TWI548192B - Inverter apparatus and control method thereof - Google Patents

Inverter apparatus and control method thereof Download PDF

Info

Publication number
TWI548192B
TWI548192B TW104103281A TW104103281A TWI548192B TW I548192 B TWI548192 B TW I548192B TW 104103281 A TW104103281 A TW 104103281A TW 104103281 A TW104103281 A TW 104103281A TW I548192 B TWI548192 B TW I548192B
Authority
TW
Taiwan
Prior art keywords
converter
level
power source
controller
inverter device
Prior art date
Application number
TW104103281A
Other languages
Chinese (zh)
Other versions
TW201534032A (en
Inventor
陳漢威
游俊豪
劉家樺
Original Assignee
全漢企業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 全漢企業股份有限公司 filed Critical 全漢企業股份有限公司
Priority to US14/629,462 priority Critical patent/US9450515B2/en
Publication of TW201534032A publication Critical patent/TW201534032A/en
Application granted granted Critical
Publication of TWI548192B publication Critical patent/TWI548192B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/122Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters
    • H02H7/1225Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for inverters, i.e. dc/ac converters responsive to internal faults, e.g. shoot-through
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)
  • Electronic Switches (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

逆變裝置及其控制方法 Inverter device and control method thereof

本發明係關於逆變裝置,尤指一種利用檢測直流母線電壓以控制逆變裝置的方法及其相關的逆變裝置。 The present invention relates to an inverter device, and more particularly to a method for controlling an inverter device by detecting a DC bus voltage and an associated inverter device.

在傳統的逆變裝置之中,直流轉直流轉換器會接收太陽能電池板輸出的直流電源,並將其進行升壓以傳送至直流轉交流轉換器,直流轉交流轉換器接著會將經升壓後的直流電源轉換成交流電源。由於太陽能電池板容易受到外在環境的影響(例如,雲朵遮蔽、飛禽糞便及/或枯葉遮蓋),這會造成逆變裝置由太陽能電池所接收之功率能量跟著變低,當逆變裝置輸出的功率過低(輕載狀態),會使逆變裝置在輕載的工作效率變差。 In a conventional inverter device, a DC-to-DC converter receives a DC power output from a solar panel and boosts it to a DC-to-AC converter, which then boosts the converter. The rear DC power is converted to an AC power source. Since the solar panel is susceptible to the external environment (for example, cloud cover, bird droppings and/or dead leaves), this will cause the power energy received by the inverter to be reduced by the solar cell, and the power output from the inverter. Too low (light load condition) will make the inverter work at light load.

因此,需要一種創新的逆變裝置的控制方法,以解決逆變裝置因為外在環境的影響而造成工作效率不佳的問題。 Therefore, there is a need for an innovative control method for an inverter device to solve the problem of inefficient operation of the inverter device due to the influence of the external environment.

有鑑於此,本發明的目的之一在於提供一種利用檢測直流母線電壓以控制逆變裝置的方法及其相關的逆變裝置,來解決上述問題。 In view of the above, it is an object of the present invention to provide a method for controlling a DC bus voltage to control an inverter device and an associated inverter device thereof to solve the above problems.

依據本發明之一實施例,其揭示一種逆變裝置的控制方法。該逆變裝置包含一直流轉直流轉換器與一直流轉交流轉換器。該直流轉直流轉換 器之一輸出側耦接於該直流轉交流轉換器之一輸入側。該控制方法包含以下步驟:自該直流轉直流轉換器之該輸出側輸出一直流電源;自該直流轉交流轉換器之該輸入側接收該直流電源,並依據該直流電源於該直流轉交流轉換器之一輸出側產生一交流電源;以及檢測該直流電源,並據以控制該直流轉交流轉換器之操作。 According to an embodiment of the invention, a method of controlling an inverter device is disclosed. The inverter device comprises a DC converter and a DC converter. The DC to DC conversion One output side of the device is coupled to one of the input sides of the DC-to-AC converter. The control method includes the following steps: outputting a DC power source from the output side of the DC-to-DC converter; receiving the DC power source from the input side of the DC-to-AC converter, and converting the DC power according to the DC power source One of the output sides generates an AC power source; and detects the DC power source and controls the operation of the DC-to-AC converter accordingly.

依據本發明之一實施例,其揭示一種逆變裝置。該逆變裝置包含 一直流轉直流轉換器、一直流轉交流轉換器以及一控制器。該直流轉直流轉換器用以輸出一直流電源。該直流轉交流轉換器係耦接於該直流轉直流轉換器,用以接收該直流電源,並依據該直流電源來產生一交流電源。該控制器係耦接於該直流轉交流轉換器,用以檢測該直流電源,並據以控制該直流轉交流轉換器之操作。 According to an embodiment of the invention, an inverter device is disclosed. The inverter device comprises A DC to DC converter, a continuously flowing AC converter, and a controller. The DC to DC converter is used to output a DC power source. The DC-to-DC converter is coupled to the DC-to-DC converter for receiving the DC power source and generating an AC power source according to the DC power source. The controller is coupled to the DC-to-AC converter for detecting the DC power source and controlling the operation of the DC-to-AC converter accordingly.

本發明所提供之逆變裝置的控制方法透過檢測初級輸出(直流母 線電壓),消弭/減少外在環境對逆變裝置之工作效率的影響,進而提昇逆變裝置於輕載狀態下的操作性能。 The control method of the inverter device provided by the present invention detects the primary output (DC mother) Line voltage), eliminating/reducing the influence of the external environment on the working efficiency of the inverter device, thereby improving the operating performance of the inverter device under light load conditions.

100‧‧‧逆變裝置 100‧‧‧Inverter

102‧‧‧太陽能電池 102‧‧‧ solar cells

110‧‧‧直流轉直流轉換器 110‧‧‧DC to DC converter

120‧‧‧直流轉交流轉換器 120‧‧‧DC to AC converter

130‧‧‧控制器 130‧‧‧ Controller

302~332、402~432‧‧‧步驟 302~332, 402~432‧‧‧ steps

PIN‧‧‧輸入電源 P IN ‧‧‧Input power supply

PIN‧‧‧輸入電源 P IN ‧‧‧Input power supply

PDC‧‧‧直流電源 P DC ‧‧‧DC power supply

PAC‧‧‧交流電源 P AC ‧‧‧AC power supply

SDO、SAO‧‧‧輸出側 S DO , S AO ‧‧‧ output side

SAI‧‧‧輸入側 S AI ‧‧‧ input side

SG‧‧‧脈衝寬度調變訊號 S G ‧‧‧ pulse width modulation signal

CBUS‧‧‧直流母線電容 C BUS ‧‧‧DC bus capacitor

VBUS‧‧‧直流母線電壓 V BUS ‧‧‧ DC bus voltage

VH‧‧‧上限準位 V H ‧‧‧ upper limit

VL‧‧‧下限準位 V L ‧‧‧ lower limit

IAC‧‧‧電流準位 I AC ‧‧‧current level

t1、t2、t3、t4‧‧‧時間點 t 1 , t 2 , t 3 , t 4 ‧‧‧

第1圖為本發明逆變裝置之一實施例的功能方塊示意圖。 FIG. 1 is a functional block diagram of an embodiment of an inverter device according to the present invention.

第2圖為第1圖所示之逆變裝置的初級輸出與次級輸出的一波形圖。 Fig. 2 is a waveform diagram showing the primary output and the secondary output of the inverter device shown in Fig. 1.

第3圖為本發明逆變裝置的控制方法之一實施例的流程圖。 Fig. 3 is a flow chart showing an embodiment of a control method of the inverter device of the present invention.

第4圖為本發明逆變裝置的控制方法之另一實施例的流程圖。 Fig. 4 is a flow chart showing another embodiment of the control method of the inverter device of the present invention.

為了提昇逆變裝置於輕載狀態下的工作效率,本發明所提供之逆 變裝置的控制方法可直接檢測直流母線電壓(例如,直流轉直流轉換器所輸出之直流電源),而據以決定是否要將逆變裝置操作於間歇模式(burst mode)以提昇工作效率。為了便於理解本發明的技術特徵,以下係以光伏逆變器(Photovoltaic inverter)來作為本發明所提供之逆變裝置的實作範例。然而,本發明所提供之逆變裝置的控制方法並不限於光伏逆變器。進一步的說明如下。 In order to improve the working efficiency of the inverter device under light load conditions, the inverse provided by the present invention The control method of the variable device can directly detect the DC bus voltage (for example, the DC power output from the DC-to-DC converter), and accordingly determine whether the inverter device is to be operated in a burst mode to improve the working efficiency. In order to facilitate the understanding of the technical features of the present invention, a photovoltaic inverter is used as an implementation example of the inverter device provided by the present invention. However, the control method of the inverter device provided by the present invention is not limited to the photovoltaic inverter. Further explanation is as follows.

請參閱第1圖,其為本發明逆變裝置之一實施例的功能方塊示意圖。逆變裝置100耦接於一太陽能電池(Photovoltaic cell,PV cell)102,並可包含(但不限於)一直流轉直流轉換器(direct current to direct current converter,DC/DC converter)110、一直流轉交流轉換器(direct current to alternating current converter,DC/AC converter)120以及一控制器130。直流轉直流轉換器110可接收太陽能電池102所提供之輸入電源PIN,並據以於輸出側SDO輸出一直流電源PDC(例如,直流母線電壓VBUS)。直流轉直流轉換器110之輸出側SDO耦接於直流轉交流轉換器120之輸入側SAI,其中直流轉交流轉換器120用以接收直流電源PDC,並依據直流電源PDC來於輸出側SAO產生一交流電源PAC。於此實施例中(但本發明不限於此),直流轉直流轉換器110可由一LLC諧振式轉換器(LLC resonant converter)來實作之,以利用其軟性切換的特性而提高轉換效率並且降低電磁干擾,而直流轉交流轉換器120也可稱作直流轉交流變流器(DC/AC inverter)。 Please refer to FIG. 1 , which is a functional block diagram of an embodiment of an inverter device according to the present invention. The inverter device 100 is coupled to a photovoltaic cell (PV cell) 102 and may include, but is not limited to, a direct current to direct current converter (DC/DC converter) 110. A direct current to alternating current converter (DC/AC converter) 120 and a controller 130. The DC to DC converter 110 can receive the input power P IN provided by the solar cell 102 and output a DC power source P DC (eg, the DC bus voltage V BUS ) on the output side S DO . The output side S DO of the DC-to-DC converter 110 is coupled to the input side S AI of the DC-to-AC converter 120, wherein the DC-to-AC converter 120 is configured to receive the DC power P DC and output according to the DC power P DC The side S AO generates an AC power source P AC . In this embodiment (but the invention is not limited thereto), the DC-to-DC converter 110 can be implemented by an LLC resonant converter to improve conversion efficiency and reduce the efficiency of its soft switching. Electromagnetic interference, and the DC-to-AC converter 120 can also be referred to as a DC/AC inverter.

控制器130耦接於直流轉交流轉換器120,用以檢測直流電源PDC,並據以控制直流轉交流轉換器120之操作。舉例來說,控制器130可直接接收直流母線電容CBUS的跨壓(亦即,直流母線電壓VBUS),以對直流電源PDC進行檢測。於另一範例中,直流母線電容CBUS的跨壓可經由一分壓電路(未繪示於第1圖中)而耦接於控制器130,控制器130便可依據所接收之分壓 資訊來檢測直流電源PDC。於又一範例中,直流轉直流轉換器110另可將直流電源PDC輸出至控制器130,以供控制器130進行直流母線電壓之檢測。 The controller 130 is coupled to the DC-to-AC converter 120 for detecting the DC power P DC and controlling the operation of the DC-to-AC converter 120 accordingly. For example, the controller 130 can directly receive the voltage across the DC bus capacitor C BUS (ie, the DC bus voltage V BUS ) to detect the DC power P DC . In another example, the voltage across the DC bus capacitor C BUS can be coupled to the controller 130 via a voltage dividing circuit (not shown in FIG. 1 ), and the controller 130 can be based on the received partial voltage. Information to detect DC power P DC . In another example, the DC to DC converter 110 can further output the DC power source P DC to the controller 130 for the controller 130 to detect the DC bus voltage.

當控制器130檢測出直流電源PDC滿足一切換準則時,控制器130便可據以控制逆變裝置100之操作模式。請連同第1圖來參閱第2圖。第2圖為第1圖所示之逆變裝置100的初級輸出(直流母線電壓VBUS)與次級輸出(交流電源PAC之電流準位IAC)的一波形圖。於時間點t1之前,逆變裝置100操作於一正常模式下。於時間點t1,因為外在環境的改變,造成逆變裝置100之初級功率開始降低。舉例來說,由於雲朵遮蔽的關係,造成逆變裝置100輸出的能量大於太陽能電池102可供應的能量,因此,直流母線電壓VBUS會開始下降。於此實施例中,當控制器130檢測出直流母線電壓VBUS下降至一下限準位VL時(時間點t2),控制器130即關閉直流轉交流轉換器120以停止其切換操作,使得直流母線電壓VBUS可開始回升。舉例來說,控制器130可藉由減少脈衝寬度調變訊號SG(用來控制直流轉交流轉換器120之操作)的責任週期、將脈衝寬度調變訊號SG設為低準位,或停止將脈衝寬度調變訊號SG提供給直流轉交流轉換器120,以關閉直流轉交流轉換器120。 When the controller 130 detects that the DC power source P DC meets a switching criterion, the controller 130 can control the operation mode of the inverter device 100 accordingly. Please refer to Figure 2 together with Figure 1. Fig. 2 is a waveform diagram of the primary output (DC bus voltage V BUS ) and the secondary output (current level I AC of the AC power source P AC ) of the inverter device 100 shown in Fig. 1. Before the time point t 1, the inverter device 100 operates in a normal mode. At time point t 1 , the primary power of the inverter device 100 begins to decrease due to changes in the external environment. For example, due to the cloud shielding relationship, the energy output by the inverter device 100 is greater than the energy that the solar cell 102 can supply, and therefore, the DC bus voltage V BUS will begin to decrease. In this embodiment, when the controller 130 detects that the DC bus voltage V BUS falls to a lower limit level V L (time point t 2 ), the controller 130 turns off the DC-to-AC converter 120 to stop its switching operation. This allows the DC bus voltage V BUS to start to rise. For example, the controller 130 can set the pulse width modulation signal S G to a low level by reducing the duty cycle of the pulse width modulation signal S G (used to control the operation of the DC to AC converter 120), or The pulse width modulation signal S G is stopped from being supplied to the DC-to-AC converter 120 to turn off the DC-to-AC converter 120.

在控制器130關閉直流轉交流轉換器120之後,控制器130可持續對直流電源PDC進行檢測,以避免直流電源PDC之能量準位過高而導致電路元件損壞。於此實施例中,當控制器130檢測出直流母線電壓VBUS上升至一上限準位VH時(時間點t3),控制器130開啟直流轉交流轉換器120以啟動變流操作。舉例來說,控制器130可藉由增加脈衝寬度調變訊號SG的責任週期或再次將脈衝寬度調變訊號SG提供予直流轉交流轉換器120,以致能直流轉交流轉換器120輸出交流電源PAC。當控制器130再次檢測出直流母線電壓VBUS下降至下限準位VL時(時間點t4),控制器130可重複上述控制機制以提昇逆變裝置100於輕載狀態下的工作效率。 In the controller 130 off the DC-AC converter after 120, the controller 130 of the DC power P DC sustainable detected, in order to avoid the energy level of the DC power P DC caused by excessive damage to the circuit elements. In this embodiment, when the controller 130 detects that the DC bus voltage V BUS rises to an upper limit level V H (time point t 3 ), the controller 130 turns on the DC-to-AC converter 120 to start the converter operation. For example, the controller 130 may increase the duty cycle by a pulse width modulation signal S G or the pulse width modulation signal S G is again provided to the DC-to-AC converter 120, so as to enable the DC-AC converter 120 outputs AC Power supply P AC . When the controller 130 detects again that the DC bus voltage V BUS falls to the lower limit level V L (time point t 4 ), the controller 130 may repeat the above control mechanism to improve the operating efficiency of the inverter device 100 in the light load state.

上述逆變裝置100之控制機制可簡單歸納為第3圖所示之流程圖。請連同第1圖與第2圖來參閱第3圖。第3圖為本發明逆變裝置的控制方法之一實施例的流程圖,其中該控制方法可應用於第1圖所示之逆變裝置100。請注意,第3圖所示之步驟的次序僅供說明之需。假若所得到的結果實質上大致相同,則不一定要依照第3圖所示之步驟次序來執行。第3圖所示之控制方法可簡單歸納如下。 The control mechanism of the above-described inverter device 100 can be simply summarized into the flowchart shown in FIG. Please refer to Figure 3 together with Figures 1 and 2. Fig. 3 is a flow chart showing an embodiment of a control method of an inverter device according to the present invention, wherein the control method can be applied to the inverter device 100 shown in Fig. 1. Please note that the order of the steps shown in Figure 3 is for illustrative purposes only. If the results obtained are substantially the same, they do not have to be executed in the order of the steps shown in FIG. The control method shown in Figure 3 can be summarized as follows.

步驟302:開始。 Step 302: Start.

步驟312:檢測逆變裝置100之直流電源PDC的一能量準位(例如,初級輸出之電壓準位;直流母線電壓VBUS之準位)是否小於或等於一下限準位(例如,下限準位VL)。若是,執行步驟322;反之,執行步驟326。 Step 312: Detect whether an energy level of the DC power source P DC of the inverter device 100 (for example, the voltage level of the primary output; the level of the DC bus voltage V BUS ) is less than or equal to a lower limit level (for example, a lower limit Bit V L ). If yes, go to step 322; otherwise, go to step 326.

步驟322:關閉直流轉交流轉換器120。 Step 322: Turn off the DC to AC converter 120.

步驟326:開啟直流轉交流轉換器120。 Step 326: Turn on the DC to AC converter 120.

步驟332:檢測逆變裝置100之直流電源PDC的該能量準位是否大於或等於一上限準位(例如,上限準位VH)。若是,執行步驟326;反之,執行步驟322。 Step 332: Detect whether the energy level of the DC power source P DC of the inverter device 100 is greater than or equal to an upper limit level (for example, the upper limit level V H ). If yes, go to step 326; otherwise, go to step 322.

於步驟302中,逆變裝置100之直流轉交流轉換器120可處於致能狀態(例如,第2圖所示之時間點t2之前,或時間點t3與時間點t4之間)。於步驟312中,控制器130可依據直流轉交流轉換器120之一額定輸出能量(例如,市電的線電壓)來設定該下限準位(如380伏特),以確保逆變裝置100可提供足夠的能量輸出。於步驟332中,控制器130可依據逆變裝置100之元件電性規格(例如,耐壓程度)來設定該上限準位(如410伏特)。另外,於步驟312及/或步驟332中,該能量準位並不限於直流電源PDC之電壓準位。舉例來說,控制器130也可以對直流電源PDC之功率準位或電流準位進行檢 測。由於熟習技藝者經由閱讀第1圖與第2圖的相關說明之後,應可了解第3圖所示之流程圖中每一步驟的操作細節,故進一步的說明在此便不再贅述。 In step 302, the DC-to-AC converter 120 of the inverter device 100 may be in an enabled state (for example, before the time point t 2 shown in FIG. 2 , or between the time point t 3 and the time point t 4 ). In step 312, the controller 130 may set the lower limit level (eg, 380 volts) according to one of the rated output energy of the DC-to-AC converter 120 (eg, the line voltage of the mains) to ensure that the inverter device 100 can provide sufficient Energy output. In step 332, the controller 130 may set the upper limit level (eg, 410 volts) according to the component electrical specifications (eg, the withstand voltage level) of the inverter device 100. In addition, in step 312 and/or step 332, the energy level is not limited to the voltage level of the DC power source P DC . For example, the controller 130 can also detect the power level or current level of the DC power source P DC . Since the skilled artisan will understand the operation details of each step in the flowchart shown in FIG. 3 after reading the related descriptions of FIG. 1 and FIG. 2, further description will not be repeated here.

於一設計變化中,控制器130也可先檢測直流電源PDC之能量準 位是否高於一上限準位,而據以控制直流轉交流轉換器120之操作。請連同第1圖與第2圖來參閱第4圖。第4圖為本發明逆變裝置的控制方法之另一實施例的流程圖,其中該控制方法可應用於第1圖所示之逆變裝置100。請注意,第4圖所示之步驟的次序僅供說明之需。假若所得到的結果實質上大致相同,則不一定要依照第4圖所示之步驟次序來執行。第4圖所示之控制方法可簡單歸納如下。 In a design change, the controller 130 may also detect whether the energy level of the DC power source P DC is higher than an upper limit level, thereby controlling the operation of the DC-to-AC converter 120. Please refer to Figure 4 together with Figures 1 and 2. Fig. 4 is a flow chart showing another embodiment of the control method of the inverter device of the present invention, wherein the control method is applicable to the inverter device 100 shown in Fig. 1. Please note that the order of the steps shown in Figure 4 is for illustrative purposes only. If the results obtained are substantially the same, they do not have to be executed in the order of the steps shown in FIG. The control method shown in Fig. 4 can be summarized as follows.

步驟402:開始。 Step 402: Start.

步驟412:檢測逆變裝置100之直流電源PDC的一能量準位(例如,初級輸出之電壓準位;直流母線電壓VBUS之準位)是否大於或等於一上限準位(例如,上限準位VH)。若否,執行步驟422;反之,執行步驟426。 Step 412: Detect whether an energy level of the DC power source P DC of the inverter device 100 (for example, a voltage level of the primary output; a level of the DC bus voltage V BUS ) is greater than or equal to an upper limit level (eg, an upper limit Bit V H ). If no, go to step 422; otherwise, go to step 426.

步驟422:關閉直流轉交流轉換器120。 Step 422: Turn off the DC to AC converter 120.

步驟426:開啟直流轉交流轉換器120。 Step 426: Turn on the DC to AC converter 120.

步驟432:檢測逆變裝置100之直流電源PDC的該能量準位是否小於或等於一下限準位(例如,下限準位VL)。若是,執行步驟422;反之,執行步驟426。 Step 432: Detect whether the energy level of the DC power source P DC of the inverter device 100 is less than or equal to a lower limit level (for example, a lower limit level V L ). If yes, go to step 422; otherwise, go to step 426.

於步驟402中,逆變裝置100之直流轉交流轉換器120可處於禁能狀態(例如,第2圖所示之時間點t2與時間點t3之間)。相似地,該下限準位(如380伏特)可依據直流轉交流轉換器120之一額定輸出能量(例如,市電的線電壓)來設定之,及/或該上限準位(如410伏特)可依據逆變裝置100之元件電性規格(例如,耐壓程度)來設定之。另外,控制器130也可 以對直流電源PDC之功率準位或電流準位進行檢測。由於熟習技藝者經由閱讀第1圖~第3圖的相關說明之後,應可了解第4圖所示之流程圖中每一步驟的操作細節,故與前述相仿之處在此便不再贅述。 In step 402, the DC-to-AC converter 120 of the inverter device 100 may be in an disabled state (for example, between a time point t 2 and a time point t 3 shown in FIG. 2 ). Similarly, the lower limit level (eg, 380 volts) may be set according to one of the rated output energy of the DC-to-AC converter 120 (eg, the line voltage of the mains), and/or the upper limit level (eg, 410 volts) may be used. It is set according to the electrical specifications of the components of the inverter device 100 (for example, the degree of withstand voltage). In addition, the controller 130 can also detect the power level or current level of the DC power source P DC . Since the skilled artisan can understand the operation details of each step in the flowchart shown in FIG. 4 after reading the related descriptions of FIG. 1 to FIG. 3, the similarities with the foregoing will not be repeated here.

由上可知,本發明控制機制所採用的切換準則可以是「直流電源PDC之能量準位小於或等於一下限準位」及/或「直流電源PDC之能量準位大於或等於一上限準位」。如此一來,便可有效提昇逆變裝置100於輕載狀態下的工作效率。值得注意的是,第1圖所示之控制器130也可以先判斷直流轉交流轉換器120之操作狀態,再進行直流母線電壓VBUS之檢測。舉例來說,控制器130可先判斷直流轉交流轉換器120之操作狀態,而決定要先依據第2圖所示之下限準位VL來檢測直流母線電壓VBUS(例如,第3圖所示之流程),還是先依據第2圖所示之上限準位VH來檢測直流母線電壓VBUS(例如,第4圖所示之流程)。 It can be seen that the switching criterion adopted by the control mechanism of the present invention may be “the energy level of the DC power source P DC is less than or equal to a lower limit level” and/or “the energy level of the DC power source P DC is greater than or equal to an upper limit. Bit". In this way, the working efficiency of the inverter device 100 under light load conditions can be effectively improved. It should be noted that the controller 130 shown in FIG. 1 may first determine the operating state of the DC-to-AC converter 120 and then detect the DC bus voltage V BUS . For example, the controller 130 may first determine the operating state of the DC-to-AC converter 120, and determine to first detect the DC bus voltage V BUS according to the lower limit V L shown in FIG. 2 (for example, FIG. 3 In the flow shown, the DC bus voltage V BUS (for example, the flow shown in FIG. 4) is first detected according to the upper limit V H shown in FIG. 2 .

另外,本發明所提供之逆變器架構係於逆變裝置的二次側設置一控制器,不僅可提昇逆變裝置於輕載狀態下的工作效率,另可解決傳統逆變裝置需要額外提供回授機制才能控制直流轉直流轉換器之電源輸出的問題。具體來說,傳統的逆變裝置僅於一次側(直流轉直流轉換器)設置一控制器,因此,為了要維持該直流轉直流轉換器的電源輸出穩定在某一特定值(如400伏特),會需要先將直流轉交流轉換器/負載端(二次側)的一控制訊號回授至一次側的該控制器,該控制器再據以調整該直流轉直流轉換器的電源輸出。 In addition, the inverter architecture provided by the present invention is provided with a controller on the secondary side of the inverter device, which not only improves the working efficiency of the inverter device under light load conditions, but also solves the need for additional provision of the conventional inverter device. The feedback mechanism can control the power output of the DC to DC converter. Specifically, the conventional inverter device only sets a controller on the primary side (DC to DC converter), and therefore, in order to maintain the power output of the DC to DC converter stable at a certain value (for example, 400 volts) A control signal of the DC to AC converter/load terminal (secondary side) is first fed back to the controller on the primary side, and the controller adjusts the power output of the DC to DC converter accordingly.

相較於傳統的逆變器架構,本發明所提供之逆變器架構可於二次側設置一控制器以控制直流轉交流轉換器,無需傳統的回授機制即可提供穩定的一次側電源輸出。舉例來說,第1圖所示之逆變裝置100另可包含耦接 於直流轉直流轉換器110的另一控制器(不同於控制器130;未繪示於第1圖中)。換言之,第1圖所示之逆變裝置100的一次側及二次側均包含一控制器。由於控制器130可偵測一次側的電源輸出(亦即,直流電源PDC或直流母線電壓VBUS),因此,控制器130便可直接將所得到的偵測結果來控制直流轉交流轉換器120是否進入間歇模式,進而控制直流轉直流轉換器110之電源輸出。另外,由於控制器130原本就可包含偵測電壓(例如,直流母線電壓VBUS)的腳位,因此本發明所提供之逆變器架構並不會增加額外的電路面積與成本。 Compared with the conventional inverter architecture, the inverter architecture provided by the present invention can set a controller on the secondary side to control the DC-to-AC converter, and can provide a stable primary side power supply without a conventional feedback mechanism. Output. For example, the inverter device 100 shown in FIG. 1 may further include another controller (other than the controller 130; not shown in FIG. 1) coupled to the DC-to-DC converter 110. In other words, the primary side and the secondary side of the inverter device 100 shown in Fig. 1 each include a controller. Since the controller 130 can detect the power output of the primary side (that is, the DC power supply P DC or the DC bus voltage V BUS ), the controller 130 can directly control the obtained detection result to control the DC to AC converter. 120 enters the intermittent mode, thereby controlling the power output of the DC to DC converter 110. In addition, since the controller 130 can originally include the pin of the detection voltage (for example, the DC bus voltage V BUS ), the inverter architecture provided by the present invention does not add additional circuit area and cost.

綜上所述,本發明所提供之逆變裝置的控制方法透過檢測初級輸出(直流母線電壓),消弭/減少外在環境對逆變裝置之工作效率的影響,進而提昇逆變裝置於輕載狀態下的操作性能。另外,本發明所提供之逆變裝置係將初級輸出耦接於次級輸出側的控制器,而無需額外的電路即可有效提昇輕載狀態之工作效率,故可具有相當簡潔的電路架構,並且幾乎不會增加生產成本。 In summary, the control method of the inverter device provided by the present invention detects the primary output (DC bus voltage), eliminates/reduces the influence of the external environment on the working efficiency of the inverter device, and further improves the inverter device at light load. Operating performance in the state. In addition, the inverter device provided by the present invention couples the primary output to the controller on the secondary output side, and can effectively improve the working efficiency of the light load state without additional circuitry, so that the circuit structure can be quite simple. And it will hardly increase production costs.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

302~332‧‧‧步驟 302~332‧‧‧Steps

Claims (12)

一種逆變裝置的控制方法,該逆變裝置包含一直流轉直流轉換器與一直流轉交流轉換器,該直流轉直流轉換器之一輸出側耦接於該直流轉交流轉換器之一輸入側,該控制方法包含下列步驟:自該直流轉直流轉換器之該輸出側輸出一直流電源;自該直流轉交流轉換器之該輸入側接收該直流電源,並依據該直流電源於該直流轉交流轉換器之一輸出側產生一交流電源;以及檢測該直流電源,並據以控制該直流轉交流轉換器之操作;其中當檢測出該直流電源之一能量準位係大於或等於一上限準位時,控制該直流轉交流轉換器之操作的步驟包含:開啟該直流轉交流轉換器。 A control method of an inverter device, comprising: a DC-DC converter and a DC-DC converter, wherein an output side of one of the DC-to-DC converters is coupled to an input side of the DC-to-AC converter, The control method includes the following steps: outputting a DC power source from the output side of the DC-to-DC converter; receiving the DC power source from the input side of the DC-to-AC converter, and according to the DC power source in the DC-to-AC converter One of the output sides generates an AC power source; and detects the DC power source and controls the operation of the DC-to-AC converter; wherein when it is detected that one of the DC power sources is greater than or equal to an upper limit The step of controlling the operation of the DC-to-AC converter includes turning on the DC-to-AC converter. 如申請專利範圍第1項所述之控制方法,其中當檢測出該直流電源之該能量準位係小於或等於一下限準位時,控制該直流轉交流轉換器之操作的步驟包含:關閉該直流轉交流轉換器。 The control method of claim 1, wherein when detecting that the energy level of the DC power source is less than or equal to a lower limit level, the step of controlling the operation of the DC-to-AC converter comprises: turning off the DC to AC converter. 如申請專利範圍第2項所述之控制方法,其中在關閉該直流轉交流轉換器之後,檢測該直流電源並據以控制該直流轉交流轉換器之操作的步驟另包含:檢測該直流電源之該能量準位是否大於或等於該上限準位,其中該上限準位係大於該下限準位;以及當檢測出該能量準位係大於或等於該上限準位時,開啟該直流轉交流轉換器。 The control method of claim 2, wherein after the DC-to-AC converter is turned off, the step of detecting the DC power source and controlling the operation of the DC-to-AC converter according to the method further comprises: detecting the DC power source Whether the energy level is greater than or equal to the upper limit level, wherein the upper limit level is greater than the lower limit level; and when detecting that the energy level is greater than or equal to the upper limit level, turning on the DC to AC converter . 如申請專利範圍第1項所述之控制方法,其中在開啟該直流轉交流轉換器 之後,檢測該直流電源並據以控制該直流轉交流轉換器之操作的步驟另包含:檢測該直流電源之該能量準位是否小於或等於一下限準位,其中該下限準位係小於該上限準位;以及當檢測出該能量準位係小於或等於該下限準位時,關閉該直流轉交流轉換器。 The control method according to claim 1, wherein the DC-to-AC converter is turned on Then, the step of detecting the DC power supply and controlling the operation of the DC-to-AC converter according to the method further comprises: detecting whether the energy level of the DC power source is less than or equal to a lower limit level, wherein the lower limit level is less than the upper limit a level; and when the energy level is detected to be less than or equal to the lower level, the DC to AC converter is turned off. 如申請專利範圍第2或4項所述之控制方法,另包含下列步驟:依據該直流轉交流轉換器之一額定輸出能量來設定該下限準位。 The control method according to claim 2 or 4, further comprising the step of: setting the lower limit level according to a rated output energy of one of the DC-to-AC converters. 如申請專利範圍第1項所述之控制方法,其中該能量準位係為一電壓準位。 The control method of claim 1, wherein the energy level is a voltage level. 一種逆變裝置,包含:一直流轉直流轉換器,用以輸出一直流電源;一直流轉交流轉換器,耦接於該直流轉直流轉換器,用以接收該直流電源,並依據該直流電源來產生一交流電源;以及一控制器,耦接於該直流轉交流轉換器,用以檢測該直流電源,並據以控制該直流轉交流轉換器之操作;其中當該控制器檢測出該直流電源之一能量準位係大於或等於一上限準位時,該控制器會開啟該直流轉交流轉換器。 An inverter device comprising: a DC-DC converter for outputting a DC power source; a DC-to-DC converter coupled to the DC-to-DC converter for receiving the DC power source, and generating the DC power source according to the DC power source An AC power source; and a controller coupled to the DC-to-AC converter for detecting the DC power source and controlling the operation of the DC-to-AC converter; wherein when the controller detects the DC power source When an energy level is greater than or equal to an upper limit, the controller turns on the DC to AC converter. 如申請專利範圍第7項所述之逆變裝置,其中當該控制器檢測出該直流電源之該能量準位係小於或等於一下限準位時,該控制器會關閉該直流轉交流轉換器。 The inverter device of claim 7, wherein the controller turns off the DC-to-AC converter when the controller detects that the power level of the DC power source is less than or equal to a lower limit level. . 如申請專利範圍第8項所述之逆變裝置,其中在該控制器關閉該直流轉交流轉換器之後,該控制器另檢測該直流電源之該能量準位是否大於或等於該上限準位;該上限準位係大於該下限準位;以及當該控制器檢測出該能量準位係大於或等於該上限準位時,該控制器會開啟該直流轉交流轉換器。 The inverter device of claim 8, wherein after the controller turns off the DC-to-AC converter, the controller further detects whether the energy level of the DC power source is greater than or equal to the upper limit level; The upper limit level is greater than the lower limit level; and when the controller detects that the energy level is greater than or equal to the upper limit level, the controller turns on the DC to AC converter. 如申請專利範圍第7項所述之逆變裝置,其中在該控制器開啟該直流轉交流轉換器之後,該控制器另檢測該直流電源之該能量準位是否小於或等於一下限準位;該下限準位係小於該上限準位;以及當該控制器檢測出該能量準位係小於或等於該下限準位時,該控制器會關閉該直流轉交流轉換器。 The inverter device of claim 7, wherein after the controller turns on the DC-to-AC converter, the controller further detects whether the energy level of the DC power source is less than or equal to a lower limit level; The lower limit level is less than the upper limit level; and when the controller detects that the energy level is less than or equal to the lower limit level, the controller turns off the DC to AC converter. 如申請專利範圍第8或10項所述之逆變裝置,其中該控制器係依據該直流轉交流轉換器之一額定輸出能量來設定該下限準位。 The inverter device of claim 8 or 10, wherein the controller sets the lower limit level according to a rated output energy of the one of the DC-to-AC converters. 如申請專利範圍第7項所述之逆變裝置,其中該能量準位係為一電壓準位。 The inverter device of claim 7, wherein the energy level is a voltage level.
TW104103281A 2014-02-26 2015-01-30 Inverter apparatus and control method thereof TWI548192B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/629,462 US9450515B2 (en) 2014-02-26 2015-02-23 Method for controlling inverter apparatus by detecting primary-side output and inverter apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201461944587P 2014-02-26 2014-02-26

Publications (2)

Publication Number Publication Date
TW201534032A TW201534032A (en) 2015-09-01
TWI548192B true TWI548192B (en) 2016-09-01

Family

ID=53672198

Family Applications (13)

Application Number Title Priority Date Filing Date
TW104102536A TWI565221B (en) 2014-02-26 2015-01-26 Inverting apparatus and photovoltaic power system using the same
TW104103281A TWI548192B (en) 2014-02-26 2015-01-30 Inverter apparatus and control method thereof
TW104103278A TWI548197B (en) 2014-02-26 2015-01-30 Inverter apparatus and control method thereof
TW104103879A TWI539735B (en) 2014-02-26 2015-02-05 Inverting apparatus
TW104103880A TWI554019B (en) 2014-02-26 2015-02-05 Inverting apparatus and control method thereof
TW104103964A TWI554020B (en) 2014-02-26 2015-02-05 Inverter apparatus and control method thereof
TW104104727A TWI565203B (en) 2014-02-26 2015-02-12 Inverting apparatus and control method thereof
TW104105091A TWI535174B (en) 2014-02-26 2015-02-13 Inverting apparatus and control method thereof
TW104105094A TWI565177B (en) 2014-02-26 2015-02-13 Inverting apparatus and detection method for islanding
TW104202504U TWM513513U (en) 2014-02-26 2015-02-13 Inverting apparatus and AC voltage sampling circuit thereof
TW104105096A TWI556567B (en) 2014-02-26 2015-02-13 Control circuit of switch apparatus
TW104105088A TWI548195B (en) 2014-02-26 2015-02-13 Inverting apparatus and alternating current power system using the same
TW104105099A TWI548200B (en) 2014-02-26 2015-02-13 Inverter apparatus and power conversion method thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW104102536A TWI565221B (en) 2014-02-26 2015-01-26 Inverting apparatus and photovoltaic power system using the same

Family Applications After (11)

Application Number Title Priority Date Filing Date
TW104103278A TWI548197B (en) 2014-02-26 2015-01-30 Inverter apparatus and control method thereof
TW104103879A TWI539735B (en) 2014-02-26 2015-02-05 Inverting apparatus
TW104103880A TWI554019B (en) 2014-02-26 2015-02-05 Inverting apparatus and control method thereof
TW104103964A TWI554020B (en) 2014-02-26 2015-02-05 Inverter apparatus and control method thereof
TW104104727A TWI565203B (en) 2014-02-26 2015-02-12 Inverting apparatus and control method thereof
TW104105091A TWI535174B (en) 2014-02-26 2015-02-13 Inverting apparatus and control method thereof
TW104105094A TWI565177B (en) 2014-02-26 2015-02-13 Inverting apparatus and detection method for islanding
TW104202504U TWM513513U (en) 2014-02-26 2015-02-13 Inverting apparatus and AC voltage sampling circuit thereof
TW104105096A TWI556567B (en) 2014-02-26 2015-02-13 Control circuit of switch apparatus
TW104105088A TWI548195B (en) 2014-02-26 2015-02-13 Inverting apparatus and alternating current power system using the same
TW104105099A TWI548200B (en) 2014-02-26 2015-02-13 Inverter apparatus and power conversion method thereof

Country Status (2)

Country Link
CN (13) CN104868764B (en)
TW (13) TWI565221B (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6536346B2 (en) * 2015-10-19 2019-07-03 住友電気工業株式会社 Power converter and control method thereof
TWI551021B (en) * 2015-11-25 2016-09-21 財團法人金屬工業研究發展中心 Flyback power converter and control method thereof
CN105529743B (en) * 2016-02-22 2018-12-18 珠海格力电器股份有限公司 A kind of photovoltaic system and grid-connected power detecting method, device
CN107026606A (en) * 2016-08-29 2017-08-08 广西塔锡科技有限公司 A kind of anti-phase transformer of photovoltaic
CN106353614B (en) * 2016-08-29 2020-01-21 许继集团有限公司 Island detection method and device for direct current system
CN106602915A (en) * 2016-09-28 2017-04-26 深圳市盈动力科技有限公司 Inversion device power limitation circuit and inversion device
CN106443343A (en) * 2016-09-30 2017-02-22 国网福建省电力有限公司 Small-current grounding fault positioning method employing transient zero sequence current
CN106787624A (en) * 2016-12-28 2017-05-31 滁州品之达电器科技有限公司 A kind of control method of inverter
CN106921146B (en) * 2017-03-20 2019-09-13 特变电工西安电气科技有限公司 A kind of the switching overvoltage protective device and method of multilevel photovoltaic grid-connected inverter
CN106972771A (en) * 2017-05-23 2017-07-21 唐瑭 A kind of level approach method, level approach device and control device
CN107171289A (en) * 2017-06-06 2017-09-15 江西科技学院 A kind of protection circuit
KR101957575B1 (en) 2017-06-23 2019-03-13 인투코어테크놀로지 주식회사 Power supply supporting device and method of supporting power supply to load
JP6930370B2 (en) 2017-10-30 2021-09-01 オムロン株式会社 Ground fault detector
JP6323635B1 (en) * 2017-11-24 2018-05-16 三菱電機株式会社 Parallel power supply
CN108270239A (en) * 2018-01-30 2018-07-10 国网上海市电力公司 A kind of distribution network electric energy quality disturbing source direction determining method containing distributed generation resource
CN111713002B (en) * 2018-02-15 2024-03-08 日本电产株式会社 Power conversion device, driving device, and power steering device
FR3083394B1 (en) * 2018-06-29 2021-03-19 Valeo Equip Electr Moteur POWER COMPONENT PROTECTION DEVICE FOR A TRANSISTOR BRIDGE
JP7135548B2 (en) * 2018-08-01 2022-09-13 株式会社ジェイテクト Power supply monitoring device and power supply monitoring method
CN111256345B (en) * 2018-11-30 2021-05-07 杭州先途电子有限公司 Photovoltaic air conditioner control method, controller and photovoltaic air conditioner
TWI703423B (en) 2019-06-19 2020-09-01 群光電能科技股份有限公司 Power supply device and a power supply method
CN113012981A (en) * 2019-12-20 2021-06-22 施耐德电气工业公司 Contactor, control device and control method thereof
TWI822561B (en) * 2023-01-17 2023-11-11 固緯電子實業股份有限公司 Device to improve current limiting response speed and waveform

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157638A1 (en) * 2008-12-20 2010-06-24 Azuray Technologies, Inc. Energy Conversion Systems With Power Control
TWM408678U (en) * 2010-11-16 2011-08-01 Allis Electric Co Ltd Photovoltaic powered system
TWM426948U (en) * 2011-12-09 2012-04-11 Topper Sun Energy Technology Improvement of solar power generation system inverter
TW201310191A (en) * 2011-08-23 2013-03-01 Univ Nat Cheng Kung Analog control apparatus of inverter
TW201325013A (en) * 2011-12-02 2013-06-16 Darfon Electronics Corp Off-grid solar inverter system without a battery and control method thereof

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327335A (en) * 1992-09-28 1994-07-05 Sundstrand Corporation Harmonic feedback control for an inverter
CN2189792Y (en) * 1994-04-28 1995-02-15 巫忆陵 High and low voltage relay with backlash
JP3227480B2 (en) * 1996-05-29 2001-11-12 シャープ株式会社 Inverter device islanding operation detection method and inverter device
US6038142A (en) * 1998-06-10 2000-03-14 Lucent Technologies, Inc. Full-bridge isolated Current Fed converter with active clamp
JP2002233045A (en) * 2001-02-02 2002-08-16 Canon Inc Ground detecting device for photovoltaic power generation system and method
JP2002252986A (en) * 2001-02-26 2002-09-06 Canon Inc Inverter, power supply system and method for reducing leakage current in power supply system
JP2002367768A (en) * 2001-06-04 2002-12-20 Matsushita Electric Ind Co Ltd Power source for driving magnetron
JP2003018854A (en) * 2001-07-02 2003-01-17 Honda Motor Co Ltd Resonance-type inverter device
JP2003098215A (en) * 2001-09-26 2003-04-03 Canon Inc Earth detection method and device in power conversion system
TW548886B (en) * 2001-10-16 2003-08-21 Know Entpr Co Ltd U Three-phase shunt type active power filter capable of operating in parallel
DE10156963A1 (en) * 2001-11-20 2003-06-05 Fritz Frey Circuit arrangement for the reliable switching of circuits
WO2003058799A1 (en) * 2002-01-08 2003-07-17 Sanken Electric Co., Ltd. Power factor improving converter and control method thereof
US7492620B2 (en) * 2002-11-29 2009-02-17 Rohm Co., Ltd. DC-AC converter and controller IC thereof
US7015597B2 (en) * 2003-09-11 2006-03-21 Square D Company Power regulator for power inverter
WO2005045547A1 (en) * 2003-11-10 2005-05-19 Tokyo Denki University Solar photovoltaic power generation apparatus
TWI232361B (en) * 2003-11-25 2005-05-11 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system
CN1898853B (en) * 2003-12-22 2010-06-09 皇家飞利浦电子股份有限公司 Switched mode power supply
TWI296460B (en) * 2006-01-18 2008-05-01 Univ Yuan Ze High-performance power conditioner for clean energy with low input voltage
TWI296457B (en) * 2006-01-18 2008-05-01 Univ Yuan Ze High-performance power conditioner for solar photovoltaic system
CN101379685B (en) * 2006-03-02 2014-04-09 半导体元件工业有限责任公司 Method and circuit for adjusting voltage
TWI320626B (en) * 2006-09-12 2010-02-11 Ablerex Electronics Co Ltd Bidirectional active power conditioner
TW200818671A (en) * 2006-10-05 2008-04-16 Holtek Semiconductor Inc Direct-current (DC) power switching device
US7495410B2 (en) * 2007-01-30 2009-02-24 Rockwell Automation Technologies, Inc. Systems and methods for improved motor drive power factor control
KR101194833B1 (en) * 2007-08-03 2012-10-25 페어차일드코리아반도체 주식회사 Inverter driver device and lamp driver device thereof
US7945413B2 (en) * 2007-09-04 2011-05-17 Solarbridge Technologies, Inc. Voltage-sensed system and method for anti-islanding protection of grid-connected inverters
EP2034600B1 (en) * 2007-09-05 2010-12-15 ABB Oy Single-phase to three-phase converter
US7986539B2 (en) * 2007-09-26 2011-07-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
US7768242B2 (en) * 2007-10-01 2010-08-03 Silicon Laboratories Inc. DC/DC boost converter with resistorless current sensing
TW201034354A (en) * 2008-12-20 2010-09-16 Azuray Technologies Inc Energy conversion systems with power control
US20100157632A1 (en) * 2008-12-20 2010-06-24 Azuray Technologies, Inc. Energy Conversion Systems With Power Control
US8598741B2 (en) * 2008-12-23 2013-12-03 Samsung Electro-Mechanics Co, Ltd. Photovoltaic and fuel cell hybrid generation system using single converter and single inverter, and method of controlling the same
CN101795076B (en) * 2009-01-29 2015-04-15 富士电机株式会社 Power converter and method for controlling power converter
CN201438776U (en) * 2009-04-16 2010-04-14 永磁电子(东莞)有限公司 High-frequency generator circuit of electrodeless lamp
CN201392462Y (en) * 2009-04-22 2010-01-27 陈国真 Energy-saving switch device
CN101552572B (en) * 2009-05-18 2011-01-05 浙江大学 Parallel inverter current control method adopting voltage differential compensation
WO2011010388A1 (en) * 2009-07-24 2011-01-27 Necディスプレイソリューションズ株式会社 Switching power source and electronic device using the same
JP4913849B2 (en) * 2009-07-29 2012-04-11 山洋電気株式会社 System-linked inverter device and control method thereof
US20110044083A1 (en) * 2009-08-20 2011-02-24 Christopher Thompson Adaptive Photovoltaic Inverter
TWI393333B (en) * 2009-09-22 2013-04-11 Richpower Microelectronics Controller chip and protection method for a power converter
TWM380576U (en) * 2009-11-02 2010-05-11 Ampower Technology Co Ltd Photovoltaic module and power supply system using the same
CN101728957B (en) * 2009-11-24 2011-09-28 华东交通大学 Method for reducing no-load loss of inverter with two-stage structure
CN102118018B (en) * 2009-12-31 2015-07-08 天津市松正电动汽车技术股份有限公司 Protection circuit with functions of upper limit and lower limit
US8362732B2 (en) * 2010-02-02 2013-01-29 GM Global Technology Operations LLC Motor phase winding fault detection method and apparatus
CN102148584B (en) * 2010-02-10 2013-04-17 上海英孚特电子技术有限公司 Compensation method of direct current (DC) voltage fluctuation of photovoltaic grid-connected inverter
CN102835011A (en) * 2010-02-22 2012-12-19 佩特拉太阳能公司 Method and system for controlling resonant converters used in solar inverters
KR101090263B1 (en) * 2010-03-08 2011-12-07 헥스파워시스템(주) Ground fault detection device and method with direct current wire for system of photovoltaic power generation
JP5045772B2 (en) * 2010-03-11 2012-10-10 オムロン株式会社 Capacitor capacity missing detection method in power conditioner, power conditioner for implementing the same, and photovoltaic power generation system including the same
KR101089906B1 (en) * 2010-04-02 2011-12-05 성균관대학교산학협력단 Maximum power point tracker, power conversion controller, power inverter of insulating structure, and method for maximum power point tracking of power inverter
US9673729B2 (en) * 2010-06-25 2017-06-06 Massachusetts Institute Of Technology Power processing methods and apparatus for photovoltaic systems
CN101950976B (en) * 2010-08-25 2012-11-28 常熟开关制造有限公司(原常熟开关厂) Grid-connected operation method of grid-connected type photovoltaic inverter
CN101950985B (en) * 2010-11-01 2013-07-03 上海兆能电力电子技术有限公司 Method for suppressing output harmonic wave and direct current component of single-phase grid-combined photovoltaic inverter
US8531123B2 (en) * 2010-12-20 2013-09-10 O2Micro, Inc. DC/DC converter with multiple outputs
CN102025291A (en) * 2010-12-20 2011-04-20 东南大学 Photovoltaic assembly with MPPT (Maximum Power Point Tracking) module
EP2477298B1 (en) * 2011-01-15 2021-04-21 GE Energy Power Conversion Technology Limited Controllers for static energy supply units
CN102118028B (en) * 2011-01-27 2013-01-23 华中科技大学 Method for suppressing and controlling current harmonics of three-phase LCL (Lower Control Limit) type grid-connected inverter
CN102130610B (en) * 2011-01-31 2013-02-27 天津大学 Method for controlling constant-voltage discharging of energy storage system of flywheel
JP2012173773A (en) * 2011-02-17 2012-09-10 Toshiba Corp Power conversion device
TW201250429A (en) * 2011-06-15 2012-12-16 Solarrich Applied Energy & Technology Co Ltd Method for optimizing output power of solar cell
CN102223100A (en) * 2011-06-17 2011-10-19 北京中能清源科技有限公司 Control method of three-phase grid-connected inverter based on modified proportional resonant regulator
CN102244497B (en) * 2011-07-08 2013-05-08 大禹电气科技股份有限公司 Frequency conversion control method and device
CN102904273B (en) * 2011-07-29 2015-05-20 通用电气公司 Maximum power point tracking (MPPT) control of energy conversion system and relevant method
CN102307007B (en) * 2011-09-13 2013-11-06 矽力杰半导体技术(杭州)有限公司 PFC (power factor correction) control circuit based on master-slave interlaced critical conduction mode and control method thereof
CN202372616U (en) * 2011-11-25 2012-08-08 比亚迪股份有限公司 Signal fault detection circuit
US9653923B2 (en) * 2011-12-12 2017-05-16 Avago Technologies General Ip (Singapore) Pte. Ltd. Resonant power management architectures
US9143056B2 (en) * 2011-12-16 2015-09-22 Empower Micro Systems, Inc. Stacked voltage source inverter with separate DC sources
CN102496960A (en) * 2011-12-24 2012-06-13 朱建国 Photovoltaic grid-connected inverter and method for reducing working loss of photovoltaic grid-connected inverter
CN102611341B (en) * 2012-03-12 2014-07-30 深圳市英威腾电气股份有限公司 Photovoltaic inverter and method for tracking maximum power of same
TWI464555B (en) * 2012-03-22 2014-12-11 中原大學 Photovoltaic system having power-increment-aided incremental-conductance maximum power point tracking controller using constant-frequency variable-duty control and method thereof
CN102611141A (en) * 2012-03-30 2012-07-25 南京大学 MPPT (maximum power point tracking) control device and method of photovoltaic inverter based on perturbation method
TW201349724A (en) * 2012-05-25 2013-12-01 Delta Electronics Inc Power converter and method for controlling the same
CN202872384U (en) * 2012-07-24 2013-04-10 华南理工大学 Three-ring control device of single-stage photovoltaic grid-connected inversion system
CN102882401A (en) * 2012-09-19 2013-01-16 华为技术有限公司 Inverter with wide voltage input range and input-stage circuit thereof
CN102880223A (en) * 2012-09-27 2013-01-16 易霸科技(威海)股份有限公司 Analog circuit implementation method for MPPT (maximum power point tracking) of low-power photovoltaic inverter system
CN202880967U (en) * 2012-10-19 2013-04-17 深圳市天源新能源有限公司 Photovoltaic seawater desalination system and photovoltaic seawater desalination inverter
CN202888934U (en) * 2012-11-13 2013-04-17 国家电网公司 Soft start circuit and charger
CN203135741U (en) * 2013-01-05 2013-08-14 苏州泽众新能源科技有限公司 Multifunctional power converter
TWI466403B (en) * 2013-01-30 2014-12-21 Chicony Power Tech Co Ltd Solar energy conversion apparatus
CN203243242U (en) * 2013-03-19 2013-10-16 广东工业大学 Single-phase photovoltaic grid-connected inverter
CN103337901B (en) * 2013-06-28 2016-03-30 华为技术有限公司 The method of uninterrupted power supply and uninterrupted power supply
CN203387430U (en) * 2013-07-25 2014-01-08 天津大学 Micro photovoltaic grid connected inverter for optimization of direct current bus capacitor
CN103501555B (en) * 2013-09-25 2015-02-18 电子科技大学 Digital phase locking and frequency tracking electromagnetic induction heating power controller
CN103558496B (en) * 2013-11-14 2016-08-17 阳光电源股份有限公司 A kind of one pole earthed system and failure detector, method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100157638A1 (en) * 2008-12-20 2010-06-24 Azuray Technologies, Inc. Energy Conversion Systems With Power Control
TWM408678U (en) * 2010-11-16 2011-08-01 Allis Electric Co Ltd Photovoltaic powered system
TW201310191A (en) * 2011-08-23 2013-03-01 Univ Nat Cheng Kung Analog control apparatus of inverter
TW201325013A (en) * 2011-12-02 2013-06-16 Darfon Electronics Corp Off-grid solar inverter system without a battery and control method thereof
TWM426948U (en) * 2011-12-09 2012-04-11 Topper Sun Energy Technology Improvement of solar power generation system inverter

Also Published As

Publication number Publication date
CN104917361A (en) 2015-09-16
TWI548195B (en) 2016-09-01
TW201534041A (en) 2015-09-01
CN104917413A (en) 2015-09-16
CN204465376U (en) 2015-07-08
TW201534035A (en) 2015-09-01
TW201534031A (en) 2015-09-01
CN104917455B (en) 2017-05-17
TWI565203B (en) 2017-01-01
CN104917414A (en) 2015-09-16
CN104901566B (en) 2018-01-19
TWI556567B (en) 2016-11-01
CN104935199B (en) 2018-03-13
TWI539735B (en) 2016-06-21
TWM513513U (en) 2015-12-01
TWI565221B (en) 2017-01-01
CN104868493B (en) 2019-02-05
TW201534032A (en) 2015-09-01
CN104868767B (en) 2017-11-14
TW201534036A (en) 2015-09-01
TW201534020A (en) 2015-09-01
CN104868766A (en) 2015-08-26
CN104868770A (en) 2015-08-26
CN104868493A (en) 2015-08-26
CN104868764B (en) 2017-08-04
CN104917455A (en) 2015-09-16
TW201534037A (en) 2015-09-01
TW201534038A (en) 2015-09-01
CN104901566A (en) 2015-09-09
TWI548197B (en) 2016-09-01
TWI554019B (en) 2016-10-11
CN104868767A (en) 2015-08-26
CN104865458A (en) 2015-08-26
CN104868764A (en) 2015-08-26
CN104917413B (en) 2017-08-15
TW201534048A (en) 2015-09-01
TWI554020B (en) 2016-10-11
TWI548200B (en) 2016-09-01
TW201534034A (en) 2015-09-01
CN104917361B (en) 2018-04-13
TWI535174B (en) 2016-05-21
TWI565177B (en) 2017-01-01
CN104868770B (en) 2017-07-14
TW201534040A (en) 2015-09-01
TW201534039A (en) 2015-09-01
CN104935199A (en) 2015-09-23

Similar Documents

Publication Publication Date Title
TWI548192B (en) Inverter apparatus and control method thereof
US8284574B2 (en) Method and apparatus for controlling an inverter using pulse mode control
US8965589B2 (en) Circuit and method for maximum power point tracking of solar panel
JP2017123781A5 (en)
JP6031609B2 (en) Control device for inverter for photovoltaic power generation
TWI647900B (en) Inverter device and controlling method thereof
US20140211529A1 (en) Methods and systems for operating a bi-directional micro inverter
TW201513541A (en) Micro inverter of solar power system and method of operating the same
KR20120063513A (en) Electrical energy conversion circuit device
JP2013021861A (en) Power-supply device and method of controlling the same
JP2009148149A (en) Method of controlling step-up/down chopper circuit
US9515557B2 (en) Step-up step-down converter device
US20140169055A1 (en) Non-isolated dc/ac inverter
JP2016105335A (en) Power conditioner for solar power generation
JP2010124557A (en) Uninterruptible power supply device
TWI533559B (en) Circuit in an electronic device and method for powering
TW201919319A (en) DC-DC converter and power conditioner
KR101609245B1 (en) Apparatus for storing energy
JP2016110524A (en) Photovoltaic power generation system
US9450515B2 (en) Method for controlling inverter apparatus by detecting primary-side output and inverter apparatus thereof
CN204046415U (en) The quick startup control circuit of converter
CN110460105B (en) Starting method and controller of photovoltaic air conditioning system and photovoltaic air conditioning system
US9590484B2 (en) Inverter device and power converting method thereof
US20140009989A1 (en) High-efficiency Switching Power converter and method for enhancing switching power conversion efficiency
TW201526501A (en) Switching regulator and control circuit and control method thereof