JP5982017B2 - Dual refrigeration cycle equipment - Google Patents

Dual refrigeration cycle equipment Download PDF

Info

Publication number
JP5982017B2
JP5982017B2 JP2014557525A JP2014557525A JP5982017B2 JP 5982017 B2 JP5982017 B2 JP 5982017B2 JP 2014557525 A JP2014557525 A JP 2014557525A JP 2014557525 A JP2014557525 A JP 2014557525A JP 5982017 B2 JP5982017 B2 JP 5982017B2
Authority
JP
Japan
Prior art keywords
temperature side
low
high temperature
outside air
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014557525A
Other languages
Japanese (ja)
Other versions
JPWO2014112615A1 (en
Inventor
英樹 丹野
英樹 丹野
山本 学
学 山本
新悟 遠山
新悟 遠山
馨 松下
馨 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Application granted granted Critical
Publication of JP5982017B2 publication Critical patent/JP5982017B2/en
Publication of JPWO2014112615A1 publication Critical patent/JPWO2014112615A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/26Problems to be solved characterised by the startup of the refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1933Suction pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21151Temperatures of a compressor or the drive means therefor at the suction side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2116Temperatures of a condenser
    • F25B2700/21161Temperatures of a condenser of the fluid heated by the condenser

Description

本発明の実施態様は、高温側冷凍サイクルと低温側冷凍サイクルを備えた二元冷凍サイクル装置に関する。   Embodiments of the present invention relate to a dual refrigeration cycle apparatus including a high temperature side refrigeration cycle and a low temperature side refrigeration cycle.

従来より公知の二元冷凍サイクル装置は、高温側冷凍サイクルと低温側冷凍サイクルを備え、高温側冷凍サイクルと低温側冷凍サイクルが、1つのカスケード熱交換器(中間熱交換器)を共用し、高温側冷凍サイクルを循環する冷媒と、低温側冷凍サイクルを循環する冷媒とを、カスケード熱交換器で熱交換させ、高温側冷凍サイクルを循環する高温側冷媒により水または温水を加熱し、温水を生成している。   A conventionally known binary refrigeration cycle apparatus includes a high temperature side refrigeration cycle and a low temperature side refrigeration cycle, and the high temperature side refrigeration cycle and the low temperature side refrigeration cycle share one cascade heat exchanger (intermediate heat exchanger), The refrigerant circulating in the high temperature side refrigeration cycle and the refrigerant circulating in the low temperature side refrigeration cycle are heat-exchanged by a cascade heat exchanger, and water or hot water is heated by the high temperature side refrigerant circulating in the high temperature side refrigeration cycle. Is generated.

一般的に、外気温度が低いときに冷凍サイクルを起動すると、冷凍サイクルを構成する圧縮機内の冷凍機油の温度が低下する。そのため、圧縮機の起動による圧力上昇とともに冷媒の冷凍機油への溶解が進み、冷凍機油が希釈される。この冷凍機油の希釈が進むと、冷媒とともに圧縮機外に吐き出される冷凍機油の吐油量が増加し、圧縮機内の油面が低下して圧縮機構部の潤滑不足が発生しやすくなる。
特に、高温水を生成する二元冷凍サイクル装置の高温側冷凍サイクルにおいては、凝縮圧力上昇が早く、凝縮圧力も高いため、冷凍機油の希釈が促進されやすく、冷凍機油の吐油量が増加するという課題がある。
In general, when the refrigeration cycle is started when the outside air temperature is low, the temperature of the refrigeration oil in the compressor constituting the refrigeration cycle decreases. Therefore, as the pressure increases due to the start of the compressor, the refrigerant is dissolved in the refrigerating machine oil, and the refrigerating machine oil is diluted. As the dilution of the refrigerating machine oil proceeds, the amount of the refrigerating machine oil discharged to the outside of the compressor together with the refrigerant increases, the oil level in the compressor decreases, and the lubrication of the compression mechanism part tends to be insufficient.
In particular, in the high-temperature side refrigeration cycle of the dual refrigeration cycle apparatus that generates high-temperature water, the condensation pressure rises quickly and the condensation pressure is high, so that dilution of the refrigeration oil is easily promoted and the amount of oil discharged from the refrigeration oil increases. There is a problem.

国際公開WO2012/128229 A1International Publication WO2012 / 128229 A1

上述の従来技術における鑑み、本発明の目的は、低外気温時の起動において、圧縮機外に吐き出される冷凍機油の吐油量を抑制することのできる二元冷凍サイクル装置を提供するものである。   In view of the above-described prior art, an object of the present invention is to provide a dual refrigeration cycle apparatus capable of suppressing the amount of refrigerating machine oil discharged outside the compressor during startup at a low outside air temperature. .

上記課題を解決するために提供される本発明の実施態様による二元冷凍サイクル装置は、高温側圧縮機、高温側凝縮器、高温側膨張装置、カスケード熱交換器、高温側アキュムレータを高温側冷媒配管を介して連通する高温側冷凍回路と、低温側圧縮機、前記カスケード熱交換器、低温側膨張装置、低温側蒸発器、低温側アキュムレータを低温側冷媒配管を介して連通する低温側冷凍回路と、前記高温側圧縮機の吐出側と前記高温側アキュムレータの入口側とを連絡する高温側バイパス回路と、前記高温側バイパス回路に設けられた高温側バイパス弁と、前記低温側圧縮機の吐出側と前記低温側アキュムレータの入口側とを連絡する低温側バイパス回路と、前記低温側バイパス回路に設けられた低温側バイパス弁と、起動時に、外気温度が第1の温度以下の場合、前記高温側バイパス弁を開き、外気温度が前記第1の温度よりも低い第2の温度以下の場合、さらに前記低温側バイパス弁を開く制御手段と、を備えたことを特徴とする。
上記の特徴を有する二元冷凍サイクル装置は更に以下の好適な実施態様を有することが望ましい。
また、前記制御手段は、前記高温側バイパス弁が開いている間、前記高温側圧縮機を通常運転時の運転周波数よりも小さい所定の運転周波数で駆動させることが望ましい。
また、前記制御部は、前記高温側凝縮器における被加熱流体の入口側の温度と外気温度に基づいて低外気温起動モードを実行するか否かを判定する低外気温起動モード選択手段と、低外気温起動モード実行時、外気温度に応じてバイパス回路を開く時間を設定するバイパス回路開放時間設定手段と、低外気温起動モード実行時、外気温度に応じて高温側バイパス回路を開く高温側バイパス制御手段と、低外気温起動モード実行時、外気温度に応じて高温側バイパス回路に加えて低温側バイパス回路を開く低温側バイパス制御手段と、を備える。
なお、本発明による二元冷凍サイクル装置は、適用先に応じて本発明の精神を変えない限り、上述の実施の形態に限定されるものではない。
A binary refrigeration cycle apparatus according to an embodiment of the present invention provided to solve the above problems includes a high temperature side compressor, a high temperature side condenser, a high temperature side expansion device, a cascade heat exchanger, and a high temperature side accumulator. A high temperature side refrigeration circuit that communicates via a pipe, a low temperature side compressor, a cascade heat exchanger, a low temperature side expansion device, a low temperature side evaporator, and a low temperature side accumulator that communicates via a low temperature side refrigerant pipe A high temperature side bypass circuit connecting the discharge side of the high temperature side compressor and the inlet side of the high temperature side accumulator, a high temperature side bypass valve provided in the high temperature side bypass circuit, and a discharge of the low temperature side compressor and the low temperature-side bypass circuit for communicating the inlet side of the the side cold accumulator, and the low temperature side bypass valve provided in the low temperature side bypass circuit, at startup, the outside air temperature is first For temperatures below, the open-out the hot side bypass valve, when the outside air temperature is below a lower second temperature than the first temperature, further comprising: a Open control means the low temperature side bypass valve It is characterized by that.
It is desirable that the binary refrigeration cycle apparatus having the above features further has the following preferred embodiments.
Further, it is desirable that the control means drives the high temperature side compressor at a predetermined operation frequency lower than an operation frequency during normal operation while the high temperature side bypass valve is open.
The control unit includes a low outside air temperature startup mode selecting means for determining whether or not to perform a low-outside air temperature startup mode based on the inlet side of the temperature and the outside air temperature of the heated fluid in the high temperature side condenser The bypass circuit opening time setting means for setting the time to open the bypass circuit according to the outside air temperature when the low outside temperature start mode is executed, and the high temperature that opens the high temperature side bypass circuit according to the outside temperature when the low outside temperature start mode is executed Side bypass control means and low temperature side bypass control means for opening the low temperature side bypass circuit in addition to the high temperature side bypass circuit according to the outside air temperature when the low outside air temperature activation mode is executed.
The dual refrigeration cycle apparatus according to the present invention is not limited to the above-described embodiment unless the spirit of the present invention is changed according to the application destination.

上述の本発明の実施態様によれば、低外気温時の起動において、圧縮機外に吐き出される冷凍機油の吐油量を抑制することのできる二元冷凍サイクル装置を提供できる。
さらに、本実施形態における二元冷凍サイクル装置は、外気温度が低く冷凍機油の希釈が生じやすいときに、高温側バイパス回路を開放した状態で高温側圧縮機の運転を開始することにより、圧縮機内部に高温のガス冷媒を流入させて圧縮機内の冷凍機油の温度を上昇させることができる。これにより冷媒の冷凍機油への溶け込みを抑制し、希釈による冷凍機油の圧縮機外への排出量を抑えることができる。
本発明の実施態様による更なる効果、利点は添付図面を参照してなされた以下の記載からより明確にされるであろう。
According to the above-described embodiment of the present invention, it is possible to provide a dual refrigeration cycle apparatus capable of suppressing the amount of refrigerating machine oil discharged outside the compressor during startup at a low outside air temperature.
Furthermore, the binary refrigeration cycle apparatus in the present embodiment starts the operation of the high temperature side compressor with the high temperature side bypass circuit opened when the outside air temperature is low and the dilution of the refrigeration oil is likely to occur. It is possible to raise the temperature of the refrigerating machine oil in the compressor by flowing a high-temperature gas refrigerant into the interior. Accordingly, it is possible to suppress the refrigerant from being dissolved in the refrigerating machine oil, and to suppress the discharge amount of the refrigerating machine oil to the outside of the compressor due to dilution.
Further advantages and advantages of the embodiments of the present invention will become more apparent from the following description made with reference to the accompanying drawings.

本発明の実施形態にかかる二元冷凍サイクル装置の構成を示す冷凍サイクルの構成図である。It is a block diagram of the refrigerating cycle which shows the structure of the binary refrigerating-cycle apparatus concerning embodiment of this invention. 本発明の実施形態にかかる二元冷凍サイクル装置の制御部(制御器)の構成を示すブロック図である。It is a block diagram which shows the structure of the control part (controller) of the binary refrigerating-cycle apparatus concerning embodiment of this invention. 本発明の実施形態にかかる二元冷凍サイクル装置の起動時の動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement at the time of starting of the binary refrigerating-cycle apparatus concerning embodiment of this invention. 本発明の実施形態にかかる二元冷凍サイクル装置の低外気温起動モードの外気温度と動作の関係を示す説明図(表)である。It is explanatory drawing (table | table | tablet) which shows the relationship between the external temperature and operation | movement of the low external temperature starting mode of the binary refrigerating cycle apparatus concerning embodiment of this invention.

以下、本発明の実施形態を添付図面に基づき説明する。
図1は、本発明の実施形態にかかる二元冷凍サイクル装置の構成を示す冷凍サイクルの構成図である。高温水生成装置として用いられる二元冷凍サイクル装置Rは、筐体Kに搭載される高温側冷凍サイクルRaと、低温側冷凍サイクルRbおよび制御部20とから構成される。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is a configuration diagram of a refrigeration cycle showing a configuration of a binary refrigeration cycle apparatus according to an embodiment of the present invention. The dual refrigeration cycle apparatus R used as the high temperature water generating apparatus includes a high temperature side refrigeration cycle Ra, a low temperature side refrigeration cycle Rb, and a control unit 20 mounted in the housing K.

高温側冷凍サイクルRaは、冷媒を圧縮する高温側圧縮機1と、冷媒を凝縮する温水熱交換器2(高温側凝縮器)と、冷媒を減圧する高温側膨張装置3と、低温側冷凍サイクルRbの冷媒と熱交換するカスケード熱交換器4と、冷媒を気液分離するための高温側アキュムレータ5とを有し、これらが冷媒配管を介して順次連通される。
カスケード熱交換器4は、高温側冷凍サイクルRaでは、高温側冷媒流路4aを流れる冷媒を蒸発させる蒸発器として機能する。温水熱交換器2内には、高温側冷凍サイクルRaの冷媒が流れる冷媒側流路2aと、被加熱流体である水が流れる水側流路2bが設けられ、この水側流路2bが温水配管Hと連通する。温水配管Hには送水ポンプ18が設けられる。
The high temperature side refrigeration cycle Ra includes a high temperature side compressor 1 that compresses the refrigerant, a hot water heat exchanger 2 (high temperature side condenser) that condenses the refrigerant, a high temperature side expansion device 3 that decompresses the refrigerant, and a low temperature side refrigeration cycle. A cascade heat exchanger 4 that exchanges heat with the Rb refrigerant and a high-temperature side accumulator 5 for gas-liquid separation of the refrigerant are provided, and these are sequentially communicated via a refrigerant pipe.
The cascade heat exchanger 4 functions as an evaporator that evaporates the refrigerant flowing through the high temperature side refrigerant flow path 4a in the high temperature side refrigeration cycle Ra. In the hot water heat exchanger 2, there are provided a refrigerant side channel 2a through which the refrigerant of the high temperature side refrigeration cycle Ra and a water side channel 2b through which water to be heated flows, and the water side channel 2b is provided with hot water. It communicates with the pipe H. A water pump 18 is provided in the hot water pipe H.

高温側圧縮機1の吐出側と高温側アキュムレータ5の入口側は、高温側バイパス回路6により連通される。高温側バイパス回路6には、開閉弁である高温側バイパス弁7が設けられる。   The discharge side of the high temperature side compressor 1 and the inlet side of the high temperature side accumulator 5 are communicated by a high temperature side bypass circuit 6. The high temperature side bypass circuit 6 is provided with a high temperature side bypass valve 7 which is an on-off valve.

低温側冷凍サイクルRbは、冷媒を圧縮する低温側圧縮機11と、加熱運転と除霜運転とで冷媒の流れる方向を切り換える四方弁12と、カスケード熱交換器4と、冷媒を減圧する低温側膨張装置13と、冷媒を蒸発させる空気熱交換器(低温側蒸発器)14と、低温側アキュムレータ15とを有し、これらが冷媒配管を介して順次連通される。
カスケード熱交換器4は、低温側冷凍サイクルRbでは、低温側冷媒流路4bを流れる冷媒を凝縮させる凝縮器として機能する。
空気熱交換器14に対抗する位置には、この空気熱交換器14に空気を送る送風機19が設けられる。
The low temperature side refrigeration cycle Rb includes a low temperature side compressor 11 that compresses refrigerant, a four-way valve 12 that switches a flow direction of refrigerant between a heating operation and a defrosting operation, a cascade heat exchanger 4, and a low temperature side that depressurizes the refrigerant. It has an expansion device 13, an air heat exchanger (low temperature side evaporator) 14 for evaporating the refrigerant, and a low temperature side accumulator 15, and these are sequentially communicated via refrigerant piping.
The cascade heat exchanger 4 functions as a condenser that condenses the refrigerant flowing through the low temperature side refrigerant flow path 4b in the low temperature side refrigeration cycle Rb.
A blower 19 for sending air to the air heat exchanger 14 is provided at a position facing the air heat exchanger 14.

低温側圧縮機11の吐出側と低温側アキュムレータ15の入口側は、低温側バイパス回路16により連通される。低温側バイパス回路16には、開閉弁である低温側バイパス弁17が設けられる。   The discharge side of the low temperature side compressor 11 and the inlet side of the low temperature side accumulator 15 are communicated by a low temperature side bypass circuit 16. The low temperature side bypass circuit 16 is provided with a low temperature side bypass valve 17 which is an on-off valve.

本実施形態では、高温側冷凍サイクルRaにおいてはR134a冷媒が使用され、低温側冷凍サイクルRbにおいてはR410A冷媒が使用される。
高温側冷凍サイクルRaに使用されるR134aは、低温側冷凍サイクルRbに使用されるR410Aと比較して、同一温度で飽和ガス密度、飽和圧力が低いため、高温水を生成可能な二元冷凍サイクル装置の高温側冷凍サイクルRaに使用する冷媒として適している。
In the present embodiment, R134a refrigerant is used in the high temperature side refrigeration cycle Ra, and R410A refrigerant is used in the low temperature side refrigeration cycle Rb.
R134a used for the high temperature side refrigeration cycle Ra has a lower saturated gas density and saturation pressure at the same temperature than the R410A used for the low temperature side refrigeration cycle Rb, so that it can generate high temperature water. It is suitable as a refrigerant used for the high temperature side refrigeration cycle Ra of the apparatus.

また、冷凍機油については、高温側冷凍サイクルRaの高温側圧縮機1においてはPVE(ポリビニルエーテル)が使用され、低温側冷凍サイクルRbの低温側圧縮機11においてはPOE(ポリオールエステル)が使用される。なお、高温側圧縮機1の冷凍機油として用いるPVEは、高温時において、POEよりも圧縮機構部の磨耗が少なく高温側圧縮機の冷凍機油として適している。その反面、PVEは、POEに比べてR134a冷媒に解けやすいという性質を持っており、低外気温起動時に吐油量が増加するという性質を持っている。   As for refrigeration oil, PVE (polyvinyl ether) is used in the high temperature side compressor 1 of the high temperature side refrigeration cycle Ra, and POE (polyol ester) is used in the low temperature side compressor 11 of the low temperature side refrigeration cycle Rb. The In addition, PVE used as the refrigerating machine oil of the high temperature side compressor 1 is suitable as a refrigerating machine oil for the high temperature side compressor because the wear of the compression mechanism portion is less than that of the POE at a high temperature. On the other hand, PVE has the property of being easily dissolved by the R134a refrigerant as compared with POE, and has the property of increasing the amount of oil discharged when the low outside air temperature is started.

このように構成された二元冷凍サイクル装置Rにおいて、後述する制御部(制御装置)20により、高温側圧縮機1が駆動されることによる高温側冷凍サイクルRaの運転と、低温側圧縮機11が駆動されることによる低温側冷凍サイクルRbの運転とが行われる。さらに、温水配管Hの送水ポンプ18が駆動されることにより温水熱交換器2の水側流路2b内を水が流れる。この水は冷媒側流路2aにおいて高温側冷媒から放熱される熱で温められて最高で90℃程度の高温水となる。この温水は温水配管Hから温水を必要とする箇所に供給される。
尚、制御部20と各構成要素との関係は図2に示される。
In the two-stage refrigeration cycle apparatus R configured as described above, the operation of the high temperature side refrigeration cycle Ra when the high temperature side compressor 1 is driven by the control unit (control apparatus) 20 described later, and the low temperature side compressor 11. The low temperature side refrigeration cycle Rb is operated by driving the. Furthermore, when the water supply pump 18 of the hot water pipe H is driven, water flows in the water side flow path 2b of the hot water heat exchanger 2. This water is heated by the heat radiated from the high temperature side refrigerant in the refrigerant side flow path 2a and becomes high temperature water of about 90 ° C. at the maximum. This hot water is supplied from a hot water pipe H to a place where hot water is required.
The relationship between the control unit 20 and each component is shown in FIG.

高温側冷凍サイクルRaと低温側冷凍サイクルRbとが運転されることにより、高温側冷媒流路4aおよび低温側冷媒流路4bを含む熱交換器4において熱交換が行われ、高温側冷凍サイクルRaの高温側冷媒が低温側冷凍サイクルRbの低温側冷媒から放熱された熱で温められる。これにより、高温側冷凍サイクルRaでは、高温側圧縮機1に吸込まれる冷媒の温度が高くなり、高温側圧縮機1内の温度と圧力は、低温側圧縮機11内の温度と圧力に比べて高くなり、温水熱交換器2の冷媒側流路2aから放熱される熱量が多くなり、高温水の生成が可能となる。   By operating the high temperature side refrigeration cycle Ra and the low temperature side refrigeration cycle Rb, heat exchange is performed in the heat exchanger 4 including the high temperature side refrigerant flow channel 4a and the low temperature side refrigerant flow channel 4b, and the high temperature side refrigeration cycle Ra is performed. The high temperature side refrigerant is warmed by the heat radiated from the low temperature side refrigerant of the low temperature side refrigeration cycle Rb. Thereby, in the high temperature side refrigerating cycle Ra, the temperature of the refrigerant sucked into the high temperature side compressor 1 is increased, and the temperature and pressure in the high temperature side compressor 1 are compared with the temperature and pressure in the low temperature side compressor 11. The amount of heat radiated from the refrigerant side flow path 2a of the hot water heat exchanger 2 increases, and high temperature water can be generated.

次に、本発明の実施形態にかかる二元冷凍サイクル装置Rの制御部(制御装置)を図2のブロック図に基づき説明する。
該二元冷凍サイクル装置Rは、筐体Kの内部にCPU(Central Processing Unit)やROM(Read Only Memory)およびRAM(Random Access Memory)等で構成された制御部20を備えている。
この制御部20には、高温側圧縮機1駆動制御用インバータ回路21、低温側圧縮機11駆動制御用インバータ回路22、送風機19駆動制御用インバータ回路23、高温側膨張装置3、低温側膨張装置13、四方弁12、高温側バイパス弁7、低温側バイパス弁17、ポンプ18が接続され、その動作がコントロールされる。
Next, the control part (control apparatus) of the binary refrigeration cycle apparatus R concerning embodiment of this invention is demonstrated based on the block diagram of FIG.
The two-stage refrigeration cycle apparatus R includes a control unit 20 including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like inside the housing K.
The control unit 20 includes a high temperature side compressor 1 drive control inverter circuit 21, a low temperature side compressor 11 drive control inverter circuit 22, a blower 19 drive control inverter circuit 23, a high temperature side expansion device 3, and a low temperature side expansion device. 13, the four-way valve 12, the high temperature side bypass valve 7, the low temperature side bypass valve 17, and the pump 18 are connected and their operations are controlled.

制御部20には、高温側圧縮機1および低温側圧縮機11の吐出側に設けられる温度センサ31a、31bおよび圧力センサ32a、32bと、吸込側に設けられる温度センサ33a、33bおよび圧力センサ34a、34bと、温水熱交換器2の水側流路2b入口側に設けられる入口水温センサ35と、出口側に設けられる出口水温センサ36と、カスケード熱交換器4に設けられる温度センサ(図示しない)と、空気熱交換器14に設けられる温度センサ(図示しない)と、空気熱交換器14の近傍に設けられる外気温度センサ37が接続される。なお、図2においては、温度センサ31a、入口水温センサ35、外気温度センサ37が制御部20に接続された状態を示している。   The controller 20 includes temperature sensors 31a and 31b and pressure sensors 32a and 32b provided on the discharge side of the high temperature side compressor 1 and the low temperature side compressor 11, and temperature sensors 33a and 33b and pressure sensor 34a provided on the suction side. , 34b, an inlet water temperature sensor 35 provided on the inlet side of the water channel 2b of the hot water heat exchanger 2, an outlet water temperature sensor 36 provided on the outlet side, and a temperature sensor (not shown) provided on the cascade heat exchanger 4 ), A temperature sensor (not shown) provided in the air heat exchanger 14, and an outside air temperature sensor 37 provided in the vicinity of the air heat exchanger 14. 2 shows a state in which the temperature sensor 31a, the inlet water temperature sensor 35, and the outside air temperature sensor 37 are connected to the control unit 20.

高温側圧縮機1駆動制御用インバータ回路21は、商用交流電源などの電源の電圧を整流し、それを制御部20からの指令に応じた周波数の電圧に変換し、高温側圧縮機1の圧縮機モータ1Mに出力する。この出力が圧縮機モータ1Mの駆動電力となる。同様に低温側圧縮機11駆動制御用インバータ回路22が低温側圧縮機11の圧縮機モータ11Mを駆動し、送風機19駆動制御用インバータ回路23が送風機19のファンモータ19Mを駆動する。送水ポンプ18についても送水ポンプ駆動制御用インバータ(図示しない)により駆動される。   The high temperature side compressor 1 drive control inverter circuit 21 rectifies the voltage of a power source such as a commercial AC power source, converts it into a voltage having a frequency according to a command from the control unit 20, and compresses the high temperature side compressor 1. Output to the machine motor 1M. This output becomes the driving power for the compressor motor 1M. Similarly, the low temperature side compressor 11 drive control inverter circuit 22 drives the compressor motor 11M of the low temperature side compressor 11, and the blower 19 drive control inverter circuit 23 drives the fan motor 19M of the blower 19. The water pump 18 is also driven by a water pump drive control inverter (not shown).

制御部20は、タッチパネルやリモートコントローラなどの操作部(共に図示しない)を介して入力される運転条件や各種センサからの検知信号などの情報に基づいて各部の動作条件を決定し、圧縮機モータ1M、11M、ファンモータ19M、四方弁12、各膨張装置3、13、および各バイパス弁7、17、ポンプ18などを駆動する。   The control unit 20 determines operating conditions of each unit based on information such as operating conditions input from an operation unit (both not shown) such as a touch panel and a remote controller and detection signals from various sensors, and the compressor motor 1M, 11M, fan motor 19M, four-way valve 12, each expansion device 3, 13, each bypass valve 7, 17, and pump 18 are driven.

上記の制御部20は、主要な機能として次の(1)〜(4)の手段を有する。
(1) 起動時、入口水温センサ35の検出信号から取得した入水温度Twiと外気温度センサ37の検出信号から取得した外気温度Toに基づいて低外気温起動モードを実行するか否かを判定する低外気温起動モード選択手段20a。
(2) 低外気温起動モード実行時、外気温度Toに応じてバイパス回路6,16を開く時間を設定するバイパス回路開放時間設定手段20b。
(3) 低外気温起動モード実行時、外気温度Toに応じて高温側バイパス回路6を開く高温側バイパス制御手段20c。
(4) 低外気温起動モード実行時、外気温度Toに応じて高温側バイパス回路6に加えて低温側バイパス回路16を開く低温側バイパス制御手段20d。
The control unit 20 includes the following means (1) to (4) as main functions.
(1) At the time of activation, it is determined whether or not to execute the low outside air temperature activation mode based on the incoming water temperature Twi obtained from the detection signal of the inlet water temperature sensor 35 and the outside air temperature To obtained from the detection signal of the outside air temperature sensor 37. Low outside air temperature activation mode selection means 20a.
(2) Bypass circuit opening time setting means 20b for setting a time for opening the bypass circuits 6 and 16 according to the outside air temperature To when the low outside air temperature starting mode is executed.
(3) The high temperature side bypass control means 20c that opens the high temperature side bypass circuit 6 in accordance with the outside air temperature To when the low outside air temperature activation mode is executed.
(4) Low temperature side bypass control means 20d that opens the low temperature side bypass circuit 16 in addition to the high temperature side bypass circuit 6 in accordance with the outside air temperature To when the low outside temperature start mode is executed.

以下、上記の二元冷凍サイクル装置Rの動作を図3、図4に基づき説明する。
図3は、二元冷凍サイクル装置Rの制御部20が実行する処理のフローチャート、図4は、低外気温起動モードの外気温度と動作の関係を示す説明図である。
Hereinafter, the operation of the above-described binary refrigeration cycle apparatus R will be described based on FIGS.
FIG. 3 is a flowchart of processing executed by the control unit 20 of the dual refrigeration cycle apparatus R, and FIG. 4 is an explanatory diagram showing the relationship between the outside air temperature and the operation in the low outside air temperature starting mode.

オペレータが温水供給側に設けられた操作部、または、二元冷凍サイクル装置Rに設けられた操作部を操作するか、あるいは、いずれかの操作部に設定された運転スケジュールに応じて運転開始が指示されると、まず、制御部20は、温水熱交換器2の水側流路2bの入口側に設けられた入口水温センサ35によって検知される入水温度Twiと、外気温度センサ37によって検知される外気温度Toとを取得する。
そして、制御部20は、入水温度Twiが制御部20に予め記憶された所定の温度Twis(例えば40℃)より高く、且つ、外気温度Toが制御部20に予め記憶された所定の温度T1(例えば20℃)以下であるか否かを判断する(ステップS1)。
The operator operates the operation unit provided on the hot water supply side or the operation unit provided in the dual refrigeration cycle apparatus R, or the operation is started according to the operation schedule set in any of the operation units. When instructed, the controller 20 first detects the incoming water temperature Twi detected by the inlet water temperature sensor 35 provided on the inlet side of the water-side flow path 2 b of the hot water heat exchanger 2 and the outside air temperature sensor 37. To obtain the outside air temperature To.
And the control part 20 is higher than predetermined | prescribed temperature Twis (for example, 40 degreeC) beforehand memorize | stored in the control part 20, and the outside temperature To is predetermined | prescribed temperature T1 (previously memorize | stored in the control part 20). It is determined whether or not the temperature is, for example, 20 ° C. (step S1).

ここで、冷凍機油は、圧縮機内の冷凍機油の温度が低下し、冷媒の圧力上昇が急な場合に希釈され易い。入水温度Twiが40℃以下のときは、高温側冷凍サイクルRaの温水熱交換器2での凝縮圧力が高くないため、高温側圧縮機1を起動しても圧縮機内の圧力が急に上昇することがない。そのため、冷凍機油の温度が低い(外気温度Toが低い)場合でも冷凍機油の希釈は発生しにくい。また、外気温度Toが20℃より高い場合は、圧縮機内の冷凍機油の温度が低下しないため、高温側冷凍サイクルRaの温水熱交換器2での凝縮圧力が高い(入水温度Twiが高い)場合でも冷凍機油の希釈は発生しにくい。従って、制御部20は、入水温度Twiが40℃以下または外気温度Toが20℃より高い場合(ステップS1でNoの場合)は低外気温起動モードを実行しない。
一方、入水温度Twiが40℃より高く、かつ、外気温度Toが20℃以下の場合(ステップS1でYesの場合)は、制御部20は、次に説明する低外気温起動モードを実行する。
Here, the refrigerating machine oil is easily diluted when the temperature of the refrigerating machine oil in the compressor is lowered and the refrigerant pressure is suddenly increased. When the incoming water temperature Twi is 40 ° C. or lower, the condensation pressure in the hot water heat exchanger 2 of the high temperature side refrigeration cycle Ra is not high, so the pressure in the compressor suddenly increases even when the high temperature side compressor 1 is started. There is nothing. Therefore, dilution of the refrigerating machine oil hardly occurs even when the temperature of the refrigerating machine oil is low (the outside air temperature To is low). Further, when the outside air temperature To is higher than 20 ° C., the temperature of the refrigerating machine oil in the compressor does not decrease, and therefore the condensation pressure in the hot water heat exchanger 2 of the high temperature side refrigeration cycle Ra is high (the incoming water temperature Twi is high). However, dilution of refrigeration oil is unlikely to occur. Therefore, the controller 20 does not execute the low outside air temperature activation mode when the incoming water temperature Twi is 40 ° C. or lower or the outside air temperature To is higher than 20 ° C. (in the case of No in step S1).
On the other hand, when the incoming water temperature Twi is higher than 40 ° C. and the outside air temperature To is 20 ° C. or lower (in the case of Yes in step S1), the control unit 20 executes a low outside air temperature starting mode described below.

図4に示すように、制御部20は、外気温度Toに応じてバイパス回路の開放時間やバイパス弁の開閉を制御する。
まず、制御部20は、外気温度Toに応じてバイパス回路の開放時間(バイパス回路開放設定時間)Tsを設定する。
As shown in FIG. 4, the control unit 20 controls the opening time of the bypass circuit and the opening and closing of the bypass valve according to the outside air temperature To.
First, the control unit 20 sets a bypass circuit open time (bypass circuit open set time) Ts according to the outside air temperature To.

制御部20は、外気温度Toが所定値T1〜T2の範囲(T2<To≦T1)であるか否かを判断する(ステップS3)。ここで、T1は例えば20℃であり、T2は−10℃である。外気温度Toが−10度より高く20℃以下であれば(ステップS3におけるYesの場合)、制御部20はステップS5に進んで高温側バイパス回路6の高温側バイパス弁7の開放時間tsを所定時間t1(例えば6分間)に設定する。   The controller 20 determines whether or not the outside air temperature To is within a range of predetermined values T1 to T2 (T2 <To ≦ T1) (step S3). Here, T1 is, for example, 20 ° C., and T2 is −10 ° C. If the outside air temperature To is higher than −10 ° C. and 20 ° C. or lower (in the case of Yes in step S3), the control unit 20 proceeds to step S5 and sets the opening time ts of the high temperature side bypass valve 7 of the high temperature side bypass circuit 6 to a predetermined value. Time t1 (for example, 6 minutes) is set.

制御部20は、ステップS3において、外気温度Toが−10℃以下の場合(ステップS3におけるNoの場合)は、ステップS4に進んで外気温度Toが所定値T2〜T3の範囲(T3<To≦T2)であるか否かを判断する。ここで、T3は例えば−15℃である。
制御部20は、外気温度Toが−15℃より高く−10℃以下であれば(ステップS4のYesの場合)、ステップS6に進んで高温側バイパス回路6の高温側バイパス弁7の開放時間tsを所定時間t2(例えば8分間)に設定する。
In step S3, when the outside air temperature To is −10 ° C. or less (in the case of No in step S3), the control unit 20 proceeds to step S4 and the outside air temperature To is within a range of the predetermined values T2 to T3 (T3 <To ≦ It is determined whether or not T2). Here, T3 is −15 ° C., for example.
If the outside air temperature To is higher than −15 ° C. and lower than −10 ° C. (in the case of Yes in Step S4), the control unit 20 proceeds to Step S6 and opens the high-temperature side bypass valve 7 of the high-temperature side bypass circuit 6 for a time ts. Is set to a predetermined time t2 (for example, 8 minutes).

制御部20は、外気温度Toが−15℃以下の場合(ステップS4のNoの場合)は、ステップS7に進んで高温側バイパス回路6および低温側バイパス回路16の各バイパス弁7、17の開放時間tsを所定時間t3(例えば30分間)に設定する。   When the outside air temperature To is −15 ° C. or lower (in the case of No in step S4), the control unit 20 proceeds to step S7 and opens the bypass valves 7 and 17 of the high temperature side bypass circuit 6 and the low temperature side bypass circuit 16. The time ts is set to a predetermined time t3 (for example, 30 minutes).

制御部20は、高温側バイパス回路6の高温側バイパス弁7を開いた後、高温側圧縮機1の運転を開始する(ステップ8)。さらにステップS9に進み、低温側圧縮機11の運転を開始する。   The controller 20 starts the operation of the high temperature side compressor 1 after opening the high temperature side bypass valve 7 of the high temperature side bypass circuit 6 (step 8). Furthermore, it progresses to step S9 and the driving | operation of the low temperature side compressor 11 is started.

高温側冷凍サイクルRaの高温側バイパス弁7が開かれ、高温側圧縮機1が運転されることにより、高温側圧縮機1から吐出したガス冷媒の一部が、高温側バイパス回路6を介して高温側アキュムレータ5に流入する。高温側アキュムレータ5に流入したガス冷媒は、高温側圧縮機1に吸込まれ、圧縮機内の冷凍機油を温める。時間の経過とともに高温側圧縮機1から吐出するガス冷媒の温度が上昇していき、冷凍機油の温度も上昇する。   When the high temperature side bypass valve 7 of the high temperature side refrigeration cycle Ra is opened and the high temperature side compressor 1 is operated, a part of the gas refrigerant discharged from the high temperature side compressor 1 passes through the high temperature side bypass circuit 6. It flows into the high temperature side accumulator 5. The gas refrigerant flowing into the high temperature side accumulator 5 is sucked into the high temperature side compressor 1 and warms the refrigeration oil in the compressor. As time elapses, the temperature of the gas refrigerant discharged from the high temperature side compressor 1 rises, and the temperature of the refrigerator oil also rises.

このとき、制御部20は、温度センサ31aによって検知される吐出ガス冷媒の温度Tdを取得し、この吐出ガス温度Tdが所定の温度を超えたか否かを判断する(ステップS12)。
本実施形態において、この所定の温度は、操作部で設定される出湯設定温度(目標設定温度)Twos(例えば90℃)から所定値α(例えば10℃)を引いた温度80℃としている。
At this time, the control unit 20 acquires the temperature Td of the discharge gas refrigerant detected by the temperature sensor 31a, and determines whether or not the discharge gas temperature Td exceeds a predetermined temperature (step S12).
In the present embodiment, the predetermined temperature is a temperature 80 ° C. obtained by subtracting a predetermined value α (for example, 10 ° C.) from a hot water set temperature (target set temperature) Twos (for example, 90 ° C.) set by the operation unit.

制御部20は、ステップ12Sにおいて、吐出ガス冷媒温度Tdが80℃(Twos−10℃)を越えると(ステップS11においてNoの場合)、圧縮機1内の冷凍機油は十分に温められたと判断して高温側バイパス弁7を閉じる(ステップS14)。
また、制御部20は、吐出ガス冷媒温度Tdが80℃を超えていなくても(ステップS11においてYesの場合)、高圧側バイパス回路6が開かれてからの経過時間tが、バイパス回路開放設定時間ts(ステップS5では6分間、ステップS6では8分間)を経過すると(ステップS13のYesの場合)、圧縮機1内の冷凍機油は温められたと判断し、高温側バイパス弁7を閉じる(ステップS14)。
When the discharged gas refrigerant temperature Td exceeds 80 ° C. (Twos−10 ° C.) in step 12S (No in step S11), the control unit 20 determines that the refrigerating machine oil in the compressor 1 has been sufficiently warmed. Then, the high temperature side bypass valve 7 is closed (step S14).
Moreover, even if the discharge gas refrigerant temperature Td does not exceed 80 ° C. (in the case of Yes in step S11), the control unit 20 sets the elapsed time t after the high-pressure side bypass circuit 6 is opened to the bypass circuit open setting. When time ts (6 minutes in step S5, 8 minutes in step S6) has elapsed (in the case of Yes in step S13), it is determined that the refrigeration oil in the compressor 1 has been warmed, and the high-temperature side bypass valve 7 is closed (step S14).

そして、制御部20は、高温側バイパス弁7を閉じた後、低外気温起動モードを解除し(ステップS15)、通常運転に移行する。   And after closing the high temperature side bypass valve 7, the control part 20 cancels | releases the low external temperature starting mode (step S15), and transfers to a normal driving | operation.

低外気温起動モード実行時、制御部20は、高温側バイパス弁7が開かれている間、高温側圧縮機1を通常運転時の運転周波数よりも小さい運転周波数(例えば30Hz)一定で駆動する。冷凍機油が希釈しやすい条件下において、高温側圧縮機1の運転周波数を急激に上昇させたり、高い運転周波数で駆動してしまうと、圧縮機外へ吐き出される冷凍機油の吐油量が増えてしまう。そのため、低外気温起動モード実行時は、高温側圧縮機1の運転周波数を30Hzに保持することで、圧縮機外へ吐き出される冷凍機油の吐油量を抑えることができる。   When the low outside air temperature start-up mode is executed, the control unit 20 drives the high temperature side compressor 1 at a constant operating frequency (for example, 30 Hz) smaller than the operating frequency during normal operation while the high temperature side bypass valve 7 is open. . If the operating frequency of the high temperature side compressor 1 is suddenly increased or driven at a high operating frequency under conditions where the refrigerating machine oil is easily diluted, the amount of refrigerating machine oil discharged outside the compressor increases. End up. Therefore, when the low outside air temperature start-up mode is executed, the amount of the refrigerating machine oil discharged to the outside of the compressor can be suppressed by maintaining the operating frequency of the high temperature side compressor 1 at 30 Hz.

一方、低温側圧縮機11は、高温側圧縮機1と比べると冷凍機油の希釈は生じにくいため、通常運転と同じ運転周波数で駆動される。低温側圧縮機11までも低い運転周波数で駆動すると、低温側冷凍サイクルRbが高温側冷凍サイクルRaへ与える熱が不足し、高温側冷凍サイクルRaの立ち上がりに時間がかかってしまう。従って、高温側圧縮機1の吐出ガス温度Tdを早く上昇させるため、低温側圧縮機11は通常運転と同様に駆動される。   On the other hand, the low temperature side compressor 11 is driven at the same operating frequency as the normal operation because the dilution of the refrigeration oil is less likely to occur than the high temperature side compressor 1. When the low temperature side compressor 11 is also driven at a low operating frequency, the heat given to the high temperature side refrigeration cycle Ra by the low temperature side refrigeration cycle Rb is insufficient, and it takes time to start up the high temperature side refrigeration cycle Ra. Accordingly, in order to quickly raise the discharge gas temperature Td of the high temperature side compressor 1, the low temperature side compressor 11 is driven in the same manner as in the normal operation.

次に、外気温度Toが極めて低い場合の低外気温起動モードの動作について説明する。
外気温度Toが−15℃(所定の温度T3)以下のような極めて低温の場合、高温側冷媒が高温側冷凍サイクルRa内で寝込むことで冷媒循環量が低下する上に、上述のように高温側バイパス弁7を開放し、高温側圧縮機1を低い運転周波数で駆動するため、低温側冷凍サイクルRbの低温側冷媒がカスケード熱交換器4において放熱しきれない。そのため、低温側冷凍サイクルRbでの高圧側圧力が急激に上昇して、高圧スイッチ等の保護装置が作用し二元冷凍サイクル装置Rの運転が強制停止されてしまう。このように、外気温度Toが極めて低い状況下にあるときは、二元冷凍サイクル装置Rが運転できない場合がある。
Next, the operation in the low outside air temperature start mode when the outside air temperature To is extremely low will be described.
When the outside air temperature To is very low, such as −15 ° C. (predetermined temperature T3), the high-temperature side refrigerant falls into the high-temperature side refrigeration cycle Ra, and the refrigerant circulation rate is reduced. Since the side bypass valve 7 is opened and the high temperature side compressor 1 is driven at a low operating frequency, the low temperature side refrigerant of the low temperature side refrigeration cycle Rb cannot completely dissipate in the cascade heat exchanger 4. Therefore, the high-pressure side pressure in the low-temperature side refrigeration cycle Rb suddenly increases, and a protective device such as a high-pressure switch acts to forcibly stop the operation of the dual refrigeration cycle device R. As described above, when the outside air temperature To is in a very low state, the dual refrigeration cycle apparatus R may not be operated.

そこで、外気温度が極めて低い状況下にあっても二元冷凍サイクル装置Rが運転できるようにするため、制御部20は、外気温度Toが−15℃よりも低い場合(ステップS4のNoの場合)は、バイパス回路開放設定時間tsを30分間(t3)に設定(ステップS7)した後、高温側バイパス弁7を開く(ステップS10)とともに低温側バイパス弁17を開く(ステップS11)。   Therefore, in order to enable the dual refrigeration cycle apparatus R to be operated even under a situation where the outside air temperature is extremely low, the control unit 20 has a case where the outside air temperature To is lower than −15 ° C. (in the case of No in step S4). ) Sets the bypass circuit opening set time ts to 30 minutes (t3) (step S7), then opens the high temperature side bypass valve 7 (step S10) and opens the low temperature side bypass valve 17 (step S11).

外気温度が極めて低い状況下では、高温側圧縮機1内の冷凍機油が温まり難いため、バイパス回路開放設定時間tsを前述の6分間(t1:ステップS5)や8分間(t2:ステップS6)より長い30分間(t3)に設定している。   Under conditions where the outside air temperature is extremely low, the refrigerating machine oil in the high temperature side compressor 1 is difficult to warm, so the bypass circuit opening set time ts is set to 6 minutes (t1: step S5) or 8 minutes (t2: step S6). Long 30 minutes (t3) is set.

バイパス回路開放設定時間tsを設定した後、制御部20からの指令により、高温側バイパス回路6の高温側バイパス弁7を開いて高温側圧縮機1の運転を開始する(ステップS10)。さらに制御部20からの指令により、低温側バイパス回路16の低温側バイパス弁17を開いて低温側圧縮機11の運転を開始する(ステップS11)。   After setting the bypass circuit opening set time ts, the high temperature side bypass valve 7 of the high temperature side bypass circuit 6 is opened by the command from the control unit 20 to start the operation of the high temperature side compressor 1 (step S10). Further, according to a command from the control unit 20, the low temperature side bypass valve 17 of the low temperature side bypass circuit 16 is opened, and the operation of the low temperature side compressor 11 is started (step S11).

このとき、高温側圧縮機1は低い運転周波数(30Hz一定)で駆動され、低温側圧縮機11は通常運転の運転周波数で駆動される。   At this time, the high temperature side compressor 1 is driven at a low operating frequency (constant 30 Hz), and the low temperature side compressor 11 is driven at a normal operating frequency.

低温側バイパス弁17が開かれることにより、低温側圧縮機11から吐出したガス冷媒の一部が、低温側バイパス回路16を介して低温側アキュムレータ15に流入する。低温側アキュムレータ15に流入したガス冷媒は、低温側圧縮機11に吸込まれる。低温側圧縮機11から吐出したガス冷媒の一部が低温側バイパス回路16に流れることにより、低温側冷凍サイクルRbの高圧側圧力の急激な上昇を抑えることができ、低温側冷凍サイクルRbの高圧異常による強制停止を回避することができる。   By opening the low temperature side bypass valve 17, part of the gas refrigerant discharged from the low temperature side compressor 11 flows into the low temperature side accumulator 15 via the low temperature side bypass circuit 16. The gas refrigerant flowing into the low temperature side accumulator 15 is sucked into the low temperature side compressor 11. A part of the gas refrigerant discharged from the low-temperature side compressor 11 flows into the low-temperature side bypass circuit 16, so that a rapid increase in the high-pressure side pressure of the low-temperature side refrigeration cycle Rb can be suppressed, and the high pressure of the low-temperature side refrigeration cycle Rb. Forced stop due to abnormality can be avoided.

制御部20は、高温側圧縮機1の吐出ガス冷媒温度Tdが80℃(Twos−10℃)を越えると(ステップS12のNo)、高温側圧縮機1内の冷凍機油は十分に温められたと判断して、高温側バイパス弁6および低温側バイパス弁16を閉じるべく指令する(ステップS14)。
また、制御部20は、吐出ガス冷媒温度Tdが80℃(Twos−10℃)を超えていなくても(ステップS12のYes)、高圧側バイパス弁7および低温側バイパス弁17が開かれてからの経過時間tが30分間(ts=t3)を経過すると(ステップS13のYes)、高温圧縮機1内の冷凍機油は温められたと判断し、それに従って高温側バイパス弁7および低温側バイパス弁17を閉じる(ステップS14)。
When the discharge gas refrigerant temperature Td of the high temperature side compressor 1 exceeds 80 ° C. (Twos−10 ° C.) (No in Step S12), the control unit 20 determines that the refrigerating machine oil in the high temperature side compressor 1 has been sufficiently warmed. Judgment is made to close the high temperature side bypass valve 6 and the low temperature side bypass valve 16 (step S14).
Further, the controller 20 does not start the high-pressure side bypass valve 7 and the low-temperature side bypass valve 17 even if the discharge gas refrigerant temperature Td does not exceed 80 ° C. (Twos−10 ° C.) (Yes in Step S12). When the elapsed time t of 30 minutes has passed (ts = t3) (Yes in step S13), it is determined that the refrigerating machine oil in the high-temperature compressor 1 has been warmed, and accordingly, the high-temperature side bypass valve 7 and the low-temperature side bypass valve 17 Is closed (step S14).

次いで、制御部20は、高温側バイパス弁7および低温側バイパス弁17を閉じた後、低外気温起動モードを解除(ステップS15)し、通常運転に移行する。
以上の構成によって、外気温度Toが極めて低い状況下であっても二元冷凍サイクル装置Rを運転することができる。
Next, the control unit 20 closes the high temperature side bypass valve 7 and the low temperature side bypass valve 17, then cancels the low outside air temperature activation mode (step S15), and shifts to normal operation.
With the above configuration, the dual refrigeration cycle apparatus R can be operated even under a situation where the outside air temperature To is extremely low.

以上説明したように、本実施形態における二元冷凍サイクル装置Rは、外気温度が低く冷凍機油の希釈が生じやすいときに、高温側バイパス回路6を開放した状態で高温側圧縮機1の運転を開始することにより、圧縮機内部に高温のガス冷媒を流入させて圧縮機内の冷凍機油の温度を上昇させることができる。これにより冷媒の冷凍機油への溶け込みを抑制し、希釈による冷凍機油の圧縮機外への排出量を抑えることができる。   As described above, the binary refrigeration cycle apparatus R in the present embodiment operates the high temperature side compressor 1 with the high temperature side bypass circuit 6 opened when the outside air temperature is low and the refrigeration oil is likely to be diluted. By starting, a high-temperature gas refrigerant can be flowed into the compressor to increase the temperature of the refrigeration oil in the compressor. Accordingly, it is possible to suppress the refrigerant from being dissolved in the refrigerating machine oil, and to suppress the discharge amount of the refrigerating machine oil to the outside of the compressor due to dilution.

さらに、本実施形態における二元冷凍サイクル装置Rは、外気温度が極めて低い状況下にあっては、低温側冷凍サイクルRbのバイパス回路16も開放することにより、低温側サイクルRbの高圧異常を防ぐことができる。   Furthermore, the binary refrigeration cycle apparatus R in the present embodiment prevents a high pressure abnormality in the low temperature side cycle Rb by opening the bypass circuit 16 of the low temperature side refrigeration cycle Rb even under a situation where the outside air temperature is extremely low. be able to.

なお、本発明による二元冷凍サイクル装置Rは、温水生成装置に限定されるものではなく、適用先に応じて構成され、上述の実施の形態に限定されない。   The two-stage refrigeration cycle apparatus R according to the present invention is not limited to the hot water generating apparatus, is configured according to the application destination, and is not limited to the above-described embodiment.

例えば、低温側冷凍サイクルRbの空気熱交換器14の代わりに、工場等の温排水から熱を吸収するような熱交換器を使用すれば、空気熱交換器14のように熱交換器表面に着霜することがないため、低温側冷凍サイクルRbを逆サイクルとするための四方弁12を除去することが可能になる。   For example, instead of the air heat exchanger 14 of the low temperature side refrigeration cycle Rb, if a heat exchanger that absorbs heat from warm waste water in a factory or the like is used, the heat exchanger surface like the air heat exchanger 14 is used. Since frosting does not occur, the four-way valve 12 for making the low temperature side refrigeration cycle Rb a reverse cycle can be removed.

また、高温側冷凍サイクルRaおよび低温側冷凍サイクルRbで使用される冷媒はR134a,R410Aに限らず、R32、R245fa、HFO−1234yf、HFO−1234ze等の冷媒を使用してもよい。   The refrigerant used in the high temperature side refrigeration cycle Ra and the low temperature side refrigeration cycle Rb is not limited to R134a and R410A, and refrigerants such as R32, R245fa, HFO-1234yf, and HFO-1234ze may be used.

以上、本実施形態を説明したが、上述の実施形態は、例として提示したものであり、実施形態の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、要旨を逸脱しない範囲で、種々の省略、置換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although this embodiment was described, the above-mentioned embodiment is shown as an example and does not intend limiting the range of embodiment. The novel embodiment can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

1…高温側圧縮機、2…温水熱交換器、3…高温側膨張装置、4…カスケード熱交換器、5…高温側アキュムレータ、6…高温側バイパス回路、7…高温側バイパス弁、Ra…高温側冷凍回路、11…低温側圧縮機、12…四方弁、13…低温側膨張装置、14…空気熱交換器、15…低温側アキュムレータ、16…低温側バイパス回路、17…低温側バイパス弁、18…送水ポンプ、Rb…低温側冷凍回路、K…筐体、20…制御部(制御手段)、21、22、23…インバータ装置。   DESCRIPTION OF SYMBOLS 1 ... High temperature side compressor, 2 ... Hot water heat exchanger, 3 ... High temperature side expansion apparatus, 4 ... Cascade heat exchanger, 5 ... High temperature side accumulator, 6 ... High temperature side bypass circuit, 7 ... High temperature side bypass valve, Ra ... High temperature side refrigeration circuit, 11 ... Low temperature side compressor, 12 ... Four-way valve, 13 ... Low temperature side expansion device, 14 ... Air heat exchanger, 15 ... Low temperature side accumulator, 16 ... Low temperature side bypass circuit, 17 ... Low temperature side bypass valve DESCRIPTION OF SYMBOLS 18 ... Water pump, Rb ... Low temperature side freezing circuit, K ... Housing, 20 ... Control part (control means), 21, 22, 23 ... Inverter apparatus.

Claims (3)

高温側圧縮機、高温側凝縮器、高温側膨張装置、カスケード熱交換器、高温側アキュムレータを高温側冷媒配管を介して連通する高温側冷凍回路と、
低温側圧縮機、前記カスケード熱交換器、低温側膨張装置、低温側蒸発器、低温側アキュムレータを低温側冷媒配管を介して連通する低温側冷凍回路と、
前記高温側圧縮機の吐出側と前記高温側アキュムレータの入口側とを連絡する高温側バイパス回路と、前記高温側バイパス回路に設けられた高温側バイパス弁と、
前記低温側圧縮機の吐出側と前記低温側アキュムレータの入口側とを連絡する低温側バイパス回路と、前記低温側バイパス回路に設けられた低温側バイパス弁と、
起動時に、外気温度が第1の温度以下の場合、前記高温側バイパス弁を開き、外気温度が前記第1の温度よりも低い第2の温度以下の場合、さらに前記低温側バイパス弁を開く制御手段と、を備えたことを特徴とする二元冷凍サイクル装置。
A high temperature side compressor, a high temperature side condenser, a high temperature side expansion device, a cascade heat exchanger, a high temperature side refrigeration circuit communicating the high temperature side accumulator via a high temperature side refrigerant pipe;
A low temperature side compressor, a cascade heat exchanger, a low temperature side expansion device, a low temperature side evaporator, a low temperature side accumulator, and a low temperature side refrigeration circuit communicating the low temperature side accumulator via a low temperature side refrigerant pipe;
A high temperature side bypass circuit connecting the discharge side of the high temperature side compressor and the inlet side of the high temperature side accumulator, a high temperature side bypass valve provided in the high temperature side bypass circuit,
A low temperature side bypass circuit connecting the discharge side of the low temperature side compressor and the inlet side of the low temperature side accumulator; a low temperature side bypass valve provided in the low temperature side bypass circuit;
During startup, when the outside air temperature is below a first temperature, open the hot side bypass valve, when the outside air temperature is less than the first second temperature lower than the temperature, further the low temperature side bypass valve opens And a control means.
前記制御手段は、前記高温側バイパス弁が開いている間、前記高温側圧縮機を通常運転時の運転周波数よりも小さい所定の運転周波数で駆動させることを特徴とする請求項1に記載の二元冷凍サイクル装置。 Wherein, while the hot-side bypass valve is opened, according to claim 1, characterized in that to drive the high-temperature side compressor with a small predetermined operating frequency than the operating frequency during normal operation two Original refrigeration cycle equipment. 前記制御部は、前記高温側凝縮器における被加熱流体の入口側の温度と外気温度に基づいて低外気温起動モードを実行するか否かを判定する低外気温起動モード選択手段と、低外気温起動モード実行時、外気温度に応じてバイパス回路を開く時間を設定するバイパス回路開放時間設定手段と、低外気温起動モード実行時、外気温度に応じて高温側バイパス回路を開く高温側バイパス制御手段と、低外気温起動モード実行時、外気温度に応じて高温側バイパス回路に加えて低温側バイパス回路を開く低温側バイパス制御手段と、を備えたことを特徴とする請求項1または2に記載の二元冷凍サイクル装置。 Wherein the control unit includes a low outside air temperature startup mode selecting means for determining whether or not to perform a low-outside air temperature startup mode based on the temperature and the outside air temperature at the inlet side of the heated fluid in the high temperature side condenser, low Bypass circuit opening time setting means for setting the time to open the bypass circuit according to the outside air temperature when executing the outside temperature start mode, and the high temperature side bypass for opening the high temperature side bypass circuit according to the outside temperature when executing the low outside temperature start mode and control means, at low outside air temperature startup mode execution, according to claim 1 or 2 and the low temperature-side bypass control means for opening the cold-side bypass circuit in addition to the hot side bypass circuit in accordance with the outdoor temperature, comprising the to two-stage refrigeration cycle apparatus according to.
JP2014557525A 2013-01-21 2014-01-20 Dual refrigeration cycle equipment Active JP5982017B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013008634 2013-01-21
JP2013008634 2013-01-21
PCT/JP2014/050915 WO2014112615A1 (en) 2013-01-21 2014-01-20 Binary refrigeration cycle device

Publications (2)

Publication Number Publication Date
JP5982017B2 true JP5982017B2 (en) 2016-08-31
JPWO2014112615A1 JPWO2014112615A1 (en) 2017-01-19

Family

ID=51209701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014557525A Active JP5982017B2 (en) 2013-01-21 2014-01-20 Dual refrigeration cycle equipment

Country Status (4)

Country Link
JP (1) JP5982017B2 (en)
KR (1) KR101673105B1 (en)
CN (1) CN104937352B (en)
WO (1) WO2014112615A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016113899A1 (en) * 2015-01-16 2016-07-21 三菱電機株式会社 Refrigeration cycle device
JP6289734B2 (en) * 2015-03-16 2018-03-07 三菱電機株式会社 Air conditioning and hot water supply complex system
JP6514964B2 (en) * 2015-06-03 2019-05-15 東芝キヤリア株式会社 Refrigeration cycle device
KR101975007B1 (en) 2018-09-19 2019-05-07 (주)본씨앤아이 cooling system for semiconductor parts cooling
KR101975008B1 (en) 2018-09-19 2019-05-07 (주)본씨앤아이 Cooling System for Cooling Semiconductor Equipment to Prevent Moisture Freezing
CN110285619A (en) * 2019-06-28 2019-09-27 中国科学院理化技术研究所 Cascade type heat pump control method and system
US20220205662A1 (en) * 2019-07-25 2022-06-30 Mitsubishi Electric Corporation Air-conditioning apparatus
KR102330756B1 (en) 2020-03-02 2021-11-25 스타우프코리아유한회사 Binary refrigenerating type thermo-hygrostat system
JP7388467B2 (en) * 2022-03-31 2023-11-29 株式会社富士通ゼネラル dual refrigeration equipment
CN117469871B (en) * 2023-12-26 2024-04-05 珠海格力电器股份有限公司 Control method and device of refrigeration system, refrigeration system and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280350A (en) * 1985-06-03 1986-12-10 三洋電機株式会社 Refrigerator
JPH08189713A (en) * 1995-01-13 1996-07-23 Daikin Ind Ltd Binary refrigerating device
JP2002310520A (en) * 2002-04-04 2002-10-23 Mitsubishi Electric Corp Refrigerant control method for air conditioner, and the air conditioner
JP2005083704A (en) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp Refrigerating cycle and air conditioner
CN102003823A (en) * 2010-11-17 2011-04-06 重庆高环科技有限公司 Low temperature cold air two-stage refrigeration system and cold air jet machine thereof
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device
JP2012197959A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3125778B2 (en) 1998-02-23 2001-01-22 三菱電機株式会社 Air conditioner
EP0937950B1 (en) * 1998-02-23 2004-10-20 Mitsubishi Denki Kabushiki Kaisha Air conditioner
KR100373075B1 (en) 2000-06-07 2003-02-25 삼성전자주식회사 Control system for starting of air conditioner and control method thereof
CN102128524B (en) * 2010-01-13 2012-11-21 珠海格力电器股份有限公司 Heat pump with preheating function and preheating method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280350A (en) * 1985-06-03 1986-12-10 三洋電機株式会社 Refrigerator
JPH08189713A (en) * 1995-01-13 1996-07-23 Daikin Ind Ltd Binary refrigerating device
JP2002310520A (en) * 2002-04-04 2002-10-23 Mitsubishi Electric Corp Refrigerant control method for air conditioner, and the air conditioner
JP2005083704A (en) * 2003-09-10 2005-03-31 Mitsubishi Electric Corp Refrigerating cycle and air conditioner
CN102003823A (en) * 2010-11-17 2011-04-06 重庆高环科技有限公司 Low temperature cold air two-stage refrigeration system and cold air jet machine thereof
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device
JP2012197959A (en) * 2011-03-18 2012-10-18 Fujitsu General Ltd Air conditioning apparatus

Also Published As

Publication number Publication date
JPWO2014112615A1 (en) 2017-01-19
KR20150096746A (en) 2015-08-25
WO2014112615A1 (en) 2014-07-24
CN104937352B (en) 2017-08-08
CN104937352A (en) 2015-09-23
KR101673105B1 (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP5982017B2 (en) Dual refrigeration cycle equipment
JP6138711B2 (en) Air conditioner
US10753645B2 (en) Refrigeration cycle apparatus
US10598413B2 (en) Air-conditioning apparatus
JP5908183B1 (en) Air conditioner
JP6038382B2 (en) Air conditioner
JP2015045479A (en) Hot-cold water air conditioning system
JP2015064169A (en) Hot water generation device
JP6749471B2 (en) Air conditioner
US11193705B2 (en) Refrigeration cycle apparatus
JP6758506B2 (en) Air conditioner
WO2015194167A1 (en) Heat pump device
JP2014070830A (en) Freezer unit
JP6817735B2 (en) Heat pump air conditioning system
JP6537641B2 (en) Hot and cold air conditioning system
JP2012007751A (en) Heat pump cycle device
JP6428221B2 (en) Air conditioner
JP6403413B2 (en) Air conditioner
JP6551437B2 (en) air conditioner
JP5516332B2 (en) Heat pump type hot water heater
JP6238202B2 (en) Air conditioner
JP2016114319A (en) Heating system
JP2011226724A (en) Refrigeration cycle device, and method for starting and controlling the same
JPWO2019026276A1 (en) Refrigeration cycle equipment
JP2010071496A (en) Air conditioner

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160729

R150 Certificate of patent or registration of utility model

Ref document number: 5982017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250