される。 On the other hand, when the determination count number Ncount has reached a certain number, when the compressor 103 is operated at the lowest frequency, switching from the thermo-ON to the thermo-OFF and switching from the thermo-OFF to the thermo-ON This is a case where the process is repeatedly executed at time intervals equal to or less than predetermined times TA and TB. That is, it is determined that the thermo ON / OFF cycle operation is being performed. In this case, if the thermo-ON / OFF normal control is continued, the life of each component constituting the refrigerant circuit may be affected, and the liquid refrigerant may be sucked into the compressor 103. Therefore, the switching means 62 performs switching from the thermo ON / OFF normal control to the thermo ON / OFF suppression control. When it is confirmed that the determination count number Ncount has reached a certain number, the process proceeds to step S9, and thermo-ON / OFF suppression control by the thermo-ON / OFF control means 61 is started.
 上述のステップS2からステップS8までは、切替手段62により実行される処理手順であり、サーモON/OFF通常制御を実施している最中に、サーモON/OFF抑制制御への切替えを判定する処理手順である。サーモON/OFF制御手段61は以下の制御を実施する。サーモONした後、往き水温センサー5により検知した往き水温検知温度Tmが目標往き水温Tt+T2に達しておらず、その差が大きいとき、サーモON/OFF制御手段61は、圧縮機103の運転周波数を上げて供給熱量を高める。この制御によりヒートポンプ熱源機1の加熱能力が温冷水空調機器2の放熱量よりも大きくなれば、往き水温センサー5により検知される往き水温検知温度Tmは上昇する。そして、往き水温検知温度Tmが目標往き水温Ttに到達したら、サーモON/OFF制御手段61は、ヒートポンプ熱源機1の供給能力と温冷水空調機器2の放熱量が釣り合うように、圧縮機103の運転周波数を徐々に下げ、往き水温の温度を維持する。 Steps S2 to S8 described above are processing procedures executed by the switching means 62, and a process for determining switching to the thermo ON / OFF suppression control while the thermo ON / OFF normal control is being performed. It is a procedure. The thermo ON / OFF control means 61 performs the following control. After the thermo-ON, when the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 does not reach the target outgoing water temperature Tt + T2, and the difference is large, the thermo ON / OFF control means 61 changes the operating frequency of the compressor 103. Increase the heat supply. If the heating capacity of the heat pump heat source device 1 becomes larger than the heat radiation amount of the hot / cold water air conditioner 2 by this control, the forward water temperature detection temperature Tm detected by the forward water temperature sensor 5 rises. When the outgoing water temperature detection temperature Tm reaches the target outgoing water temperature Tt, the thermo-ON / OFF control means 61 adjusts the compressor 103 so that the supply capacity of the heat pump heat source unit 1 and the heat radiation amount of the hot / cold water air conditioner 2 are balanced. Reduce the operating frequency gradually to maintain the temperature of the incoming water temperature.
 このとき、圧縮機103の運転周波数が最小周波数(例えば、25Hz)になっても、往き水温センサー5による往き水温検知温度Tmが上昇し続けてサーモOFFとなれば、ヒートポンプ熱源機1の最小周波数運転での最小供給能力は、温冷水空調機器2の放熱量よりも大きいと見なせる。 At this time, even if the operating frequency of the compressor 103 becomes the minimum frequency (for example, 25 Hz), if the outgoing water temperature detection temperature Tm by the outgoing water temperature sensor 5 continues to rise and becomes thermo OFF, the minimum frequency of the heat pump heat source machine 1 It can be considered that the minimum supply capacity in operation is larger than the heat radiation amount of the hot / cold water air conditioner 2.
 サーモOFFして圧縮機103が停止すると、ヒートポンプ熱源機1の供給能力はゼロとなる。その結果、往き水温センサー5により検出される往き水温検知温度Tmは下がり、再び目標往き水温Tt-T1以下になると、サーモONする。しかし、サーモONしても、ヒートポンプ熱源機1の最小周波数運転での最小供給能力は、温冷水空調機器2の放熱量よりも大きいため、さらに再びサーモOFFする。すなわち、ヒートポンプ熱源機1の最小周波数運転での最小供給能力が温冷水空調機器2の放熱量よりも大きい場合、サーモON(圧縮機103を最小周波数で運転)とサーモOFF(圧縮機103停止)が短いサイクルで断続的に繰り返すサーモON/OFFサイクル運転となる。 When the compressor 103 is stopped by the thermo OFF, the supply capacity of the heat pump heat source unit 1 becomes zero. As a result, when the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 decreases and becomes equal to or lower than the target outgoing water temperature Tt−T1 again, the thermo-ON is performed. However, even if the thermo is turned on, the minimum supply capability in the minimum frequency operation of the heat pump heat source apparatus 1 is larger than the heat radiation amount of the hot / cold water air conditioner 2, so the thermo pump is turned off again. That is, when the minimum supply capability in the minimum frequency operation of the heat pump heat source device 1 is larger than the heat radiation amount of the hot / cold water air conditioner 2, the thermo ON (the compressor 103 is operated at the minimum frequency) and the thermo OFF (the compressor 103 is stopped). The thermo-ON / OFF cycle operation is repeated intermittently in a short cycle.
 切替手段62は、一定の時間内でこのON/OFFサイクル運転となったかどうかを上述のステップS2~S8の処理で判定している。 The switching means 62 determines whether or not the ON / OFF cycle operation has been performed within a certain period of time by the processes in steps S2 to S8 described above.
 ステップS9で実行されるサーモON/OFF抑制制御について説明する。サーモON/OFF抑制制御において、サーモON/OFF制御手段61は、往き水温センサー5により検知された往き水温検知温度Tmを目標往き水温Ttと比較することなく強制的に圧縮機103を停止する強制停止時間αを設定する。強制停止時間αは、例えば10分である。そして、強制停止時間αの経過後、往き水温検知温度Tmを目標往き水温Ttと比較する。サーモON/OFF制御手段61は、往き水温検知温度Tmが目標往き水温Tt-T1以下となったら、サーモONを実施する。一方、往き水温検知温度Tmが目標往き水温Tt+所定の閾値T3(第3温度差、例えば、5deg)以上となったらサーモOFFを実施する。 The thermo ON / OFF suppression control executed in step S9 will be described. In the thermo ON / OFF suppression control, the thermo ON / OFF control means 61 forcibly stops the compressor 103 without comparing the forward water temperature detection temperature Tm detected by the forward water temperature sensor 5 with the target forward water temperature Tt. Set the stop time α. The forced stop time α is, for example, 10 minutes. Then, after the elapse of the forced stop time α, the outgoing water temperature detection temperature Tm is compared with the target outgoing water temperature Tt. The thermo ON / OFF control means 61 performs thermo ON when the outgoing water temperature detection temperature Tm becomes equal to or lower than the target outgoing water temperature Tt−T1. On the other hand, when the outgoing water temperature detection temperature Tm is equal to or higher than the target outgoing water temperature Tt + the predetermined threshold T3 (third temperature difference, for example, 5 deg), the thermo-OFF is performed.
 サーモON/OFF抑制制御において設定される圧縮機103の強制停止時間αは、サーモON動作中に、判定カウント数Ncountが一定回数に達したときの、圧縮機103における冷媒温度(例えば、圧縮機103の吸入過熱度)により決定される。換言すると、切替手段62により、サーモON/OFF通常制御からサーモON/OFF抑制制御に切り替えられたときの、圧縮機103における冷媒温度により決定される。この冷媒温度が相対的に高いとき、強制停止時間αは相対的に長く設定される。また、サーモON/OFF抑制制御においてサーモOFFの実施を判断する際、往き水温検知温度Tmと目標往き水温Ttとの比較に用いられる閾値T3は、サーモON/OFF抑制制御が開始された後の初回のサーモOFFが確認されるときに、強制停止時間αにおける往き水温の低下の度合いに応じて設定される。換言すると、サーモON/OFF抑制制御において、サーモOFFの動作点温度は、強制停止時間αにおける往き水温の低下の度合いに基づいて補正される。従って、冷媒温度が相対的に高く、強制停止時間αが長く設定されれば、往き水温の低下はより大きくなるため、閾値T3は高く設定される。強制停止時間αおよび閾値T3は、ヒートポンプ熱源機1の性能によって適正な値が異なるため、実際にサーモON/OFFサイクル運転を発生される試験を行った結果に基づいて設定される。 The forced stop time α of the compressor 103 set in the thermo-ON / OFF suppression control is the refrigerant temperature (for example, the compressor) when the determination count number Ncount reaches a certain number during the thermo-ON operation. 103). In other words, it is determined by the refrigerant temperature in the compressor 103 when the switching means 62 switches from the thermo ON / OFF normal control to the thermo ON / OFF suppression control. When the refrigerant temperature is relatively high, the forced stop time α is set to be relatively long. Further, when determining whether to perform the thermo-off in the thermo-ON / OFF suppression control, the threshold T3 used for comparing the forward water temperature detection temperature Tm and the target forward water temperature Tt is the value after the thermo-ON / OFF suppression control is started. When the first thermo OFF is confirmed, it is set according to the degree of decrease in the going water temperature during the forced stop time α. In other words, in the thermo ON / OFF suppression control, the operating point temperature of the thermo OFF is corrected based on the degree of decrease in the outgoing water temperature during the forced stop time α. Therefore, if the refrigerant temperature is relatively high and the forced stop time α is set to be long, the drop in the going water temperature becomes larger, so the threshold T3 is set high. The forced stop time α and the threshold value T3 differ depending on the performance of the heat pump heat source apparatus 1, and therefore, the forced stop time α and the threshold value T3 are set based on a result of a test that actually generates a thermo ON / OFF cycle operation.
 さらに、サーモON/OFF抑制制御において、往き水温センサー5により検知した往き水温検知温度Tmと往き水温上限値Txとを比較し、往き水温検知温度Tmが往き水温上限値Txを超えている場合、サーモON/OFF制御手段61は、圧縮機103を停止する処理を実行する。往き水温上限値Txは、ユーザーがリモコンなどで設定する。この処理により、往き水温が高温になることで温冷水空調機器2に許容上限温度以上の高温水が流入し、温冷水空調機器2の動作に不具合が生じることが防止される。 Further, in the thermo ON / OFF suppression control, the forward water temperature detection temperature Tm detected by the forward water temperature sensor 5 is compared with the forward water temperature upper limit value Tx, and when the forward water temperature detection temperature Tm exceeds the forward water temperature upper limit value Tx, The thermo ON / OFF control means 61 executes a process for stopping the compressor 103. The forward water temperature upper limit value Tx is set by the user using a remote controller or the like. This process prevents the hot water having a temperature higher than the allowable upper limit temperature from flowing into the hot / cold water air conditioner 2 due to the high temperature of the outgoing water, thereby preventing malfunction of the operation of the hot / cold water air conditioner 2.
 本実施の形態1では、ステップS9のサーモON/OFF抑制制御による運転中、復帰手段63は、サーモON/OFF通常制御への復帰判定を実施する。その内容について、以下に説明する。ステップS10において、復帰手段63は、圧縮機103が最小運転周波数より高い周波数で所定時間(第3の所定時間)連続して運転しているか否か(例えば、最小運転周波数が25Hzとし、所定時間が60分だとすると、26Hzで60分間、連続して運転しているか否か)をチェックする。復帰手段63が圧縮機103の運転周波数が最低周波数であることを確認したら、制御は再びステップS9へ戻り、サーモON/OFF制御手段61によるサーモON/OFF抑制制御が継続される。 In the first embodiment, during the operation by the thermo-ON / OFF suppression control in step S9, the return means 63 performs the return determination to the thermo-ON / OFF normal control. The contents will be described below. In step S10, the return means 63 determines whether or not the compressor 103 is continuously operating at a frequency higher than the minimum operating frequency for a predetermined time (third predetermined time) (for example, the minimum operating frequency is 25 Hz and the predetermined time If it is 60 minutes, it is checked whether or not it is continuously operating at 26 Hz for 60 minutes). When the return means 63 confirms that the operating frequency of the compressor 103 is the lowest frequency, the control returns to step S9 again and the thermo ON / OFF suppression control by the thermo ON / OFF control means 61 is continued.
 圧縮機103が最小運転周波数より高い周波数で所定時間、連続して運転している場合とは、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の放熱量以下であり、サーモON/OFF通常制御を実施しても、サーモON/OFFサイクル運転となる可能性は低いと判断できる。従って、この場合はステップS3へ進み、復帰手段63は、判定カウント数Ncountをリセットしてゼロとし、ステップS1へ戻り、サーモON/OFF制御手段61による制御をサーモON/OFF抑制制御からサーモON/OFF通常制御へ復帰させる。 When the compressor 103 is continuously operating at a frequency higher than the minimum operating frequency for a predetermined time, the minimum supply capacity of the heat pump heat source unit 1 is less than the heat dissipation amount of the hot / cold water air conditioner 2, and the thermo ON / OFF Even if the normal control is performed, it can be determined that the possibility of the thermo-ON / OFF cycle operation is low. Accordingly, in this case, the process proceeds to step S3, and the return means 63 resets the determination count number Ncount to zero, returns to step S1, and controls the thermo ON / OFF control means 61 from the thermo ON / OFF suppression control to the thermo ON. / OFF Return to normal control.
 ここで、従来の圧縮機の運転状態と本実施の形態1における圧縮機の運転状態の相違を図5および図6を用いて説明する。図5は従来の温冷水空調システムにおいて温水暖房運転における圧縮機の運転状態を示すタイムチャート、図6は実施の形態1に係る温冷水空調システムにおいて温水暖房運転における圧縮機の運転状態を示すタイムチャートである。図5および図6のタイムチャートは、ヒートポンプ熱源機の最小供給能力が温冷水空調機器の放熱量より大きい場合の運転状態を示している。すなわち、図5は、本実施の形態1に係るサーモON/OFF抑制制御(上述のステップS9の処理)を行っているときの水温の変化と圧縮機103の運転状態を示している。 Here, the difference between the operation state of the conventional compressor and the operation state of the compressor in the first embodiment will be described with reference to FIGS. FIG. 5 is a time chart showing the operating state of the compressor in the hot water heating operation in the conventional hot / cold water air conditioning system, and FIG. 6 is the time showing the operating state of the compressor in the hot water heating operation in the hot / cold water air conditioning system according to Embodiment 1. It is a chart. The time chart of FIG. 5 and FIG. 6 has shown the driving | running state in case the minimum supply capability of a heat pump heat source machine is larger than the thermal radiation amount of a hot / cold water air conditioner. That is, FIG. 5 shows the change in water temperature and the operating state of the compressor 103 when the thermo ON / OFF suppression control according to the first embodiment (the processing in step S9 described above) is performed.
 従来の圧縮機103の運転では、図5に示すように、サーモON/OFF通常制御のみが実行される。往き水温センサー5により検出される水温の応答性が早いがゆえに、サーモONしてから間も無く水温が目標水温以上となりサーモOFF(ヒートポンプ熱源機1の圧縮機103の運転を停止)となる。圧縮機103は停止しても、水循環ポンプ3は駆動して循環水は流れている。従って、サーモOFFした後、水温は間も無く目標水温よりも低くなり、サーモONする。つまり、圧縮機103はサーモON/OFFサイクル運転となり、ヒートポンプ熱源機1はON/OFF運転を行うことになる。 In the operation of the conventional compressor 103, only the thermo ON / OFF normal control is executed as shown in FIG. Since the responsiveness of the water temperature detected by the going water temperature sensor 5 is fast, the water temperature becomes equal to or higher than the target water temperature immediately after the thermo-ON, and the thermo-OFF (operation of the compressor 103 of the heat pump heat source unit 1 is stopped). Even if the compressor 103 is stopped, the water circulation pump 3 is driven and the circulating water flows. Therefore, after the thermo is turned off, the water temperature soon becomes lower than the target water temperature, and the thermo is turned on. That is, the compressor 103 is in a thermo ON / OFF cycle operation, and the heat pump heat source unit 1 is in an ON / OFF operation.
 これに対して、本実施の形態1においては、短い時間間隔でのサーモON/OFFが所定回数に達し、サーモON/OFFサイクル運転を検出すると、サーモON/OFF通常制御からサーモON/OFF抑制制御へ切り替えられる。サーモON/OFF抑制制御では、サーモON/OFF抑制制御に切り替わったとき、すなわちサーモON/OFFが所定回数に達したときの圧縮機103の例えば吸入加熱度等の冷媒温度に基づいて強制停止時間が設定される。そして、サーモONとする条件に強制停止時間の経過が加えられる。さらに、強制停止時間中に発生する往き水温の温度低下に基づいて、次回以降のサーモOFFの動作点温度を補正している。その結果、空調の快適性を損なうことなく、サーモON/OFFの時間間隔を拡張し、サーモON/OFF回数を抑制することができる。 In contrast, in the first embodiment, when the thermo ON / OFF at a short time interval reaches a predetermined number of times and the thermo ON / OFF cycle operation is detected, the thermo ON / OFF normal control suppresses the thermo ON / OFF normal control. Switch to control. In the thermo ON / OFF suppression control, when the operation is switched to the thermo ON / OFF suppression control, that is, when the thermo ON / OFF reaches a predetermined number of times, the forced stop time is based on the refrigerant temperature such as the suction heating degree of the compressor 103, for example. Is set. Then, the passage of the forced stop time is added to the condition for turning on the thermo. Furthermore, the operating point temperature of the thermo OFF after the next time is corrected based on the temperature drop of the outgoing water temperature that occurs during the forced stop time. As a result, it is possible to extend the thermo-ON / OFF time interval and reduce the number of thermo-ON / OFF times without impairing the comfort of air conditioning.
 本実施の形態1を温水暖房運転する場合について説明したが、冷水冷房運転においても、図4に示すフローチャートと同様の処理手順で、サーモON/OFF通常制御とサーモON/OFF抑制制御の切替が実行される。冷水冷房運転の場合は、四方弁104の切り替えにより、冷媒の流れは温水暖房運転のときと反転する。つまり、空気熱交換器101が放熱器(凝縮器)として作用し、水熱交換器102が吸熱器(蒸発器)として作用し、水熱交換器102を流れる水を冷却する。 Although the case where the hot water heating operation is performed in the first embodiment has been described, the switching between the thermo ON / OFF normal control and the thermo ON / OFF suppression control is also performed in the cold water cooling operation in the same processing procedure as the flowchart shown in FIG. Executed. In the cold water cooling operation, the refrigerant flow is reversed from that in the hot water heating operation by switching the four-way valve 104. That is, the air heat exchanger 101 acts as a radiator (condenser), and the water heat exchanger 102 acts as a heat absorber (evaporator) to cool the water flowing through the water heat exchanger 102.
 冷水冷房運転におけるサーモON/OFF通常制御では、制御装置6は、往き水温センサー5により検知した往き水温検知温度Tmが、目標往き水温Tt+T4(第1温度差、例えば、T4=0.5deg)以上のときサーモONし、往き水温センサー5により検知した往き水温検知温度Tmが、目標往き水温Tt-T5(第2温度差、例えば、T5=2deg)以下のときサーモOFFする。冷水冷房運転におけるサーモON/OFF通常制御からサーモON/OFF抑制制御への切替は、上述のステップS2~S8と同様に実行される。冷水冷房運転におけるサーモON/OFF抑制制御は、上述のステップS9と同様に実行される。サーモON/OFFが所定回数に達したときの圧縮機103の冷媒温度に基づいて強制停止時間を設定する。サーモONの条件に圧縮機103を強制停止時間の経過が加えられると共に、強制停止時間中に発生する往き水温の温度上昇に基づいて、次回以降のサーモOFFの動作点温度が補正される。 In the thermo-ON / OFF normal control in the cold water cooling operation, the controller 6 detects the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 to be equal to or higher than the target outgoing water temperature Tt + T4 (first temperature difference, for example, T4 = 0.5 deg). At this time, the thermo is turned ON, and when the outgoing water temperature detection temperature Tm detected by the outgoing water temperature sensor 5 is equal to or lower than the target outgoing water temperature Tt−T5 (second temperature difference, for example, T5 = 2 deg), the thermo is turned OFF. Switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control in the cold water cooling operation is performed in the same manner as in steps S2 to S8 described above. Thermo ON / OFF suppression control in the cold water cooling operation is executed in the same manner as in step S9 described above. The forced stop time is set based on the refrigerant temperature of the compressor 103 when the thermo ON / OFF reaches a predetermined number of times. The passage of the forced stop time of the compressor 103 is added to the condition of the thermo ON, and the operating point temperature of the thermo OFF after the next time is corrected based on the temperature rise of the forward water temperature that occurs during the forced stop time.
 以上のように、本実施の形態1に係る温冷水空調システムにおいて、制御装置6は、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要とする放熱量または吸熱量を上回っている状態で、短時間におけるサーモON/OFFの断続的な切替を検出すると、サーモON/OFF通常制御からモサーモON/OFF抑制制御に切り替え、一方、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要とする放熱量または吸熱量を下回っていることを検出するとサーモON/OFF抑制制御からサーモON/OFF通常制御に切り替えて運転をしている。そして、サーモON/OFF抑制制御では、サーモON/OFFサイクル運転の状態にあると判断された時点での圧縮機103の冷媒温度に基づいて、サーモONおよびサーモOFFの条件を設定している。従って、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の温水暖房の場合の放熱量または冷水冷房の場合の吸熱量より大きい場合でも、圧縮機103の運転状態を加味しながらサーモON/OFFサイクル運転を抑制することができる。その結果、サーモON/OFFサイクル運転を防止すると共に、圧縮機103における油濃度の低下を抑制することができ、高効率かつ高寿命な温冷水空調システムを提供することができる。 As described above, in the hot / cold water air-conditioning system according to the first embodiment, the control device 6 has the minimum supply capacity of the heat pump heat source unit 1 exceeding the amount of heat dissipation or heat absorption required by the hot / cold water air-conditioning equipment 2. When intermittent switching of thermo ON / OFF in a short time is detected, the thermo ON / OFF normal control is switched to the thermo thermo ON / OFF suppression control, while the minimum supply capacity of the heat pump heat source unit 1 is hot / cold water air conditioning equipment When it is detected that the heat dissipation amount or the heat absorption amount required by 2 is lower, the operation is switched from the thermo ON / OFF suppression control to the thermo ON / OFF normal control. In the thermo-ON / OFF suppression control, conditions for thermo-ON and thermo-OFF are set based on the refrigerant temperature of the compressor 103 when it is determined that the thermo-ON / OFF cycle operation is in progress. Therefore, even when the minimum supply capacity of the heat pump heat source device 1 is larger than the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner 2 or the heat absorption amount in the case of cold water cooling, the thermo-ON / OFF cycle operation can be suppressed. As a result, the thermo ON / OFF cycle operation can be prevented, and the decrease in the oil concentration in the compressor 103 can be suppressed, and a high-efficiency and long-life hot / cold water air conditioning system can be provided.
実施の形態2.
 図7は、本発明の実施の形態2に係る温冷水空調システムの概略構成を示すブロック図である。本実施の形態2は、実施の形態1の温冷水空調システムにおいて、ヒートポンプ熱源機1と往き水温センサー5との間に循環水を加熱する補助ヒーター7を備えたものである。温水暖房運転において、ヒートポンプ熱源機1の供給能力が不足したときに、補助ヒーター7を補助熱源として循環水を加熱する。補助ヒーター7への電力供給は、制御装置6によって行われる。
Embodiment 2. FIG.
FIG. 7 is a block diagram showing a schematic configuration of a hot / cold water air-conditioning system according to Embodiment 2 of the present invention. The second embodiment includes an auxiliary heater 7 that heats the circulating water between the heat pump heat source unit 1 and the outgoing water temperature sensor 5 in the hot / cold water air conditioning system of the first embodiment. In the hot water heating operation, when the supply capacity of the heat pump heat source unit 1 is insufficient, the circulating water is heated using the auxiliary heater 7 as an auxiliary heat source. Power supply to the auxiliary heater 7 is performed by the control device 6.
 本実施の形態2においては、温水暖房運転または冷水冷房運転での圧縮機103の制御動作は図4に示すフローチャートと同じである。つまり、制御装置6は、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要とする放熱量または吸熱量を上回っている状態で、短時間におけるサーモON/OFFの断続的な切替を検出すると、サーモON/OFF通常制御からモサーモON/OFF抑制制御に切り替える。また、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要とする放熱量または吸熱量を下回っていることを検出するとサーモON/OFF抑制制御からサーモON/OFF通常制御に切り替える。そして、制御装置6は、サーモON/OFF抑制制御では、サーモON/OFFサイクル運転の状態にあると判断された時点での圧縮機103の冷媒温度に基づいて、サーモONおよびサーモOFFの条件を設定する。 In the second embodiment, the control operation of the compressor 103 in the hot water heating operation or the cold water cooling operation is the same as the flowchart shown in FIG. That is, the control device 6 performs intermittent switching of the thermo ON / OFF in a short time in a state where the minimum supply capacity of the heat pump heat source unit 1 exceeds the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2. If detected, the thermo-ON / OFF normal control is switched to the thermo-ON / OFF suppression control. Further, when it is detected that the minimum supply capacity of the heat pump heat source unit 1 is below the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2, the thermo ON / OFF suppression control is switched to the thermo ON / OFF normal control. Then, in the thermo ON / OFF suppression control, the control device 6 determines the conditions for the thermo ON and the thermo OFF based on the refrigerant temperature of the compressor 103 at the time when it is determined that the thermo ON / OFF cycle operation is in progress. Set.
 従って、圧縮機103の運転周波数の制御によるヒートポンプ熱源機1の最小供給能力が、温冷水空調機器2の温水暖房の場合の放熱量、または冷水冷房の場合の吸熱量より大きい場合でも、圧縮機103の運転状態を加味した状態でサーモON/OFFサイクル運転を抑制することができ、実施の形態1と同様の効果が得られる。 Therefore, even if the minimum supply capacity of the heat pump heat source unit 1 by controlling the operation frequency of the compressor 103 is larger than the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner 2 or the heat absorption amount in the case of cold water cooling, the compressor The thermo-ON / OFF cycle operation can be suppressed in a state where the operation state 103 is taken into consideration, and the same effect as in the first embodiment can be obtained.
実施の形態3.
 図8は、実施の形態3に係る温冷水空調システムの概略構成を示すブロック図である。本実施の形態3は、実施の形態2の温冷水空調システムにおいて、熱交換器8が内蔵された貯湯タンク9を備えたものである。熱交換器8の一端は、補助ヒーター7と温冷水空調機器2との間の配管4に挿入された分岐管12a(分岐点)に配管12を介して接続され、熱交換器8の他端は、水循環ポンプ3と温冷水空調機器2との間の配管4に挿入された電動三方弁11(合流点)に配管12を介して接続されている。すなわち、貯湯タンク9は、配管12を介して温冷水空調機器2に対して並列に接続されている。また、貯湯タンク9には、熱交換器8により加熱される貯湯タンク9内の水温を検知するタンク水温センサー10が取り付けられている。
Embodiment 3 FIG.
FIG. 8 is a block diagram illustrating a schematic configuration of the hot / cold water air-conditioning system according to the third embodiment. The third embodiment includes the hot water storage tank 9 in which the heat exchanger 8 is built in the hot / cold water air conditioning system of the second embodiment. One end of the heat exchanger 8 is connected to the branch pipe 12a (branch point) inserted in the pipe 4 between the auxiliary heater 7 and the hot / cold water air conditioner 2 via the pipe 12, and the other end of the heat exchanger 8 is connected. Is connected via a pipe 12 to an electric three-way valve 11 (confluence) inserted in a pipe 4 between the water circulation pump 3 and the hot / cold water air conditioner 2. That is, the hot water storage tank 9 is connected in parallel to the hot / cold water air conditioner 2 via the pipe 12. In addition, a tank water temperature sensor 10 for detecting the water temperature in the hot water storage tank 9 heated by the heat exchanger 8 is attached to the hot water storage tank 9.
 本実施の形態3における制御装置6は、例えばユーザーのリモコン操作に従って、温水暖房運転または冷水冷房運転、給湯運転のいずれかを選択する。制御装置6は、温水暖房運転または冷水冷房運転のときには、前述したようにヒートポンプ熱源機1と温冷水空調機器2との間で水(温水または冷水)が循環するように電動三方弁11を駆動する。また、制御装置6は、給湯運転のときには、ヒートポンプ熱源機1と熱交換器8との間で温水が循環するように電動三方弁11を駆動する。 The control device 6 according to the third embodiment selects one of the hot water heating operation, the cold water cooling operation, and the hot water supply operation in accordance with, for example, a user's remote control operation. In the hot water heating operation or the cold water cooling operation, the control device 6 drives the electric three-way valve 11 so that water (hot water or cold water) circulates between the heat pump heat source unit 1 and the hot / cold water air conditioner 2 as described above. To do. Moreover, the control apparatus 6 drives the electric three-way valve 11 so that warm water circulates between the heat pump heat source unit 1 and the heat exchanger 8 during the hot water supply operation.
 本実施の形態3においては、温水暖房運転または冷水冷房運転の動作、および給湯運転の動作での圧縮機103の制御動作は、図4に示すフローチャートと同様であり、実施の形態2について上述した通りである。従って、圧縮機103の運転周波数の制御によるヒートポンプ熱源機1の最小供給能力が、温冷水空調機器2の温水暖房の場合の放熱量、または冷水冷房の場合の吸熱量より大きい場合でも、圧縮機103の運転状態を加味した状態でサーモON/OFFサイクル運転を抑制することができ、実施の形態1および実施の形態2と同様の効果が得られる。 In the third embodiment, the operation of the compressor 103 in the operation of the hot water heating operation or the cold water cooling operation and the operation of the hot water supply operation is the same as the flowchart shown in FIG. 4, and the second embodiment has been described above. Street. Therefore, even if the minimum supply capacity of the heat pump heat source unit 1 by controlling the operation frequency of the compressor 103 is larger than the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner 2 or the heat absorption amount in the case of cold water cooling, the compressor The thermo-ON / OFF cycle operation can be suppressed in a state where the operation state 103 is taken into account, and the same effect as in the first and second embodiments can be obtained.
 本実施の形態3において、ヒートポンプ熱源機1と温冷水空調機器2との間に補助ヒーター7が設けられているがこれに限るものではない。補助ヒーター7を介さずにヒートポンプ熱源機1と温冷水空調機器2とを接続する構成としてもよい。 In the third embodiment, the auxiliary heater 7 is provided between the heat pump heat source unit 1 and the hot / cold water air conditioner 2, but the present invention is not limited to this. It is good also as a structure which connects the heat pump heat source machine 1 and the hot / cold water air-conditioning apparatus 2 without going through the auxiliary heater 7.
 実施の形態1~3において、制御装置6は、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要熱量よりも大きく、サーモON/OFFが所定の時間間隔より短い状態が繰り返される回数が所定回数に達した場合、サーモON/OFF通常制御から前記サーモON/OFF抑制制御に切り替えている。従って、ヒートポンプ熱源機1の最小供給能力が温冷水空調機器2の必要熱量よりも大きい場合であっても、サーモON/OFFサイクル運転となることを防止することができる。 In the first to third embodiments, the control device 6 repeats the state where the minimum supply capacity of the heat pump heat source unit 1 is larger than the required heat amount of the hot / cold water air conditioner 2 and the thermo ON / OFF is shorter than a predetermined time interval. Has reached the predetermined number of times, the thermo-ON / OFF normal control is switched to the thermo-ON / OFF suppression control. Therefore, even when the minimum supply capacity of the heat pump heat source device 1 is larger than the required heat quantity of the hot / cold water air conditioner 2, it is possible to prevent the thermo ON / OFF cycle operation.
 実施の形態1~3において、制御装置6のサーモON/OFF制御手段61は、サーモON/OFFサイクル運転が実行されていると判断されたときの、圧縮機103における冷媒温度が相対的に高いとき、強制停止時間を相対的に長く設定している。その結果、強制停止時間の間、変化した往き水温に基づいて補正される閾値も相対的に大きくなる。すなわち、圧縮機103の動作状態を加味してサーモONの条件、サーモOFFの動作点が設定される。従って、サーモON/OFF抑制制御において、サーモON/OFFの時間間隔を拡張すると共に、圧縮機103における液冷媒の流入、およびそれに伴う冷凍機油の油濃度の低下を防止することができる。 In the first to third embodiments, the thermo-ON / OFF control means 61 of the control device 6 has a relatively high refrigerant temperature in the compressor 103 when it is determined that the thermo-ON / OFF cycle operation is being performed. When the forced stop time is set relatively long. As a result, the threshold value corrected based on the changed outgoing water temperature during the forced stop time also becomes relatively large. That is, the thermo-ON condition and the thermo-OFF operating point are set in consideration of the operation state of the compressor 103. Therefore, in the thermo ON / OFF suppression control, the thermo ON / OFF time interval can be extended, and the inflow of liquid refrigerant in the compressor 103 and the accompanying decrease in the oil concentration of the refrigerating machine oil can be prevented.
 切替手段62は、サーモONによる運転において圧縮機103の運転周波数が最小周波数でないとき、サーモONによる運転が所定時間TAを経過して連続しているとき、および、サーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認されてから、再びサーモONからサーモOFFするまでの時間が所定時間TAより短いことが確認されるまでに、所定時間TBが経過しているときのそれぞれの場合に、判定カウント数Ncountをリセットして、サーモON/OFF通常制御を継続している。従って、サーモON/OFF通常制御からサーモON/OFF抑制通常制御への切替を的確に実行することができる。 The switching means 62 is operated when the operation frequency of the compressor 103 is not the minimum frequency in the operation with the thermo-ON, when the operation with the thermo-ON continues for a predetermined time TA, and until the thermo-ON is turned off. Each time when the predetermined time TB has elapsed from when it is confirmed that the time is shorter than the predetermined time TA until when it is confirmed that the time from the thermo ON to the thermo OFF again is shorter than the predetermined time TA. In this case, the determination count number Ncount is reset and the thermo-ON / OFF normal control is continued. Therefore, switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression normal control can be executed accurately.
 実施の形態1~3において、復帰手段63は、サーモサーモON/OFF抑制制御の実行中に、ヒートポンプ熱源機1の圧縮機103が、最小運転周波数より大きい運転周波数で、例えば60分の間、連続して運転されているとき、サーモON/OFF抑制制御からサーモON/OFF通常制御へ切り替えている。従って、サーモON/OFF抑制制御の終了を的確に実行することができる。 In the first to third embodiments, during the execution of the thermo-thermo ON / OFF suppression control, the return means 63 is such that the compressor 103 of the heat pump heat source unit 1 operates at an operating frequency higher than the minimum operating frequency, for example, for 60 minutes. When operating continuously, the thermo ON / OFF suppression control is switched to the thermo ON / OFF normal control. Therefore, the end of the thermo ON / OFF suppression control can be accurately executed.
 1 ヒートポンプ熱源機、2 温冷水空調機器、3 水循環ポンプ、4 配管、5 往き水温センサー、6 制御装置、7 補助ヒーター、8 熱交換器、9 貯湯タンク、10 タンク水温センサー、11 電動三方弁、12 配管、12a 分岐管、61 サーモON/OFF制御手段、62 切替手段、63 復帰手段、101 空気熱交換器、102 水熱交換器、103 圧縮機、104 四方弁、105 中圧レシーバ、106 第1膨張弁、107 第2膨張弁。 1 heat pump heat source machine, 2 hot / cold water air conditioning equipment, 3 water circulation pump, 4 piping, 5 outgoing water temperature sensor, 6 control device, 7 auxiliary heater, 8 heat exchanger, 9 hot water storage tank, 10 tank water temperature sensor, 11 electric three-way valve, 12 piping, 12a branch pipe, 61 thermo ON / OFF control means, 62 switching means, 63 return means, 101 air heat exchanger, 102 water heat exchanger, 103 compressor, 104 four-way valve, 105 medium pressure receiver, 106th 1 expansion valve, 107 second expansion valve.

Claims (7)

  1.  圧縮機を有するヒートポンプ熱源機と、
     室内の空調を行う空調機器と、
     前記ヒートポンプ熱源機と前記空調機器とを環状に接続した循環水路と、
     前記循環水路内の水を循環させる水循環ポンプと、
     前記水循環ポンプの運転によって前記ヒートポンプ熱源機から流出する水の温度である往き水温を検出する水温センサーと、
     前記ヒートポンプ熱源機のサーモON/OFFを制御する制御装置とを備え、
     前記制御装置は、
     設定される目標水温と前記往き水温との差分が第1温度差のときサーモONし、前記目標水温と前記往き水温との差分が第2温度差のときサーモOFFするサーモON/OFF通常制御と、前記サーモON/OFF通常制御のサーモON/OFFの時間間隔より長い時間間隔でサーモON/OFFするサーモON/OFF抑制制御とを実行する、サーモON/OFF制御手段と、
     前記サーモON/OFF通常制御から前記サーモON/OFF抑制制御へ切り替える切替手段とを有し、
     前記切替手段は、前記ヒートポンプ熱源機の最小供給能力が前記空調機器の必要熱量よりも大きく、かつ、サーモON/OFFが所定の時間間隔より短い時間間隔で繰り返される回数をカウントする変数が所定値に達した場合、前記サーモON/OFF通常制御から前記サーモON/OFF抑制制御への切替を実行し、
     前記サーモON/OFF制御手段は、
     前記切替手段により前記サーモON/OFF通常制御から前記サーモON/OFF抑制制御へ切り替えられたときの前記圧縮機における冷媒温度に基づいて、前記圧縮機を停止する強制停止時間を設定し、前記強制停止時間中に発生する前記往き水温度の変化に基づいて第3温度差を設定し、前記強制停止時間が経過し、かつ前記目標水温と前記往き水温との差分が前記第1温度差のときサーモONし、前記目標水温と前記往き水温との差分が前記第3温度差のとき、サーモOFFする
     温冷水空調システム。
    A heat pump heat source machine having a compressor;
    Air conditioning equipment for air conditioning indoors;
    A circulating water channel in which the heat pump heat source unit and the air conditioner are connected in an annular shape;
    A water circulation pump for circulating water in the circulation channel,
    A water temperature sensor that detects a forward water temperature that is a temperature of water flowing out of the heat pump heat source device by operation of the water circulation pump;
    A control device for controlling thermo ON / OFF of the heat pump heat source machine,
    The control device includes:
    Thermo-ON / OFF normal control that is thermo-ON when the difference between the set target water temperature and the forward water temperature is a first temperature difference, and thermo-OFF when the difference between the target water temperature and the forward water temperature is a second temperature difference; Thermo-ON / OFF control means for performing thermo-ON / OFF suppression control for thermo-ON / OFF at a time interval longer than the thermo-ON / OFF time interval of the thermo-ON / OFF normal control;
    Switching means for switching from the thermo ON / OFF normal control to the thermo ON / OFF suppression control,
    In the switching means, a variable for counting the number of times that the minimum supply capacity of the heat pump heat source device is larger than the required heat amount of the air conditioner and the thermo ON / OFF is repeated at a time interval shorter than a predetermined time interval is a predetermined value. Is reached, switching from the thermo-ON / OFF normal control to the thermo-ON / OFF suppression control is performed.
    The thermo ON / OFF control means is:
    Based on the refrigerant temperature in the compressor when the thermo ON / OFF normal control is switched to the thermo ON / OFF suppression control by the switching means, a forced stop time for stopping the compressor is set, and the forced A third temperature difference is set based on a change in the outgoing water temperature that occurs during the stop time, the forced stop time has elapsed, and the difference between the target water temperature and the outgoing water temperature is the first temperature difference A hot / cold water air conditioning system in which the thermo is turned on and the thermo is turned off when the difference between the target water temperature and the outgoing water temperature is the third temperature difference.
  2.  前記サーモON/OFF制御手段は、前記切替手段により前記サーモON/OFF通常制御から前記サーモON/OFF抑制制御へ切り替えられたときの、前記圧縮機における冷媒温度が相対的に高いとき、前記強制停止時間を相対的に長く設定する
     請求項1に記載の温冷水空調システム。
    The thermo ON / OFF control means, when the switching means switches from the thermo ON / OFF normal control to the thermo ON / OFF suppression control, when the refrigerant temperature in the compressor is relatively high, The hot / cold water air conditioning system according to claim 1, wherein the stop time is set to be relatively long.
  3.  前記切替手段は、サーモONからサーモOFFするまでの時間が第1の所定時間より短いことが確認されてから第2の所定時間が経過する前に、再びサーモONからサーモOFFするまでの時間が前記第1の所定時間より短いことが確認されたら、前記変数を1インクリメントする
     請求項1または2に記載の温冷水空調システム。
    The switching means determines that the time from the thermo-ON to the thermo-OFF again before the second predetermined time elapses after it is confirmed that the time from the thermo-ON to the thermo-OFF is shorter than the first predetermined time. The hot / cold water air conditioning system according to claim 1 or 2, wherein the variable is incremented by 1 when it is confirmed that the time is shorter than the first predetermined time.
  4.  前記切替手段は、サーモONによる運転において前記圧縮機の運転周波数が最小周波数でないとき、サーモONによる運転が前記第1の所定時間を経過して連続しているとき、および、サーモONからサーモOFFするまでの時間が前記第1の所定時間より短いことが確認されてから、再びサーモONからサーモOFFするまでの時間が前記第1の所定時間より短いことが確認されるまでに、前記第2の所定時間が経過しているときのそれぞれの場合に前記変数をリセットする
     請求項3に記載の温冷水空調システム。
    The switching means is configured such that when the operation frequency of the compressor is not the minimum frequency in the operation by the thermo-ON, the operation by the thermo-ON is continued after the first predetermined time, and the thermo-ON to the thermo-OFF Until it is confirmed that the time from when the thermo is turned on to when the thermo is turned off again is shorter than the first predetermined time after it is confirmed that the time until the time is shorter than the first predetermined time. The hot / cold water air conditioning system according to claim 3, wherein the variable is reset in each case when a predetermined time of elapses.
  5.  前記制御装置は、さらに前記サーモON/OFF抑制制御から前記サーモON/OFF通常制御へ復帰させる復帰手段を有し、
     前記復帰手段は、前記サーモON/OFF制御手段による前記サーモON/OFF抑制制御の実行中に、前記圧縮機が、最小運転周波数より大きい運転周波数で、第3の所定時間の間、連続して運転されているとき、前記サーモON/OFF抑制制御から前記サーモON/OFF通常制御へ復帰させる
     請求項1~4のいずれか1項に記載の温冷水空調システム。
    The control device further includes return means for returning from the thermo-ON / OFF suppression control to the thermo-ON / OFF normal control,
    The return means is continuously operated for a third predetermined time at an operating frequency higher than a minimum operating frequency during execution of the thermo ON / OFF suppression control by the thermo ON / OFF control means. The hot / cold water air-conditioning system according to any one of claims 1 to 4, wherein when operating, the thermo-ON / OFF suppression control is returned to the thermo-ON / OFF normal control.
  6.  前記循環水路において、前記ヒートポンプ熱源機と前記水温センサーとの間に補助熱源を備えている
     請求項1~5のいずれか1項に記載の温冷水空調システム。
    The hot / cold water air conditioning system according to any one of claims 1 to 5, wherein an auxiliary heat source is provided between the heat pump heat source device and the water temperature sensor in the circulation channel.
  7.  前記循環水路において、
     前記水温センサーと前記空調機器の間を分岐点とし、前記空調機器と前記水循環ポンプの間を合流点とし、前記空調機器に対して並列に配管で接続された熱交換器を有する貯湯タンクと、
     前記貯湯タンク内の水温を検知するタンク水温センサーと、
     前記分岐点および前記合流点のいずれかに設けられ、前記循環ポンプにより循環する水を前記空調機器側および前記貯湯タンク側のいずれかに流れるよう切り替える三方弁とを備える
     請求項1~6のいずれか1項に記載の温冷水空調システム。
    In the circulation channel,
    A hot water storage tank having a heat exchanger connected between the water temperature sensor and the air conditioner as a branch point, a junction between the air conditioner and the water circulation pump, connected in parallel to the air conditioner, and
    A tank water temperature sensor for detecting the water temperature in the hot water storage tank;
    A three-way valve that is provided at either the branch point or the junction point and switches the water circulated by the circulation pump to flow to either the air conditioner side or the hot water storage tank side. The hot / cold water air conditioning system according to claim 1.
PCT/JP2016/054038 2016-02-10 2016-02-10 Hot water/cold water air-conditioning system WO2017138133A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017566480A JP6537641B2 (en) 2016-02-10 2016-02-10 Hot and cold air conditioning system
PCT/JP2016/054038 WO2017138133A1 (en) 2016-02-10 2016-02-10 Hot water/cold water air-conditioning system
CN201690000321.4U CN208436403U (en) 2016-02-10 2016-02-10 Cold-hot water air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2016/054038 WO2017138133A1 (en) 2016-02-10 2016-02-10 Hot water/cold water air-conditioning system

Publications (1)

Publication Number Publication Date
WO2017138133A1 true WO2017138133A1 (en) 2017-08-17

Family

ID=59563690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/054038 WO2017138133A1 (en) 2016-02-10 2016-02-10 Hot water/cold water air-conditioning system

Country Status (3)

Country Link
JP (1) JP6537641B2 (en)
CN (1) CN208436403U (en)
WO (1) WO2017138133A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049390A (en) * 2017-09-11 2019-03-28 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN113983580A (en) * 2021-11-02 2022-01-28 珠海格力电器股份有限公司 Kitchen air conditioner, control method and control device thereof, and processor
CN114110978A (en) * 2021-11-22 2022-03-01 珠海格力节能环保制冷技术研究中心有限公司 Air conditioning system, control method and air conditioning unit

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098982A (en) * 2013-11-19 2015-05-28 三菱電機株式会社 Hot/cold water air conditioning system
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
JP2015215107A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Air conditioner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098982A (en) * 2013-11-19 2015-05-28 三菱電機株式会社 Hot/cold water air conditioning system
JP2015200470A (en) * 2014-04-09 2015-11-12 株式会社東芝 air conditioner
JP2015215107A (en) * 2014-05-08 2015-12-03 三菱電機株式会社 Air conditioner

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019049390A (en) * 2017-09-11 2019-03-28 東芝キヤリア株式会社 Heat source water control method and heat source water control device
CN113983580A (en) * 2021-11-02 2022-01-28 珠海格力电器股份有限公司 Kitchen air conditioner, control method and control device thereof, and processor
CN114110978A (en) * 2021-11-22 2022-03-01 珠海格力节能环保制冷技术研究中心有限公司 Air conditioning system, control method and air conditioning unit

Also Published As

Publication number Publication date
CN208436403U (en) 2019-01-29
JPWO2017138133A1 (en) 2018-09-13
JP6537641B2 (en) 2019-07-03

Similar Documents

Publication Publication Date Title
JP5984784B2 (en) Hot / cold water air conditioning system
JP6079507B2 (en) Hot / cold water air conditioning system
JP5982017B2 (en) Dual refrigeration cycle equipment
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP5476604B2 (en) Heat pump hot water heater
JP2014169802A (en) Air conditioning device
TWI801460B (en) Heating, ventilating and air conditioning (hvac) system, control method for a vapor compression system, and related machine-readable media
WO2017138133A1 (en) Hot water/cold water air-conditioning system
JP6749471B2 (en) Air conditioner
JP5973076B2 (en) Hot water heater
JPWO2015194038A1 (en) Heat pump heating system
JP6086074B2 (en) Heat pump type hot water heater
US11913694B2 (en) Heat pump system
AU2020438844B2 (en) Heat pump heat source device and heat pump water heater
JP2015200470A (en) air conditioner
JP6359181B2 (en) Refrigeration cycle equipment
JP6102794B2 (en) Heat pump type hot water heater
JP6094518B2 (en) Heat pump type hot water heater
JP2015059708A (en) Refrigeration device
JP6086084B2 (en) Heat pump type hot water heater
JP6098557B2 (en) Heat pump type hot water heater
JP7399321B2 (en) Chiller system and air conditioner with chiller system
JP6136158B2 (en) Heat pump cycle equipment
JP2016102635A (en) Air conditioner system
JP6458456B2 (en) Air conditioning system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16889835

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017566480

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16889835

Country of ref document: EP

Kind code of ref document: A1