JP6079507B2 - Hot / cold water air conditioning system - Google Patents

Hot / cold water air conditioning system Download PDF

Info

Publication number
JP6079507B2
JP6079507B2 JP2013177864A JP2013177864A JP6079507B2 JP 6079507 B2 JP6079507 B2 JP 6079507B2 JP 2013177864 A JP2013177864 A JP 2013177864A JP 2013177864 A JP2013177864 A JP 2013177864A JP 6079507 B2 JP6079507 B2 JP 6079507B2
Authority
JP
Japan
Prior art keywords
water
hot
water temperature
cold water
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013177864A
Other languages
Japanese (ja)
Other versions
JP2015045479A (en
Inventor
崇大 牛島
崇大 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013177864A priority Critical patent/JP6079507B2/en
Publication of JP2015045479A publication Critical patent/JP2015045479A/en
Application granted granted Critical
Publication of JP6079507B2 publication Critical patent/JP6079507B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Air Conditioning Control Device (AREA)

Description

この発明は、ヒートポンプ温冷水空調システムのヒートポンプ熱源機と利用側放熱器や貯湯タンクに温冷水を供給循環させる循環水の温度による運転制御に関するものである。   The present invention relates to operation control based on the temperature of circulating water that supplies and circulates hot / cold water to a heat pump heat source unit, a heat radiator and a hot water storage tank of a heat pump hot / cold water air conditioning system.

ヒートポンプサイクルを利用する給湯や暖房を行うヒートポンプ温水暖房システムでは、ヒートポンプサイクルの冷媒から熱交換器を介して加熱された温水を暖房を行う室内放熱器や貯湯タンクに供給し、その後利用された温水を前記ヒートポンプサイクルの熱交換器に戻す暖房温水循環回路を有している。その供給する温水を制御するために、前記循環回路には、供給される温水の往き温度を検知する往き温度検知手段と、前記熱交換器に戻る温水の温度を検知する戻り温度検知手段が備えられている。   In a heat pump hot water heating system that performs hot water supply and heating using a heat pump cycle, hot water heated from a refrigerant in the heat pump cycle through a heat exchanger is supplied to an indoor radiator and hot water storage tank that performs heating, and then used hot water Is provided with a heating and hot water circulation circuit that returns the heat to the heat exchanger of the heat pump cycle. In order to control the hot water to be supplied, the circulation circuit includes a forward temperature detection means for detecting the forward temperature of the supplied hot water, and a return temperature detection means for detecting the temperature of the hot water returning to the heat exchanger. It has been.

これまでのヒートポンプ温水暖房システムでは、主として、ヒートポンプサイクルにおけるヒートポンプ容量(圧縮機運転周波数)の変化に対して応答性が早く制御しやすい往き温度制御が行われている。しかしながら、温水暖房システムの負荷側にある室内放熱器の効率が悪い場合や、季節の中間期など必要とする空調給湯負荷が小さい時は、ヒートポンプサイクル熱源側の圧縮機運転周波数制御による最小能力運転を実施することになるが、この最小能力運転により供給される能力熱量が空調給湯負荷側の放熱量より大きい場合では、前記循環回路の往き温度が目標往き温度を超えるために、応答性が早いが故に圧縮機運転のON/OFFサイクル運転となってしまう。   In the conventional heat pump hot water heating system, the forward temperature control that is easy to control quickly and easily with respect to the change of the heat pump capacity (compressor operating frequency) in the heat pump cycle is performed. However, when the efficiency of the indoor radiator on the load side of the hot water heating system is poor or when the required air conditioning hot water supply load is small, such as in the middle of the season, the minimum capacity operation by the compressor operating frequency control on the heat pump cycle heat source side However, when the capacity heat amount supplied by the minimum capacity operation is larger than the heat dissipation amount on the air-conditioning hot water supply load side, the circulatory circuit going temperature exceeds the target going temperature, so the responsiveness is fast. Therefore, it becomes an ON / OFF cycle operation of the compressor operation.

このようなON/OFFサイクル運転の状態に陥ると、ヒートポンプとしての効率が悪いばかりでなく、頻繁なON/OFF切換えに伴う冷媒回路の圧力変動や電気回路のリレー接点の開閉により、圧縮機を含めた冷媒回路部品および電気回路部品の寿命を縮めることに繋がりかねない。   When falling into such an ON / OFF cycle operation state, not only the efficiency as a heat pump is bad, but also the pressure of the refrigerant circuit accompanying frequent ON / OFF switching and the opening / closing of the relay contacts of the electric circuit cause the compressor to It may lead to shortening of the life of the refrigerant circuit parts and electric circuit parts included.

この課題の理想的な解決策としては、空調給湯負荷側における放熱量(温水暖房の場合)または吸熱量(冷水冷房の場合)がどんなに小さくとも、ヒートポンプ熱源の最小能力熱量が同等になるように圧縮機の運転周波数を下げて運転すればよいが、圧縮機の信頼性の理由から圧縮機の運転周波数には下限値を設けてあり、この対応では限界がある。   The ideal solution to this problem is to ensure that the minimum heat capacity of the heat pump heat source is the same no matter how small the amount of heat released (in the case of hot water heating) or the amount of heat absorbed (in the case of cold water cooling) on the air conditioning hot water supply load side. The compressor may be operated at a lower operating frequency. However, a lower limit is set for the operating frequency of the compressor because of the reliability of the compressor, and there is a limit in this correspondence.

そのため、従来のヒートポンプ温水暖房システムでは、例えば、暖房負荷が減少したと判断した場合、暖房用循環ポンプの回転数を下げて循環水量の流速をさげることで戻り温度を下げる制御を開始して、その後往き温度が低下するように混合弁を作動させてバイパス流路を開き排出された温水の一部を合流させる制御を行うものがある(例えば、特許文献1参照。)。   Therefore, in the conventional heat pump hot water heating system, for example, when it is determined that the heating load has decreased, the control to lower the return temperature by starting the flow rate of the circulating water by lowering the rotation speed of the circulating pump for heating is started, After that, there is a control that operates a mixing valve so as to lower the going-out temperature, opens a bypass flow path, and joins a part of discharged hot water (for example, refer to Patent Document 1).

また、例えば、別の従来のヒートポンプ温水暖房機では、ヒートポンプが起動してから暖房用循環ポンプの回転数を段階的に上げてヒートポンプサイクルを安定させ、まず往き温度が目標温度となるように前記循環ポンプの回転数を制御し、次に戻り温度が目標温度となるように循環ポンプの回転数を制御する(例えば、特許文献2参照。)。   Further, for example, in another conventional heat pump hot water heater, after the heat pump is started, the number of rotations of the heating circulation pump is increased stepwise to stabilize the heat pump cycle, and first the outgoing temperature becomes the target temperature. The number of rotations of the circulation pump is controlled, and then the number of rotations of the circulation pump is controlled so that the return temperature becomes the target temperature (see, for example, Patent Document 2).

特開2010−008036号公報(第7−12頁、第1−10図)JP 2010-008036 A (page 7-12, FIG. 1-10) 特開2012−112583号公報(第4−9頁、第1−5図)JP 2012-112583 (page 4-9, FIG. 1-5)

しかしながら、温水暖房システムに使用する水循環ポンプが回転数制御可能な直流駆動式のものでなければ扱うことができず、さらに、水流量制御実現に伴う制御アルゴリズムの複雑化により、これらに対応した製品は高コストとなる。   However, the water circulation pump used in the hot water heating system can only be handled if it is a DC drive type that can control the number of revolutions. In addition, the complexity of the control algorithm accompanying the realization of water flow control makes it possible to handle these products. Is expensive.

この発明は、上記のような課題を解決するためになされたもので、回転数制御はできないものの、低コストで制御アルゴリズムも比較的シンプルのまま対応できる交流電源駆動式の水循環ポンプを用いながらも、ヒートポンプ熱源のON/OFFサイクル運転を抑制することができる温冷水空調システムの提供を目的とする。   The present invention has been made to solve the above-described problems. Although the rotational speed control is not possible, the AC power supply type water circulation pump that can cope with a low cost and a relatively simple control algorithm can be used. An object of the present invention is to provide a hot / cold water air conditioning system capable of suppressing the ON / OFF cycle operation of a heat pump heat source.

この発明に係る温冷水空調システムは、ヒートポンプ熱源、温冷水空調器具、循環ポンプを配管で環状して水回路を形成し、前記ヒートポンプ熱源から前記温冷水空調器具へ温水または冷水を供給し温水暖房または冷水冷房を行う温冷水空調システムにおいて、前記ヒートポンプ熱源で生成された温水または冷水を前記温冷水空調器具へ循環させる水回路の出口に往き水温センサを設けるとともに、前記水回路の前記ヒートポンプ熱源側の入口に戻り水温センサを設け、前記往き水温センサにより検知された往き水温検知温度Tm(out)と目標往き水温Tt(out)との差により前記ヒートポンプ熱源を制御する往き水温制御から、前記戻り水温センサにより検知された戻り水温検知温度Tm(in)と目標戻り水温Tt(in)との差により前記ヒートポンプ熱源を制御する戻り水温制御に切り換える制御装置を備え、前記制御装置は、前記往き水温センサにより検知された往き水温検知温度Tm(out)が前記目標往き水温Tt(out)以下のとき前記ヒートポンプ熱源の圧縮機を運転し、前記往き水温検知温度Tm(out)が前記目標往き水温Tt(out)より所定値α以上となったら前記圧縮機を停止させるサーモON/OFF運転にもとづく判定の回数を判定カウント数として計測し、前記判定カウント数が所定値以上になると前記ヒートポンプ熱源の最小供給能力が前記温冷水空調器具の必要熱量を上回っていると判断し、前記往き水温制御から前記戻り水温制御に切り換えるものである。
The hot / cold water air conditioning system according to the present invention forms a water circuit by annularly connecting a heat pump heat source, a hot / cold water air conditioner, and a circulation pump with piping, and supplies hot water or cold water from the heat pump heat source to the hot / cold water air conditioner. Alternatively, in a hot / cold water air conditioning system for performing cold water cooling, a water temperature sensor is provided at an outlet of a water circuit for circulating hot water or cold water generated by the heat pump heat source to the hot / cold water air conditioner, and the heat pump heat source side of the water circuit of the provided water temperature sensor returns to the inlet, the forward water temperature control for controlling the heat pump heat source by a difference in forward sensed by prior Symbol forward temperature sensor temperature detection temperature Tm and (out) and the target forward water temperature Tt (out), wherein The return water temperature detection temperature Tm (in) detected by the return water temperature sensor and the target return water temperature Tt (in). A control device for switching the return water temperature control for controlling the heat pump heat source, the said control device, said outward when the water temperature is detected by the sensor forward temperature detected temperature Tm (out) of the target forward water temperature Tt (out) hereinafter Determination based on a thermo ON / OFF operation in which the compressor of the heat pump heat source is operated and the compressor is stopped when the outgoing water temperature detection temperature Tm (out) becomes equal to or higher than the target outgoing water temperature Tt (out) by a predetermined value α. Is determined as the determination count number, and when the determination count number is equal to or greater than a predetermined value, it is determined that the minimum supply capacity of the heat pump heat source exceeds the required heat quantity of the hot / cold water air conditioner, and Switch to return water temperature control .

この発明の温冷水空調システムは、ヒートポンプ熱源の圧縮機運転周波数制御による最小能力が温冷水空調機器の放熱量(温水暖房の場合)または吸熱量(冷水冷房の場合)よりも大きい場合でも、ON/OFFサイクル運転を抑制することができ、高効率かつ高寿命な温冷水空調システムを提供することができる効果を有する。   The hot / cold water air-conditioning system of the present invention is ON even when the minimum capacity of the heat pump heat source by the compressor operating frequency control is larger than the heat dissipation amount (in the case of hot water heating) or the heat absorption amount (in the case of cold water cooling) of the hot / cold water air conditioning equipment. / OFF cycle operation can be suppressed, and it has the effect of providing a high-efficiency and long-life hot / cold water air conditioning system.

また、循環水路に設けた循環ポンプの回転数を制御する必要がないので、一定速回転の交流電源駆動式の水循環ポンプを利用できるとともに、制御アルゴリズムも比較的シンプルで低コストにできるという効果を有する。   In addition, since there is no need to control the number of rotations of the circulation pump provided in the circulation channel, an AC power supply type water circulation pump with constant speed rotation can be used, and the control algorithm can be made relatively simple and low cost. Have.

この発明の実施の形態1における温冷水空調システムの水回路図である。It is a water circuit diagram of the hot / cold water air conditioning system in Embodiment 1 of this invention. この発明の実施の形態1にけるヒートポンプ熱源の構成図である。It is a block diagram of the heat pump heat source in Embodiment 1 of this invention. この発明の実態の形態1における温冷水空調システムの温水暖房運転または冷水冷房運転の制御動作を示すフローチャートである。It is a flowchart which shows the control operation | movement of the hot water heating operation or the cold water cooling operation of the hot / cold water air-conditioning system in the actual form 1 of this invention. この発明の実態の形態1に係り、従来制御おける温冷水空調システムの温水暖房運転の圧縮機運転状態を示すタイムチャート図である。It is a time chart which shows the compressor driving | running state of the hot-water heating operation of the hot / cold water air-conditioning system in the conventional control in connection with the actual form 1 of this invention. この発明の実態の形態1における温冷水空調システムの温水暖房運転の圧縮機運転状態を示すタイムチャート図である。It is a time chart figure which shows the compressor driving | running state of the hot water heating operation of the hot / cold water air-conditioning system in the actual form 1 of this invention. この発明の実態の形態2における温冷水空調システムの水回路図である。It is a water circuit diagram of the hot / cold water air-conditioning system in the actual form 2 of this invention. この発明の実態の形態3における温冷水空調システムの水回路図である。It is a water circuit diagram of the hot / cold water air-conditioning system in the actual form 3 of this invention.

実施の形態1.
図1は本発明の実施の形態1による温冷水空調システムを示す水回路図である。基本構成は、圧縮機、空気熱交換器、膨張装置、水熱交換器(たとえばプレート熱交換器)を順次冷媒配管を介して接続した冷凍サイクルを構成したヒートポンプ熱源1、温冷水空調機器2、循環ポンプ3、これらを接続するための循環水路形成手段4(たとえば配管)から構成されている。
Embodiment 1 FIG.
FIG. 1 is a water circuit diagram showing a hot / cold water air conditioning system according to Embodiment 1 of the present invention. The basic configuration is a heat pump heat source 1, a hot / cold water air conditioner 2, and a refrigeration cycle in which a compressor, an air heat exchanger, an expansion device, and a water heat exchanger (for example, a plate heat exchanger) are sequentially connected via a refrigerant pipe. It is comprised from the circulation pump 3 and the circulation water path formation means 4 (for example, piping) for connecting these.

この温冷水空調システムには、制御装置7が設置されており、利用者の設定空調温度と実空調温度、さらには水回路上に設けた温度センサで検出した循環水温度などを基に、ヒートポンプ熱源1の圧縮機駆動や循環ポンプ3の駆動を制御する。   In this hot / cold water air conditioning system, a control device 7 is installed, and the heat pump is based on the air conditioning temperature set by the user, the actual air conditioning temperature, and the circulating water temperature detected by a temperature sensor provided on the water circuit. The compressor driving of the heat source 1 and the driving of the circulation pump 3 are controlled.

ヒートポンプ熱源1に接続された水回路の出口には往き水温センサ5が設けられており、温冷水空調機器2へ供給する温水または冷水の温度(以下、往き水温という)を計測するものである。また、ヒートポンプ熱源1に接続された水回路の入口には戻り水温センサ6が設けられており、ヒートポンプ熱源1へ戻る温水または冷水の温度(以下、戻り水温という)を計測するものである。   An outgoing water temperature sensor 5 is provided at the outlet of the water circuit connected to the heat pump heat source 1, and measures the temperature of hot water or cold water supplied to the hot / cold water air conditioner 2 (hereinafter referred to as outgoing water temperature). A return water temperature sensor 6 is provided at the inlet of the water circuit connected to the heat pump heat source 1, and measures the temperature of hot water or cold water returning to the heat pump heat source 1 (hereinafter referred to as return water temperature).

この制御装置7は、往き水温センサ5と戻り水温センサ6からの計測情報に基づいて、ヒートポンプ熱源1の運転ON/OFF動作および圧縮機運転周波数を制御する機能を備えている。   The control device 7 has a function of controlling the operation ON / OFF operation of the heat pump heat source 1 and the compressor operation frequency based on the measurement information from the forward water temperature sensor 5 and the return water temperature sensor 6.

ここで、ヒートポンプ熱源1について、図2を用いて説明する。図2はヒートポンプ熱源1の構成例を示す図である。ヒートポンプ熱源1は、圧縮機103、四方弁104、水熱交換器102、第1膨張弁106、中圧レシーバ105、第2膨張弁107、空気熱交換器101を有し、配管接続して冷媒回路を構成している。   Here, the heat pump heat source 1 will be described with reference to FIG. FIG. 2 is a diagram illustrating a configuration example of the heat pump heat source 1. The heat pump heat source 1 includes a compressor 103, a four-way valve 104, a water heat exchanger 102, a first expansion valve 106, an intermediate pressure receiver 105, a second expansion valve 107, and an air heat exchanger 101. The circuit is configured.

圧縮機103はインバータ装置等を備え、駆動運転周波数を任意に変化させることにより、圧縮機での冷媒を吸入圧縮して吐出する容量を細かく変化させる。四方弁104は、冷媒回路における配管接続関係について、圧縮機の吸入側と吐出側を入れ替えることができ、水熱交換器における温水生成運転と冷水生成運転とにおける冷媒の循環方向を切り替える。   The compressor 103 includes an inverter device and the like, and by arbitrarily changing the driving operation frequency, the capacity for sucking and compressing the refrigerant in the compressor and changing it is finely changed. The four-way valve 104 can switch the suction side and the discharge side of the compressor with respect to the pipe connection relationship in the refrigerant circuit, and switches the refrigerant circulation direction in the hot water generation operation and the cold water generation operation in the water heat exchanger.

水熱交換器102は、循環水路を流れる水と冷媒回路を流れる冷媒との熱交換を行う。この水熱交換器102では、温水暖房運転時には放熱器(凝縮器)として循環水路を流れる水を加熱し、一方、冷水冷房運転時には循環水路の水から吸熱する吸熱器(蒸発器)となり、水を冷却する。なお、本実施の形態では、水熱交換器102をヒートポンプ熱源1に内蔵させているが、例えば独立して設けるようにしてもよい。   The water heat exchanger 102 performs heat exchange between the water flowing through the circulation channel and the refrigerant flowing through the refrigerant circuit. The water heat exchanger 102 heats water flowing through the circulation channel as a radiator (condenser) during hot water heating operation, and becomes a heat absorber (evaporator) that absorbs heat from water in the circulation channel during cold water cooling operation. Cool down. In the present embodiment, the water heat exchanger 102 is built in the heat pump heat source 1, but may be provided independently, for example.

第1膨張弁106は、冷媒の流量を調整し、例えば水熱交換器102を流れる冷媒の圧力調整(減圧)を行う。中圧レシーバ105は、冷媒回路の第1膨張弁106と第2膨張弁107との間に位置し、余剰冷媒を溜めておく。ここで、圧縮機103の吸入側と接続している吸入配管が中圧レシーバ105の内部を通過しており、この吸入配管の貫通部を通過する冷媒と中圧レシーバ105内の冷媒との熱交換を行うことができる。このため、中圧レシーバ105は内部熱交換器としての機能を備えている。また、第2膨張弁107は冷媒の流量を調整し、圧力調整を行う。これらの膨張弁は制御装置からの指示に基づいて、その開度を変化させることができる電子膨張弁である。空気熱交換器101は冷媒と送風機により送られる外気との熱交換を行う、例えばフィンアンドチューブ型熱交換器である。温水暖房運転時には吸熱作用(蒸発器)を行い、一方、冷水冷房運転時には放熱作用(凝縮器)を行う。   The first expansion valve 106 adjusts the flow rate of the refrigerant, and performs, for example, pressure adjustment (decompression) of the refrigerant flowing through the water heat exchanger 102. The intermediate pressure receiver 105 is located between the first expansion valve 106 and the second expansion valve 107 of the refrigerant circuit and accumulates excess refrigerant. Here, the suction pipe connected to the suction side of the compressor 103 passes through the inside of the intermediate pressure receiver 105, and the heat of the refrigerant passing through the suction pipe and the refrigerant in the intermediate pressure receiver 105. Exchanges can be made. For this reason, the intermediate pressure receiver 105 has a function as an internal heat exchanger. The second expansion valve 107 adjusts the flow rate of the refrigerant to adjust the pressure. These expansion valves are electronic expansion valves whose opening degree can be changed based on an instruction from the control device. The air heat exchanger 101 is, for example, a fin-and-tube heat exchanger that performs heat exchange between the refrigerant and outside air sent by a blower. During the hot water heating operation, an endothermic action (evaporator) is performed, and during the cold water cooling operation, a heat dissipation action (condenser) is performed.

ここで、ヒートポンプ熱源1が構成する冷媒回路を流れる冷媒として、例えばHFC系の混合冷媒であるR410AあるいはR407C、さらには、地球温暖化係数が低いHFC系の単一冷媒であるR32や、ハイドロフルオロオレフィン系の冷媒(HFO1234yfやHFO1234ze、など)、HC系のR290(プロパン)あるいはR1270(プロピレン)の単一または混合冷媒を用いる。   Here, as the refrigerant flowing through the refrigerant circuit that the heat pump heat source 1 constitutes, for example, R410A or R407C, which is an HFC mixed refrigerant, R32, which is an HFC single refrigerant having a low global warming potential, and hydrofluoro Olefin-based refrigerants (HFO1234yf, HFO1234ze, etc.), HC-based R290 (propane) or R1270 (propylene) single or mixed refrigerants are used.

次に、この温冷水空調システムでの温水暖房における水サイクルについて説明する。ヒートポンプ熱源1が駆動する温冷水空調システム運転時は、一定速回転の循環ポンプ3により水回路内を循環水が循環する。循環ポンプ3から吐出された循環水はヒートポンプ熱源1に流入し、そこで内設された水熱交換器102を通過しながら加熱される。加熱された循環水の温水は温冷水空調器具2へ供給されて温冷水空調器具2が設置された空間へ放熱される。そして放熱されて温度が下がった温水は再び循環ポンプに吸入されて循環することになる。   Next, a water cycle in hot water heating in the hot / cold water air conditioning system will be described. During operation of the hot / cold water air conditioning system driven by the heat pump heat source 1, the circulating water is circulated in the water circuit by the circulation pump 3 rotating at a constant speed. Circulating water discharged from the circulation pump 3 flows into the heat pump heat source 1, where it is heated while passing through the water heat exchanger 102 provided therein. The heated circulating water is supplied to the hot / cold water air conditioner 2 and radiated to the space where the hot / cold water air conditioner 2 is installed. Then, the hot water whose temperature has been reduced due to heat dissipation is again sucked into the circulation pump and circulated.

冷水冷房運転については、温水暖房に対して熱の動きが反転する(具体的には、循環水はヒートポンプ熱源1により冷却され、温冷水空調器具2が設置された空間から吸熱される)のみで、循環水路を循環する水が流れるしくみは同じである。   For the cold water cooling operation, the movement of heat is reversed with respect to the hot water heating (specifically, the circulating water is cooled by the heat pump heat source 1 and is absorbed from the space where the hot / cold water air conditioner 2 is installed). The mechanism of water flowing through the circulation channel is the same.

この温冷水空調システムでの温水暖房運転について、図3に基づき説明をする。図3は温冷水空調システムの温水暖房運転または冷水冷房運転の制御動作を示すフローチャートである。   The hot water heating operation in this hot / cold water air conditioning system will be described with reference to FIG. FIG. 3 is a flowchart showing the control operation of the hot water heating operation or the cold water cooling operation of the hot / cold water air conditioning system.

まず、温水暖房運転は往き水温制御から開始する。(ステップS1)
往き水温制御では、制御装置7が、往き水温センサ5により検知した往き水温検知温度Tm(out)と目標往き水温Tt(out)を比較して、ヒートポンプ熱源1の運転ON/OFF動作(サーモON/OFF)および圧縮機運転周波数を制御する。
First, the hot water heating operation starts from the going water temperature control. (Step S1)
In the forward water temperature control, the controller 7 compares the forward water temperature detection temperature Tm (out) detected by the forward water temperature sensor 5 with the target forward water temperature Tt (out), and the operation ON / OFF operation of the heat pump heat source 1 (thermo ON). / OFF) and the compressor operating frequency.

目標往き水温Tt(out)は、例えばユーザーがリモコンなどで設定する値である。往き水温センサ5により検知した往き水温検知温度Tm(out)が、前記目標往き水温Tt(out)以下であればサーモONとなり圧縮機が運転され、一方、前記目標往き水温Tt(out)+α(例えば、α=2deg)以上であればサーモOFFとなり圧縮機は停止される。   The target outgoing water temperature Tt (out) is a value set by the user with a remote controller, for example. If the outgoing water temperature detection temperature Tm (out) detected by the outgoing water temperature sensor 5 is equal to or lower than the target outgoing water temperature Tt (out), the thermostat is turned on and the compressor is operated, while the target outgoing water temperature Tt (out) + α ( For example, if α = 2 deg) or more, the thermo is turned off and the compressor is stopped.

この往き水温制御による運転中に、戻り水温制御への移行判定を実施する。その内容について以下説明する。   During operation based on this forward water temperature control, a judgment is made to shift to return water temperature control. The contents will be described below.

まず、ステップS2でヒートポンプ熱源1の圧縮機運転周波数が最小周波数(例えば、25Hz)かどうかを判定する。その時の圧縮機運転周波数が最小周波数でなければ、ステップS3に進み、戻り水温制御への移行判定のための判定カウント数Ncountをリセットして再度ステップS1に戻り、往き水温制御を継続する。圧縮機運転周波数が最小周波数であれば、ステップS4に進む。   First, in step S2, it is determined whether the compressor operating frequency of the heat pump heat source 1 is the minimum frequency (for example, 25 Hz). If the compressor operating frequency at that time is not the minimum frequency, the process proceeds to step S3, the determination count number Ncount for determining the shift to the return water temperature control is reset, the process returns to step S1, and the forward water temperature control is continued. If the compressor operating frequency is the minimum frequency, the process proceeds to step S4.

続いて、ステップS4ではサーモONしてから所定時間TA以内にサーモOFFしたかどうかを判定する。サーモONしてから所定時間TA以内にサーモOFFしていなければステップS3に進み、戻り水温制御への移行判定のための判定カウント数Ncountをゼロにリセットして再度ステップS1に戻り、往き水温制御を継続する。サーモONしてから所定時間以内にサーモOFFしたら、ステップS5に進む。つまり、最小周波数の運転能力より負荷側の必要熱量が小さくなっている状態の時である。   Subsequently, in step S4, it is determined whether or not the thermo is turned off within a predetermined time TA after the thermo is turned on. If the thermo is not turned off within the predetermined time TA after the thermo is turned on, the process proceeds to step S3, the determination count number Ncount for judging the shift to the return water temperature control is reset to zero, and the process returns to step S1 again, and the forward water temperature control is performed. Continue. If the thermo is turned off within a predetermined time after the thermo is turned on, the process proceeds to step S5. That is, it is a state where the required heat amount on the load side is smaller than the operation capability of the minimum frequency.

ステップS5では、ステップS4でサーモOFFしてから所定時間TB以内にサーモONしたかどうかを判定する。サーモOFFしてから所定時間TB以内にサーモONしなければ、ステップS3に進み、戻り水温制御への移行判定のための判定カウント数をリセットして再度ステップS1に戻り、往き水温制御を継続する。サーモOFFしてから所定時間TB以内にサーモONしたら、ステップS6に進む。   In step S5, it is determined whether the thermo is turned on within a predetermined time TB after the thermo is turned off in step S4. If the thermo is not turned on within the predetermined time TB after the thermo is turned off, the process proceeds to step S3, the determination count number for judging the shift to the return water temperature control is reset, the process returns to step S1 again, and the outgoing water temperature control is continued. . If the thermo is turned on within a predetermined time TB after the thermo is turned off, the process proceeds to step S6.

ステップ6では、戻り水温制御への移行判定のための判定カウント数Ncountに1を加えて、ステップS7に進む。   In Step 6, 1 is added to the determination count number Ncount for determining the shift to the return water temperature control, and the process proceeds to Step S7.

ステップS7では、ステップS6でカウントされた戻り水温制御への移行判定のための判定カウント数Ncountが一定回数以上であるかどうかを判定する。戻り水温制御への移行判定のための判定カウント数Ncountが一定回数未満であれば、再度ステップS1に戻り、往き水温制御を継続する。戻り水温制御への移行判定の判定カウント数が一定回数(例えば3回)以上であれば、ステップS8に進み、戻り水温制御を行う。   In step S7, it is determined whether or not the determination count number Ncount for determining to shift to the return water temperature control counted in step S6 is equal to or greater than a predetermined number. If the determination count number Ncount for determining the transition to the return water temperature control is less than the predetermined number, the process returns to step S1 again, and the forward water temperature control is continued. If the determination count number of the determination of transition to the return water temperature control is equal to or greater than a certain number (for example, 3 times), the process proceeds to step S8 and the return water temperature control is performed.

以上のステップS2からステップS7までは、往き水温制御の作動中における戻り水温制御への移行判定である。   Steps S2 to S7 described above are transition determinations to return water temperature control during operation of the forward water temperature control.

往き水温センサ5により検知した往き水温検知温度Tm(out)が目標往き水温Tt(out)に達しておらずその差が大きい時、制御装置7は圧縮機運転周波数を上げて供給熱量を高める。これにより、ヒートポンプ熱源1の能力が温冷水空調器具2の放熱量よりも大きくなれば、往き水温センサ5による往き水温検知温度Tm(out)が上昇する。そして、この往き水温検知温度Tm(out)が目標往き水温Tt(out)に到達してきたら、その温度を維持するために、制御装置7はヒートポンプ熱源1の供給能力と温冷水空調器具2の放熱量が釣り合うように圧縮機の運転周波数を徐々に下げる。このとき、圧縮機運転周波数が最小周波数(例えば、25Hz)なっても、往き水温センサ5による往き水温検知温度Tm(out)が上昇し続けてサーモOFFとなれば、ヒートポンプ熱源1の最小周波数運転での最小能力は温冷水空調器具2の放熱量よりも大きいと見なせる。   When the forward water temperature detection temperature Tm (out) detected by the forward water temperature sensor 5 does not reach the target forward water temperature Tt (out) and the difference is large, the control device 7 increases the operating frequency of the compressor to increase the supply heat amount. Thereby, if the capability of the heat pump heat source 1 becomes larger than the heat radiation amount of the hot / cold water air conditioner 2, the outgoing water temperature detection temperature Tm (out) by the outgoing water temperature sensor 5 increases. When the outgoing water temperature detection temperature Tm (out) reaches the target outgoing water temperature Tt (out), the controller 7 maintains the supply capacity of the heat pump heat source 1 and the hot / cold water air conditioner 2 in order to maintain the temperature. The operating frequency of the compressor is gradually lowered so that the amount of heat is balanced. At this time, even if the compressor operating frequency becomes the minimum frequency (for example, 25 Hz), if the outgoing water temperature detection temperature Tm (out) by the outgoing water temperature sensor 5 continues to rise and becomes thermo OFF, the minimum frequency operation of the heat pump heat source 1 is performed. It can be considered that the minimum capacity at is larger than the heat radiation amount of the hot / cold water air conditioner 2.

そして、サーモOFFして圧縮機が停止すると、ヒートポンプ熱源1の供給能力はゼロとなるので、往き水温センサ5による往き水温検知温度Tm(out)が再び目標往き水温Tt(out)以下となりサーモONする。しかし、サーモONしてもヒートポンプ熱源1の最小能力は温冷水空調器具2の放熱量よりも大きいため、さらに再びサーモOFFする。   When the compressor is stopped due to the thermo OFF, the supply capacity of the heat pump heat source 1 becomes zero. Therefore, the detection temperature Tm (out) of the outbound water temperature detected by the outbound water temperature sensor 5 becomes equal to or lower than the target outbound water temperature Tt (out) again. To do. However, since the minimum capacity of the heat pump heat source 1 is larger than the heat radiation amount of the hot / cold water air conditioner 2 even if the thermo is turned on, the thermo is turned off again.

つまり、ヒートポンプ熱源1の最小能力が温冷水空調器具2の放熱量よりも大きい場合は、サーモON(圧縮機最小周波数運転)→サーモOFF(圧縮機停止)→サーモON(圧縮機最小周波数運転)→サーモOFF(圧縮機停止)→・・・の繰り返しでON/OFFサイクル運転となるため、一定の時間内でこのON/OFFサイクル運転となったかどうかをステップS2からステップS7で判定している。   That is, when the minimum capacity of the heat pump heat source 1 is larger than the heat radiation amount of the hot / cold water air conditioner 2, the thermo ON (compressor minimum frequency operation) → the thermo OFF (compressor stop) → the thermo ON (compressor minimum frequency operation). → Thermo-OFF (compressor stop) → ... repeats the ON / OFF cycle operation, so it is determined in steps S2 to S7 whether this ON / OFF cycle operation has been performed within a certain time. .

ステップS8では、温水暖房運転は往き水温制御から戻り水温制御に切り換わる。   In step S8, the hot water heating operation is switched from the forward water temperature control to the return water temperature control.

戻り水温制御では、制御装置7が、戻り水温センサ6により検知した戻り水温検知温度Tm(in)と目標戻り水温Tt(in)を比較して、ヒートポンプ熱源1の運転ON/OFF動作(サーモON/OFF)および圧縮機運転周波数を制御する。この目標戻り水温Tt(in)は、往き水温制御から戻り水温制御に移行した時点でサーモOFFしてしまわないように制御装置7が演算した値(例えば、戻り水温制御に移行する前の往き水温制御動作中に、戻り水温センサ6が検知した最高温度の検知温度)である。そして、戻り水温センサ6により検知した戻り水温検知温度Tm(in)が目標戻り水温Tt(in)以下であれば、サーモONとなり圧縮機が運転し、戻り水温検知温度Tm(in)が目標戻り水温Tt(in)+β(例えば、β=2deg)以上であれば、サーモOFFとなる。   In the return water temperature control, the control device 7 compares the return water temperature detection temperature Tm (in) detected by the return water temperature sensor 6 with the target return water temperature Tt (in), and the operation ON / OFF operation of the heat pump heat source 1 (thermo ON). / OFF) and the compressor operating frequency. The target return water temperature Tt (in) is a value calculated by the control device 7 so that the thermo-OFF is not performed when the return water temperature control is shifted to the return water temperature control (for example, the forward water temperature before the return water temperature control is transferred). The maximum temperature detected by the return water temperature sensor 6 during the control operation). If the return water temperature detection temperature Tm (in) detected by the return water temperature sensor 6 is equal to or lower than the target return water temperature Tt (in), the thermostat is turned on and the compressor is operated, and the return water temperature detection temperature Tm (in) is the target return. If the water temperature is Tt (in) + β (for example, β = 2 deg) or more, the thermo is turned off.

また、往き水温が高温になることで、温冷水空調器具2に許容上限温度以上の高温水が流入して破損するのを防止するために、制御装置7は往き水温センサ5により検知した往き水温検知温度Tm(out)と往き水温上限値Tx(out)の関係もサーモON/OFF判定に使用する。往き水温上限値Tx(out)は、例えば温冷水空調器具2の許容上限温度に合わせて、ユーザーがリモコンなどで設定する値である。往き水温センサ5により検知した往き水温検知温度Tm(out)が[往き水温上限値Tx(out)−γ]以下であればサーモONすることができ、往き水温検知温度Tm(out)が往き水温上限値Tx(out)以上であれば、サーモONさせない。ここで、上述のβとγの関係は、β<γとなる。   Further, in order to prevent the high temperature water exceeding the allowable upper limit temperature from flowing into the hot / cold water air conditioner 2 due to the high temperature of the outgoing water, the controller 7 detects the outgoing water temperature detected by the outgoing water temperature sensor 5. The relationship between the detected temperature Tm (out) and the outgoing water temperature upper limit Tx (out) is also used for the thermo ON / OFF determination. The outgoing water temperature upper limit value Tx (out) is a value set by the user using a remote controller or the like according to the allowable upper limit temperature of the hot / cold water air conditioner 2, for example. If the outgoing water temperature detection temperature Tm (out) detected by the outgoing water temperature sensor 5 is equal to or less than [the outgoing water temperature upper limit value Tx (out) −γ], the thermo-ON can be performed, and the outgoing water temperature detection temperature Tm (out) is the outgoing water temperature. If it is equal to or greater than the upper limit value Tx (out), the thermo is not turned on. Here, the relationship between β and γ described above is β <γ.

戻り水温制御による動作中には、往き水温制御への移行判定(復帰判定)を行う。   During the operation based on the return water temperature control, a transition determination (return determination) to the forward water temperature control is performed.

ステップS9でヒートポンプ熱源1の圧縮機が最小運転周波数より大きい周波数で一定時間連続して運転しているかどうか(例えば、最小運転周波数が25Hzだとすると、26Hz以上で一定時間連続運転)を判定する。圧縮機運転周波数が最小であれば、再びステップS8に戻り、戻り水温制御により継続して運転する。   In step S9, it is determined whether or not the compressor of the heat pump heat source 1 is continuously operated for a certain period of time at a frequency greater than the minimum operating frequency (for example, if the minimum operating frequency is 25 Hz, it is continuously operated for 26 hours or more). If the compressor operating frequency is minimum, the process returns to step S8 again, and the operation is continued by the return water temperature control.

圧縮機が最小運転周波数より大きい周波数で一定時間(例えば、60分)連続運転していれば、ヒートポンプ熱源1の最小供給能力が温冷水空調器具2の放熱量以下と見なせるので、ステップS3に進み、戻り水温制御への移行判定のための判定カウント数をリセットして、ステップS1に戻り、往き水温制御の動作に復帰する。   If the compressor is continuously operated at a frequency higher than the minimum operating frequency for a certain period of time (for example, 60 minutes), the minimum supply capability of the heat pump heat source 1 can be considered to be equal to or less than the heat radiation amount of the hot / cold water air conditioner 2, and the process proceeds to step S3. Then, the determination count number for determining the shift to the return water temperature control is reset, the process returns to step S1, and the operation returns to the operation of the forward water temperature control.

図3のフローチャートは冷水冷房運転についての動作も示しており、温水暖房に対してヒートポンプ熱源1の冷凍サイクルにおける熱の動きが反転するため、サーモON/OFF判定条件(検知値と目標値の大小)が異なるのみで、他の考え方は同じである。   The flowchart of FIG. 3 also shows the operation for the cold water cooling operation. Since the heat movement in the refrigeration cycle of the heat pump heat source 1 is reversed with respect to the hot water heating, the thermo ON / OFF determination condition (the magnitude of the detected value and the target value is small or large). ) Is different, but the other way of thinking is the same.

ここで、図4にヒートポンプ熱源1の最小供給能力が温冷水空調機器2より大きい場合における従来の温水暖房機器の運転状態を示し、図5に本実施の形態による運転状態を示す。図4に示すように、従来の温水暖房機器の運転では往き水温制御のみであり、往き水温センサ5による往き水温検知温度の応答性が早いがゆえに、サーモONしてからまもなく往き水温センサ5による往き水温検知温度は目標往き水温を超えてサーモOFF(ヒートポンプ熱源1の圧縮機運転を停止)し、その後まもなく(圧縮機は停止しているが水回路の循環ポンプ3は駆動して循環水は流れているので)往き水温検知温度は目標往き水温以下となりサーモONしている。つまりサーモON/OFFサイクル運転となり、ヒートポンプ熱源1の圧縮機がON/OFF運転を行うことになる。   Here, FIG. 4 shows the operating state of the conventional hot water heating equipment when the minimum supply capacity of the heat pump heat source 1 is larger than the hot / cold water air conditioning equipment 2, and FIG. 5 shows the operating state according to the present embodiment. As shown in FIG. 4, in the operation of the conventional hot water heater, only the forward water temperature control is performed, and the response of the forward water temperature detection temperature by the forward water temperature sensor 5 is fast. The detected water temperature exceeds the target water temperature and the thermo is turned off (the compressor operation of the heat pump heat source 1 is stopped), and shortly thereafter (the compressor is stopped, but the circulating pump 3 of the water circuit is driven and the circulating water is (Because it is flowing) The detected water temperature is below the target water temperature and the thermo is on. That is, the thermo ON / OFF cycle operation is performed, and the compressor of the heat pump heat source 1 performs the ON / OFF operation.

これに対して、図5に示すように、本実施の形態ではON/OFFサイクル運転を検出判断して、往き水温制御運転から戻り水温制御運転に切り換えるので、戻り水温センサ6により検知した戻り水温検知温度Tm(in)を用いるため往き水温に比べて応答性は遅く、また、温冷水空調器具2での放熱があるため、戻り水温センサ6により検知した戻り水温検知温度Tm(in)はしばらく目標戻り水温Tt(in)を超えないため、サーモON状態を継続できる。   On the other hand, as shown in FIG. 5, in the present embodiment, the ON / OFF cycle operation is detected and determined, and the return water temperature control operation is switched to the return water temperature control operation. Therefore, the return water temperature detected by the return water temperature sensor 6 Since the detected temperature Tm (in) is used, the response is slower than the outgoing water temperature, and since there is heat radiation in the hot / cold water air conditioner 2, the return water temperature detected temperature Tm (in) detected by the return water temperature sensor 6 is for a while. Since the target return water temperature Tt (in) is not exceeded, the thermo-ON state can be continued.

以上のように、実施の形態1の温冷水空調システムでは、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を上回っていることを検出すると往き水温制御から戻り水温制御に切り換え、一方、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を下回っていることを検出すると戻り水温制御から往き水温制御に切り換えて運転をする制御装置7を備えることで、ヒートポンプ熱源の圧縮機運転周波数制御による最小供給能力が温冷水空調器具の温水暖房の場合の放熱量または冷水冷房の場合の吸熱量より大きい場合でも、サーモON/OFFを繰り返すことによるヒートポンプ熱源の圧縮機のON/OFFサイクル運転を抑制することができるので、高効率かつ高寿命な温冷水空調システムを提供する。   As described above, in the hot / cold water air conditioning system of the first embodiment, when it is detected that the minimum supply capacity of the heat pump heat source 1 exceeds the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2, the incoming water temperature control is performed. Switch to return water temperature control. On the other hand, if it detects that the minimum supply capacity of the heat pump heat source 1 is below the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2, it switches from return water temperature control to forward water temperature control. Even if the minimum supply capacity by the compressor operating frequency control of the heat pump heat source is larger than the heat dissipation amount in the case of hot water heating or the heat absorption amount in the case of cold water cooling, Since the ON / OFF cycle operation of the compressor of the heat pump heat source by repeating OFF can be suppressed, high efficiency and high To provide a life of hot and cold air conditioning system.

実施の形態2.
図6は本発明の実施の形態2による温冷水空調システムを示す水回路図である。この実施の形態2は、実施の形態1において、ヒートポンプ熱源1と往き水温センサ5の間に循環水を加熱する補助ヒータ8を備えている点が異なるだけである。温水暖房運転においてヒートポンプ熱源1の供給能力が不足したときに補助熱源として循環水を加熱するものである。
Embodiment 2. FIG.
FIG. 6 is a water circuit diagram showing a hot / cold water air-conditioning system according to Embodiment 2 of the present invention. The second embodiment is different from the first embodiment only in that an auxiliary heater 8 for heating the circulating water is provided between the heat pump heat source 1 and the outgoing water temperature sensor 5. When the supply capacity of the heat pump heat source 1 is insufficient in the hot water heating operation, the circulating water is heated as an auxiliary heat source.

本実施の形態における温水暖房運転または冷水冷房運転の動作は実施の形態1と同じであり、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を上回っていることを検出すると往き水温制御から戻り水温制御に切り換え、一方、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を下回っていることを検出すると戻り水温制御から往き水温制御に切り換えて運転をする制御装置7を備えるため、ヒートポンプ熱源の圧縮機運転周波数制御による最小供給能力が温冷水空調器具の温水暖房の場合の放熱量または冷水冷房の場合の吸熱量より大きい場合でも、サーモON/OFFサイクル運転を抑制することができる。   The operation of the hot water heating operation or the cold water cooling operation in the present embodiment is the same as that of the first embodiment, and the minimum supply capacity of the heat pump heat source 1 exceeds the heat radiation amount or the heat absorption amount required by the hot / cold water air conditioner 2. When it is detected, switching from the forward water temperature control to the return water temperature control is performed. On the other hand, when it is detected that the minimum supply capacity of the heat pump heat source 1 is less than the heat dissipation or heat absorption required by the hot / cold water air conditioner 2, the return water temperature control is started. Since the control device 7 that operates by switching to the outgoing water temperature control is provided, the minimum supply capacity by the compressor operating frequency control of the heat pump heat source is based on the heat dissipation amount in the case of hot water heating of the hot / cold water air conditioner or the heat absorption amount in the case of cold water cooling. Even when it is large, the thermo ON / OFF cycle operation can be suppressed.

実施の形態3.
図7は本発明の実施の形態3による温冷水空調システムを示す水回路図である。この実施の形態3は実施の形態2をもとにすると、水回路において、往き水温センサ5と温冷水空調器具2の間に分岐点を設けるとともに、温冷水空調器具2から流出して循環ポンプ3に流入する間に合流点を設け、温冷水空調器具2に対して並列に循環水路形成手段4で接続された熱交換器9を内蔵した貯湯タンク10と、貯湯タンク10内の水温を検知するタンク水温センサ11と、分岐点ないし合流点のいずれかに温冷水空調器具2側の回路と熱交換器9側の回路を切り替えるための電動三方弁12を備えている点が異なるものである。
Embodiment 3 FIG.
FIG. 7 is a water circuit diagram showing a hot / cold water air-conditioning system according to Embodiment 3 of the present invention. The third embodiment is based on the second embodiment. In the water circuit, a branch point is provided between the outgoing water temperature sensor 5 and the hot / cold water air conditioner 2 and the circulation pump flows out of the hot / cold water air conditioner 2. A hot water storage tank 10 having a built-in heat exchanger 9 connected to the hot / cold water air conditioner 2 in parallel with the circulating water channel forming means 4 and a water temperature in the hot water storage tank 10 is detected. The tank water temperature sensor 11 is different from the tank water temperature sensor 11 in that it has an electric three-way valve 12 for switching a circuit on the hot / cold water air-conditioning appliance 2 side and a circuit on the heat exchanger 9 side to either a branch point or a junction. .

図7における電動三方弁12を動作させて温水または冷水の流れを切り替えることで、温水暖房運転または冷水冷房運転と貯湯タンク10への給湯運転が選択できるものである。   By operating the electric three-way valve 12 in FIG. 7 and switching the flow of hot water or cold water, a hot water heating operation or a cold water cooling operation and a hot water supply operation to the hot water storage tank 10 can be selected.

本実施の形態では温水暖房運転または冷水冷房運転の動作および給湯運転の動作におけるヒートポンプ熱源1の圧縮機駆動制御と往き水温制御または戻り水温制御は実施の形態1と同じであり、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を上回っていることを検出すると往き水温制御から戻り水温制御に切り換え、一方、ヒートポンプ熱源1の最小供給能力が温冷水空調機器2が必要とする放熱量または吸熱量を下回っていることを検出すると戻り水温制御から往き水温制御に切り換えて運転をする制御装置7を備えるため、ヒートポンプ熱源の圧縮機運転周波数制御による最小供給能力が温冷水空調器具の温水暖房の場合の放熱量または冷水冷房の場合の吸熱量より大きい場合でも、サーモON/OFFサイクル運転を抑制することができる。   In the present embodiment, the compressor drive control and the forward water temperature control or the return water temperature control of the heat pump heat source 1 in the operation of the hot water heating operation or the cold water cooling operation and the operation of the hot water supply operation are the same as those in the first embodiment. When it is detected that the minimum supply capacity exceeds the amount of heat dissipation or heat absorption required by the hot / cold water air conditioner 2, the return water temperature control is switched to the return water temperature control, while the minimum supply capacity of the heat pump heat source 1 is the hot / cold water air conditioner. 2 is provided with a control device 7 that operates by switching from the return water temperature control to the forward water temperature control when it detects that the heat radiation amount or the heat absorption amount required by the heat pump 2 is lower than the required heat release amount. Even if is greater than the amount of heat released in the case of hot water heating of a hot / cold water air conditioner or the amount of heat absorbed in the case of cold water cooling, / The OFF cycle operation can be suppressed.

1 ヒートポンプ熱源、2 温冷水空調器具、3 循環ポンプ、4 循環水路形成手段、5 往き水温センサ、6 戻り水温センサ、7 制御装置、8 補助ヒータ、9 熱交換器、10 貯湯タンク、11 タンク水温センサ、12 電動三方弁、101 空気熱交換器、102 水熱交換器、103 圧縮機、104 四方弁、105 中圧レシーバ、106 第1膨張弁、107 第2膨張弁。   DESCRIPTION OF SYMBOLS 1 Heat pump heat source, 2 hot / cold water air-conditioning equipment, 3 circulation pump, 4 circulation water path formation means, 5 going water temperature sensor, 6 return water temperature sensor, 7 control apparatus, 8 auxiliary heater, 9 heat exchanger, 10 hot water tank, 11 tank water temperature Sensor, 12 Electric three-way valve, 101 Air heat exchanger, 102 Water heat exchanger, 103 Compressor, 104 Four-way valve, 105 Medium pressure receiver, 106 First expansion valve, 107 Second expansion valve.

Claims (5)

ヒートポンプ熱源、温冷水空調器具、循環ポンプを配管で環状して水回路を形成し、前記ヒートポンプ熱源から前記温冷水空調器具へ温水または冷水を供給し温水暖房または冷水冷房を行う温冷水空調システムにおいて、前記ヒートポンプ熱源で生成された温水または冷水を前記温冷水空調器具へ循環させる水回路の出口に往き水温センサを設けるとともに、前記水回路の前記ヒートポンプ熱源側の入口に戻り水温センサを設け、前記往き水温センサにより検知された往き水温検知温度Tm(out)と目標往き水温Tt(out)との差により前記ヒートポンプ熱源を制御する往き水温制御から、前記戻り水温センサにより検知された戻り水温検知温度Tm(in)と目標戻り水温Tt(in)との差により前記ヒートポンプ熱源を制御する戻り水温制御に切り換える制御装置を備え、前記制御装置は、前記往き水温センサにより検知された往き水温検知温度Tm(out)が前記目標往き水温Tt(out)以下のとき前記ヒートポンプ熱源の圧縮機を運転し、前記往き水温検知温度Tm(out)が前記目標往き水温Tt(out)より所定値α以上となったら前記圧縮機を停止させるサーモON/OFF運転にもとづく判定の回数を判定カウント数として計測し、前記判定カウント数が所定値以上になると前記ヒートポンプ熱源の最小供給能力が前記温冷水空調器具の必要熱量を上回っていると判断し、前記往き水温制御から前記戻り水温制御に切り換えることを特徴とする温冷水空調システム。 In a hot / cold water air conditioning system for forming a water circuit by annularly connecting a heat pump heat source, hot / cold water air conditioner, and circulation pump with piping, supplying hot water or cold water from the heat pump heat source to the hot / cold water air conditioner and performing hot water heating or cold water cooling the hot water or cold water generated by the heat pump heat source provided with a water temperature sensor forward to the outlet of the water circuit for circulating to the hot and cold water air-conditioning device, provided the water temperature sensor back to the inlet of the heat pump heat source side of the water circuit, before Return water temperature detection detected by the return water temperature sensor from the forward water temperature control that controls the heat pump heat source based on the difference between the forward water temperature detection temperature Tm (out) detected by the forward water temperature sensor and the target outgoing water temperature Tt (out). The heat pump heat source is controlled by the difference between the temperature Tm (in) and the target return water temperature Tt (in). Return a control device for switching the temperature control, the control device, the forward water temperature forward is detected by the sensor temperature detection temperature Tm (out) the target forward water temperature Tt (out) following when the compressor of the heat pump heat source The number of determinations based on the thermo-ON / OFF operation for stopping the compressor when the operation water temperature detection temperature Tm (out) is equal to or greater than the predetermined value α from the target water temperature Tt (out). When the determination count number exceeds a predetermined value, it is determined that the minimum supply capacity of the heat pump heat source exceeds the required heat quantity of the hot / cold water air conditioner, and switching from the forward water temperature control to the return water temperature control is performed. A featured hot / cold water air conditioning system. 前記サーモONによる運転が所定時間TA以上、またはサーモOFFの停止が所定時間TB以上に経過していると前記判定カウント数をリセットすることを特徴とする請求項1記載の温冷水空調システム。 The operation by the thermo ON a predetermined time TA or more, or hot and cold water air-conditioning system of claim 1 Symbol mounting stop of thermo OFF is characterized by resetting the decision count and has passed more than a predetermined time TB. ヒートポンプ熱源、温冷水空調器具、循環ポンプを配管で環状して水回路を形成し、前記ヒートポンプ熱源から前記温冷水空調器具へ温水または冷水を供給し温水暖房または冷水冷房を行う温冷水空調システムにおいて、前記ヒートポンプ熱源で生成された温水または冷水を前記温冷水空調器具へ循環させる水回路の出口に往き水温センサを設けるとともに、前記水回路の前記ヒートポンプ熱源側の入口に戻り水温センサを設け、前記ヒートポンプ熱源の最小供給能力が前記温冷水空調器具の必要熱量を上回っていると判断し、前記往き水温センサにより検知された往き水温検知温度Tm(out)と目標往き水温Tt(out)との差により前記ヒートポンプ熱源を制御する往き水温制御から、前記戻り水温センサにより検知された戻り水温検知温度Tm(in)と目標戻り水温Tt(in)との差により前記ヒートポンプ熱源を制御する戻り水温制御に切り換える制御装置を備え、前記制御装置は、前記往き水温制御から前記戻り水温制御に切り換わるとき、前記目標戻り水温Tt(in)を切り換わる前の往き水温制御中での戻り水温検知温度から演算して設定することを特徴とする温冷水空調システム。In a hot / cold water air conditioning system in which a water circuit is formed by annularly connecting a heat pump heat source, hot / cold water air conditioner, and circulation pump with piping, and hot water or cold water is supplied from the heat pump heat source to the hot / cold water air conditioner to perform hot water heating or cold water cooling A water temperature sensor is provided at the outlet of the water circuit for circulating hot water or cold water generated by the heat pump heat source to the hot / cold water air conditioner, and a return water temperature sensor is provided at the heat pump heat source side inlet of the water circuit, It is determined that the minimum supply capacity of the heat pump heat source exceeds the necessary heat quantity of the hot / cold water air conditioner, and the difference between the forward water temperature detection temperature Tm (out) detected by the forward water temperature sensor and the target forward water temperature Tt (out) The return water detected by the return water temperature sensor from the outgoing water temperature control that controls the heat pump heat source by A controller that switches to the return water temperature control that controls the heat pump heat source based on the difference between the detected temperature Tm (in) and the target return water temperature Tt (in), and the control device switches from the forward water temperature control to the return water temperature control. A hot / cold water air conditioning system characterized in that, when switching, the target return water temperature Tt (in) is calculated and set from the return water temperature detection temperature in the forward water temperature control before switching. 前記制御装置は、前記戻り水温制御で運転中に、前記ヒートポンプ熱源の圧縮機が最小運転周波数より大きい運転周波数で所定時間以上の連続運転をしていれば前記往き水温制御に復帰することを特徴とする請求項1乃至請求項のいずれかに記載の温冷水空調システム。 The control device returns to the forward water temperature control if the compressor of the heat pump heat source is continuously operated for a predetermined time or more at an operation frequency higher than a minimum operation frequency during operation by the return water temperature control. The hot / cold water air conditioning system according to any one of claims 1 to 3 . 前記水回路に、前記往き水温センサと温冷水空調器具の間を分岐点とし、前記温冷水空調器具と循環ポンプの間を合流点とし、前記温冷水空調器具に対して並列に配管で接続された熱交換器を有した貯湯タンクと、前記貯湯タンク内の水温を検知するタンク水温センサと、前記分岐点ないし前記合流点のいずれかに前記温冷水空調器具側の回路と前記貯湯タンク側の回路を切り換えるための三方弁を備えたことを特徴とする請求項1乃至請求項のいずれかに記載の温冷水空調システム。 The water circuit has a branch point between the outgoing water temperature sensor and the hot / cold water air conditioner and a junction point between the hot / cold water air conditioner and the circulation pump, and is connected to the hot / cold water air conditioner by a pipe in parallel. A hot water storage tank having a heat exchanger, a tank water temperature sensor for detecting the water temperature in the hot water storage tank, a circuit on the hot / cold water air conditioner side at any one of the branching point or the junction point, and a hot water tank side The hot / cold water air conditioning system according to any one of claims 1 to 4 , further comprising a three-way valve for switching the circuit.
JP2013177864A 2013-08-29 2013-08-29 Hot / cold water air conditioning system Expired - Fee Related JP6079507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013177864A JP6079507B2 (en) 2013-08-29 2013-08-29 Hot / cold water air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013177864A JP6079507B2 (en) 2013-08-29 2013-08-29 Hot / cold water air conditioning system

Publications (2)

Publication Number Publication Date
JP2015045479A JP2015045479A (en) 2015-03-12
JP6079507B2 true JP6079507B2 (en) 2017-02-15

Family

ID=52671107

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013177864A Expired - Fee Related JP6079507B2 (en) 2013-08-29 2013-08-29 Hot / cold water air conditioning system

Country Status (1)

Country Link
JP (1) JP6079507B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105352091A (en) * 2015-11-30 2016-02-24 珠海格力电器股份有限公司 Humidifier and water-free heating preventingmethod thereof
JP6616925B2 (en) * 2016-01-28 2019-12-04 株式会社コロナ Heat pump equipment
CN107367013B (en) * 2017-06-06 2019-11-12 珠海格力电器股份有限公司 Control the methods, devices and systems of compressor
CN107166508B (en) * 2017-06-21 2020-07-21 海信(山东)空调有限公司 Heat pump type floor heating machine control method and heat pump type floor heating machine
JP6964482B2 (en) * 2017-10-23 2021-11-10 株式会社コロナ Heat pump type temperature control system
JP6964049B2 (en) * 2018-07-19 2021-11-10 株式会社コロナ Heat pump type cold water air conditioner
CN109237583A (en) * 2018-10-10 2019-01-18 浙江正理生能科技有限公司 A kind of air source heat pump central heating system and control method
CN109612049B (en) * 2018-11-13 2021-03-16 上海冷元节能科技有限公司 Method and device for controlling output power of compressor
CN110779163B (en) * 2019-10-21 2021-07-09 珠海格力电器股份有限公司 Air conditioning unit control method and device
CN112484248B (en) * 2020-11-02 2022-04-08 珠海格力电器股份有限公司 Air conditioner device control method and device and air conditioner
CN114506189A (en) * 2020-11-16 2022-05-17 长城汽车股份有限公司 Air conditioning system, control method and device thereof, storage medium and vehicle
CN113669966A (en) * 2021-07-21 2021-11-19 浙江中广电器股份有限公司 Method for controlling operation of heat pump unit through water temperature
CN114234371B (en) * 2021-12-15 2023-01-10 珠海格力电器股份有限公司 Air source heat pump water machine, control method and device thereof and storage medium
CN114251813A (en) * 2021-12-21 2022-03-29 石家庄科林电气股份有限公司 Control method of ground source heat pump central air-conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3589203B2 (en) * 2001-07-17 2004-11-17 ダイキン工業株式会社 Air conditioner
JP4503083B2 (en) * 2008-06-18 2010-07-14 株式会社Nttファシリティーズ Air conditioner and operation method thereof
JP2011252636A (en) * 2010-06-01 2011-12-15 Panasonic Corp Hot-water heating hot-water supply apparatus
JP5476604B2 (en) * 2010-11-25 2014-04-23 パナソニック株式会社 Heat pump hot water heater

Also Published As

Publication number Publication date
JP2015045479A (en) 2015-03-12

Similar Documents

Publication Publication Date Title
JP6079507B2 (en) Hot / cold water air conditioning system
JP5984784B2 (en) Hot / cold water air conditioning system
JP5929450B2 (en) Refrigeration cycle equipment
JP5657110B2 (en) Temperature control system and air conditioning system
JP5094942B2 (en) Heat pump equipment
JP5982017B2 (en) Dual refrigeration cycle equipment
EP3650769B1 (en) Heat exchange unit for air conditioning device and air conditioning device
JP2009287895A (en) Heat pump hot water heating system
JP2013119954A (en) Heat pump hot water heater
JP2012112583A (en) Heat pump hot-water heater
JP6749471B2 (en) Air conditioner
EP3159613B1 (en) Heat pump heating system
JP6537641B2 (en) Hot and cold air conditioning system
JP6147659B2 (en) Heat pump equipment
JP6359181B2 (en) Refrigeration cycle equipment
AU2020438844B2 (en) Heat pump heat source device and heat pump water heater
JP6359398B2 (en) Combined heat source heat pump device
JP5818601B2 (en) Heat pump heat source machine
JP6136158B2 (en) Heat pump cycle equipment
JPWO2019026276A1 (en) Refrigeration cycle equipment
KR101319673B1 (en) Water circulation system associated with refrigerant cycle
JP2023157663A (en) heat source unit
JP2021124206A (en) Heat pump type hot water heating system
KR20130004944A (en) Heat storaging apparatus and control process of the same
JP2012002471A (en) Heat pump hot water heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170102

R151 Written notification of patent or utility model registration

Ref document number: 6079507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees