JP2013119954A - Heat pump hot water heater - Google Patents

Heat pump hot water heater Download PDF

Info

Publication number
JP2013119954A
JP2013119954A JP2011266587A JP2011266587A JP2013119954A JP 2013119954 A JP2013119954 A JP 2013119954A JP 2011266587 A JP2011266587 A JP 2011266587A JP 2011266587 A JP2011266587 A JP 2011266587A JP 2013119954 A JP2013119954 A JP 2013119954A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
heat pump
refrigerant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011266587A
Other languages
Japanese (ja)
Inventor
Yoshikazu Nishihara
義和 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011266587A priority Critical patent/JP2013119954A/en
Publication of JP2013119954A publication Critical patent/JP2013119954A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat pump hot water heater that has high defrosting capacity and can achieve highly efficient defrosting operation using stored heat.SOLUTION: A heat pump hot water heater includes a heat pump cycle having a compressor 1, a water-refrigerant heat exchanger 2, a pressure reducer 3, and an air heat exchanger 4 connected in sequence, and a hot water circuit having the water-refrigerant heat exchanger 2, a hot water circulating means 13, an opening and closing means 24, and a bypass circuit 23 for bypassing the water-refrigerant heat exchanger 2. During transition from a normal heating operation to a defrosting operation, operation of the heat pump cycle is continued, and the opening and closing means 24 is opened and heat storage operation is performed for circulating hot water between the bypass circuit 23 and the water-refrigerant heat exchanger 2.

Description

本発明は、ヒートポンプ式温水暖房機に関するものである。   The present invention relates to a heat pump type hot water heater.

従来、この種のヒートポンプ式温水暖房機の除霜方式は、一般的に四方弁を切り換え、冷凍サイクルの冷媒を逆方向に流す除霜方式を採用している。   Conventionally, a defrosting method of this type of heat pump type hot water heater generally employs a defrosting method in which a four-way valve is switched and a refrigerant in a refrigeration cycle flows in the reverse direction.

即ち、除霜運転は冷房時と同じ冷媒の流動方向とし、室外熱交換器に高温高圧の冷媒を流して、熱交換器に付着した霜を融解するものである。   That is, in the defrosting operation, the flow direction of the refrigerant is the same as that during cooling, and a high-temperature and high-pressure refrigerant is passed through the outdoor heat exchanger to melt frost adhering to the heat exchanger.

この除霜方式では、除霜時は水−冷媒熱交換器が蒸発器となるため、除霜運転中に水の温度が低い場合や水の流量がごみ等の問題で低下していた場合には、さらに水の温度が低下し、水−冷媒熱交換器の中の水が凍結をして水−冷媒熱交換器が破壊するという基本的課題があった。   In this defrosting method, the water-refrigerant heat exchanger becomes an evaporator during defrosting, so when the temperature of water is low during defrosting operation or when the flow rate of water drops due to problems such as dust However, there has been a basic problem that the temperature of the water further decreases, the water in the water-refrigerant heat exchanger freezes, and the water-refrigerant heat exchanger breaks down.

この基本的課題への対策として、一般的には、除霜運転中に温水温度が低下しないようにヒーターで加熱する方法が考案されたり、また、水を不凍液に替えて対応する方法が提案、実施されてきた。また給湯機器において、除霜運転の方法として、四方弁を切り替えずに加熱運転回路のままで除霜運転する方法が、提案、実施されている。   As a countermeasure to this basic problem, in general, a method of heating with a heater so that the temperature of hot water does not decrease during defrosting operation is devised, or a method of responding by replacing water with antifreeze is proposed, Has been implemented. In hot water supply equipment, as a method of defrosting operation, a method of performing a defrosting operation while maintaining a heating operation circuit without switching a four-way valve has been proposed and implemented.

図6は従来の給湯装置の冷凍サイクルと水回路の構成図である。   FIG. 6 is a configuration diagram of a refrigeration cycle and a water circuit of a conventional hot water supply apparatus.

同図に示すように、圧縮機111、給湯用熱交換器112、膨張弁113A、及び蒸発器114を配管で接続したヒートポンプ回路と貯湯槽120、流体循環ポンプ123を配管で接続した流体回路を有したヒートポンプ給湯装置であって、除霜開始を判断する除霜開始判断手段と、除霜開始判断の前または後で前記流体循環ポンプ123の流量を低下させ、流体循環ポンプ123の最小流量発生の領域に近い領域で運転する発明が開示されている(例えば、特許文献1参照)。   As shown in the figure, a heat pump circuit in which a compressor 111, a hot water supply heat exchanger 112, an expansion valve 113A, and an evaporator 114 are connected by piping, a hot water storage tank 120, and a fluid circuit in which a fluid circulation pump 123 is connected by piping. A heat pump hot water supply apparatus having a defrosting start determining means for determining the start of defrosting, and reducing the flow rate of the fluid circulation pump 123 before or after the defrosting start determination, and generating a minimum flow rate of the fluid circulation pump 123 An invention that operates in a region close to this region is disclosed (for example, see Patent Document 1).

特開2005−147609号公報JP-A-2005-147609

しかしながら、この冷凍サイクルの方式では、除霜運転に利用する圧縮機の熱量が小さく、除霜が時間内に終了しない場合がある。   However, in this refrigeration cycle method, the amount of heat of the compressor used for the defrosting operation is small, and the defrosting may not end in time.

また、寒冷地域で使用される温水暖房機の場合においては、ヒートポンプ回路における加熱冷媒を、水―冷媒熱交換器に通過させると、除霜に必要な熱量を水−冷媒熱交換器に奪われてしまい、除霜不良で霜が融けきれず残ってしまう場合がある。   In the case of a hot water heater used in a cold region, if the heating refrigerant in the heat pump circuit is passed through the water-refrigerant heat exchanger, the amount of heat necessary for defrosting is taken away by the water-refrigerant heat exchanger. In some cases, frost cannot be melted and remains due to poor defrosting.

また、一般的に四方弁切り換え方式の除霜運転においては、ヒーターで水回路の温度を上昇させる方式も除霜運転中の運転効率が悪く、ヒーターを追加することで製品コストが高くなってしまうという多くの課題がある。   In general, in the defrosting operation using the four-way valve switching method, the method of increasing the temperature of the water circuit with the heater is also inefficient in operation during the defrosting operation, and adding the heater increases the product cost. There are many issues.

本発明は、上記従来の課題を解決するもので、蓄熱を利用して除霜能力が高く高効率な
除霜運転が実現できるヒートポンプ式温水暖房機を提供することを目的とする。
This invention solves the said conventional subject, and it aims at providing the heat-pump type hot water heater which can implement | achieve highly efficient defrosting operation with high defrosting capability using heat storage.

上記目的を達成するために、本発明のヒートポンプ式温水暖房機は、圧縮機、水−冷媒熱交換器、減圧器、空気熱交換器を順次接続したヒートポンプサイクルと、前記水−冷媒熱交換器、温水循環手段、開閉手段が設けられ、前記水−冷媒熱交換器をバイパスするバイパス回路を有する温水回路と、制御装置とを備え、通常暖房運転から除霜運転への移行時、前記ヒートポンプサイクルの運転は継続させ、かつ、前記開閉手段を開とし、前記バイパス回路と前記水−冷媒熱交換器との間で温水を循環させる蓄熱運転を行うことを特徴とするものである。   In order to achieve the above object, a heat pump hot water heater of the present invention includes a heat pump cycle in which a compressor, a water-refrigerant heat exchanger, a decompressor, and an air heat exchanger are sequentially connected, and the water-refrigerant heat exchanger. A hot water circuit having a bypass circuit for bypassing the water-refrigerant heat exchanger, and a control device provided with a hot water circulation means and an opening / closing means, and at the time of transition from a normal heating operation to a defrosting operation, the heat pump cycle This operation is continued, and the opening / closing means is opened, and a heat storage operation is performed in which hot water is circulated between the bypass circuit and the water-refrigerant heat exchanger.

これにより、四方弁を製品に搭載せずに、ヒートポンプで水回路に蓄熱した熱を利用して除霜運転ができるため、除霜運転中の効率が高い運転ができる。また、この構成は、除霜力を上げるために蓄熱量を利用するため、圧縮機の入力熱のみで除霜する運転に比べて早い時間で除霜運転を終了することができる。   Thereby, since the defrosting operation can be performed using the heat stored in the water circuit by the heat pump without mounting the four-way valve on the product, an operation with high efficiency during the defrosting operation can be performed. Moreover, since this structure utilizes the heat storage amount in order to increase the defrosting power, the defrosting operation can be completed in an earlier time than the operation of defrosting only with the input heat of the compressor.

本発明によれば、蓄熱を利用して除霜能力が高く高効率な除霜運転が実現できるヒートポンプ式温水暖房機を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the heat pump type hot water heater which can implement | achieve a highly efficient defrost operation using a thermal storage with high defrosting capability can be provided.

本発明の実施の形態1におけるヒートポンプ式温水暖房機の構成図The block diagram of the heat pump type hot water heater in Embodiment 1 of this invention 同ヒートポンプ式温水暖房機の制御装置のブロック図Block diagram of the control device for the heat pump type hot water heater 同ヒートポンプ式温水暖房機の除霜運転タイムチャートDefrosting operation time chart of the heat pump type hot water heater 本発明の実施の形態2におけるヒートポンプ式温水暖房機の構成図The block diagram of the heat pump type hot water heater in Embodiment 2 of this invention 本発明の実施の形態3におけるヒートポンプ式温水暖房機の構成図The block diagram of the heat pump type hot water heater in Embodiment 3 of this invention 従来のヒートポンプ式給湯機の構成図Configuration diagram of conventional heat pump water heater

第1の発明は、圧縮機、水−冷媒熱交換器、減圧器、空気熱交換器を順次接続したヒートポンプサイクルと、前記水−冷媒熱交換器、温水循環手段、開閉手段が設けられ、前記水−冷媒熱交換器をバイパスするバイパス回路を有する温水回路と、制御装置とを備え、通常暖房運転から除霜運転への移行時、前記ヒートポンプサイクルの運転は継続させ、かつ、前記開閉手段を開とし、前記バイパス回路と前記水−冷媒熱交換器との間で温水を循環させる蓄熱運転を行うことを特徴とするヒートポンプ式温水暖房機である。   A first invention is provided with a heat pump cycle in which a compressor, a water-refrigerant heat exchanger, a decompressor, and an air heat exchanger are sequentially connected, the water-refrigerant heat exchanger, hot water circulation means, and opening / closing means, A hot water circuit having a bypass circuit for bypassing the water-refrigerant heat exchanger, and a control device; during the transition from the normal heating operation to the defrosting operation, the operation of the heat pump cycle is continued; It is a heat pump type hot water heater that is open and performs a heat storage operation for circulating hot water between the bypass circuit and the water-refrigerant heat exchanger.

これにより、四方弁を製品に搭載せずに、ヒートポンプで水回路に蓄熱した熱を利用して除霜運転ができるため、除霜運転中の効率が高い運転ができる。また、この構成は、除霜力を上げるために蓄熱量を利用するため、圧縮機の入力熱のみで除霜する運転に比べて早い時間で除霜運転を終了することができる。   Thereby, since the defrosting operation can be performed using the heat stored in the water circuit by the heat pump without mounting the four-way valve on the product, an operation with high efficiency during the defrosting operation can be performed. Moreover, since this structure utilizes the heat storage amount in order to increase the defrosting power, the defrosting operation can be completed in an earlier time than the operation of defrosting only with the input heat of the compressor.

また、四方弁を搭載していないので、通常温水暖房するときの運転で四方弁内部での吐出冷媒と吸入冷媒との熱損失がなくなり、通常暖房運転での効率が上昇する。また、構造も簡素になり、材料コストも安価となる。   Further, since the four-way valve is not mounted, the heat loss between the discharged refrigerant and the suction refrigerant inside the four-way valve is eliminated in the operation when the normal warm water heating is performed, and the efficiency in the normal heating operation is increased. In addition, the structure is simplified and the material cost is low.

また、四方弁切り換え除霜による冷媒音の発生もなく、パネルに冷水が循環してパネル温度が低下する問題もない。このような運転より除霜運転中に使用者が除霜運転に入ったことに気がつかず、不快に感じることはない。   Further, there is no generation of refrigerant sound due to the four-way valve switching defrosting, and there is no problem that the cold water circulates in the panel and the panel temperature decreases. From such an operation, the user does not notice that the user has entered the defrosting operation during the defrosting operation and does not feel uncomfortable.

第2の発明は、前記除霜運転への移行時に前記圧縮機の運転周波数を小さくした後に、
前記温水循環手段の回転数を小さくして運転することを特徴とするものである。
In a second aspect of the present invention, after reducing the operating frequency of the compressor during the transition to the defrosting operation,
The hot water circulating means is operated with a reduced rotation speed.

これにより、除霜運転に入る前に、室外ユニットの水回路に蓄熱することができる。また温水循環手段であるポンプの回転数を低下させることでより早く温水温度を上昇することができるとともに、通常の圧縮機の運転周波数では、圧力が急上昇してしまい、圧縮機の許容圧力を超えてしまうことから、圧縮機の冷媒循環量を低下させて、高圧急上昇による圧力負荷を低減させ、早く水回路に蓄熱させて除霜運転ができるようになる。   Thereby, it can be stored in the water circuit of the outdoor unit before entering the defrosting operation. In addition, the temperature of the hot water can be increased more quickly by reducing the number of revolutions of the pump, which is the hot water circulation means, and the pressure suddenly increases at the operating frequency of the normal compressor, exceeding the allowable pressure of the compressor. Therefore, the refrigerant circulation amount of the compressor is reduced, the pressure load due to the rapid increase in high pressure is reduced, and the defrosting operation can be performed by quickly storing heat in the water circuit.

また、急激な圧力変動や、高周波数運転による圧縮機のオイル吐出も軽減され信頼性の高い運転ができる。   In addition, rapid pressure fluctuations and oil discharge of the compressor due to high frequency operation are reduced, and highly reliable operation is possible.

第3の発明は、前記水−冷媒熱交換器の冷媒温度を検知する温度検知手段を設け、前記温度検知手段で検出された温度が所定温度に到達した後に、前記減圧器を開方向に動作させ、除霜運転を開始することを特徴とするものである。   According to a third aspect of the present invention, there is provided temperature detecting means for detecting a refrigerant temperature of the water-refrigerant heat exchanger, and the decompressor is operated in the opening direction after the temperature detected by the temperature detecting means reaches a predetermined temperature. And defrosting operation is started.

これにより、除霜運転する前に水回路へ蓄熱することができ、確実にその熱を利用して除霜運転が開始できるので、除霜能力が高く短時間に除霜ができる。ちなみに冷媒凝縮温度最大約55℃とする。この蓄熱量を一定に確保できることから、除霜運転時の除霜力も一定に確保できることになる。   Thus, heat can be stored in the water circuit before the defrosting operation, and the defrosting operation can be started using the heat with certainty, so that the defrosting capability is high and the defrosting can be performed in a short time. Incidentally, the maximum refrigerant condensing temperature is about 55 ° C. Since this heat storage amount can be secured at a constant level, the defrosting power during the defrosting operation can also be secured at a constant level.

第4の発明は、前記減圧器の開度を開方向に動作させ、略全開のときには、前記温水循環手段および前記空気熱交換器に送風する送風機を停止することを特徴とするものである。   According to a fourth aspect of the present invention, the opening of the decompressor is operated in the opening direction, and the blower that blows air to the hot water circulation means and the air heat exchanger is stopped when the opening is substantially fully open.

これにより、蓄熱された熱と圧縮機の入力熱を外気に放熱することなく、確実に空気熱交換器の除霜用に活用することができる。   Thus, the stored heat and the input heat of the compressor can be reliably utilized for defrosting the air heat exchanger without radiating to the outside air.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態により本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited by this embodiment.

(実施の形態1)
図1は、本発明の第1の実施の形態におけるヒートポンプ式温水暖房機の構成図である。同図において、室外ユニット20には、圧縮機1、水−冷媒熱交換器2、減圧器3、空気熱交換器4からなるヒートポンプ回路と、空気熱交換器4へ送風する送風機5と、温水戻り配管11、給水タンク12、温水循環手段であるポンプ13、温水往き配管14、バイパス回路23、開閉手段である二方弁24、熱動弁a15a、熱動弁b15b、熱動弁c15c、熱動弁d15dからなる熱動弁温水回路とが配設されている。ここでの減圧器3は、電磁膨張弁でもよい。
(Embodiment 1)
FIG. 1 is a configuration diagram of a heat pump hot water heater in the first embodiment of the present invention. In the figure, an outdoor unit 20 includes a heat pump circuit including a compressor 1, a water-refrigerant heat exchanger 2, a decompressor 3, and an air heat exchanger 4, a blower 5 for blowing air to the air heat exchanger 4, and hot water. Return pipe 11, water supply tank 12, pump 13 as hot water circulation means, hot water outgoing pipe 14, bypass circuit 23, two-way valve 24 as opening / closing means, thermal valve a 15 a, thermal valve b 15 b, thermal valve c 15 c, heat A thermal valve hot water circuit comprising a valve d15d is provided. The decompressor 3 here may be an electromagnetic expansion valve.

端末パネル(床暖パネル)16、17は、前記温水戻り配管11、温水往き配管14に接続されており、使用者が端末パネル(床暖パネル)16、17の温度設定等を行う操作リモコン18が設置されている。   Terminal panels (warm floor panels) 16 and 17 are connected to the warm water return pipe 11 and warm water outlet pipe 14, and an operation remote controller 18 for the user to set the temperature of the terminal panels (floor warm panels) 16 and 17. Is installed.

また、給水タンク12がなくても水−冷媒熱交換器2と温水循環手段があれば良いので、給水タンク12を限定するものではない。   Further, the water supply tank 12 is not limited because the water-refrigerant heat exchanger 2 and the hot water circulation means may be provided without the water supply tank 12.

また、図1において、冷媒の流れと温水の流れを示している。冷媒の流れは、矢印で示し、温水の流れは、ブロック矢印としている。   Moreover, in FIG. 1, the flow of a refrigerant | coolant and the flow of warm water are shown. The refrigerant flow is indicated by arrows, and the hot water flow is indicated by block arrows.

除霜運転する前に、除霜運転開始の判断を受けると水回路側は、温水循環手段のポンプ
13を低回転で運転して二方弁24を開方向に動作させ水回路の流れを室外ユニット20の中で循環させる。ヒートポンプ側は、圧縮機1運転は停止せずに加熱運転を継続して水−冷媒熱交換器2、給水タンク12にヒートポンプで得られた熱を蓄熱する。
Before the defrosting operation is received, the water circuit side receives the determination to start the defrosting operation, operates the pump 13 of the hot water circulation means at a low speed, operates the two-way valve 24 in the opening direction, and flows the water circuit outdoor. Circulate in unit 20. The heat pump side continues the heating operation without stopping the compressor 1 operation, and stores the heat obtained by the heat pump in the water-refrigerant heat exchanger 2 and the water supply tank 12.

図2は、本発明の第1の実施の形態におけるヒートポンプ式温水暖房機の制御装置のブロック図である。図3に示すように、室外ユニット20側で除霜開始判断が除霜開始判断手段57でなされ、除霜開始前の蓄熱運転と判断された時に、圧縮機運転手段51、減圧器開度可変手段52、送風機運転手段53、水回路制御用の除霜開始受信手段60に除霜開始判断を伝達し、ポンプ運転手段65、熱動弁a15a開閉手段61、熱動弁b15b開閉手段62、熱動弁c15c開閉手段63、熱動弁d15d開閉手段64、二方弁開閉手段66にて、各々各弁の動作が制御され、蓄熱運転後、除霜運転に移行する。   FIG. 2 is a block diagram of the control device for the heat pump type hot water heater in the first embodiment of the present invention. As shown in FIG. 3, when the defrost start determination is made by the defrost start determination means 57 on the outdoor unit 20 side and it is determined that the heat storage operation is before the start of defrosting, the compressor operation means 51 and the decompressor opening variable The defrosting start determination is transmitted to the means 52, the fan operating means 53, the defrosting start receiving means 60 for controlling the water circuit, the pump operating means 65, the thermal valve a15a opening / closing means 61, the thermal valve b15b opening / closing means 62, the heat The operation of each valve is controlled by the valve c15c opening / closing means 63, the heat valve d15d opening / closing means 64, and the two-way valve opening / closing means 66, and after the heat storage operation, the operation proceeds to the defrosting operation.

また、水−冷媒熱交換器2の温度を検知する冷媒凝縮温度検知手段30、空気熱交換器温度検知手段32を配置している。このブロック図は、除霜開始信号と受信信号を分けたが、マイコンを分けることは限定していないので、マイコン1個で対応しても良い。   Moreover, the refrigerant | coolant condensing temperature detection means 30 and the air heat exchanger temperature detection means 32 which detect the temperature of the water-refrigerant heat exchanger 2 are arrange | positioned. In this block diagram, the defrosting start signal and the reception signal are separated, but the separation of the microcomputers is not limited, and may be handled by one microcomputer.

図3は、本発明の実施の形態1のヒートポンプ式温水暖房機が動作したときの挙動を示すタイムチャートである。   FIG. 3 is a time chart showing the behavior when the heat pump type hot water heater according to Embodiment 1 of the present invention is operated.

除霜移行の判断をすると、ステップ1のヒートポンプによる温水加熱運転からステップ2の蓄熱運転に移行する。このときに圧縮機1の運転周波数を所定の周波数にダウンさせて、同時に減圧器3の開度も圧縮機1の周波数に応じた開度(閉方向)になるように絞り方向の制御を行う。このタイミングで二方弁24を開方向に動作させて室外ユニット20の中で水の流れを循環させるようにする。   When the defrosting transition is determined, the process proceeds from the hot water heating operation by the heat pump in step 1 to the heat storage operation in step 2. At this time, the operating frequency of the compressor 1 is lowered to a predetermined frequency, and at the same time, the throttle direction is controlled so that the opening degree of the decompressor 3 also becomes the opening degree (closed direction) corresponding to the frequency of the compressor 1. . At this timing, the two-way valve 24 is operated in the opening direction so that the water flow is circulated in the outdoor unit 20.

また、このとき除霜移行判断から一定時間後にポンプ13の運転回転数を低下させる。このステップ2の区間で水−冷媒熱交換器2、給水タンク12、室外ユニット水回路に、ヒートポンプで得られた熱を蓄熱する。   At this time, the operating speed of the pump 13 is decreased after a predetermined time from the defrost transition determination. In the section of step 2, heat obtained by the heat pump is stored in the water-refrigerant heat exchanger 2, the water supply tank 12, and the outdoor unit water circuit.

次に、ステップ2からステップ3に移行するときに、水−冷媒熱交換器2の冷媒凝縮温度がある設定された温度に達すると蓄熱できたと判断して、除霜運転開始のステップ3に移行する。   Next, when shifting from step 2 to step 3, when the refrigerant condensing temperature of the water-refrigerant heat exchanger 2 reaches a set temperature, it is determined that heat can be stored, and the defrosting operation start is started. To do.

次に、ステップ3では、減圧器3の開度が全開放または全開放に近い開度に制御され、送風機5は停止して除霜開始される。また、ステップ3の開始後、一定時間後に圧縮機1の周波数をアップさせて、除霜力を上昇させる。このときポンプ13と送風機5は、停止とする。また二方弁24も閉方向に動作させる。   Next, in step 3, the opening of the decompressor 3 is controlled to be fully open or close to full open, and the blower 5 is stopped and defrosting is started. In addition, after the start of step 3, the frequency of the compressor 1 is increased after a certain time to increase the defrosting power. At this time, the pump 13 and the blower 5 are stopped. The two-way valve 24 is also operated in the closing direction.

次に、ステップ4では、除霜運転を継続させ、空気熱交換器4の温度がある設定された温度(約4℃)以上になると除霜終了の判断より、さらに空気熱交換器4の温度を上昇させるために、減圧器3の絞り開度を少し閉方向(約400パルス)に制御する。   Next, in step 4, the defrosting operation is continued, and when the temperature of the air heat exchanger 4 becomes equal to or higher than a set temperature (about 4 ° C.), the temperature of the air heat exchanger 4 is further determined from the determination of the completion of the defrosting. In order to raise the pressure, the throttle opening degree of the decompressor 3 is controlled slightly in the closing direction (about 400 pulses).

次に、除霜終了判断後に、ステップ4から5に移行する。このとき、圧縮機1周波数は、通常温水加熱の起動する運転周波数に移行する。また減圧器3も起動時の開度制御に移行して、送風機5も運転して温水加熱運転にもどる。このときポンプ13は、起動時に低回転で運転して一定時間後に通常の回転数に移行する。ステップ5以降で通常のヒートポンプ温水加熱運転に復帰する。   Next, after defrosting is determined, the process proceeds from step 4 to step 5. At this time, the compressor 1 frequency shifts to an operation frequency at which normal warm water heating is started. The decompressor 3 also shifts to the opening degree control at the start, and the blower 5 is also operated to return to the hot water heating operation. At this time, the pump 13 operates at a low rotation speed at the time of start-up, and shifts to a normal rotation speed after a certain time. After step 5, the normal heat pump warm water heating operation is resumed.

実施の形態1では圧縮機1の運転周波数を変化させているが、一定速の圧縮機1でも蓄熱加熱を行い、その後除霜運転を行うことができる。   In the first embodiment, the operating frequency of the compressor 1 is changed. However, the constant temperature compressor 1 can also perform heat storage heating and then perform a defrosting operation.

ここで、除霜の開始判断は、空気熱交換器4の温度および温度変化、外気温度、圧縮機1の運転時間等で一般的に検知し制御されることとする。   Here, the start determination of defrosting is generally detected and controlled by the temperature and temperature change of the air heat exchanger 4, the outside air temperature, the operation time of the compressor 1, and the like.

(実施の形態2)
図4は、本発明の第2の実施の形態のヒートポンプ式温水暖房機の構成図で、冷媒の流れおよび温水の流れを示している。
(Embodiment 2)
FIG. 4 is a configuration diagram of the heat pump type hot water heater according to the second embodiment of the present invention, and shows the flow of refrigerant and the flow of hot water.

同図において、室外ユニット20には、圧縮機1、水−冷媒熱交換器2、減圧器3、空気熱交換器4からなるヒートポンプ回路と、空気熱交換器4へ送風する送風機5と、温水戻り配管11、給水タンク12、温水循環手段であるポンプ13、温水往き配管14、バイパス回路23、二方弁24、熱動弁a15a、熱動弁b15b、熱動弁c15c、熱動弁d15dからなる熱動弁温水回路とが配設されている。   In the figure, an outdoor unit 20 includes a heat pump circuit including a compressor 1, a water-refrigerant heat exchanger 2, a decompressor 3, and an air heat exchanger 4, a blower 5 for blowing air to the air heat exchanger 4, and hot water. From the return pipe 11, the water supply tank 12, the hot water circulating means 13, the hot water outgoing pipe 14, the bypass circuit 23, the two-way valve 24, the thermal valve a15a, the thermal valve b15b, the thermal valve c15c, and the thermal valve d15d And a thermally operated valve hot water circuit.

端末パネル(床暖パネル)16、17は、前記温水戻り配管11、温水往き配管14に接続されており、使用者が端末パネル(床暖パネル)16、17の温度設定等を行う操作リモコン18が設置されている。   Terminal panels (warm floor panels) 16 and 17 are connected to the warm water return pipe 11 and warm water outlet pipe 14, and an operation remote controller 18 for the user to set the temperature of the terminal panels (floor warm panels) 16 and 17. Is installed.

この配置図で、給水タンク12に蓄熱した熱を、最短の水回路で水−冷媒熱交換器に供給できるので、より効率的となる。   In this arrangement, the heat stored in the water supply tank 12 can be supplied to the water-refrigerant heat exchanger with the shortest water circuit, which is more efficient.

(実施の形態3)
図5は、本発明の実施の形態3のヒートポンプ式温水暖房機の構成図で、冷媒の流れおよび温水の流れを示している。
(Embodiment 3)
FIG. 5 is a configuration diagram of the heat pump type hot water heater according to Embodiment 3 of the present invention, and shows the flow of refrigerant and the flow of hot water.

ヒートポンプ側の構成として、室外ユニット20に圧縮機1、減圧器3、空気熱交換器4を設け、室内ユニット21に温水戻り配管11、水−冷媒熱交換器2、給水タンク12、ポンプ13、温水往き配管14を設けた構成としている。この室外ユニット20と室内ユニット21は、冷媒接続配管22で接続される。   As a structure on the heat pump side, the outdoor unit 20 is provided with a compressor 1, a decompressor 3, and an air heat exchanger 4, and the indoor unit 21 is provided with a hot water return pipe 11, a water-refrigerant heat exchanger 2, a water supply tank 12, a pump 13, It is set as the structure which provided the warm water going-out piping 14. FIG. The outdoor unit 20 and the indoor unit 21 are connected by a refrigerant connection pipe 22.

このように、室外ユニット20と室内ユニット21が分離したタイプも室外ユニット20の一体型と同等の効果が期待できるものであり、本発明の中に包含されるものである。   Thus, the type in which the outdoor unit 20 and the indoor unit 21 are separated can be expected to have the same effect as the integrated type of the outdoor unit 20, and is included in the present invention.

以上のように本発明のヒートポンプ式温水暖房機は、蓄熱を利用して除霜能力が高く高効率な除霜運転が実現できることから、業務用大型機器への展開にも適用できる。   As described above, the heat pump type hot water heater according to the present invention can be applied to deployment to large-sized commercial equipment because it has high defrosting capability and high efficiency defrosting operation using heat storage.

1 圧縮機
2 水−冷媒熱交換器
3 減圧器
4 空気熱交換器
5 送風機
11 温水戻り配管
12 給水タンク
13 ポンプ(温水循環手段)
14 温水往き配管
15a 熱動弁a
15b 熱動弁b
15c 熱動弁c
15d 熱動弁d
16 パネルa
17 パネルb
18 操作リモコン
20 室外ユニット
21 室内ユニット
22 冷媒接続配管
23 バイパス回路
24 二方弁(開閉手段)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Water-refrigerant heat exchanger 3 Pressure reducer 4 Air heat exchanger 5 Blower 11 Hot water return piping 12 Water supply tank 13 Pump (hot water circulation means)
14 Hot water outlet pipe 15a Thermal valve a
15b Thermal valve b
15c Thermal valve c
15d Thermal valve d
16 Panel a
17 Panel b
18 Operation remote control 20 Outdoor unit 21 Indoor unit 22 Refrigerant connection piping 23 Bypass circuit 24 Two-way valve (opening / closing means)

Claims (4)

圧縮機、水−冷媒熱交換器、減圧器、空気熱交換器を順次接続したヒートポンプサイクルと、前記水−冷媒熱交換器、温水循環手段、開閉手段が設けられ、前記水−冷媒熱交換器をバイパスするバイパス回路を有する温水回路と、制御装置とを備え、通常暖房運転から除霜運転への移行時、前記ヒートポンプサイクルの運転は継続させ、かつ、前記開閉手段を開とし、前記バイパス回路と前記水−冷媒熱交換器との間で温水を循環させる蓄熱運転を行うことを特徴とするヒートポンプ式温水暖房機。 A heat pump cycle in which a compressor, a water-refrigerant heat exchanger, a decompressor, and an air heat exchanger are sequentially connected; and the water-refrigerant heat exchanger, hot water circulation means, and opening / closing means are provided. A hot water circuit having a bypass circuit that bypasses the control circuit, and a control device, during the transition from the normal heating operation to the defrosting operation, the operation of the heat pump cycle is continued, and the opening / closing means is opened, and the bypass circuit A heat pump type hot water heater that performs a heat storage operation for circulating hot water between the water-refrigerant heat exchanger and the water-refrigerant heat exchanger. 前記除霜運転への移行時に前記圧縮機の運転周波数を小さくした後に、前記温水循環手段の回転数を小さくして運転することを特徴とする請求項1に記載のヒートポンプ式温水暖房機。 2. The heat pump hot water heater according to claim 1, wherein after the operation frequency of the compressor is reduced during the transition to the defrosting operation, the operation is performed with the rotation speed of the hot water circulation means being reduced. 前記水−冷媒熱交換器の冷媒温度を検知する温度検知手段を設け、前記温度検知手段で検出された温度が所定温度に到達した後に、前記減圧器を開方向に動作させ、除霜運転を開始することを特徴とする請求項1または2に記載のヒートポンプ式温水暖房機。 Temperature detecting means for detecting the refrigerant temperature of the water-refrigerant heat exchanger is provided, and after the temperature detected by the temperature detecting means reaches a predetermined temperature, the decompressor is operated in the opening direction to perform a defrosting operation. The heat pump type hot water heater according to claim 1 or 2, wherein the heat pump type hot water heater is started. 前記減圧器の開度を開方向に動作させ、略全開のときには、前記温水循環手段および前記空気熱交換器に送風する送風機を停止することを特徴とする請求項3に記載のヒートポンプ式温水暖房機。 The heat pump hot water heater according to claim 3, wherein the opening of the decompressor is operated in the opening direction, and the blower that blows air to the hot water circulation means and the air heat exchanger is stopped when the opening is substantially fully open. Machine.
JP2011266587A 2011-12-06 2011-12-06 Heat pump hot water heater Pending JP2013119954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011266587A JP2013119954A (en) 2011-12-06 2011-12-06 Heat pump hot water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011266587A JP2013119954A (en) 2011-12-06 2011-12-06 Heat pump hot water heater

Publications (1)

Publication Number Publication Date
JP2013119954A true JP2013119954A (en) 2013-06-17

Family

ID=48772680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011266587A Pending JP2013119954A (en) 2011-12-06 2011-12-06 Heat pump hot water heater

Country Status (1)

Country Link
JP (1) JP2013119954A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591736A (en) * 2013-11-17 2014-02-19 王正鹏 Defrosting, condensing and evaporating three-in-one heat pump working condition system
WO2015133107A1 (en) * 2014-03-04 2015-09-11 パナソニックIpマネジメント株式会社 Heat-pump hot water generator
JP2016102604A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat pump type heating and water heater
JP2016200302A (en) * 2015-04-08 2016-12-01 株式会社コロナ Hot water heating system
CN106440364A (en) * 2016-10-24 2017-02-22 山东美琳达再生能源开发有限公司 Air source overlapped heat pump crude oil heating device and use method
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system
WO2018087810A1 (en) * 2016-11-08 2018-05-17 三菱電機株式会社 Heating control system and heat pump hot-water heating system
CN109945399A (en) * 2019-03-20 2019-06-28 珠海格力电器股份有限公司 Defrosting method and air-conditioning
JP2020020505A (en) * 2018-07-31 2020-02-06 日立グローバルライフソリューションズ株式会社 Water heater and control method of water heater
JP2021001718A (en) * 2019-06-25 2021-01-07 株式会社コロナ Heat pump type hot water heating system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103591736A (en) * 2013-11-17 2014-02-19 王正鹏 Defrosting, condensing and evaporating three-in-one heat pump working condition system
WO2015133107A1 (en) * 2014-03-04 2015-09-11 パナソニックIpマネジメント株式会社 Heat-pump hot water generator
JP2016102604A (en) * 2014-11-27 2016-06-02 株式会社富士通ゼネラル Heat pump type heating and water heater
JP2016200302A (en) * 2015-04-08 2016-12-01 株式会社コロナ Hot water heating system
JP2018004188A (en) * 2016-07-05 2018-01-11 株式会社コロナ Hot water heating system
CN106440364A (en) * 2016-10-24 2017-02-22 山东美琳达再生能源开发有限公司 Air source overlapped heat pump crude oil heating device and use method
WO2018087810A1 (en) * 2016-11-08 2018-05-17 三菱電機株式会社 Heating control system and heat pump hot-water heating system
JP2020020505A (en) * 2018-07-31 2020-02-06 日立グローバルライフソリューションズ株式会社 Water heater and control method of water heater
CN109945399A (en) * 2019-03-20 2019-06-28 珠海格力电器股份有限公司 Defrosting method and air-conditioning
JP2021001718A (en) * 2019-06-25 2021-01-07 株式会社コロナ Heat pump type hot water heating system
JP7202980B2 (en) 2019-06-25 2023-01-12 株式会社コロナ Heat pump hot water heating system

Similar Documents

Publication Publication Date Title
JP2013119954A (en) Heat pump hot water heater
JP5929450B2 (en) Refrigeration cycle equipment
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
KR101673105B1 (en) Binary refrigeration cycle device
CN102168899A (en) Heat pump system and control method thereof
JP4622990B2 (en) Air conditioner
JP2010281492A (en) Air conditioner
JP2012159255A (en) Heat pump type heat source device, and heating system
JP2012032091A (en) Heat pump cycle system
JPWO2016059837A1 (en) Heat pump heating system
EP2672204B1 (en) Binary refrigeration cycle device
JP6749471B2 (en) Air conditioner
KR101914163B1 (en) Multi heat source integrating type heat pump system
JP2011257098A (en) Heat pump cycle device
WO2010131516A1 (en) Hot-water supply system
JP2011202845A (en) Air conditioner
JP2011075178A (en) Heat pump cycle device
JP2009264718A (en) Heat pump hot water system
JP5516332B2 (en) Heat pump type hot water heater
JP5747160B2 (en) Air conditioner
WO2017050072A1 (en) Water chiller-heater unit of air cooled heat pump and defrosting control method therefor
JPWO2016166873A1 (en) Heat pump system
JP5701084B2 (en) Heating system
EP3026364B1 (en) Heat pump type heating and hot water supply apparatus
JP2009264716A (en) Heat pump hot water system