TW201034354A - Energy conversion systems with power control - Google Patents

Energy conversion systems with power control Download PDF

Info

Publication number
TW201034354A
TW201034354A TW098143647A TW98143647A TW201034354A TW 201034354 A TW201034354 A TW 201034354A TW 098143647 A TW098143647 A TW 098143647A TW 98143647 A TW98143647 A TW 98143647A TW 201034354 A TW201034354 A TW 201034354A
Authority
TW
Taiwan
Prior art keywords
power
converter
control
voltage
energy storage
Prior art date
Application number
TW098143647A
Other languages
Chinese (zh)
Inventor
Robert D Batten
Triet Tu Le
Vincenzo Ditommaso
Ravindranath Naiknaware
Terri Shreeve Fiez
Original Assignee
Azuray Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/340,715 external-priority patent/US9263895B2/en
Priority claimed from US12/368,990 external-priority patent/US8796884B2/en
Priority claimed from US12/368,987 external-priority patent/US20100157632A1/en
Application filed by Azuray Technologies Inc filed Critical Azuray Technologies Inc
Publication of TW201034354A publication Critical patent/TW201034354A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/30The power source being a fuel cell
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

In one embodiment, a power conversion system may include a controller to cause a power stage to control power to or from an energy storage device. In another embodiment, a power conversion system may include a push-pull stage and an energy storage device following the push-pull stage. In another embodiment, an integrated circuit may include power control circuitry to provide power control to a power converter, and a power switch coupled to the power control circuitry to operate the power converter. In another embodiment, a power conversion system may include two or more power converters having power control.

Description

201034354 六、發明說明: 【發明所屬·^技術領域】 交互參照相關申請案 本申請案是2008年12月20曰申請的美國專利申請案序 號第12/340,715號案之部份延續專利申請案,該案併入此文 以為參考資料。本申請案主張2〇〇9年2月2曰申請的美國臨 時專利申請案序號第61/149,305號案之優先權,該案併入此 文以為參考資料。 ❹ 本發明係有關於具電力控制之能量轉換系統。 【先前名好;3 . 發明背景 . 電力轉換器被用以將電力從一種形式轉換成另一種形 式’例如將直流^)C)電力轉換成交流(AC)電力。電力轉換 器一個重要的應用是將電力從能源,諸如太陽電池板、電 池、燃料電池等等轉移至配電系統,諸如本地或區域電網。 % 大部份網格使用一線路(電源)頻率50或60週/秒(赫茲或Hz) 的AC電流操作。一 AC網格中的電力以一以兩倍於線路頻 率,即電力尖峰以100Hz或120Hz發生的脈動方式流動。相 反地’許多能源以一平穩方式提供DC電力。因此,一種用 於將電力從一 DC源轉移至一 AC網格的電力轉換系統典型 地包括某些形式的能量儲存,以使平穩輸入電力與脈動輸 出電力平衡。 這可參考第1圖被更好地理解,第1圖繪示一DC電源與 一60Hz的AC負載之間的失配。從DC源可得的最大電力量 3 201034354 被繪示成一恒定值。相反地,必須被轉移至AC負載的電力 量從零到一最大值,且每8.33毫秒(ms)回落到最小值地波 動。在時間T1中,從DC源可得的電力超過AC負載所需的 瞬時電力。然而在時間T2中,從DC源可得的最大電力小於 負載所需。因此,爲了高效地將電力從能源轉移至負載, 電力轉換系統必須在時間T1中儲存來自電源的多餘能量 (繪示成陰影區S),且在時間T2中將所儲存的能量釋放至負 載(繪示成陰影區D)。 電力轉換器之能量儲存裝置往往是昂貴、體積很大、 不可靠且低效的。此等因素成為大規模採用產生DC電力形 式的替代能源,諸如太陽能及燃料電池的障礙。它們也成 為大規模採用電腦、住所、學校、商行的備用電力系統的 障礙。 成本與可靠性因素對太陽能系統尤其重要。太陽電池 板製造者已將其產品之可靠性改良成20年保固是普通的。 然而電力轉換器製造商尚未達至能提供可與太陽電池板相 比之保固的境地。 C發明内容3 依據本發明之一實施例,係特地提出一種系統,包含: 一轉換器,將電力從一電源轉移至一負載,該轉換器具有 一電力級及一能量儲存裝置;及一控制器,使該電力級控 制到達或來自該能量儲存裝置之電力。 圖式簡單說明 第1圖繪示在一電力轉換器中一DC電源與一 60Hz的 201034354 AC負載之間的失配。 第2圖繪示一種用於將DC電力從一光電(PV)板轉換成 AC電力的習知系統。 第3圖繪示一PV板中與漣波電壓相對的電力損失。 第4圖繪示一電容器與電容相對的成本。 第5圖繪示一 PV電力轉換系統的操作。 第6圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的電力轉換系統之操作。 第7圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的一電力轉換系統之一實施例。 第8圖繪示依據本專利揭露的某些發明原理,一電力轉 換系統的另一實施例。 第9圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的電力轉換系統的又一實施例。 第10圖繪示依據本專利揭露的某些發明原理,一用於 實施恒定電力控制的控制器之一實施例。 第11圖繪示依據本專利揭露的某些發明原理,一電力 轉換系統的一實施例。 第12圖繪示依據本專利揭露的某些發明原理,一適於 實施第11圖之換流器系統之主要電力路徑的一實施例之示 意圖。 第13-16圖繪示依據本專利揭露的某些發明原理的PV 板之實施例。 第17圖繪示與從一被維持在一固定電壓的DC鏈電容 5 201034354 器可得的電壓相比,對來自一Η橋式DC/AC換流器的電壓的 瞬時需求。 第18圖繪示依據本專利揭露的某些發明原理,與一由 於一恒定電力控制特徵而具有一大AC電壓擺動的DC鏈電 容器可得的電壓相比,對來自一 Η橋式DC/AC換流器的電壓 的瞬時需求。 第19圖繪示依據本專利揭露的某些發明原理,一具有 諧波失真緩和的電力轉換系統的一實施例。 第20圖繪示依據本專利揭露的某些發明原理,一失真 緩和系統之一實施例。 第21圖繪示依據本專利揭露的某些發明原理,一顯示 某些範例實施細節的失真緩和系統之另一實施例。 第22圖繪示依據本專利揭露的某些發明原理,一具有 諧波失真緩和的控制器之又一實施例。 第23圖繪示依據本專利揭露的某些發明原理,一具有 柵極電流控制的實施例。 第24圖繪示依據本專利揭露的某些發明原理,一控制 器之一實施例。 第25圖繪示依據本專利揭露的某些發明原理,一具有 預失真的控制器之一實施例。 第26-29圖繪示依據本專利揭露的某些發明原理,預失 真元件之實施例。 第30圖繪示依據本專利揭露的某些發明原理,阻抗變 換之一實施例。 201034354 第31圖繪示一不具阻抗變換之電力轉換系統之操作。 第32圖繪示電壓-電流曲線及一典型PV板的電力曲線。 第33圖繪示一具有多於一個本地最大電力點的電源之 VI及電力曲線。 第34圖繪示依據本專利揭露的某些發明原理,一具有 恒定電力控制及一輸入擺動特徵的電力轉換系統之一實施 例。 第35圖繪示依據本專利揭露的某些發明原理,第20圖 恒定電力控制去能之實施例。 第36圖繪示第20圖及第21圖在某些條件下可如何操 作。 第37圖繪示依據本專利揭露的某些發明原理,一具有 多個電源系統之一實施例。 第38圖繪示依據本專利揭露的某些發明原理,一其中 多個DC/DC轉換器包括恒定電力控制功能的電力轉換系統 之一實施例。 第39-42圖繪示依據本專利揭露的某些發明原理,具有 多個具電力控制的轉換器及一中心換流器的電力轉換系統 之實施例。 第43-51圖繪示依據本專利揭露的某些發明原理,具有 失真緩和之實施例。 第52圖繪示依據本專利揭露的某些發明原理,一具有 EMI緩和的電力轉換系統之一實施例。 第53圖繪示依據本專利揭露的某些發明原理,一電力 7 201034354 轉換系統的另一實施例。 I:實施方式3 較佳實施例之詳細說明 第2圖繪示一用於將DC電力從一光電(PV)板轉換成AC 電力的習知系統。PV板10以一大約2〇伏特的典型電壓vPV 產生一DC輸出電流IPV’但是具有其他輸出電壓的電池板也 可被使用。一DC/DC轉換器12將乂”升壓至一幾百伏特的鏈 電壓VDC。一DC/AC換流器14將DC鏈電壓轉換成一AC輸出 電壓VGR1D。在此範例中’該輸出被假定為6〇^12的12〇\^匸 以協助到一本地電網的連接,但是其他電壓及頻率也可被 使用。 第2圖之系統也包括一DC鏈電容器Cdc及一去耦電容 器心。此等電容器中的一者或兩者可執行一能量儲存功能 以平衡來自PV板的標稱平穩電力流與該網格的波動電力需 求。該系統内的電力脈衝起源於換流器14,該換流器14必 須以120Hz脈衝將電力轉移至網格的DC/AC。當不存在一實 質能篁儲存裝置時,此等電流脈衝會被一路轉移回pV板, 在PV板它們會表現為電池板電壓Vpv及/或電流Ipv的波動 (或「漣波」)。因此,DC鏈電容器Cdc,或較少見地,去耦 電容器C!被用以基於逐週期儲存足夠的能量,以將pv板的 漣波減少至一可接受位準。 然而,在習知系統中,能量儲存電容器基於若干原因 往往是有問題的組件H-大得^以提供充分能量儲 存的電容器一般必須是電解型的,因為其他大電容器通常 201034354 是過於昂貴。這在-被設計成將來自—pv板的別瓦特輸入 電力轉換為6〇出的12〇賣的範例系統之㈣中可被更好 地理解。被要求平衡基於-逐週期的電力之能量儲存^得 出如下: ^ = ^ (方程式1)201034354 VI. Description of the invention: [Invention of the invention] Technical field of the invention The present application is a continuation patent application of the US Patent Application Serial No. 12/340,715 filed on December 20, 2008, The case is incorporated herein by reference. The present application claims priority to U.S. Provisional Patent Application Serial No. 61/149,305, filed on Feb. 2, 2009, which is incorporated herein by reference. ❹ The present invention relates to an energy conversion system with power control. [Previous name is good; 3. Background of the invention. Power converters are used to convert power from one form to another', e.g., convert DC () C) power into alternating current (AC) power. An important application of power converters is the transfer of electricity from energy sources, such as solar panels, batteries, fuel cells, etc., to power distribution systems, such as local or regional power grids. % Most grids operate with a line (power) frequency of 50 or 60 cycles per second (Hz or Hz). The power in an AC grid flows in a pulsating manner at twice the line frequency, i.e., the power spike occurs at 100 Hz or 120 Hz. Conversely, many energy sources provide DC power in a smooth manner. Accordingly, a power conversion system for transferring power from a DC source to an AC grid typically includes some form of energy storage to balance the smooth input power with the pulsating output power. This can be better understood with reference to Figure 1, which depicts a mismatch between a DC power supply and a 60 Hz AC load. The maximum amount of power available from the DC source 3 201034354 is shown as a constant value. Conversely, the amount of power that must be transferred to the AC load is from zero to a maximum, and falls back to a minimum every 8.33 milliseconds (ms). At time T1, the power available from the DC source exceeds the instantaneous power required by the AC load. However, at time T2, the maximum power available from the DC source is less than the load required. Therefore, in order to efficiently transfer power from energy to load, the power conversion system must store excess energy from the power source (shown as shaded area S) at time T1 and release the stored energy to the load at time T2 ( Painted as shaded area D). Energy storage devices for power converters are often expensive, bulky, unreliable, and inefficient. These factors have become a barrier to large-scale adoption of alternative sources of energy in the form of DC power, such as solar and fuel cells. They also become barriers to the large-scale use of backup power systems in computers, homes, schools, and businesses. Cost and reliability factors are especially important for solar systems. It has been common for solar panel manufacturers to improve the reliability of their products to a 20-year warranty. However, power converter manufacturers have not yet reached a position to provide a warranty comparable to solar panels. C SUMMARY OF THE INVENTION In accordance with an embodiment of the present invention, a system is specifically provided comprising: a converter for transferring power from a power source to a load, the converter having a power stage and an energy storage device; and a controller Having the power level control the power to or from the energy storage device. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates the mismatch between a DC power supply and a 60 Hz 201034354 AC load in a power converter. Figure 2 illustrates a conventional system for converting DC power from a photovoltaic (PV) panel to AC power. Figure 3 illustrates the power loss in a PV panel as opposed to the chopping voltage. Figure 4 shows the cost of a capacitor versus capacitor. Figure 5 illustrates the operation of a PV power conversion system. Figure 6 illustrates the operation of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 7 illustrates an embodiment of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 8 illustrates another embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. Figure 9 illustrates yet another embodiment of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 10 illustrates an embodiment of a controller for implementing constant power control in accordance with certain inventive principles disclosed herein. Figure 11 illustrates an embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. Figure 12 is a schematic illustration of an embodiment of a primary power path suitable for implementing the inverter system of Figure 11 in accordance with certain inventive principles disclosed herein. Figures 13-16 illustrate embodiments of a PV panel in accordance with certain inventive principles disclosed herein. Figure 17 illustrates the instantaneous demand for voltage from a bridge-type DC/AC converter compared to the voltage available from a DC-chain capacitor 5 201034354 maintained at a fixed voltage. Figure 18 illustrates certain inventive principles disclosed in accordance with the present patent, as compared to a voltage available from a DC link capacitor having a large AC voltage swing due to a constant power control feature, from a bridge type DC/AC The instantaneous demand for the voltage of the converter. Figure 19 illustrates an embodiment of a power conversion system with harmonic distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 20 illustrates an embodiment of a distortion mitigation system in accordance with certain inventive principles disclosed herein. Figure 21 illustrates another embodiment of a distortion mitigation system showing certain example implementation details in accordance with certain inventive principles disclosed herein. Figure 22 illustrates yet another embodiment of a controller having harmonic distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 23 illustrates an embodiment with gate current control in accordance with certain inventive principles disclosed herein. Figure 24 illustrates an embodiment of a controller in accordance with certain inventive principles disclosed herein. Figure 25 illustrates an embodiment of a controller with predistortion in accordance with certain inventive principles disclosed herein. Figures 26-29 illustrate embodiments of pre-distorted components in accordance with certain inventive principles disclosed herein. Figure 30 illustrates an embodiment of impedance transformation in accordance with certain inventive principles disclosed herein. 201034354 Figure 31 illustrates the operation of a power conversion system without impedance transformation. Figure 32 shows the voltage-current curve and the power curve of a typical PV panel. Figure 33 shows the VI and power curve of a power supply with more than one local maximum power point. Figure 34 illustrates an embodiment of a power conversion system having constant power control and an input swing feature in accordance with certain inventive principles disclosed herein. Figure 35 illustrates an embodiment of constant power control de-energization in accordance with certain inventive principles disclosed herein. Figure 36 shows how Figures 20 and 21 can operate under certain conditions. Figure 37 illustrates an embodiment of a plurality of power systems in accordance with certain inventive principles disclosed herein. Figure 38 illustrates an embodiment of a power conversion system in which a plurality of DC/DC converters include a constant power control function in accordance with certain inventive principles disclosed herein. Figures 39-42 illustrate embodiments of a power conversion system having a plurality of power controlled converters and a central converter in accordance with certain inventive principles disclosed herein. Figures 43-51 illustrate embodiments with distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 52 illustrates an embodiment of a power conversion system with EMI mitigation in accordance with certain inventive principles disclosed herein. Figure 53 illustrates another embodiment of a power 7 201034354 conversion system in accordance with certain inventive principles disclosed herein. I: Embodiment 3 Detailed Description of the Preferred Embodiment FIG. 2 illustrates a conventional system for converting DC power from a photovoltaic (PV) panel to AC power. The PV panel 10 produces a DC output current IPV' at a typical voltage vPV of about 2 volts but panels with other output voltages can also be used. A DC/DC converter 12 boosts 乂 to a chain voltage VDC of a few hundred volts. A DC/AC converter 14 converts the DC link voltage to an AC output voltage VGR1D. In this example, the output is assumed It is 6〇^12 12〇\^匸 to assist in the connection to a local power grid, but other voltages and frequencies can also be used. The system of Figure 2 also includes a DC link capacitor Cdc and a decoupling capacitor core. One or both of the capacitors can perform an energy storage function to balance the nominally smooth power flow from the PV panel with the fluctuating power demand of the grid. The power pulse within the system originates from the inverter 14, which The flow device 14 must transfer power to the DC/AC of the grid with a 120 Hz pulse. When there is no substantial energy storage device, these current pulses are all transferred back to the pV board, where they will appear as panels on the PV panel. Fluctuation (or "chopping") of voltage Vpv and/or current Ipv. Therefore, the DC link capacitor Cdc, or less frequently, the decoupling capacitor C! is used to store sufficient energy on a cycle-by-cycle basis to reduce the chopping of the pv board to an acceptable level. However, in conventional systems, energy storage capacitors are often problematic components for a number of reasons. Capacitors that provide sufficient energy storage must generally be electrolytic, since other large capacitors are typically too expensive for 201034354. This is better understood in the example system that was designed to convert the Buwatt input power from the -pv board to the 6-selling 12-selling model. It is required to balance the energy storage based on the cycle-by-cycle power as follows: ^ = ^ (Equation 1)

P是單位為瓦特(W)的電力,C0*AC正弦波之角頻率,其具 有單位sec 1,而能量儲存ΔΕ具有單位焦耳(J^當6〇Hz時, ω=120π,且因此: AC 210 φϋπ)Κ〇3](方程式 2) 在一電容器中所儲存能量總數得出如下: △Ε - - vmin](方程式3) C是單位為法拉第的電容。 假定該能量儲存功能在DC鏈電容器cDc中被執行,且 DC鏈電壓被允許具有一在一 495伏特DC位準頂上的5伏特 峰對峰擺動,求解該電容提供如下結果: c=“(°-fer12_ (方程式4) 一在一足夠高的電壓額定值的120微法拉第電容器典型地 具有一電解電容器,因為具有此一尺寸的一陶瓷電容器通 常會過於昂貴。 使用供能量儲存之去耦電容器〇典型地甚至更糟。因 9 201034354 為從輸入電壓VPV到鏈電壓vDC的電壓倍增為大約25到1, DC鏈上的一5伏特峰對峰漣波等同於去耦電容器上的一〇 2 伏特連波。在此求解該電容量: π- 2(0.3) „ p (方程式5) 一 75mF(75,000微法)電容器幾乎肯定需要是電解变的。 然而,電解電容器具有有限的壽命,且往往具有—高 故障率。作為另一新的困難,一電解電容器之電容隨電解 質消失及/或退化而平穩地減少其壽命,因此降低其有效性 且改變整個系統之動力學。另外,電解電容器往往體積报 大’冗重且易碎,且具有一大的等效串聯電阻(Esr)。 由上述方程式瞭解,在DC鏈電容器上而非去耦電容器 上執行能量儲存功能是有利的,因為其典型地減小所需電 容器之尺寸。大體上,在-小電容器上儲存以—較高電壓 形式的能量比在-較大電容器上儲存以—較低電壓的能量 更經濟。然而’即使在-在DC鏈场存能量的習知系統 中,電容器也是-昂貴、體積很大且常常在—電力轉換系 統中形成最弱環節的不可靠組件。 另外,在一曰教作—用於能量儲存的 電容器呈現一些困難的設計折衷。例如,即使以—大電^ 器,—定量的漣波仍在PV電流及/或電壓中。如第3圖所示4 即使少量的漣波也導致降低系統效率的重大不’ 电?員失。連 波可藉由使用一較大電容器被減少,但如第4圖所示,増力口 —電容器之尺寸顯著增加其成本。 9 σ 201034354 電力控制 本專利揭露之某些發明原理係關於可根本上改變 力轉換器與一電源之間的介面之動態電力控制技術變某: 此等原理係關於維持由電力轉換器看入的—受押阻疒 — 考第5圖,-PV板可被模型化成一電壓源Vpv及一串:電^ RPV。該系統包括-受控可㈣阻Rl’使得由該電力轉換器 看入的阻抗zIN維持恒定,而不管從PV板轉移至電力轉換器 ❿ 的電流h。在—個示紐實施中’可變電阻1可藉由使第^ 圖所示輸入電壓Vl與一參考電壓Vref之間的差為 制。 • $些發明原理包括—電力轉換器中的阻抗控制與能量 . 儲存功能之間的關係。例如,在第7圖之實施例中,由一第 一電力轉換器級18看入的阻抗ZlN被維持在一受控值。—或 一個以上能量儲存裝置20平衡來自電源16的瞬時輸入電力 與可流經-或-個以上隨後電力級的瞬時輸出電力。電源 • 16可包括一PV板、燃料電池、電池、風力機等等。第一級 18可包括-或-個以上DC/DC轉換器、dc/ac換流器、整 ⑽器等等。此量儲存裝置可包括_或_個以上電容器、電 感器等等。諸隨後級可包括—或—個以上DC/Dc轉換器、 DC/AC換流器、整流器等等。 在一個示範性實施例中,電源16包括一pv板,第—級 匕括DC/DC轉換器,而能量儲存裝置包括一鍵電容 益。由第-電力轉換祕看人的阻抗&被維持在一恒定 值’同時鏈電容器上的電盧被允許響應一隨後之級的脈動 11 201034354 電力需求而波動。因為輸入阻抗控制使PV板與鏈電容器隔 絕’鏈電容器上的電壓擺動可比在一不具有阻抗控制的系 統中大很多。這可使鏈電容器之尺寸被減少,因為儲存在 一電容器中的能量直接關係到穿過該電容器的電壓擺動。 也可消除在輸出處的去耦電容器或減小去耦電容器的尺 寸。 第8圖繪示依據本專利揭露之某些發明原理,一電力轉 換系統的另一實施例。第8圖之系統從一PV板中的光電池22 接收電力。該系統包括一DC/DC轉換器24、一鏈電容器 _ CDC、一 DC/AC換流器26,及一控制器28。DC/DC轉換器可 包括一或一個以上的級,諸如降壓轉換器、升壓轉換器、 推-挽級、整流器等等,被安排成預調整器、主級等等。爲 - 了說明之目的,此範例中的DC/DC轉換器被假定成具有— . 預調整器級24a,隨後有一主級24b,但是發明原理不限制 於此一安排。DC/AC換流器26可包括任一適當換流器拓撲 結構,諸如一 Η橋式、一共振換流器等等。電壓與電流感測 器30及32分別向控制器28提供指示pv板輸出電壓Vpv與電 _ 流Ipv的信號。控制器輸出一驅動信號D1以控制預調整器。 控制器28藉由以維持PV板輸出電壓Vpv或電流Ipv在一 消除或減少輸入漣波的實質恒定值之方法控制dc/dc轉換 器内的預調整器級24a’來實施一恒定電力控制環路(由箭 頭34概念繪示)。這使pv板經歷一實質恒定負載,該負載因 此產生叵义電力轉移。在本質上,該恒定電力控制環路將 PV板與任何預調整器24a之後的級隔絕,所以該(等)能量儲 12 201034354 存裝f可被安排在恒定電力控制環路下游的任-處。在第8 圖之範例巾’鍵電容11被用於能量儲存,以提供以AC輸出 頻率的逐週期電力平衡。然而,在其他實施例中,能量儲 存可位於預調整器與主級之間,或在恒定電力控制環路下 游的任一其他附加級中。 因為恒定電力控制環路使電源與下游能量儲存裝置 隔絕’諸能量儲存裝置可被允許以比其他可接受的波動更 寬皮動操作。例如,電容器可以較大電壓波動操作,且電 感器可以較大電流波動操作。這進而可能 儲存裝置。 "b® 依據本專利揭露之某些發明原理,恒定電力控制與最 大,力點追蹤(MPPT)不同,但可與其一起使用。儘管聰丁 可哥找以確足一最大化在某些操作條件下從電源可得電力 點’恒定電力控制可使該系統能夠維持一操作點而 官一負載中的波動。例如,在—些實施例中,Μρρτ技術 可被用以尋找該系統的-操作點,而恒定電力 被用以將其保留,如Τ文參考第22圖更詳細描述。 調整一恒定DC輸入電壓或電流可提供若干優勢。首 先’減少輸人_中_波改進—些DC電源諸如遭受與連 崎損耗的之效率。其次,料量儲存移 解電容器《〜 電解電合器的需求,輸入電 ΓΓ: 昂貴、體積很大且不可靠的組件。 目’月b置可被儲存在DC鏈電容器上的_較高電壓形式 令’ DC量電容器較不昂貴,較可靠,具有較長的壽命且可 13 201034354 佔據較小空間。另外,DC鏈電容器本身也可被減小。 在上文參考第8圖所述示範性實施例中,控制器具有一 個感測輸入(VPV或IPV)及一個控制DC/DC轉換器中預調整 器的控制輸出(D1) ^即,恒定電力控制環路藉由響應在該 電力轉換系統的總輸入處感測的一參數控制電力路徑中的 第一級而被實施。 本專利揭露之某些附加發明原理(1)藉由響應在該系統 中任一處感測到的一參數,控制除第一級外的一或一個以 上電力級,及/或(2)藉由響應該系統中除總輸入處以外之任 ,處感測到的一或一個以上參數控制任一或任何多數級, 以使恒定電力控制得以實施。P is the power in watts (W), the angular frequency of the C0*AC sine wave, which has a unit sec 1, and the energy storage ΔΕ has unit joules (J^ when 6 Hz, ω = 120π, and therefore: AC 210 φ ϋ π) Κ〇 3] (Equation 2) The total amount of energy stored in a capacitor is as follows: △ Ε - - vmin] (Equation 3) C is a capacitance in units of Faraday. Assuming that the energy storage function is performed in the DC link capacitor cDc and the DC link voltage is allowed to have a 5 volt peak-to-peak swing on a 495 volt DC level top, solving this capacitance provides the following result: c = "(° -fer12_ (Equation 4) A 120 microfarad capacitor at a sufficiently high voltage rating typically has an electrolytic capacitor because a ceramic capacitor of this size is typically too expensive. Decoupling capacitors for energy storage are used. 〇 Typically even worse. Because 9 201034354 multiplies the voltage from the input voltage VPV to the chain voltage vDC to about 25 to 1, a 5 volt peak-to-peak chopping on the DC chain is equivalent to a 〇 2 on the decoupling capacitor. Volt-wave. Solve the capacitance here: π- 2(0.3) „ p (Equation 5) A 75mF (75,000 microfarad) capacitor almost certainly needs to be electrolyzed. However, electrolytic capacitors have a limited lifetime and often Has a high failure rate. As another new difficulty, the capacitance of an electrolytic capacitor steadily reduces its lifetime as the electrolyte disappears and/or degrades, thus reducing its effectiveness and changing the entire In addition, electrolytic capacitors tend to be bulky and cumbersome and have a large equivalent series resistance (Esr). It is understood from the above equation that it is performed on a DC link capacitor instead of a decoupling capacitor. The energy storage function is advantageous because it typically reduces the size of the capacitor required. In general, the energy stored in the -small capacitor is stored in a higher voltage than on the larger capacitor. Energy is more economical. However, 'even in the conventional system of storing energy in the DC chain field, the capacitor is also an unreliable component that is expensive, bulky, and often forms the weakest link in the power conversion system.曰 Teaching— Capacitors for energy storage present some difficult design tradeoffs. For example, even with a large electrical device, the quantitative chopping is still in the PV current and/or voltage. As shown in Figure 3, even A small amount of chopping also results in a significant loss of system efficiency. The continuous wave can be reduced by using a larger capacitor, but as shown in Figure 4, the size of the capacitor-capacitor is significantly increased. Its cost. 9 σ 201034354 Power Control Some of the inventive principles disclosed in this patent relate to a dynamic power control technique that can fundamentally change the interface between a force converter and a power source. These principles are related to maintaining power converters. Look into the - the escaping 疒 - test Figure 5, - PV panel can be modeled into a voltage source Vpv and a string: electricity ^ RPV. The system includes - controlled (four) resistance Rl ' made by the power converter The impedance zIN seen is kept constant regardless of the current h transferred from the PV panel to the power converter 。. In a demonstration implementation, the variable resistor 1 can be made by making the input voltage V1 and the reference shown in FIG. The difference between the voltages Vref is determined. • Some of the inventive principles include the relationship between impedance control and energy storage functions in power converters. For example, in the embodiment of Figure 7, the impedance ZlN seen by a first power converter stage 18 is maintained at a controlled value. - or more than one energy storage device 20 balances the instantaneous input power from the power source 16 with the instantaneous output power that can flow through - or more than the subsequent power levels. Power • 16 can include a PV panel, fuel cell, battery, wind turbine, and more. The first stage 18 may include - or more than one DC/DC converter, dc/ac converter, integral (10), and the like. This amount of storage device may include _ or more capacitors, inductors, and the like. Subsequent stages may include - or more than one DC/Dc converter, DC/AC converter, rectifier, and the like. In an exemplary embodiment, power source 16 includes a pv board, the first stage includes a DC/DC converter, and the energy storage device includes a one-button capacitor. From the first-to-electric power conversion, the impedance of the person & is maintained at a constant value' while the power of the chain capacitor is allowed to fluctuate in response to a subsequent level of pulsation 11 201034354 power demand. Because the input impedance control isolates the PV panel from the chain capacitor, the voltage swing on the chain capacitor can be much larger than in a system without impedance control. This allows the size of the chain capacitor to be reduced because the energy stored in a capacitor is directly related to the voltage swing across the capacitor. It is also possible to eliminate the decoupling capacitor at the output or to reduce the size of the decoupling capacitor. Figure 8 illustrates another embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. The system of Figure 8 receives power from a photovoltaic cell 22 in a PV panel. The system includes a DC/DC converter 24, a chain capacitor _CDC, a DC/AC converter 26, and a controller 28. The DC/DC converter may include one or more stages, such as a buck converter, a boost converter, a push-pull stage, a rectifier, etc., arranged as a pre-regulator, a main stage, and the like. For purposes of illustration, the DC/DC converter in this example is assumed to have - a pre-regulator stage 24a followed by a main stage 24b, but the inventive principles are not limited to this arrangement. The DC/AC converter 26 can include any suitable inverter topology, such as a truss bridge, a resonant converter, and the like. Voltage and current sensors 30 and 32 provide controller 28 with signals indicative of pv board output voltage Vpv and current stream Ipv, respectively. The controller outputs a drive signal D1 to control the pre-regulator. The controller 28 implements a constant power control loop by controlling the PV panel output voltage Vpv or current Ipv to control the pre-regulator stage 24a' within the dc/dc converter in a manner that eliminates or reduces the substantially constant value of the input chopping. Road (illustrated by the arrow 34 concept). This causes the pv board to experience a substantially constant load, which in turn produces a parasitic power transfer. In essence, the constant power control loop isolates the PV panel from the stage after any pre-regulator 24a, so the (etc.) energy storage 12 201034354 storage f can be arranged at any point downstream of the constant power control loop. . The sample pad 'key capacitance 11' in Fig. 8 is used for energy storage to provide a cycle-by-cycle power balance at the AC output frequency. However, in other embodiments, the energy storage may be located between the pre-regulator and the main stage, or in any other additional stage downstream of the constant power control loop. Because the constant power control loop isolates the power supply from the downstream energy storage device, the energy storage devices can be allowed to operate at a wider pitch than other acceptable fluctuations. For example, a capacitor can operate with large voltage fluctuations, and the inductor can operate with large current fluctuations. This in turn may store the device. "b® According to some inventive principles disclosed in this patent, constant power control is different from, but can be used with, maximum force point tracking (MPPT). Despite the fact that Cong Dingke is able to maximize the power available from the power supply under certain operating conditions, constant power control allows the system to maintain fluctuations in an operating point and a load. For example, in some embodiments, the Μρρτ technique can be used to find the operating point of the system, while constant power is used to preserve it, as described in more detail with reference to Figure 22. Adjusting a constant DC input voltage or current provides several advantages. First, reduce the input _ medium _ wave improvement - the efficiency of some DC power sources such as suffering from losses. Secondly, the mass storage of the transfer capacitor "~ the requirements of the electrolyzer, input electric: expensive, bulky and unreliable components. The 'higher voltage form' that can be stored on the DC link capacitor makes the 'DC quantity capacitor less expensive, more reliable, has a longer life and can occupy a smaller space. In addition, the DC link capacitor itself can also be reduced. In the exemplary embodiment described above with reference to FIG. 8, the controller has a sense input (VPV or IPV) and a control output (D1) that controls the pre-regulator in the DC/DC converter ^ie, constant power The control loop is implemented by controlling a first stage in the power path in response to a parameter sensed at the total input of the power conversion system. Certain additional inventive principles (1) disclosed in this patent control one or more power levels other than the first stage, and/or (2) by responding to a parameter sensed anywhere in the system One or more parameters sensed in response to any other than the total input in the system control any or any majority to enable constant power control to be implemented.

例如,依據某些此等附加發明原理,第8圖之實施例可 被修改’使得控制器28藉由響應在DC/AC換流器26之輸出 處感測的一參數控制預調整器24a,而實施一恒定電力控制 環路。又如,第8圖之系統可被修改,使得控制器28藉由響 應輸入電壓VPV控制DC/AC換流器26,而實施一恒定電力控 制環路。 第9圖缯·示依據本專利揭露之某些發明原理,一具有恒 定電力控制的電力轉換系統之另一實施例。一電力路徑3 6 包括N個電力級38,其中N21。該電力路徑從電源4〇接收電 力,且向負載42輸出電力。一控制器44從該電力路徑接收 /或一個以上感測信號S丨、S2、_..SL,且向該電力路徑輸出 -"或一個以上驅動信號0丨、〇2、._.〇}^。電力級38可包括一 或一個以上DC/DC轉換器、DC/AC換流器、整流器、能量 14 201034354 儲存裝置等等,以供當從電源40提供的形式轉換成被遞送 至負載42的形式時處理該電力。該等一或一個以上感測信 號S!、S2、...SL可從任一電力級的輸入/輸出、從諸電力級 中的諸點,及/或主電力級之間的諸點獲得。該一或一個以 上驅動信號Di、D2、...DM可被安排成控制一個、任何或全 部此等電力級或部份此等電力級。一驅動信號可被安排成 一致地控制多於一個驅動級,或一或一個以上驅動級之部 份。 控制器44使用至少一個來自除了對電力路徑的總輸入 以外之一點的感測信號,及/或至少一個驅動除第一級以外 之至少一個電力級的驅動信號來實施一恒定電力控制。 在某些實例中,提供恒定電力控制可包括維持一參數 在一恒定值,例如,維持到電力轉換系統的總輸入電壓在 一恒定值。在其他實例中,恒定電力控制可包括例如,藉 由AC電壓在一鏈電容器上擺動以具有一正弦波形來控制 一參數具有一動態特性。在某些實施例中,某些級可處於 空載,例如,失控、開環、固定脈衝寬度PWM等等,而在 其他實施例中,某一形式的閉環控制可被施加於每一級。 在某些實施例中,恒定電力控制可包括調整一或一個 以上感測參數值,例如,調整在系統輸入處感測的輸入電 壓值。在某些實施例中,控制器可使用一或一個以上附加 感測參數單獨或與其他感測參數結合作為回饋信號。在其 他實施例中,一或一個以上附加感測參數可單獨與或其他 感測參數結合被用作前饋信號。 15 201034354 在第9圖’電力路徑中的諸電力級被大體上繪示成一 列’但是諸級不要求串聯。某些級可依據發明原理被安排 成並聯、串並聯’或任一其他適當組配,然而至少一個第 一級被耦接至電力路徑之總輸入。 另外’並非直接調整輸入使不存在漣波,該系統他處 的一能量儲存裝置的漣波可被控制以在輸入產生同一效 果。 第10圖输示依據本專利揭露的某些發明原理,一用於 實施恒定電力控制的控制器之一實施例。該控制器從一或 鲁 一個以上可能是簡單歐姆連接、電流分流器、霍爾效應感 測器、橋式電路、變壓器等等的感測電路接收一或一個以 上感測化號8!、S2…SL。一或一個以上放大/緩衝電路46可 被用以在感測信號被施加於一或一個以上控制塊48之前調 ‘ 節感測信號’各該控制塊48實施一功能Ηι⑷、h2⑷…Hl(s)。 來自諸控制塊的輸出被施加於一控制演算法段5〇,該 二制廣算法段50實施一或一個以上控制演算法以產生輸出 二動彳。號h、D2...DM。該一或_個以上控制塊48及/或控制 參 导、算去段50可以硬體、軟體、韌體等等,或其之任一組合 =實施。硬體可以類比電路、數位電路或其之任一組合被 貫^項>。 第11圖繪示依據本專利揭露之某些發明原理,1電力 、系統之—實施例。DC電力在端子292及294被施加於該 中 第11圖之實施例被繪示於一太陽電池板290的背景 疋其可與其他DC電源,諸如燃料電池、電池、電容 16 201034354 器等等一起被利用。在此範例中,主電力路徑通過一批形 成一DC-DC轉換器306的組件延伸。該DC DC轉換器將DC 電力從以具有晶體電池及某些其#DC電源的pv板為特徵 的相對低電壓及高電流’變換為適於轉換成可易於透過一 電網等等分佈至一本地使用者及/或發送至遠端使用者形 式的AC電力的相對高電壓及低電流。在其他實施例中,例 如,基於薄膜PV電池的系統中,Dc電力可以較高電壓被產 生,藉此消除或減少升壓、預調整等等效用的需要。在此 實施例中,DC-DC轉換器被繪示有兩級:一升壓型預調整 器及一推-挽式主級。然而,在其他實施例中,DC_DC轉換 器可以任一適當單級或多級安排被實施。 參考第11圖,一零漣波輸入濾波器296,例如一被動式 濾波器可被利用以爲了改進效率而減少高頻(HF)漣波。依 據此實施’零漣波濾波器之優勢可能不值附加成本。 預調整器298可使該系統能夠從一較寬範圍的輸入電 壓操作以適應來自不同製造商之PV板。該預調整器也可協 助一前置控制環路之以減少輸入漣波,如下文所述實施。 該預調整器可被實施成,例如一具有高效軟交換及小尺寸 的高頻(HF)升壓級。在此範例中,該預調整器提供一適當 大小的初始升壓以饋入下一級。然而,其他預調整器級諸 如降壓轉換器、升降壓轉換器、推_挽式轉換器等等,可被 用作一預調整器級。 推-挽級300與一變壓器3〇2及整流器304—起提供大部 份升壓。一推-挽級的使用可協助整個具有一單一積體電路 17 201034354 之系統的實施,因為兩個電力開關之驅動器可參照同一常 用電壓。來自整流器級304的輸出被施加於一提供高壓Dc 母線的DC鏈電容器CDC以饋入DC-AC換流器級312。 換流器級312包括一高壓輸出橋308,在此實施例中, 高壓輸出橋308被實施成一簡單Η橋以提供單相AC電力,但 是多相實施例也可被實施。一被動式輸出濾波器31〇在Α(: 輸出被施加於在中性及線上輸出端子L及Ν處的一負載或 網格之前使AC輸出之波形平滑。 一第一(輸入)PWM控制器314以響應各種感測輸入控 參 制預調整器296。在第11圖之實施例中,電壓感測器316與 320及電流感測器318分別提供該預調整器的總輸入電壓與 電流及輸出電壓的量測。然而,該pWM控制器可響應更少 或更多的感測輸人操作。例如,任何此等感測輸人可被忽 · 略及/或其他感測輸入可被包括,例如,Dc鏈電容器Cdc上 電壓,或在沿電力路徑任—其他點量測的電流。 如上所述電力較佳地以一恒速從DC電源得到,雖然 瞬時AC電力輸出在零與某—最大值以兩倍ac線路頻率纟 φ 動。爲了防止此等AC電力波動被反射回DC電源一能量儲For example, in accordance with certain such additional inventive principles, the embodiment of FIG. 8 can be modified to cause controller 28 to control pre-regulator 24a in response to a parameter sensed at the output of DC/AC converter 26. A constant power control loop is implemented. As another example, the system of Figure 8 can be modified such that controller 28 implements a constant power control loop by controlling DC/AC converter 26 in response to input voltage VPV. Figure 9 illustrates another embodiment of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. A power path 3 6 includes N power levels 38, of which N21. The power path receives power from the power source 4〇 and outputs power to the load 42. A controller 44 receives/or more than one sensed signal S丨, S2, _.. SL from the power path, and outputs -" or more than one drive signal 0丨, 〇2, ._. }^. Power stage 38 may include one or more DC/DC converters, DC/AC converters, rectifiers, energy 14 201034354 storage devices, etc. for conversion to a form that is delivered to load 42 when provided from power source 40. This power is processed at the time. The one or more sensed signals S!, S2, ... SL may be obtained from inputs/outputs of any of the power levels, points from the power levels, and/or points between the main power levels . The one or more drive signals Di, D2, ... DM can be arranged to control one, any or all of these power levels or portions of such power levels. A drive signal can be arranged to consistently control more than one drive stage, or portions of one or more drive stages. Controller 44 implements a constant power control using at least one sense signal from a point other than the total input to the power path, and/or at least one drive signal that drives at least one power stage other than the first stage. In some examples, providing constant power control can include maintaining a parameter at a constant value, e.g., maintaining a total input voltage to the power conversion system at a constant value. In other examples, constant power control can include, for example, controlling the one parameter to have a dynamic characteristic by swinging the AC voltage over a chain capacitor to have a sinusoidal waveform. In some embodiments, certain stages may be unloaded, e.g., runaway, open loop, fixed pulse width PWM, etc., while in other embodiments, some form of closed loop control may be applied to each stage. In some embodiments, constant power control can include adjusting one or more sensed parameter values, e.g., adjusting an input voltage value sensed at a system input. In some embodiments, the controller may use one or more additional sensing parameters alone or in combination with other sensing parameters as a feedback signal. In other embodiments, one or more additional sensing parameters may be used alone or in combination with other sensing parameters as a feedforward signal. 15 201034354 The power levels in the power path of Figure 9 are generally depicted as a column 'but the stages do not require a series connection. Some stages may be arranged in parallel, series-parallel or any other suitable combination in accordance with the inventive principles, however at least one first stage is coupled to the total input of the power path. In addition, the input is not directly adjusted so that there is no chopping, and the chopping of an energy storage device elsewhere in the system can be controlled to produce the same effect at the input. Figure 10 illustrates an embodiment of a controller for implementing constant power control in accordance with certain inventive principles disclosed herein. The controller receives one or more sensed numbers 8!, S2 from one or more sensing circuits that may be simple ohmic connections, current shunts, Hall effect sensors, bridge circuits, transformers, and the like. ...SL. One or more amplification/sampling circuits 46 may be used to adjust the 'sense sensing' before the sensing signal is applied to one or more control blocks 48. Each of the control blocks 48 implements a function Ηι(4), h2(4)...Hl(s ). The outputs from the control blocks are applied to a control algorithm segment 5, which implements one or more control algorithms to produce an output binary action. No. h, D2...DM. The one or more control blocks 48 and/or control references, the deciding segments 50 may be hardware, software, firmware, etc., or any combination thereof = implementation. The hardware can be analogized by an analog circuit, a digital circuit, or any combination thereof. Figure 11 illustrates an embodiment of an electric power system in accordance with certain inventive principles disclosed herein. The embodiment in which the DC power is applied to the terminals 292 and 294 in FIG. 11 is illustrated in the background of a solar panel 290 which may be combined with other DC power sources such as fuel cells, batteries, capacitors 16, 201034354, and the like. Be exploited. In this example, the main power path extends through a plurality of components that form a DC-DC converter 306. The DC DC converter converts DC power from a relatively low voltage and high current characterized by a pv board having a crystalline battery and some of its #DC power supplies to a suitable distribution for being easily distributed through a grid or the like to a local The relatively high voltage and low current of the user and/or AC power sent to the remote user. In other embodiments, for example, in a thin film PV cell based system, DC power can be generated at a higher voltage, thereby eliminating or reducing the need for equivalent use of boost, preconditioning, and the like. In this embodiment, the DC-DC converter is shown in two stages: a boost pre-regulator and a push-pull main stage. However, in other embodiments, the DC_DC converter can be implemented in any suitable single or multi-level arrangement. Referring to Fig. 11, a zero-chopper input filter 296, such as a passive filter, can be utilized to reduce high frequency (HF) chopping for improved efficiency. Depending on the implementation of the 'zero chopping filter' advantage may not be worth the additional cost. The pre-regulator 298 allows the system to operate from a wide range of input voltages to accommodate PV panels from different manufacturers. The pre-regulator can also assist a pre-control loop to reduce input chopping, as described below. The pre-regulator can be implemented, for example, as a high frequency (HF) boost stage with efficient soft switching and small size. In this example, the pre-regulator provides an initial boost of appropriate size to feed the next stage. However, other pre-regulator stages, such as buck converters, buck-boost converters, push-pull converters, etc., can be used as a pre-regulator stage. Push-pull stage 300 provides a substantial boost with a transformer 3〇2 and rectifier 304. The use of a push-pull stage assists in the implementation of a system having a single integrated circuit 17 201034354, since the drivers of the two power switches can reference the same common voltage. The output from rectifier stage 304 is applied to a DC link capacitor CDC that provides a high voltage Dc bus to feed DC-AC converter stage 312. The inverter stage 312 includes a high voltage output bridge 308. In this embodiment, the high voltage output bridge 308 is implemented as a simple bridge to provide single phase AC power, but a multiphase embodiment can also be implemented. A passive output filter 31 smoothes the waveform of the AC output before the output is applied to a load or grid at the neutral and on-line output terminals L and 。. A first (input) PWM controller 314 The pre-regulator 296 is responsive to the various sense inputs. In the embodiment of FIG. 11, the voltage sensors 316 and 320 and the current sensor 318 provide the total input voltage and current and output of the pre-regulator, respectively. Measurement of voltage. However, the pWM controller can respond to fewer or more sensing input operations. For example, any such sensing input can be ignored and/or other sensing inputs can be included, For example, the voltage on the Dc chain capacitor Cdc, or the current measured at any other point along the power path. The power is preferably obtained from a DC power supply at a constant speed as described above, although the instantaneous AC power output is at zero and some - maximum The value is twentieth ac line frequency 纟 φ. In order to prevent these AC power fluctuations from being reflected back to the DC power source, an energy storage

存電容器被用以在AC線週期的波谷期間儲存能量,且在AC 線週期之绣_釋魏量。這f知崎過對沉鍵電㈣ ^使用—大電解電容器而被實施,該電容器被保持具有-少量漣波的一相對恒定值。 在某些實施例中,第—PWM控制器314藉由控制預調 整器296來實施上述的—内部恒定電力控制環路(由箭頭 18 201034354 315概念性繪示),以維持輸入端子292及294的—恒定電 壓。如果可由PV板得到的電力是恒定的,那麼維持一恒定 板電壓也導致來自該板的恒定輸出電流。可供選擇地,該 控制器可調整電流而非電壓。恒定電力控制環路防止〇(:鏈 電容器上的連波被反射回輸入。因此,DC鍵電容器上的電 壓波動可被增加,且電容器之尺寸可被減小,藉此能夠使 用一較可靠、較小、較不昂貴等等的電容器。 一最大電力點追蹤(MPPT)電路344形成一外部控制環 路以維持分別由電壓及電流感測器316及318感測的平均輸 入電壓及電流,以在最佳點最大化由DC電源可得的輸出電 力,該DC電源在此範例中是一PV板。 一第二(推_挽式)PWM控制器324控制推_挽級,在此實 施例中’推-挽級以一固定工作週期操作。一總和節點329 比較來自感測器326的DC鏈電壓與一鏈參考電壓UNK REF ’且將該輸出施加於一鏈電壓控制電路322。可供選擇 地,總和節點329之輸出可被施加於第三(輸出)pWM控制器 330,以使輸出段能夠控制該鏈電壓。 DC鍵電壓控制322可以不同模式操作。在一個模式 中’其可僅允許來自總和節點329之輸出被施加於該pWM 電路,藉此使DC鏈電壓被調整成一恒定值。然而,如果與 上述輸入漣波減少環路一起使用,那麼DC鏈電壓控制器 322可濾出AC漣波,使得第三PWM環路僅調整DC鏈電壓之 長期DC值(例如,RMS值)。即,DC鏈電容器上的Ac漣波 取決於響應DC鏈電壓控制器上滑或下滑的一 dc基電位 19 201034354 座。這可例如,用於如下文所述控制AC輸出電力中的失真。 一第三(輸出)PWM控制器330控制Η橋308中四個開 關’以提供一正弦AC輸出波。一非DQ、非CORDIC(協調 旋轉數字計算機)極形式的數位鎖相環路(DPLL)332幫助使 輸出PWM與AC電力線同步。總AC輸出由一網格電流控制 環路336監測及控制,網格電流控制環路336響應來自MPPT 電路、DC鏈電壓控制器、DPLL,及輸出電壓/或電流的輸 出調整第二PWM控制器330。一諧波失真緩和電路338進一 步響應分別由電壓及電流感測器340及342感測到的輸出電 ® 壓及電流波形透過一總和電路334調整輸出pWM以消除或 減少失真。一來自諧波失真緩和電路的輸出可附加地被施 加於網格電流控制環路336。 _ 一來自諧波失真緩和電路338的輸出信號也可被施加 · 於DC鏈電壓控制器,以供最佳化DC鏈電壓。大體上,最小 化DC鏈電壓以增加總效率可能是最佳的。然而,如果DC 鏈電容器上的電壓偏移之波谷下降太低,那麼其可造成八(: 輸出的過度失真。因此’ DC鏈電壓控制器可使dc鍵電容器 參 上的DC基電位上滑或下滑’以維持AC波谷之底部在可能的 最低點,同時仍保持失真到由諧波失真緩和電路指示的一 可接受位準。 在某些供選擇實施例中,DC鏈電壓控制器322可提供 一與一參考信號比較且被施加於第二PWM控制器324的回 饋信號,第二PWM控制器324可進而藉由調整到推_挽級的 PWM來控制DC鏈電壓。 20 201034354 第12圖繪示依據本專利揭露的某些發明原理,一適於 實施第11圖之換流器系統的主電力路徑之—實施例的示意 圖二來自DC電源346之電力在電容器Ci被施加於該系統: 電容器Q可以是-大能量儲存電容器,或如果輪入連波減 少控制環路被使用時,其可以是一較小濾波電容器,以防 止HF切換暫態被回饋入Dc電源。電感器^、電晶體^^及 一極管D1形成由輸入PWM控制器控制的預調整升壓轉換 器。 來自升壓轉換器的輸出穿過可依據實施提供HF濾波及 /或月b量儲存的電容器C2。推-挽級包括電晶體Q2及Q3,它 們響應推-挽式PWM控制器交替地驅動一變壓器。該變壓器 可以是如第11圖所示的一分裂鐵心型的丁卜T2,一單心型, 或任一其他適當組配。該變壓器具有適當的匝比以產生一 穿過DC鏈電容器CDC的高壓dc母線,以充分饋入該輸出 橋。依據該實施,該變壓器也可在換流器系統的輸入與輸 出之間提供電絕緣。整流器可包括如第12圖所示的被動式 二極管D2-D5、主動同步整流器,或任一其他適當組配。 HV輸出橋中的電晶體q4_q7由輸出pWM控制器控 制’以產生由網格濾波器348在其被施加於負載或電網之前 被濾波的AC輸出。 第12圖之實施例的一優勢是其易於適合製作成一例如 具有一單一積體電路(1C)的一積體電力轉換器。因為大部份 電力開關參照一共用電源連接,絕緣驅動器不為此等開關 所需要。一恒定電力控制特徵與一推_挽級及一下游能量儲 21 201034354 存裝置之結合由於組件之協同相互作用而可能特別有利。 此等優勢也可適於離散實施。 在整個結構的-單體實施中,在輸出Η橋的高壓側開關 與它們對應的低壓側開關之間可能存在電介質隔離。在該 系統不同段之間也可能存在隔離。例如,位於—段中的感 測電路可響應從第-段接收的資訊將位於一段中的感測資 訊轉移至執行控制及/或通信及/或其他功能之另—段中的 處理電路。依據特定應用及電力處理需求,包括電力電子 元件、被動式元件,及控制電路(智慧)之全部元件可直財 鲁 1C晶片上被製造。在其他實施例中,具有最大被動式組件, 諸如位於晶片外的電感器、變壓器及電容器可能是較佳 的。在另-些其他實施射,第12圖之系統可被實職- - 多晶片解決方案。 . 本專利揭露之某些附加發明原理係關於將恒定電力㉟ 制功能併入電源及/或電力轉換系統。在某些實施例中,一 恒定電力控制設備可被併入-較低位準的電源,諸如一電 池㈣)位準、串電池位準等等。例如,在如第13圖所示的 Ο -PV板350中,-或-個以上恒定電力控制環路35〇可被併 在该板上的每一電池354上。在第14圖所示的另一實施例 中,一或一個以上恒定電力控制環路356可以每一串電池 360被倂至板358。在第15圖所示的又一實施例中,一單一 恒定電力控制環路362可被用來結合輪出板364上的所有電 池。單一環路362可與電池366其中之一成一整體或與任何 電池分離。在第16圖所示再一實施例中,多個恒定電力控 22 201034354 :環路368可與-板37G成-整體地或與該板別個別地關 聯。在其他範财,-恒定電力控制觀可與每—電池成 -整體’作為與每一電池相關聯的_或一個以上分離组 件’或者㈣或完全倂至用於每1池的同— 等類型的整合解決方案可包括來自多個可串聯t並聯、串 並聯結合料漏合的缺電力控制觀之輸出。The storage capacitor is used to store energy during the valleys of the AC line cycle, and the embedding amount during the AC line cycle. This is implemented by the use of a large electrolytic capacitor that is held with a relatively constant value of a small amount of chopping. In some embodiments, the first PWM controller 314 implements the above-described internal constant power control loop (illustrated conceptually by arrow 18 201034354 315) by controlling the pre-regulator 296 to maintain input terminals 292 and 294. - constant voltage. If the power available from the PV panel is constant, maintaining a constant plate voltage also results in a constant output current from the board. Alternatively, the controller can adjust the current instead of the voltage. The constant power control loop prevents 〇 (: the continuous wave on the chain capacitor is reflected back to the input. Therefore, the voltage fluctuations on the DC bond capacitor can be increased, and the size of the capacitor can be reduced, thereby enabling a more reliable, Capacitors that are smaller, less expensive, etc. A maximum power point tracking (MPPT) circuit 344 forms an external control loop to maintain the average input voltage and current sensed by voltage and current sensors 316 and 318, respectively, to The output power available from the DC power supply is maximized at the optimum point, which is a PV panel in this example. A second (push-pull) PWM controller 324 controls the push-pull stage, in this embodiment The 'push-pull stage operates at a fixed duty cycle. A sum node 329 compares the DC link voltage from the sensor 326 with a chain reference voltage UNK REF ' and applies the output to a chain voltage control circuit 322. Optionally, the output of the sum node 329 can be applied to the third (output) pWM controller 330 to enable the output segment to control the chain voltage. The DC bond voltage control 322 can operate in different modes. In one mode, it can only Allowed to come The output of sum node 329 is applied to the pWM circuit whereby the DC link voltage is adjusted to a constant value. However, if used with the input chopping reduction loop described above, DC link voltage controller 322 can filter out AC涟The wave causes the third PWM loop to only adjust the long-term DC value (eg, RMS value) of the DC link voltage. That is, the Ac chopper on the DC link capacitor depends on a dc base that is slipped or slipped in response to the DC link voltage controller. Potential 19 201034354 This may, for example, be used to control distortion in the AC output power as described below. A third (output) PWM controller 330 controls the four switches ' in the bridge 308 to provide a sinusoidal AC output wave. A non-DQ, non-CORDIC (coordinated rotary digital computer) polar form of digital phase locked loop (DPLL) 332 helps synchronize the output PWM with the AC power line. The total AC output is monitored and controlled by a grid current control loop 336. The grid current control loop 336 adjusts the second PWM controller 330 in response to an output from the MPPT circuit, the DC link voltage controller, the DPLL, and the output voltage/or current. A harmonic distortion mitigation circuit 338 is further responsive to voltage and power, respectively. The output voltages and current waveforms sensed by sensors 340 and 342 are adjusted by a summing circuit 334 to cancel or reduce distortion. An output from the harmonic distortion mitigation circuit can be additionally applied to the grid current control. Loop 336. An output signal from harmonic distortion mitigation circuit 338 can also be applied to the DC link voltage controller for optimizing the DC link voltage. In general, minimizing the DC link voltage to increase overall efficiency It is optimal. However, if the valley of the voltage offset on the DC link capacitor drops too low, it can cause eight (: excessive distortion of the output. Therefore, the 'DC chain voltage controller can make the DC base potential of the dc bond capacitors slide up or down' to maintain the bottom of the AC valley at the lowest possible point while still maintaining distortion to the one indicated by the harmonic distortion mitigation circuit. Accept the level. In some alternative embodiments, the DC link voltage controller 322 can provide a feedback signal that is compared to a reference signal and applied to the second PWM controller 324, which in turn can be adjusted to The _staged PWM controls the DC link voltage. 20 201034354 FIG. 12 illustrates a schematic diagram of an embodiment of a main power path suitable for implementing the inverter system of FIG. 11 in accordance with certain inventive principles disclosed herein, and the power from the DC power source 346 is Applied to the system: Capacitor Q can be a large energy storage capacitor, or if a wheeled continuous wave reduction control loop is used, it can be a smaller filter capacitor to prevent HF switching transients from being fed back into the Dc supply. The inductor ^, the transistor ^^ and the diode D1 form a pre-regulated boost converter controlled by the input PWM controller. The output from the boost converter passes through a capacitor C2 that provides HF filtering and/or monthly b-volume storage depending on the implementation. The push-pull stage includes transistors Q2 and Q3 that alternately drive a transformer in response to a push-pull PWM controller. The transformer may be a split core type butt T2 as shown in Fig. 11, a single core type, or any other suitable combination. The transformer has an appropriate turns ratio to produce a high voltage dc bus that passes through the DC link capacitor CDC to fully feed the output bridge. Depending on the implementation, the transformer can also provide electrical isolation between the input and output of the inverter system. The rectifier may include a passive diode D2-D5 as shown in Fig. 12, an active synchronous rectifier, or any other suitable combination. The transistor q4_q7 in the HV output bridge is controlled by the output pWM controller' to produce an AC output that is filtered by the grid filter 348 before it is applied to the load or grid. An advantage of the embodiment of Fig. 12 is that it is easily adapted to be fabricated into an integrated power converter such as a single integrated circuit (1C). Since most power switches are connected to a common power source, the insulation driver is not required for such switches. The combination of a constant power control feature with a push-pull stage and a downstream energy store may be particularly advantageous due to the synergistic interaction of the components. These advantages are also applicable to discrete implementations. In a monolithic implementation of the entire structure, there may be dielectric isolation between the high side switches of the output bridge and their corresponding low side switches. There may also be isolation between different segments of the system. For example, the sensing circuitry located in the segment can transfer the sensing information located in one segment to the processing circuitry in the other segment of the control and/or communication and/or other functions in response to the information received from the first segment. Depending on the specific application and power handling needs, all components including power electronics, passive components, and control circuitry (wisdom) can be fabricated on the 1C wafer. In other embodiments, it may be preferred to have the largest passive components, such as inductors, transformers, and capacitors located off-chip. In other implementations, the system of Figure 12 can be used in a real-time - multi-chip solution. Certain additional inventive principles disclosed in this patent relate to incorporating a constant power 35 function into a power and/or power conversion system. In some embodiments, a constant power control device can be incorporated into a lower level power source, such as a battery (four)) level, a string battery level, and the like. For example, in a Ο-PV panel 350 as shown in Fig. 13, - or more than one constant power control loop 35 〇 can be placed on each of the cells 354 on the board. In another embodiment, shown in FIG. 14, one or more constant power control loops 356 can be routed to board 358 for each string of batteries 360. In yet another embodiment, illustrated in Figure 15, a single constant power control loop 362 can be used in conjunction with all of the batteries on the wheel 364. The single loop 362 can be integral with one of the batteries 366 or separate from any of the batteries. In still another embodiment, shown in Fig. 16, a plurality of constant power controls 22 201034354: loop 368 may be associated with the board 37G in its entirety or separately from the board. In other models, the constant power control concept can be integrated with each battery as the _ or more than one separate component associated with each battery or (d) or completely spliced to the same type for each cell. The integrated solution can include an output from a plurality of power-down control views that can be connected in series with t-parallel, series-parallel combinations.

本專利揭露之某些附加發明原理係關於控制除一電力 轉換系統中的常數之外的-波動值之電力。例如,在某些 實施例中,電力可健制餘何任意的雜,或被定^ -特定系統的-專屬功能。在其他實施例中,電力可被控 制成可肖貞載之電力需求中波動,與右一電源提供的 電力中波動,或兩者之一結合等等同步的動態值。 失真緩和 本專利揭露之某些附加發明原理係關於用於緩和失 真,諸如一電力轉換系統中的譜波失真之技術。雖然某些 關於失真緩和之原理在也包括恒定電力控制的實施例背景 中被說明’關於失真緩和之發明原理可獨立於恒定電力控 制及本文揭露的其他發明原理被施加。 第17圖繪示來自一Η橋式DC/AC換流器的電壓瞬時請 求與從一被維持在一固定電壓的DC鏈電容器可得的電壓 相比。如果DC鏈電壓被維持在來自換流器的尖峰電壓需求 之上(加上一額外餘量),該換流器可以產生AC輸出,而輸 出電壓與電流波形中極少或根本沒有諧波失真(HD)。 第18圖繪示來自一η橋式DC/AC換流器的電壓瞬時請 23 201034354 求與從—具有一由於本文所述的一恒定電力控制特徵的大Some of the additional inventive principles disclosed in this patent relate to controlling the power of the - fluctuation value other than the constant in a power conversion system. For example, in some embodiments, power can be used to make any arbitrary or specific functions of a particular system. In other embodiments, the power can be controlled to be a dynamic value that can be synchronized with fluctuations in power demand, fluctuations in power provided by the right power source, or a combination of the two. Distortion Mitigation Certain additional inventive principles disclosed in this patent relate to techniques for mitigating distortion, such as spectral distortion in a power conversion system. While certain principles regarding distortion mitigation are illustrated in the context of embodiments that also include constant power control, the inventive principles with respect to distortion mitigation can be applied independently of constant power control and other inventive principles disclosed herein. Figure 17 shows the voltage transient request from a bridge-type DC/AC converter compared to the voltage available from a DC-chain capacitor maintained at a fixed voltage. If the DC link voltage is maintained above the peak voltage demand from the converter (plus an extra margin), the converter can produce an AC output with little or no harmonic distortion in the output voltage and current waveforms ( HD). Figure 18 shows the voltage transient from a η bridge DC/AC converter. 23 201034354 Seeking and Having a large one due to a constant power control feature described herein

AC電壓擺動的DC鏈電容器可得的電壓相比。大體上,DC 鏈電壓上的波動可在AC輸出產生失真。另外,在線週期的 某些點,從該鏈電容器可得的電壓最小值與來自換流器的 電壓需求中的尖峰一致。在此等點’來自換流器的AC輸出 電麼及/或電流可由於缺乏足夠的電壓及換流器之餘量電 壓而變付過度失真。換句話說,在某些實施例中,包含一 良久電力特徵可能導致輸出電流中取決於〇匸鏈電容器上AC voltage swings compared to the available voltage of a DC link capacitor. In general, fluctuations in the DC link voltage can create distortion at the AC output. In addition, at some point in the line cycle, the minimum voltage available from the chain capacitor coincides with the spike in the voltage demand from the converter. At these points, the AC output from the converter and/or the current can be over-distorted due to the lack of sufficient voltage and the residual voltage of the converter. In other words, in some embodiments, including a permanent power feature may result in an output current dependent on the 〇匸 chain capacitor

所各許之AC漣波量的一定量失真。諧波失真對於並聯應用 或任何其他規則及/或規格限制AC輸出中失真量的應用尤 其棘手。 第19圖繪示依據本專利揭露之某些發明原理,一且有 :波失真緩和㈣力轉換祕之—實_。此實施例包括 :::52 ’及-具有—第一電力級54、一能量儲存元件% 、一電力級58的—電力路徑。—控制器60使用一或一A certain amount of distortion of the amount of AC ripple. Harmonic distortion is especially tricky for parallel applications or any other rule and/or specification that limits the amount of distortion in the AC output. Figure 19 illustrates some of the inventive principles disclosed in this patent, including: wave distortion mitigation (four) force conversion secret - real _. This embodiment includes a ::: 52 ’ and a power path with a first power stage 54, an energy storage component %, and a power stage 58. - controller 60 uses one or one

(任何)適當點獲得的感測輪入,及-出來繼電力控\=統中任-(任何)適當點的驅動輸 設備62可使用一或1:統。一·失真緩和(_) 獲得的感測輸入,及:上由該系統中任-(任何)適當點 (任何)適當點個以上被施加於料統中任一 諧波失真緩和% 明原則的眾多不同g 範例被繪示於第11圖 可實施依據本專利揭露内容之一些發 合策略中的一或一個以上實施。一個 之實施例中。作為另-範例’ HDM塊 24 201034354 可從第二電力級58的輸入及輸出得到一或一個以上感測輸 入’且以與第11圖中實施例所示HDM特徵相似的方法控制 第一級54及/或第二級58。HDM功能可與恒定電力控制功能 配合,或其可獨立於恒定電力控制操作。 第20圖緣示依據本專利揭露之某些發明原理,—失真 緩和系統之一實施例。第20圖之實施例包括—具有一能量 儲存元件2〇0、一電力級2〇2及一負載204的電力路徑。一控 制器206接收一或一個以上提供到負載的電力流中失真之 資訊的負載信號SL。一或一個以上控制信號,例如,一戍 —個以上調變信號SM,使該控制器能夠以一可緩和失真的 方式控制電力級。一或一個以上來自能量儲存元件的感測 信號SES提供可被用以控制該能量儲存元件的一或一個以 上參數的資訊。雖然、在第20圖情示成被柄接至且來自特 定點’該等信號可被墟至或來自任何其他適當點。例如, 該—或一個以上負載信號SL被繪示成來自電力級與負載之 間’但是它們也可直接從電力級、負栽,或任—其他適當 位置獲得。 田 控制器206包括一諸如控制電力級2〇2的調變器的 控制功能、-同步該調變器與負載的同步功能212,及一緩 和到負載之電力流中失真的失真緩和功能2 〇 8。諸控制器功 能可以硬體、軟體、_料,或其之任—組合被實施。 硬體可以類比電路、數位電路祕之任—組合被實現。諸 功能之實施可被合併在H備巾,或被分佈在全部多 個設備,等等。 25 201034354 能量儲存元件200可包括一或一個以上電容器、電感 器,或任何其他能量儲存元件。電力級202可包括—或一個 以上DC/DC轉換器、dc/AC換流器、整流器等等。負載可 以是一AC負載、DC負載,或其之任一組合。㈣功能可包 括任一適當類型的調變功能,諸如脈衝寬度調變(pwM)、 脈衝頻率觸(PFM)、或任—其他適#類型的㈣或調變功 能。同步功能212可包括-鎖相環路(pLL)功能、延遲鎖相 (DLL)功能,或任一其他適當功能以將電力級之控制與負載 同步。失真緩和功能2G8可包括失真緩和或消除,或任參 他類型的失真緩和。 第21圖繪示依據本專利揭露之某些發明原理一顯示 某些示範實施細節的失真緩和系統之另一實施例。在第21 圖之實施例中,能量儲存元件包括一電容器cDC,其具有一 , 可由例如一恒定電力控制產生的波動電壓。電力級214包括 一在此範例中包括一Η橋的DC/AC換流器。負載216可包括 任一類型的AC負載,但是在此範例中,假定其包括一在習 知正弦AC波形上操作的配電網格。一網格濾波器218可被 包括在Η橋與網格之間。 在此範例中,控制器207接收一由一電壓感測器或連接 224從電容器CDC獲得的鏈電壓vDC。一PWM調變信號ma2 從控制器207被提供至Η橋。負載信號包括從一電流感測器 或連接222獲得的網格電流1〇,及從一電壓感測器或連接 220獲得的網格電壓V。。 第21圖之控制器包括一正弦pwM元件226,以產生一 26 201034354 使11橋產生一正弦AC輸出的脈衝寬度調變信號Ma2。雖然 此實施例針對正弦波形,但是其他類型的AC波形也可被用 於其他實施例中。同步功能由一響應網格電壓¥〇產生一相 位信號Θ的數位鎖相環路228執行。失真緩和功能由一響應 網格電流IG ’及相位信號0產生一減少信號M a的諧波失真消 除HDC元件230執行。該HDC元件可選擇地包括一響應鏈電 壓VG操作的鏈電壓控制特徵。來自hDc元件及DPLL的輸出 被施加於產生調變信號Ma2以供控制Η橋的正弦PWM元件 226。來自HDC元件及DPLL的輸出可被直接或透過元件之 其他組合而施加於正弦PWM元件226。例如,在其他實施 例中,信號Ma可不被直接施加於正弦PWM元件226,而改 為可與一加法器中的正弦PWM元件之輸入結合。 控制器207中功能之選擇與安排依據本專利揭露之某 些發明原理可接受無數變化。某些範例在下文中以範例之 方式被描述。 第22圖繪示依據本專利揭露之某些發明原理,一具有 諧波失真緩和之控制器的另一實施例。在第22圖之實施例 中’ HDC元件230包括一響應來自DPLL的相位信號Θ產生一 正弦信號sin(e)的正弦產生器234。正弦信號Sin(e)藉由乘法 器236與一參考信號IREF結合,以產生一成比例信號 IREFsin(0) ’其由加法器(或比較器)238與網格電流lG比較的 以產生一誤差信號Ierr。該誤差信號可透過功能塊240遭受 一轉移函數H(s)’以產生誤差大小信號MAG。 第22圖之實施例實施一控制網格電流與成比例正弦信 27 201034354 號iREFSin(e)比較的電力級的間接法。從正弦pWM 226產生 的輸出Ma2具有形式Ma2 = MAG,sin(0)。在操作中,當控制 環路試圖維持一純正弦輸出而不管鏈電壓上存在漣波時, MAG部份可將失真顯示為一時間函數。該系統緩和譜波失 真之能量可取決於包括形成具Η橋及網格德波器(如果存 在的話)的一環路之比較器238、功能240、正弦PWM 226之 路徑之寬度。此環路將典型地以該環路頻寬以下之頻率, 例如低一數量級來抵消諧波。因此,包括比較器、H(s), 及正弦PWM的路徑可形成一相對快的内環路,而包括DPLL 228及正弦產生器234的路徑可形成一較慢的外環路。 參考信號Iref可以是一固定參考信號。可供選擇地,如 第22圖所示,IREF可由一作為另一控制環路的一部份的dc 鏈電壓控制特徵242被提供以控制DC鍵電壓。鏈電壓vDC, 或一平均或RMS版的VDC可與一參考信號Vref比較,以產生The sensing wheel that is obtained at any appropriate point, and the driving device 62 that is available at the appropriate point in the power control system can use one or one system. 1. Distortion mitigation (_) The obtained sensing input, and: Any one or more of the appropriate points (any) at the appropriate point in the system are applied to any harmonic distortion mitigation principle in the system. Numerous different g examples are shown in Figure 11 to implement one or more of some of the launching strategies in accordance with the disclosure of this patent. In one embodiment. As another example, the HDM block 24 201034354 may derive one or more sense inputs from the inputs and outputs of the second power stage 58 and control the first stage 54 in a manner similar to the HDM features shown in the embodiment of FIG. And/or second level 58. The HDM function can be combined with a constant power control function or it can operate independently of constant power control. Figure 20 illustrates an embodiment of a distortion mitigation system in accordance with certain inventive principles disclosed herein. The embodiment of Fig. 20 includes a power path having an energy storage element 2〇0, a power stage 2〇2, and a load 204. A controller 206 receives one or more load signals SL that provide information on distortion in the power flow of the load. One or more control signals, for example, one or more modulation signals SM, enable the controller to control the power level in a manner that mitigates distortion. One or more sensing signals SES from the energy storage element provide information that can be used to control one or more parameters of the energy storage element. Although, in Fig. 20, the signal is shown to be attached to and from a particular point, the signals may be sent to or from any other appropriate point. For example, the one or more load signals SL are drawn from the power level to the load 'but they can also be obtained directly from the power level, the load, or any other suitable location. The field controller 206 includes a control function such as a modulator that controls the power stage 2〇2, a synchronization function 212 that synchronizes the modulator with the load, and a distortion mitigation function that mitigates distortion in the power flow to the load. 8. The controller functions can be implemented in hardware, software, materials, or any combination thereof. The hardware can be implemented in analogy with the analog circuit and the digital circuit. The implementation of the functions can be combined in the H-shield, or distributed across all of the devices, and the like. 25 201034354 The energy storage component 200 can include one or more capacitors, inductors, or any other energy storage component. Power stage 202 can include - or more than one DC/DC converter, dc/AC converter, rectifier, and the like. The load can be an AC load, a DC load, or any combination thereof. (4) The function may include any suitable type of modulation function, such as pulse width modulation (pwM), pulse frequency touch (PFM), or any other type of (four) or modulation function. Synchronization function 212 may include a phase locked loop (pLL) function, a delay lock phase (DLL) function, or any other suitable function to synchronize the control of the power level with the load. The distortion mitigation function 2G8 can include distortion mitigation or elimination, or any type of distortion mitigation. Figure 21 illustrates another embodiment of a distortion mitigation system showing certain exemplary implementation details in accordance with certain inventive principles disclosed herein. In the embodiment of Fig. 21, the energy storage element includes a capacitor cDC having a fluctuating voltage that can be generated, for example, by a constant power control. Power stage 214 includes a DC/AC converter including a bridge in this example. Load 216 may include any type of AC load, but in this example it is assumed to include a power distribution grid that operates on a conventional sinusoidal AC waveform. A grid filter 218 can be included between the bridge and the grid. In this example, controller 207 receives a chain voltage vDC obtained from capacitor CDC by a voltage sensor or connection 224. A PWM modulation signal ma2 is supplied from the controller 207 to the bridge. The load signal includes a grid current 1 获得 obtained from a current sensor or connection 222, and a grid voltage V obtained from a voltage sensor or connection 220. . The controller of Fig. 21 includes a sinusoidal pwM component 226 to produce a 26 201034354 pulse width modulation signal Ma2 that causes the 11 bridge to produce a sinusoidal AC output. While this embodiment is directed to a sinusoidal waveform, other types of AC waveforms can be used in other embodiments as well. The synchronization function is performed by a digital phase locked loop 228 that generates a phase signal 响应 in response to the grid voltage 〇. The distortion mitigation function is performed by a harmonic distortion canceling HDC element 230 that produces a reduced signal Ma by a response grid current IG' and phase signal 0. The HDC component optionally includes a chain voltage control feature that operates in response to the chain voltage VG. The output from the hDc component and the DPLL is applied to a sinusoidal PWM component 226 that produces a modulated signal Ma2 for control of the bridge. The output from the HDC component and the DPLL can be applied to the sinusoidal PWM component 226 either directly or through other combinations of components. For example, in other embodiments, signal Ma may not be applied directly to sinusoidal PWM element 226, but may be combined with the input of a sinusoidal PWM element in an adder. The selection and arrangement of the functions in controller 207 can be subject to numerous variations in accordance with certain inventive principles disclosed herein. Some examples are described below by way of example. Figure 22 illustrates another embodiment of a controller having harmonic distortion mitigation in accordance with certain inventive principles disclosed herein. In the embodiment of Fig. 22, the HDC element 230 includes a sinusoidal generator 234 that generates a sinusoidal signal sin(e) in response to a phase signal from the DPLL. The sinusoidal signal Sin(e) is coupled to a reference signal IREF by a multiplier 236 to produce a proportional signal IREFsin(0) 'which is compared by an adder (or comparator) 238 to the grid current lG to produce an error. Signal Ierr. The error signal can be subjected to a transfer function H(s)' through function block 240 to produce an error magnitude signal MAG. The embodiment of Fig. 22 implements an indirect method of controlling the grid current and the proportional sinusoidal letter 27 201034354 iREFSin(e). The output Ma2 generated from the sinusoidal pWM 226 has the form Ma2 = MAG, sin(0). In operation, when the control loop attempts to maintain a pure sinusoidal output regardless of the presence of chopping on the chain voltage, the MAG portion can show the distortion as a function of time. The energy of the system to mitigate spectral distortion may depend on the width of the path including comparator 238, function 240, sinusoidal PWM 226 forming a loop with a bridge and a grid de/or (if present). This loop will typically cancel the harmonics at frequencies below the loop bandwidth, such as one order of magnitude lower. Thus, the path including the comparator, H(s), and sinusoidal PWM can form a relatively fast inner loop, while the path including DPLL 228 and sinusoidal generator 234 can form a slower outer loop. The reference signal Iref can be a fixed reference signal. Alternatively, as shown in Fig. 22, IREF may be provided by a dc chain voltage control feature 242 as part of another control loop to control the DC bond voltage. Chain voltage vDC, or an average or RMS version of VDC can be compared to a reference signal Vref to produce

Iref。該DC鏈電壓控制可被實施成另一相對慢的外控制環 路。 本專利揭露之某些附加發明原理係關於網格電流控 制。第23圖之實施例包括網格電流控制元件244以響應網格 電流IG及來自DPLL的相位信號Θ,以及一參考信號iREF產生 直接信號及正交信號ID及IQ。該等直接及正交信號被施加於 一反DQ變換元件246 ’其產生一被施加於正弦產生器234的 相位信號φ,及被施加於正弦PWM的一大小信號MAG,。分 別來自HDC塊230及正弦PWM 226的輸出MAG及MAG,,由 一加法器248合併以提供最終調變信號Ma2。 28 201034354 藉由提供網格電流控制,第23圖之實施例可被組配成 迫使網格電壓VG與網格電流IG處於一較密切相位關係。例 如,上述第22圖之實施例可在具有一純粹或大部份電阻性 網格負載的系統中提供充分操作。在一具有一帶有電阻性 組件的網格負載之系統中,第23圖之實施例的網格電流控 制特徵可迫使網格電壓及電流同相,藉此以一無功網格提 供改進的諧波失真消除。 ❹Iref. The DC link voltage control can be implemented as another relatively slow external control loop. Some of the additional inventive principles disclosed in this patent relate to grid current control. The embodiment of Fig. 23 includes a grid current control element 244 responsive to the grid current IG and the phase signal 来自 from the DPLL, and a reference signal iREF for generating the direct signal and the quadrature signal ID and IQ. The direct and quadrature signals are applied to an inverse DQ conversion element 246' which produces a phase signal φ applied to the sinusoidal generator 234 and a magnitude signal MAG applied to the sinusoidal PWM. Outputs MAG and MAG from HDC block 230 and sinusoidal PWM 226, respectively, are combined by an adder 248 to provide a final modulated signal Ma2. 28 201034354 By providing grid current control, the embodiment of Figure 23 can be configured to force the grid voltage VG to be in a closer phase relationship with the grid current IG. For example, the embodiment of Figure 22 above can provide sufficient operation in a system having a pure or mostly resistive grid load. In a system having a grid load with resistive components, the grid current control feature of the embodiment of Figure 23 forces the grid voltage and current to be in phase, thereby providing improved harmonics with a reactive grid. Distortion cancellation. ❹

雖然在第23圖中與HDC特徵23〇被一起繪示,依據本專 利揭露之某些發明原理,本文揭露的網格電流控制技術可 與此或任何其他HDC特徵分離實施。 第23圖之背景中所述網格電流控制技術也可與各種形 式的鏈電壓控制結合。例如,參考信號其中之 或兩者可由-或-個以上鏈電壓控制元件,諸如第Μ圖 中所示元件242提供。 本專利揭露之某些附加原理係關於失真緩和之預失真 技術的使用。第24翮洽-, 圖繪不一控制器250之一實施例,其具有 一諸如一調變器21〇甚& ^ 產生—或一個以上控制信號SM以控制 一電力級的控制功能,芬— 及—響應一或一個以上負載信號SL 同步電力級之輪屮I Λ„ 252塑應來自_1載的同步功能212。—預失真元件 … ⑯量儲存元件的任-適當信號諸如一烕測Although depicted in FIG. 23 with the HDC feature 23A, the grid current control techniques disclosed herein may be implemented separately from this or any other HDC feature in accordance with certain inventive principles disclosed herein. The grid current control technique described in the background of Figure 23 can also be combined with various forms of chain voltage control. For example, one or both of the reference signals may be provided by - or more than one chain voltage control element, such as element 242 shown in the figure. Some of the additional principles disclosed in this patent relate to the use of distortion-mitigating predistortion techniques. The second embodiment of the controller 250 has an embodiment such as a modulator 21 〇 & ^ 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或 或— and — in response to one or more load signals SL, the synchronous power stage rim I Λ 252 is supposed to be from the synchronous function 212 of the 1-load. - Pre-distortion element... 16-value storage element's arbitrary-appropriate signal such as a test

信號SES,提供某— ^ J \ '柄預失真。該縣真可被施加於一 L真緩和。^制彳5號、,或任—其他信號或元件,以提供 k任—\人控制器功能可以硬體、軟體、細體等等,或 ’、 ’且。被實施。硬體可以類比電路、數位電路或其 29 201034354 之任一組合被實現。諸功能之實施可併入一單一設備或分 佈於全部多個設備等等。 第25圖繪示依據本專利揭露之某些發明原理,一具有 預失真的控制器之一實施例。一調變信號Ma可由任一適當 源提供,例如上述實施例中任—Ma2信號。在此範例中, 調變信號Ma由一響應網格電壓ν〇由一 DpLL 26〇控制的簡 單正弦PWM元件258提供。一預失真元件254產生-預失真 仏號Ma,預失真信號Ma,由加法器256與調變信號Ma合併 以產生-最終調變信號Ma”。最終調變信號Ma"可被施加 _ 於任一適當電力級。在此範例中,電力級可以是一第21圖 所示之Η橋。 依據本專利揭露之某些發明原理的預失真方法可個別 地或附加至本文揭露的其他類型的失真緩和原理被實施。 - 預失真το件254可實施任一類型的預失真,以緩和或消除從 -電力級到-負載之電力流中的失真。例如,如果被施加 於第21圖之系統,預失真元件254可產生預期,且補償由鏈 電壓vDC上漣波產生的失真的預失真信號Ma,。 @ 第26圖繪示依據本專利揭露之某些發明原理一預失 真元件之-實施例。第26圖之實施例包括—查找表加,以 響應瞬時鍵電壓VDC及鏈電壓的一平均值提供 預失真信號Ma'。 八 第27圖繪示依據本專利發明之某些發明原理,一預失 真元件的另-實施例。第27圖之實施例藉由使鍵電壓平均 值vDC(AVER關除以瞬時值vDC而產生預失真信號Ma,。此結 30 201034354 果可被直接用作預失真信號,或接受附加處理。例如,此 結果可由調變信號Ma在變換乘一函數f(s)後相乘。 第28圖繪示依據本專利揭露之某些發明原理,一預失 真元件的又一實施例。第28圖之實施例包括一查找表264, 以響應瞬_電壓vDe、-鏈電壓平均值Vd(:(average)、瞬時 網格電壓vG,及網格電壓之RMS值Vg(rms)提供預失真信號 Ma’。 第29圖繪示依據本專利揭露之某些發明原理,一預失 真疋件的再一實施例。第29圖之實施例響應瞬時鏈電壓 VDC、一鏈電壓平均值Vdc(average)、瞬時網格電壓vG,及 、’周格電壓之RMS值VG(RMS},依據任一適當轉移函數H(s)計 算預失真信號Ma'。 在某些應用中,參考第26圖及第27圖所示實施例可提 供充分失真緩和,其中網格負載具有純或幾乎正弦的波 形。在其他應用中,參考第28圖及第29圖所示實施例可提 供較好的失真緩和,其中網格負載波形包含顯著的失真量。 關於預失真之發明原理不限制於具有正弦AC負載之 系統。一預失真信號Ma,可被產生以補償具有諸如三角波、 鋸齒波、方波等等的波形之負載中的失真。在具有查找表 之實施例中,此等查找表可以是靜態的,或它們可在時間 上改變,例如,響應各種輸入,諸如線電壓、頻率、鏈電 壓,或任一其他操作參數。依據發明原理之失真緩和技術 也"T使用包括一些來自音響工業的任何適當演算法被實 施,其可被直接應用,或適於與諸發明原理一起使用。 31 201034354 關於失真緩和之各種發明原理可全部分離使用,或與 其他發明原理結合使用。例如,依據本專利揭露之某些發 明原理,在一些實施例中,一控制器可將預失真與鏈電壓 控制結合’而在其他實施例中,一控制器可將直接譜波失 真消除與網格電流控制、預失真及鏈電壓控制結合。 阻抗變換 本專利揭露之某些附加發明原理係關於用於調變一恒 定電力控制環路以提供阻抗轉換、確定一最大電力點或其 他操作點’及/或為其他目的之技術。 馨 參考第30圖,一PV板被模型化成一電壓源v丨NTERNAL及 一串聯電阻Rinternal。一恒定電力控制環路使PV板經歷一 具有一 ZIN = Vpv/Ipv的恒定輸入阻抗的恒定負載Ipv。由於阻 · 抗變換,施加於負載Ipv的恒定電力被變換成一被遞送至DC - 鏈的恒定電力。電力P是恒定的,且等於Vpv*Ipv。因為該 電力恒疋,且由Η橋所得電流以兩倍線路頻率改變,鍵電壓 VDCLINK也必須以兩倍線路頻率改變,因為電流與電壓之乘 積必須恒定。因此,遞送至DC鏈的電流以p/vDCUNK = ®The signal SES provides some - ^ J \ 'handle predistortion. The county can really be applied to a true easing. ^ System No. 5, or any other signals or components to provide k--man controller functions can be hardware, software, fines, etc., or ', ' and. Implemented. The hardware can be implemented as an analog circuit, a digital circuit, or any combination thereof, 29 201034354. Implementation of the functions can be incorporated into a single device or distributed across all of the various devices and the like. Figure 25 illustrates an embodiment of a controller with predistortion in accordance with certain inventive principles disclosed herein. A modulation signal Ma can be provided by any suitable source, such as the -Ma2 signal in the above embodiment. In this example, the modulation signal Ma is provided by a simple sinusoidal PWM element 258 that is responsive to a grid voltage ν〇 controlled by a DpLL 26〇. A predistortion element 254 generates a predistortion apostrophe Ma, a predistortion signal Ma, which is combined by the adder 256 and the modulating signal Ma to produce a final modulated signal Ma". The final modulated signal Ma" can be applied _ A suitable power level. In this example, the power level can be a bridge as shown in Fig. 21. The predistortion method according to some inventive principles disclosed in this patent can be individually or additionally attached to other types of distortions disclosed herein. The mitigation principle is implemented. - The predistortion τ 262 can implement any type of predistortion to mitigate or eliminate distortion in the power flow from the -power level to the load. For example, if applied to the system of Figure 21, Predistortion element 254 can produce a predistortion signal Ma that is expected to compensate for distortion produced by chopping on chain voltage vDC. @ Figure 26 illustrates an embodiment of a predistortion element in accordance with certain inventive principles disclosed herein. The embodiment of Fig. 26 includes a lookup table plus a predistortion signal Ma' in response to an instantaneous value of the instantaneous key voltage VDC and the chain voltage. Figure 28 illustrates a certain inventive principle of the present invention, Pre Another embodiment of the true element. The embodiment of Fig. 27 generates the predistortion signal Ma by setting the key voltage average value vDC (AVER is off by the instantaneous value vDC.) This junction 30 201034354 can be directly used as predistortion. Signal, or accepting additional processing. For example, the result may be multiplied by the modulation signal Ma after the transformation by a function f(s). Figure 28 illustrates a predistortion element in accordance with certain inventive principles disclosed herein. An embodiment. The embodiment of Fig. 28 includes a lookup table 264 responsive to the instantaneous voltage vDe, the average voltage of the chain voltage Vd (: (average), the instantaneous grid voltage vG, and the RMS value of the grid voltage Vg ( Rms) provides a predistortion signal Ma'. Figure 29 illustrates yet another embodiment of a predistortion element in accordance with certain inventive principles disclosed herein. The embodiment of Fig. 29 responds to an instantaneous chain voltage VDC, a chain voltage The average value Vdc (average), the instantaneous grid voltage vG, and the 'RMS value of the square voltage VG (RMS}, the predistortion signal Ma' is calculated according to any suitable transfer function H(s). In some applications, Referring to the embodiments shown in Figures 26 and 27, sufficient distortion mitigation can be provided, wherein the network The grid load has a pure or nearly sinusoidal waveform. In other applications, the embodiments shown in Figures 28 and 29 provide better distortion mitigation, where the grid load waveform contains significant amounts of distortion. The inventive principle is not limited to systems having a sinusoidal AC load. A predistortion signal Ma can be generated to compensate for distortion in a load having waveforms such as triangular waves, sawtooth waves, square waves, etc. In an embodiment with a lookup table These lookup tables may be static, or they may change in time, for example, in response to various inputs, such as line voltage, frequency, chain voltage, or any other operational parameter. Distortion mitigation techniques in accordance with the principles of the invention are also implemented using any suitable algorithm from the audio industry, which may be applied directly or adapted for use with the principles of the invention. 31 201034354 The various inventive principles of distortion mitigation can be used separately or in combination with other inventive principles. For example, in accordance with certain inventive principles disclosed herein, in some embodiments, a controller can combine pre-distortion with chain voltage control'. In other embodiments, a controller can eliminate direct spectral distortion cancellation and the network. Combination of grid current control, pre-distortion and chain voltage control. Impedance Transformation Some of the additional inventive principles disclosed herein are directed to techniques for modulating a constant power control loop to provide impedance conversion, determining a maximum power point or other operating point' and/or for other purposes. Xin Referring to Figure 30, a PV panel is modeled as a voltage source v丨NTERNAL and a series resistor Rinternal. A constant power control loop subjects the PV panel to a constant load Ipv having a constant input impedance of ZIN = Vpv / Ipv. Due to the impedance transformation, the constant power applied to the load Ipv is converted into a constant power that is delivered to the DC-chain. The power P is constant and equal to Vpv*Ipv. Since the power is constant and the current drawn by the bridge changes at twice the line frequency, the key voltage VDCLINK must also change at twice the line frequency because the product of current and voltage must be constant. Therefore, the current delivered to the DC chain is p/vDCUNK = ®

Vpv*Ipv/Vdclink變化。 當板之串聯電阻Rinternal匹配由負載IPV造成的阻抗 時’即’當ZIN = Rinternal = Vpv/Ipv時’從PV板到轉換系統 之電力轉移被最大化。 在某些實施例中,一如上所述實施恒定電力控制之系 統可將一DC/DC轉換器或其他電力級從一低AC阻抗路徑 變換至一高AC阻抗路徑。這可參考第31圖更好地理解,在 32 201034354 第31圖中,一 AC負載被繪示成一可產生一脈衝電流lAC的電 流源100。一習知DC/DC轉換器被繪示成一低阻抗路徑 102。如果電容器(^或匚沉具有一大值,其形成一到公共節 點的低阻抗路徑,且因此,脈衝電流IAC被阻止反射回PV 板。然而,如果電容器被去掉或尺寸減小,那麼 DC/DC轉換器在負載1〇〇與pv板之間形成一低阻抗AC路 徑。因此,電流IAC中的脈動顯示為PV板輸出處的電壓及/ 或電流波動。 然而’在DC/DC轉換器中實施一恒定電力控制環路可 能導致轉換器似成為一具有一高AC阻抗的路徑。因此,脈 動AC電流IAC被防止流經DC/DC轉換器。因此,全部或大部 份AC電流必須流經鏈電容器cDC,鏈電容器CDC由於其低阻 抗’產生一穿過CDC的大電壓擺動。 因為恒定電力控制之諸阻抗轉換性質可能是控制操作 而非硬體組件之結果,它們可迅速及/或以一受控方式被改 變。例如,DC/DC轉換器之流徑阻抗可由控制器瞬時改變。 此等性質可被利用以提供某些有利結果。 操作點掃描 依據本專利揭露之某些發明原理,一此應用包括確定 一最大電力點或其他用於一電源被耦接至一電力轉換器的 操作點。 參考第32圖’曲線104繪示一典型PV板在一定操作條件 下的電壓-電流特性(V-I曲線),而曲線1〇6緣示同一板在相 同條件下的對應電力特性(電力曲線)。當輸出端子被短路在 33 201034354 一起時,ν·ι曲線是一Isc值的零伏特,Isc是由板產生的短路 電流。隨著輸出電壓增加,V-I曲線仍在一完全恒定水平的 電流,直到其達到一曲折點,在此點,其以voc向零電流快 速下降,voc是板之開路輸出電壓。 電力曲線簡單地是沿V-I曲線的每一點電流乘以電 壓。電力曲線具有對應某一電壓位準及某一電流位準的— 最大值。這被稱為最大電力點,或MPP。大部份pv電力系 統試圖在最大電力點操作。然而,最大電力點往往基於操 作條件,諸如照度位準、溫度、板之年限等等而改變。因 魯 此,演算法被設計以供當MPP在時間上改變時追蹤MPP。 最大電力點追蹤(MPPT)之現行演算法大體是在與— AC線週期之時期相比相對長的時段上被執行的緩慢過 · 程。另外,現行演算法假定僅一個MPP存在於電力曲線中。 - 然而’某些PV板或其他電源之電力曲線可具有多個本地最 大點。一個範例被繪示於第33圖中,第33圖繪示一具有多 於一個本地MpP的電源之V-I及電力曲線。一習知MPPT演 算法可從左面接近本地最大MPP1,且一旦其確定電力曲線 Θ 隨其向右移動趨於下降時就停止。在此情況中,演算法錯 誤地確定MMP1點是最大電力點,而非真實最大電力點 MMP2。一現有演算法可藉由迫使其繼續透過剩餘電壓範圍 搜尋而被修改,但是在現有技術中,這會是一冗長的過程。 在一具有恒定電力控制的電力轉換系統中,依據本專 利揭露之某些附加發明原理,控制技術可被調變以提供最 大電力點追蹤或其他技術。如上所述,一恒定電力控制環 34 201034354 路可防止電力脈衝被反射回一電源。這被繪示於第34圖 中,在第34圖中,一電力級1〇8由一恒定電力控制環路11〇 控制’恒定電力控制環路削防止來自AC負載112的 衝到達電源114。 &Vpv*Ipv/Vdclink changes. When the series resistance Rinternal of the board matches the impedance caused by the load IPV, i.e., when ZIN = Rinternal = Vpv / Ipv, the power transfer from the PV panel to the conversion system is maximized. In some embodiments, a system that implements constant power control as described above can convert a DC/DC converter or other power stage from a low AC impedance path to a high AC impedance path. This can be better understood with reference to Fig. 31, in Fig. 31 of Fig. 31 201034354, an AC load is depicted as a current source 100 that produces a pulsed current lAC. A conventional DC/DC converter is shown as a low impedance path 102. If the capacitor (^ or sinker has a large value, it forms a low impedance path to the common node, and therefore, the pulse current IAC is prevented from being reflected back to the PV panel. However, if the capacitor is removed or the size is reduced, then DC/ The DC converter forms a low impedance AC path between the load 1〇〇 and the pv board. Therefore, the ripple in the current IAC is shown as the voltage and/or current fluctuation at the PV panel output. However, 'in the DC/DC converter Implementing a constant power control loop may cause the converter to behave as a path with a high AC impedance. Therefore, the pulsating AC current IAC is prevented from flowing through the DC/DC converter. Therefore, all or most of the AC current must flow through The chain capacitor cDC, the chain capacitor CDC, generates a large voltage swing through the CDC due to its low impedance. Because the impedance conversion properties of constant power control may be the result of control operations rather than hardware components, they can be quickly and/or A controlled manner is changed. For example, the flow path impedance of the DC/DC converter can be instantaneously changed by the controller. These properties can be utilized to provide some favorable results. Some of the inventive principles of the disclosure include determining a maximum power point or other operating point for a power source coupled to a power converter. Referring to Figure 32, curve 104 depicts a typical PV panel at a certain The voltage-current characteristic (VI curve) under operating conditions, and the curve 1〇6 indicates the corresponding power characteristics (power curve) of the same board under the same conditions. When the output terminals are short-circuited at 33 201034354, the ν·ι curve Is an Isc value of zero volts, Isc is the short circuit current generated by the board. As the output voltage increases, the VI curve is still at a completely constant level of current until it reaches a tortuosity point, at which point it is vocal to zero The current drops rapidly, and voc is the open-circuit output voltage of the board. The power curve is simply the current multiplied by the voltage along each point of the VI curve. The power curve has a maximum value corresponding to a certain voltage level and a certain current level. Called the maximum power point, or MPP. Most pv power systems attempt to operate at the maximum power point. However, the maximum power point is often based on operating conditions such as illuminance level, temperature, and board The limit is changed, etc. Because of this, the algorithm is designed to track the MPP when the MPP changes in time. The current algorithm for maximum power point tracking (MPPT) is generally compared to the period of the - AC line cycle. In addition, the current algorithm assumes that only one MPP is present in the power curve. - However, the power curve of some PV panels or other power sources can have multiple local maximum points. Shown in Figure 33, Figure 33 shows a VI and power curve for a power supply with more than one local MpP. A conventional MPPT algorithm can approach the local maximum MPP1 from the left and once it determines the power curveΘ It stops as it moves to the right and tends to fall. In this case, the algorithm incorrectly determines that the MMP1 point is the maximum power point, not the true maximum power point MMP2. An existing algorithm can be modified by forcing it to continue searching through the remaining voltage range, but in the prior art, this can be a lengthy process. In a power conversion system with constant power control, control techniques can be tuned to provide maximum power point tracking or other techniques in accordance with certain additional inventive principles disclosed in this patent. As described above, a constant power control loop 34 201034354 prevents power pulses from being reflected back to a power source. This is illustrated in Figure 34, in which a power stage 1〇8 is controlled by a constant power control loop 11〇' constant power control loop to prevent the rush from the AC load 112 from reaching the power source 114. &

藉由選擇性地去能或修改該恒定電力控制環路,某此 或全部電力脈動可以一爲了確定一操作點或其他有用資訊 之目的而被觀察的方式被反射回電源。例如,在第35圖中, 控制環路110由SW1絲。這使電力㈣某—其他 作,例如,在一固定工作週期’藉此允許來自ac負載^電 力脈動達到H _追蹤電路110量測在來自H14的輸By selectively enabling or modifying the constant power control loop, some or all of the power ripple can be reflected back to the power source in a manner that is observed for the purpose of determining an operating point or other useful information. For example, in Figure 35, control loop 110 is made of SW1 wire. This allows the power (4) to be - for example, in a fixed duty cycle ' thereby allowing the ac load from the ac load to be pulsed to the H _ tracking circuit 110 to measure the loss from the H14

出中產生的電壓/或電流波動,且使用此資訊實施-MMPT 演算法或其他處理。—相對小的能量儲存I置,諸如一小 電合器的使用可使來自Ac負載的電力脈動能夠達到電 源。例如’如果—較大電容器被使用,其可能阻止脈動達 到電源。 ^36圖緣不第34圖及第35圖之實施例可如何在某些條 件下操作。彡統最初被假定成讀致能肺定電力控制環 路在,操作。該操作環路進而被去能以允許電力級⑽以 固疋工作週期操作開環。來自Ac負載的電力脈動被反射 回電源’藉此使操作點隨來自電源的輸出電壓及電流透過 對應範圍vSWEEP及iSWEEp掃描,而沿點續c之間的電力曲線 來回行進。追蹤電路116監測輸出電壓及電流,且因此可計 算A與C之間每-點的電力。因為掃描範圍包括本地最大 MPP1與MPP2兩者’所以追蹤電路可比較它們以確定真實 35 201034354 MPP。 —在此範例中,真實河冲被發現在點B,。-旦MPP被確 疋隍疋電力環路可重新使得該系統仍在b,,而不管AC負 載中的波動。在不存在恒定電力控制環路時,AC負載中的 波動使操作點圍繞鮮波動,如第_中箭頭所示。 上述追蹤操作可提供一用於確定Mpp或其他操作點的 十、且穩徤的技術,因為其與典型使用於Μρρτ路由中的相比 在較小時標上掃描一大操作範圍,在某些情況中,在小 負載的—線週期中。例如,在一具有正弦輸出的系统 參 ’第—相中的資訊與第二相中的相同。因此,在一具有 —60出正弦輸出的系統中’僅i2〇Hz電力連波的—半週期 :皮需要以獲得全部資訊。因此,掃描可在一嶋線週期的 1/4或〜4ms中被傳導。 处因為該值定電力控制環路可以一控制演算法被簡單致 能、去能或修改,實施可以是迅速且簡單的。在掃福處理The voltage/current generated in the output fluctuates and uses this information to implement the -MMPT algorithm or other processing. - A relatively small energy storage I, such as the use of a small AC combiner, enables power pulsations from the Ac load to reach the power source. For example, if a larger capacitor is used, it may prevent the ripple from reaching the power source. ^36 Figure not how the embodiments of Figures 34 and 35 can operate under certain conditions. SiS was initially assumed to be a read-enabled lung power control loop, operating. The operational loop is in turn disabled to allow the power stage (10) to operate in an open loop with a fixed duty cycle. The power ripple from the Ac load is reflected back to the power supply, thereby causing the operating point to scan back and forth along the power curve between points c with the output voltage and current from the power source through the corresponding ranges vSWEEP and iSWEEp. Tracking circuit 116 monitors the output voltage and current, and thus can calculate the power at each point between A and C. Since the scan range includes both local maximum MPP1 and MPP2', the tracking circuit can compare them to determine the true 35 201034354 MPP. - In this example, the real river rush is found at point B. Once the MPP is confirmed that the power loop can re-enable the system is still in b, regardless of fluctuations in the AC load. In the absence of a constant power control loop, fluctuations in the AC load cause the operating point to circulate freshly, as indicated by the _ middle arrow. The above tracking operation can provide a ten-and-stable technique for determining Mpp or other operating points because it scans a large operating range on a smaller time scale than is typically used in Μρρτ routing, in some In the case of a small load - the line cycle. For example, the information in a system phase with a sinusoidal output is the same as in the second phase. Therefore, in a system with a sigma output of -60 s. - only the half cycle of the i2 〇 Hz power wave: the skin needs to obtain all the information. Therefore, the scan can be conducted in 1/4 or ~4 ms of a turn line period. Because this value determines that the power control loop can be simply enabled, de-energized, or modified, the implementation can be quick and simple. Processing in the blessing

期間,擾動由AC負載提供,藉此減少或消除對建立擾動的 附加電路之需求。 、 該過程也可以是高度彈性的,且適於許多參數的無數 變化。例如,電力級可被設定成任意適當固定工作週期, 或掃描操作期間的其他操作模式。可供選擇地,該工作週 期可透過*同值被步階化,⑼個Ac貞載週麟間過程擴 大掃描範圍。該系統可被組配成掃描電源之整個操作範 固,或者固定或彈性約束可被置於掃描範圍中。例如,在 某些實施例中,一掃描操作可簡單地被允許使用電力級中 36 201034354 的-特賴定卫作週期來掃描由特定AC貞載提供的任何 範圍、。在其他實_巾,來自電源的輸出電壓及/電流之限 值可被-xA彳列如’如果—高或低限值被達到恒定電力 控制環路可在原操作_),或在㈣修正操作點,例如, 該限值本身被賴。因此,如果整個㈣範财需要被取 樣,該控制環路本身可被用以限制透過v_〗及電力曲線之擺During this time, the disturbance is provided by the AC load, thereby reducing or eliminating the need for additional circuitry to establish the disturbance. The process can also be highly elastic and adapt to the myriad of variations of many parameters. For example, the power level can be set to any suitable fixed duty cycle, or other mode of operation during a scan operation. Alternatively, the work cycle can be stepped through the same value of the *, and the (9) Ac贞-per-cycle process expands the scan range. The system can be assembled into the entire operating range of the scanning power supply, or fixed or elastic constraints can be placed in the scanning range. For example, in some embodiments, a scan operation may simply be allowed to use any of the ranges provided by the particular AC load using the -Treiding cycle of the power level 36 201034354. In other reals, the output voltage and / current limit from the power supply can be listed by -xA such as 'if the high or low limit is reached, the constant power control loop can be used in the original operation _), or in (4) the corrective operation Point, for example, the limit itself is relied upon. Therefore, if the entire (four) fanship needs to be sampled, the control loop itself can be used to limit the pendulum through v_〗 and the power curve.

依據某些發明原理,—掃描操作可響應各種事件被啟 動在某些實施例中,掃描操作可在週期間隔被啟動,諸 如,每秒或幾秒-次、每分鐘或幾分鐘—次等等。在其他 實施例巾’當—監職作確技线在其財被預計操作 的情況下未操作時,—掃描操作可被觸發。 選擇地由-外㈣激啟動。 隸作了 *紐實施财,AC貞載本身被 用以在電_立波動,但是其他設備也可被制以建立校 控Π:,一可控負載可代替標稱AC負載,來以-可 载可提供:控約束内提供波動。可供選擇地,該可控負 或-個以上離散負載點,而非掃描一範圍内的 制電路_可控負載可被獨立或由用於追蹤操作的同-控 多個具個別電力控制之電源 37 201034354 本專利揭露之某些附加發明原理係關於在具有多個電 源之系統中的電力控制之使用。第37圖繪示一系統之一實 施例,在該系統中,個電源118各被耦接至1^個電力轉 換器120中的一對應者。諸電力轉換器之輸出由組合器122 合併,且被施加於至少一個能量儲存裝置124。諸電力轉換 器之輸出可以串聯、並聯、串並聯組合,或任一其他適當 安排被組合。電源包括光電裝置、燃料電池、電池、風力 機,或任何其他電源或其之組合。諸電力轉換器可包括 DC/DC轉換器、DC/AC換流器、整流器等等,或其之任— _ 組合中的一個或一個以上。諸電力轉換器中一或一個以上 包括恒定電力控制功能126。 第38圖依據本專利揭露之某些發明原理,繪示一電力 · 轉換系統之一實施例’在其中,多個DC/DC轉換器包括恒 定電力控制功能。在第38圖之實施例中,諸電源被實施成 PV板128,各該PV板128向一對應DC/DC轉換器130提供電 力。諸DC/DC轉換器之輸出被串聯安排以產生一被施加於 一鏈電容器CDC的DC鏈電壓Vd。一DC/AC換流器132將該鍵 Θ 電壓轉換成一AC電壓V(3RID。 各該DC/DC轉換器130實施一恒定電力控制環路I%, 以維持來自關聯pv板的恒定電力轉移。各該Dc/Dc轉換器 130也可實施一作為圍繞相對較快内恒定電力控制環路的 一較慢外部控制環路操作的最大電力點追蹤功能(Μρρτ)。 每一DC/DC轉換器輸出一對應各該個別電源提供的輸入電 力的恒疋電力。鏈電容器CDC作為—組合能量儲存元件對全 38 201034354 部DC/DC轉換器操作。鏈電壓Vd包括在一DC組件頂上的— AC漣波組件,其中AC漣波量取決於下文所述鏈電容器之尺 寸。來自每一DC/DC轉換器之輸出電壓及電流被允許浮 動,所以它們可以是平衡整個電力系統中電壓與電流約束 的值。因為轉換器13〇在此範例中以串聯安排,透過每— DC/DC轉換器之輸出電流必須相等,而輸出電壓之總和必 須等於DC鏈電壓Vd。其他實施例可針對不同約束被安排。 例如,在DC/DC轉換器被並聯連接的一實施例中,每—轉 換器可提供一不同大小的電流。 第38圖之系統也可包括一鏈電壓控制功能,其調變來 自DC/AC換流器之要求,以使鏈電壓之平均值維持 在一提供DC/AC換流器之最佳操作,及/或防止或減少輸出 處的諧波失真的位準。 因為各該DC/DC轉換器130實施一個別恒定電力控制 環路,在每一轉換器的輸入漣波可對每一pv板被最佳最小 化。藉由對每一轉換器加入MPPT功能,來自每一PV板的 電力輸出也可被最佳化,而不管每一板之操作條件之差 別,例如,照度條件、溫度、年限等等。 另外,鏈電容器CDC之尺寸可依據實施細節被減小。例 如,在一具有一具諧波失真緩和特徵換流器132的 實施例中,減少鏈電容器之尺寸是可能的。即使一較小電 容器之使用導致在鏈電容器上較大的電壓波動,一諧波失 真緩和特徵的存在可將AC輸出中的失真減少至一可接受 位準。然而,在一具有一無諧波失真緩和的習知1)(:/八(:換 39 201034354 流器之實施例中,可能仍有必要使用一比較大的鏈電容 器’因為在鏈電容器上的一大漣波電壓可能導致AC輸出中 不可接受的失真位準。 本專利揭露之某些附加發明原理係關於可使用本文所 揭露的某些或全部其他發明原理被實施的電力轉換系統架 構。某些此等架構將參考下列附圖被描述。 第39圖繪示一實施例,其中某些或全部包括恒定電力 控制402的多個模組4〇〇被串聯安排以產生一被施加於一習 知中心換流器404的DC鏈VLINK。因為一習知中心換流器404 ® 被使用’一相對大的鏈電容scLINK被利用以限制AC漣波, 且提供一防止AC輸出中過度失真的約束DC鍵。 第40圖繪示一實施例,其中某些或全部包括恒定電力 控制402的多個模組4〇〇被並聯安排。 - 第41圖%示一並串聯實施例,其中多個模組被首先 安排成並聯單元。此等並聯單元進而被串聯安排以提供Dc 鏈 V_c。 第42圖繪示一串並聯實施例,其中多個模組4〇〇首先被 @ 女排成串聯單元或串。諸個別串進而被安排成一並聯組 合’以產生DC鏈VLINK。 在各s亥第39-42圖實施例中,諸模組可以各種供選擇結 構被實施,例如,在某些實施例中,每一模組4〇〇可以是一 或一個以上太陽電池板、燃料電池或其他具有恒定電力控 制402整合於電源中的電源。在其他實施例中,諸模組可包 括一或一個以上電源加一關聯DC/DC轉換器,恒定電力控 40 201034354 制402可以是DC/DC轉換器的一部份。其他模組組配也是可 能的’包括本文所述之一結合。 同樣,在各該第39-42圖之實施例中,因為一習知中心 換流器404被使用,一相對大的鏈電容仏〗^被利用以限制 AC漣波,且提供一防止AC輸出中過度失真的約束DC鏈。 某些附加發明原理係關於在一中心換流器或其他電力 級與一或一個以上具有恒定電力控制的電源結合中諧波失 真緩和的使用。 第43圖緣示依據本揭露之發明原理的一實施例,其中 一中心換流器基於一換流器橋4〇6包括諧波失真緩和4〇8。 在此實施例中,DC鍵VLINK可由一或一個以上電源產生,其 中某些或全部包括恒定電力控制。例如,第39_42圖中所示 任何電源安排可被用以產生VLINK。然而,因為包括 詻波失真緩和4〇8,VLINK上的漣波約束可被鬆弛,且因此, 較小的鏈電容器可被使用。即,較大電壓波動由於諧波 失真緩和408之操作可被允許在VuN]Ui,而不在AC輸出中 產生過度失真。因此,該一或一個以上具有恒定電力控制 的電源可被允許在一較小電容器上產生一鬆弛DC鏈。 第44圖繪示一中心換流器的另一實施例,其可以—鬆 弛DC鏈操作。在此實施例中,換流器包括一推_挽級41〇接 隨—變壓器412以提供隔離、一整流器414,及一換流器橋 4〇6。該換流器橋包括諧波失真緩和4〇8。在此實施例中, 忐量儲存可由一被安排在整流器與換流器橋之間的相對小 的DC鏈電容器CUNK提供。在另—實施例中,鍵電容器可被 41 201034354 女排在推-挽級之前,如第45圖所示。在又一實施例中,能 量儲存可被分佈在多個位置之間。任何此等實施例也可包 括其他電力級,諸如預調整器等等。同樣,Μρρτ可被包括 在任一適當點’例如’在到推_挽級或換流器橋的輸入處。 第46圖繪示一中心換流器的又一實施例,其可以一鬆 弛DC鏈操作。在此實施例中,鬆弛Dc鏈輸入被施加於一 DC/DC轉換器416,DC/DC轉換器416也可包括恒定電力控 制418。DC/DC轉換器級之輸出被施加於一具有失真緩和 408之換流器橋406。一相對小的DC鏈電容器CLINK可被安排 參 在DC/DC轉換器與換流器橋之間。 第47圖繪示一中心換流器之再一實施例,其可以一鬆 弛DC鏈操作。在此實施例中’鬆弛dc鏈輸入VUNK被施加 於一具有失真緩和409的線路頻率換流器橋4〇7。來自換流 器橋之輸出被施加於一將換流器柄接至一電網或其他AC 負載的線路頻率變壓器411。 某些附加發明原理係關於恒定電力控制及諧波失真緩 和在一中心換流器或其他電力級與一或一個以上習知電源 結合中的使用。 第48圖搶示一中心換流器之實施例,其可以一直接來 自一或一個以上電源,諸如PV板、燃料電池等等的輸入操 作。該一或一個以上電源產生一DC母線VBUS,該DC母線 VBUS被輸入一具有恒定電力控制422的DC/DC轉換器420。 DC/DC轉換器隨後有一推-挽級410、一變壓器412、一整流 器414及一具有失真緩和408的換流器橋406。 42 201034354 一相對小的電容器可被用於鏈電容器Clink,因為恒定 電力%路防止電谷器上的連波被反射回該一或一個以上電 源,而失真緩和可防止或減少由D C鏈上漣波在AC輸出上產 生的失真。因此,一鬆弛DC鏈可被使用。 在第48圖之實施例中,鏈電容器(^抓被安排在整流器 與換流器橋之間,但是在其他實施例中,鏈電容器可如第 49圖所示被安排在DC/DC轉換器420與推-挽級41〇之間,或 換流器中任一其他適當位置。 在第48圖及第49圖所示實施例中,一Μρρτ功能也可被 實施於DC/DC轉換器、換流器橋,或換流器中其他位置, 以設定恒定電力控制的一操作點,藉此最大化來自DC母線 上該(等)電源之電力轉移。 參考第44_49圖之實施例所述之發明原理可被施加於 具有中心換流器、分散式換流器,或其之組合的系統。 某些附加發明原理係關於以分散式換流器,也稱為微 換流器或奈米換流器的失真緩和的使用。 第50圖繪示一系統之一實施例,其中多個分散式換流 器424直接從多個電源430接收電力》某些或全部此等換流 器包括恒定電力控制426及失真緩和428。來自此等分散式 換流器之輸出被合併以向一網格或其他AC負載提供一 ac 輸出。 第51圖繪示一系統之一實施例,其中多個分散式換流 器432從多個電源436接收電力。某些或全部此等電源包括 恒定電力控制438以向諸換流器提供一鬆弛DC鏈,且某些 43 201034354 或全部此等換流器包括失真緩和434以防止一鬆弛Dc鏈上 的漣波在AC輸出造成不可接受的失真。來自分散式換流器 之輸出被合併以向一網格或其他AC負載提供一 Ac輪出。 在第50圖及第51圖之實施例中,一Μρρτ功能也可被實 施於分散式換流器或任何電源,以設定恒定電力控制的一 操作點,藉此最大化來自該(等)電源的電力轉移。 應用 雖然本專利揭露之某些發明原理以被描述於與D C到 AC換流料、統有_某些特點實施例之f景中,此等發明 鲁 原理對-大範圍的電力轉換系統具有廣泛適用性,此等系 統經歷動態負載及/或動態電源,且因此,需要能量儲存裝 置以平衡從電關負_電力流。此等發縣料在可纟 · 性重要而能量儲存裝置依慣例是不可靠的情況中尤其具彳 優勢。適當應用的-些範例包括:電車或混合動力車 '堆 高機、大眾運輸卫具、電車道、都會捷m氣冷系統; 太陽及風能系統,包括換流器/轉換器盒;能量儲存(電池) 去麵,各種電力供應;各種馬達驅動;能量轉換系統,諸 _ 如電池充電器及充電控制器;感應加熱;包括高壓應用之 EMI減少濾波器;等等。 另外’某些關於恒定電力控制的發明原理被描述於具 有相對平穩電源及波動負載之實施例的背景中,但是恒定 電力控制也可被施加於具有波動電源及相對平穩負載的系 統中。它們也可被施加於具有以一相對平穩電力鏈在電源 與負載之間的波動電源與波動負載兩者的线中。大體 44 201034354 上,恒定電力控制可被施加以使具有相對平穩電力的一或 一個以上部份與具有波動電力的一或一個以上部份隔絕。 例如,關於恒定電力控制之發明原理可被施加於下列 能量轉換:(a)從DC到AC,諸如從太陽到網格,燃料電池 到網格;0)從AC到DC,諸如網格到電池;(c)從AC到一可 變機械負載,諸如,例如在一生產線上AC到各種馬達;(d) 從DC到一可變機械負載’諸如在電氣機車(EV)上從電池到 電動馬達;(e)從一可變機械生產器到一AC負載,諸如從一 風力機到一網格;(0從一可變機械產生器到一DC負載,諸 如從一風力機到一電池;等等。在某些實施例中,一機械 負載例如,在感應熱中,可以是一熱負載。 另一說明性範例包括關於對一饋入一網格或其他AC 負載的風力機之恒定電力控制的發明原理之應用。如果風 流是恒定的,即,是一種層流對亂流,那麼收穫電力是均 勻的。這可被類推至-PV板上的恒定照射。因此,均句電 力潮流必須以逐週期基礎被儲存以供轉移至AC網格。這可 被類比為逐週期t力儲存以將Dc電力從—pv板轉移至一 AC負載。 另一方面’如果風流是奈亂的,那麼收穫的電力是動 態的,這可被類比成PV板上的—遮蔽效應。但是可能快报 夕且具有較多變化。在此情財’關於合併快速mppt與逐 週期電力儲存的發明原理可以被利用而具有利效果。即, 快磨丁可被用以確定頻繁間隔處的操作點,而-恒定電力 控制環路可被卿以維持系統在最近確定的操作點。 45 201034354 圖緣示依據本專利揭露之發明原理,—電力轉換 系統的另-實施例。_電力路徑丨娜電力從—電源154轉 移至一負載156。該電力路徑包括-能量儲存裝置150及-電力級152。-控制器158使電力級控制到達或來自能量儲 存裝置的電力。電力可被控制成—恒定值、—波動值等等。 來自電源的電力可具有―恒定值、波動值等等。負載電力 可具有一恒定值、波動值等等。 本專利揭露之某些附加發明原理係關於電磁干擾 (EMI)。 第52圖繪示依據本專利揭露之發明原理,一具有 減少的電力轉換系統之一實施例。一具有一或一個以上電 力級的電力路徑14〇將電力從一電源138轉移至一負載 142。一恒定電力控制144控制該電力路徑向電源呈遞一恒 定輸入阻抗。一EMI緩和元件146在該電力路徑上操作以減 少或消除源於電力路徑的EMI。 本專利揭露之諸發明原理在上文參考一些特定示範性 實施例被描述,但是此等實施例可在安排或細節上被修改 而不違背此等發明概念。例如,一些實施例在背景中被描 述為向一AC網格遞送電力,但是諸發明原理也適於其他種 類的負載。作為另一範例,一些實施例被描述成以電容器 之能量儲存裝置,及波動DC鏈電壓,但是諸發明原理也適 於其他各種能量儲存裝置,例如可提供一具有一AC漣波電 流的DC鏈電流而非電壓的電感器。作為又一範例,本文所 述任何此等恒定電力控制技術也可以波動電力控制,或任 201034354 一其他種類的電力控制被實施。此等改變及修改可被考慮 成屬於下文申請專利範圍之範圍内。 【圖式簡單說明】 第1圖繪示在一電力轉換器中一DC電源與一 60Hz的 AC負載之間的失配。 第2圖繪示一種用於將DC電力從一光電(PV)板轉換成 AC電力的習知系統。 第3圖繪示一PV板中與漣波電壓相對的電力損失。 第4圖繪示一電容器與電容相對的成本。 第5圖繪示一 PV電力轉換系統的操作。 第6圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的電力轉換系統之操作。 第7圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的一電力轉換系統之一實施例。 第8圖繪示依據本專利揭露的某些發明原理,一電力轉 換系統的另一實施例。 第9圖繪示依據本專利揭露的某些發明原理,一具有恒 定電力控制的電力轉換系統的又一實施例。 第10圖繪示依據本專利揭露的某些發明原理,一用於 實施恒定電力控制的控制器之一實施例。 第11圖繪示依據本專利揭露的某些發明原理,一電力 轉換系統的一實施例。 第12圖繪示依據本專利揭露的某些發明原理,一適於 實施第11圖之換流器系統之主要電力路徑的一實施例之示 47 201034354 意圖。 第13-16圖繪示依據本專利揭露的某些發明原理的PV 板之實施例。 第17圖繪示與從一被維持在一固定電壓的DC鏈電容 器可得的電壓相比,對來自一Η橋式DC/AC換流器的電壓的 瞬時需求。 第18圖繪示依據本專利揭露的某些發明原理,與一由 於一恒定電力控制特徵而具有一大AC電壓擺動的DC鏈電 容器可得的電壓相比,對來自一Η橋式DC/AC換流器的電壓 的瞬時需求。 第19圖繪示依據本專利揭露的某些發明原理,一具有 諧波失真緩和的電力轉換系統的一實施例。 第20圖繪示依據本專利揭露的某些發明原理,一失真 緩和系統之一實施例。 第21圖繪示依據本專利揭露的某些發明原理,一顯示 某些範例實施細節的失真緩和系統之另一實施例。 第22圖繪示依據本專利揭露的某些發明原理,一具有 諧波失真緩和的控制器之又一實施例。 第23圖繪示依據本專利揭露的某些發明原理,一具有 柵極電流控制的實施例。 第24圖繪示依據本專利揭露的某些發明原理,一控制 器之一實施例。 第25圖繪示依據本專利揭露的某些發明原理,一具有 預失真的控制器之一實施例。 48 201034354 第26-29圖繪示依據本專利揭露的某些發明原理,預失 真元件之實施例。 第30圖繪示依據本專利揭露的某些發明原理,阻抗變 換之一實施例。 第31圖繪示一不具阻抗變換之電力轉換系統之操作。 第32圖繪示電壓-電流曲線及一典型PV板的電力曲線。 第33圖繪示一具有多於一個本地最大電力點的電源之 VI及電力曲線。 第34圖繪示依據本專利揭露的某些發明原理,一具有 恒定電力控制及一輸入擺動特徵的電力轉換系統之一實施 例。 第35圖繪示依據本專利揭露的某些發明原理,第20圖 恒定電力控制去能之實施例。 第36圖繪示第20圖及第21圖在某些條件下可如何操 作。 第37圖繪示依據本專利揭露的某些發明原理,一具有 多個電源系統之一實施例。 第38圖繪示依據本專利揭露的某些發明原理,一其中 多個DC/DC轉換器包括恒定電力控制功能的電力轉換系統 之一實施例。 第39-42圖繪示依據本專利揭露的某些發明原理,具有 多個具電力控制的轉換器及一中心換流器的電力轉換系統 之實施例。 第43-51圖繪示依據本專利揭露的某些發明原理,具有 49 201034354 失真緩和之實施例。 第52圖繪示依據本專利揭露的某些發明原理…且有 EMI緩和的電力轉換系統之一實施例。 〃 第53圖繪示依據本專利揭露的某些發明原理,一電力 轉換系統的另一實施例。 【主要元件符號說明】 16、40、52…電源 54…第一電力級 18…第一電力轉換器級 56、200···能量儲存元件 20、124、150…能量儲存裝置 58…第二電力級 22…光電池 62…諧波失真緩和設備 24、130、306…DC/DC轉換器 1〇〇…電流源 24a…預調整器級 102…低阻抗路控 24b···主級 104…V-I曲線 26、132〜DC/AC換流器 106…電力曲線 28、44、60、158…控制器 110、134···恒定電力控制環路 30…電壓感測器 112…AC負載 32、318、342···電流感測器 114、118、138、154…電源 34、315…箭頭 116…追縱電路 36、51、140、148…電力路徑 120…電力轉換器 38、108、152...電力級 122…組合器 42、142、156、204、216…負載 126…恒定電力控制功能 46…放大/緩衝電路 128、350、358、364、370…光 48…控制塊 電(PV)板 5〇…控制演算法段 144…恒定電力控制In accordance with certain inventive principles, scanning operations can be initiated in response to various events, and scanning operations can be initiated at periodic intervals, such as every second or a few seconds - times, minutes or minutes - and so on, etc. . In other embodiments, the scan operation can be triggered when the job is not operated if its finances are expected to operate. Selectively initiated by - outside (four). Acted as *New Zealand implementation, the AC load itself is used to volatility, but other equipment can also be built to establish a control: a controllable load can replace the nominal AC load, to - The load can provide: fluctuations within the control constraints. Alternatively, the controllable negative or more than one discrete load point, rather than scanning a range of circuits - the controllable load can be independently or controlled by a plurality of individual power controls for tracking operations Power Supply 37 201034354 Certain additional inventive principles disclosed herein relate to the use of power control in systems having multiple power sources. Figure 37 illustrates an embodiment of a system in which power supplies 118 are each coupled to a corresponding one of the power converters 120. The outputs of the power converters are combined by combiner 122 and applied to at least one energy storage device 124. The outputs of the power converters can be combined in series, in parallel, in series and parallel, or in any other suitable arrangement. The power source includes an optoelectronic device, a fuel cell, a battery, a wind turbine, or any other power source or combination thereof. The power converters can include one or more of a DC/DC converter, a DC/AC converter, a rectifier, etc., or any combination thereof. One or more of the power converters include a constant power control function 126. Figure 38 illustrates an embodiment of a power conversion system in accordance with certain inventive principles disclosed herein, in which a plurality of DC/DC converters include a constant power control function. In the embodiment of Figure 38, the power supplies are implemented as PV panels 128, each of which provides power to a corresponding DC/DC converter 130. The outputs of the DC/DC converters are arranged in series to produce a DC link voltage Vd applied to a chain capacitor CDC. A DC/AC converter 132 converts the key 电压 voltage into an AC voltage V (3RID. Each of the DC/DC converters 130 implements a constant power control loop I% to maintain constant power transfer from the associated pv board. Each of the Dc/Dc converters 130 can also implement a maximum power point tracking function (Μρρτ) that operates as a slower external control loop around a relatively faster internal constant power control loop. Each DC/DC converter output A constant power of the input power corresponding to each of the individual power sources. The chain capacitor CDC operates as a combined energy storage component for the full 38 201034354 DC/DC converter. The chain voltage Vd is included on top of a DC component - AC chopping The component, where the amount of AC ripple depends on the size of the chain capacitors described below. The output voltage and current from each DC/DC converter are allowed to float, so they can be values that balance the voltage and current constraints throughout the power system. Since the converters 13 are arranged in series in this example, the output current through each of the DC/DC converters must be equal, and the sum of the output voltages must be equal to the DC link voltage Vd. Other embodiments can be directed to The same constraints are arranged. For example, in an embodiment where the DC/DC converters are connected in parallel, each converter can provide a different magnitude of current. The system of Figure 38 can also include a chain voltage control function. The requirements from the DC/AC converter are varied to maintain the average value of the chain voltage at a level that provides optimum operation of the DC/AC converter and/or prevents or reduces the level of harmonic distortion at the output. Each of the DC/DC converters 130 implements a constant power control loop, and the input ripple at each converter can be optimally minimized for each pv board. By adding MPPT functionality to each converter, The power output of each PV panel can also be optimized regardless of the operating conditions of each panel, such as illumination conditions, temperature, age, etc. In addition, the size of the chain capacitor CDC can be reduced depending on the implementation details. For example, in an embodiment having a harmonic distortion mitigation feature converter 132, it is possible to reduce the size of the chain capacitor. Even if the use of a smaller capacitor results in a large voltage fluctuation on the chain capacitor, Harmonic distortion And the presence of features can reduce the distortion in the AC output to an acceptable level. However, in a conventional example 1) with a harmonic distortion mitigation (:/eight (: 39 in the embodiment of the 201034354 flow device) It may still be necessary to use a larger chain capacitor 'because a large chopping voltage on the chain capacitor may cause unacceptable distortion levels in the AC output. Some additional inventive principles disclosed in this patent relate to the use of this document. A power conversion system architecture in which some or all of the other inventive principles are disclosed. Some of these architectures are described with reference to the following figures. Figure 39 illustrates an embodiment in which some or all of the constant power control 402 is included. The plurality of modules 4 are arranged in series to produce a DC link VLINK applied to a conventional central inverter 404. Because a conventional center inverter 404® is used, a relatively large chain capacitor scLINK is utilized to limit AC chopping and provides a constrained DC bond that prevents excessive distortion in the AC output. Figure 40 illustrates an embodiment in which some or all of the plurality of modules 4 including constant power control 402 are arranged in parallel. - Figure 41 shows an embodiment in series, in which a plurality of modules are first arranged in parallel units. These parallel units are in turn arranged in series to provide a Dc chain V_c. Figure 42 illustrates a series of parallel embodiments in which a plurality of modules 4 are first arranged by @女 into a series unit or string. The individual strings are in turn arranged in a parallel combination ' to create a DC link VLINK. In the embodiments of Figures 39-42, the modules may be implemented in a variety of alternative configurations. For example, in some embodiments, each module 4〇〇 may be one or more solar panels, A fuel cell or other power source having a constant power control 402 integrated into the power source. In other embodiments, the modules may include one or more power supplies plus an associated DC/DC converter, and the constant power control 40 201034354 402 may be part of a DC/DC converter. Other modular combinations are also possible' including one of the combinations described herein. Similarly, in each of the embodiments of Figures 39-42, because a conventional central inverter 404 is used, a relatively large chain capacitance is utilized to limit AC chopping and provide an AC-free output. Constrained DC chain with excessive distortion. Some additional inventive principles relate to the use of harmonic distortion mitigation in a central converter or other power stage in combination with one or more power supplies having constant power control. Figure 43 illustrates an embodiment of the inventive principles in accordance with the present disclosure, wherein a central converter includes harmonic distortion mitigation 4〇8 based on an inverter bridge 4〇6. In this embodiment, the DC button VLINK can be generated by one or more power sources, some or all of which include constant power control. For example, any power arrangement shown in Figure 39_42 can be used to generate a VLINK. However, since the chopping distortion is mitigated by 4〇8, the chopping constraint on the VLINK can be relaxed, and therefore, a smaller chain capacitor can be used. That is, large voltage fluctuations can be allowed to be at VuN]Ui due to the operation of harmonic distortion mitigation 408 without excessive distortion in the AC output. Thus, the one or more power supplies with constant power control can be allowed to produce a relaxed DC chain on a smaller capacitor. Figure 44 illustrates another embodiment of a central converter that can operate with a relaxed DC link. In this embodiment, the inverter includes a push-pull stage 41 coupled to the transformer 412 to provide isolation, a rectifier 414, and an inverter bridge 4〇6. The converter bridge includes harmonic distortion mitigation 4〇8. In this embodiment, the mass storage can be provided by a relatively small DC link capacitor CUNK arranged between the rectifier and the inverter bridge. In another embodiment, the key capacitor can be used by the 41 201034354 women's volleyball prior to the push-pull stage, as shown in FIG. In yet another embodiment, energy storage can be distributed between multiple locations. Any of these embodiments may also include other power levels, such as pre-regulators and the like. Similarly, Μρρτ can be included at any suitable point 'e.g., at the input to the push-pull stage or the inverter bridge. Figure 46 illustrates yet another embodiment of a central converter that can operate with a relaxed DC link. In this embodiment, the relaxed Dc chain input is applied to a DC/DC converter 416, which may also include constant power control 418. The output of the DC/DC converter stage is applied to an inverter bridge 406 having a distortion mitigation 408. A relatively small DC link capacitor CLINK can be arranged between the DC/DC converter and the inverter bridge. Figure 47 illustrates yet another embodiment of a central converter that can operate with a relaxed DC link. In this embodiment, the 'relaxed dc chain input VUNK' is applied to a line frequency converter bridge 4?7 having a distortion mitigation 409. The output from the converter bridge is applied to a line frequency transformer 411 that connects the converter handle to a grid or other AC load. Some additional inventive principles relate to the use of constant power control and harmonic distortion mitigation in conjunction with one or more conventional power supplies in a central converter or other power level. Figure 48 illustrates an embodiment of a central converter that can be directly input from one or more power sources, such as PV panels, fuel cells, and the like. The one or more power supplies generate a DC bus VBUS that is input to a DC/DC converter 420 having a constant power control 422. The DC/DC converter then has a push-pull stage 410, a transformer 412, a rectifier 414, and an inverter bridge 406 having a distortion mitigation 408. 42 201034354 A relatively small capacitor can be used for the chain capacitor Clink because the constant power % path prevents the continuous wave on the electric grid from being reflected back to the one or more power supplies, and the distortion mitigation can prevent or reduce the ripple on the DC chain. The distortion produced by the wave on the AC output. Therefore, a relaxed DC chain can be used. In the embodiment of Fig. 48, the chain capacitor is arranged between the rectifier and the inverter bridge, but in other embodiments, the chain capacitor can be arranged in the DC/DC converter as shown in Fig. 49. 420 and push-pull stage 41〇, or any other suitable position in the inverter. In the embodiments shown in Figs. 48 and 49, a Μρρτ function can also be implemented in a DC/DC converter, An inverter bridge, or other location in the inverter, to set an operating point for constant power control, thereby maximizing power transfer from the DC power source on the DC bus. Referring to the embodiment of Figure 44_49 The inventive principles can be applied to systems having a central converter, a decentralized inverter, or a combination thereof. Some additional inventive principles relate to decentralized inverters, also known as micro-converters or nano-exchanges. The use of the mitigating mode of the streamer. Figure 50 illustrates an embodiment of a system in which a plurality of decentralized inverters 424 receive power directly from a plurality of power sources 430. "Some or all of these converters include constant power. Control 426 and distortion mitigation 428. From these distributed commutation The outputs are combined to provide an ac output to a grid or other AC load. Figure 51 illustrates an embodiment of a system in which a plurality of decentralized inverters 432 receive power from a plurality of power sources 436. All of these power supplies include constant power control 438 to provide a relaxed DC chain to the inverters, and some 43 201034354 or all of these converters include distortion mitigation 434 to prevent chopping on a relaxed Dc chain at the AC output Unacceptable distortion is caused. The outputs from the distributed converter are combined to provide an Ac round to a grid or other AC load. In the embodiment of Figures 50 and 51, a Μρρτ function can also be Implemented in a decentralized inverter or any power source to set an operating point for constant power control, thereby maximizing power transfer from the (etc.) power source. Applications Although certain inventive principles disclosed in this patent are described in In the case of DC-to-AC converters, which have some features, the inventions have broad applicability to a wide range of power conversion systems that experience dynamic loads and/or dynamic power supplies. Therefore, energy storage devices are needed to balance the negative-electrical flow from the electrical shutdown. These are particularly advantageous in situations where the energy storage device is not reliable and the energy storage device is conventionally unreliable. Examples include: trams or hybrids 'stackers, mass transit guards, electric lanes, Metrojet m air cooling systems; solar and wind energy systems, including inverters/converter boxes; energy storage (batteries) , various power supplies; various motor drives; energy conversion systems, such as battery chargers and charge controllers; induction heating; EMI reduction filters including high voltage applications; etc. In addition, some of the invention principles of constant power control It is described in the context of embodiments with relatively smooth power and fluctuating loads, but constant power control can also be applied to systems with fluctuating power supplies and relatively smooth loads. They can also be applied to lines having both a fluctuating power supply and a fluctuating load between the power supply and the load in a relatively smooth power chain. In general 44 201034354, constant power control can be applied to isolate one or more portions of relatively stable power from one or more portions having fluctuating power. For example, the inventive principles of constant power control can be applied to the following energy conversions: (a) from DC to AC, such as from the sun to the grid, fuel cell to grid; 0) from AC to DC, such as grid to battery (c) from AC to a variable mechanical load, such as, for example, AC to various motors on a production line; (d) from DC to a variable mechanical load such as from a battery to an electric motor on an electric locomotive (EV) (e) from a variable mechanical producer to an AC load, such as from a wind turbine to a grid; (0 from a variable mechanical generator to a DC load, such as from a wind turbine to a battery; etc. In some embodiments, a mechanical load, for example, in induction heat, can be a thermal load. Another illustrative example includes constant power control for a wind turbine fed into a grid or other AC load. The application of the inventive principle. If the wind flow is constant, that is, a laminar flow to turbulent flow, then the harvested power is uniform. This can be analogized to constant illumination on the -PV panel. Therefore, the average power flow must be The cycle basis is stored for transfer to A C grid. This can be analogized to cycle-by-cycle t-force storage to transfer Dc power from the -pv board to an AC load. On the other hand 'if the wind is messy, then the harvested power is dynamic, which can be Analogy to the shadowing effect on the PV panel. But it may be faster and more varied. In this case, the invention principle of combining fast mppt and cycle-by-cycle power storage can be utilized to have a beneficial effect. Can be used to determine operating points at frequent intervals, while a constant power control loop can be used to maintain the system at a recently determined operating point. 45 201034354 The diagram is based on the inventive principles disclosed in this patent, - the power conversion system Another embodiment. The power path is transferred from the power source 154 to a load 156. The power path includes an energy storage device 150 and a power stage 152. The controller 158 causes the power level control to arrive at or from the energy storage device. The power can be controlled to a constant value, a fluctuation value, etc. The power from the power source can have a constant value, a fluctuation value, etc. The load power can have a constant value, wave Values, etc. Certain additional inventive principles disclosed in this patent relate to electromagnetic interference (EMI). Figure 52 illustrates an embodiment of a power conversion system having reduced power in accordance with the inventive principles disclosed herein. More than one power level power path 14 转移 transfers power from a power source 138 to a load 142. A constant power control 144 controls the power path to present a constant input impedance to the power source. An EMI mitigation element 146 operates on the power path Reducing or eliminating EMI originating from the power path. The inventive principles disclosed herein are described above with reference to some specific exemplary embodiments, but such embodiments may be modified in arrangement or detail without departing from the inventive concepts. For example, some embodiments are described in the background as delivering power to an AC grid, but the inventive principles are also applicable to other kinds of loads. As another example, some embodiments are described as energy storage devices for capacitors, and fluctuating DC link voltages, but the principles of the invention are also applicable to other various energy storage devices, such as a DC link having an AC chopping current. An inductor that is current rather than voltage. As a further example, any of these constant power control techniques described herein may also be subject to fluctuating power control, or any other type of power control of 201034354 may be implemented. Such changes and modifications are considered to fall within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 illustrates the mismatch between a DC power supply and a 60 Hz AC load in a power converter. Figure 2 illustrates a conventional system for converting DC power from a photovoltaic (PV) panel to AC power. Figure 3 illustrates the power loss in a PV panel as opposed to the chopping voltage. Figure 4 shows the cost of a capacitor versus capacitor. Figure 5 illustrates the operation of a PV power conversion system. Figure 6 illustrates the operation of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 7 illustrates an embodiment of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 8 illustrates another embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. Figure 9 illustrates yet another embodiment of a power conversion system having constant power control in accordance with certain inventive principles disclosed herein. Figure 10 illustrates an embodiment of a controller for implementing constant power control in accordance with certain inventive principles disclosed herein. Figure 11 illustrates an embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. Figure 12 is a diagram showing an embodiment of a main power path suitable for implementing the inverter system of Figure 11 in accordance with certain inventive principles disclosed herein. Figures 13-16 illustrate embodiments of a PV panel in accordance with certain inventive principles disclosed herein. Figure 17 illustrates the instantaneous demand for voltage from a sinusoidal DC/AC converter compared to the voltage available from a DC link capacitor maintained at a fixed voltage. Figure 18 illustrates certain inventive principles disclosed in accordance with the present patent, as compared to a voltage available from a DC link capacitor having a large AC voltage swing due to a constant power control feature, from a bridge type DC/AC The instantaneous demand for the voltage of the converter. Figure 19 illustrates an embodiment of a power conversion system with harmonic distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 20 illustrates an embodiment of a distortion mitigation system in accordance with certain inventive principles disclosed herein. Figure 21 illustrates another embodiment of a distortion mitigation system showing certain example implementation details in accordance with certain inventive principles disclosed herein. Figure 22 illustrates yet another embodiment of a controller having harmonic distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 23 illustrates an embodiment with gate current control in accordance with certain inventive principles disclosed herein. Figure 24 illustrates an embodiment of a controller in accordance with certain inventive principles disclosed herein. Figure 25 illustrates an embodiment of a controller with predistortion in accordance with certain inventive principles disclosed herein. 48 201034354 Figures 26-29 illustrate embodiments of pre-distorted components in accordance with certain inventive principles disclosed herein. Figure 30 illustrates an embodiment of impedance transformation in accordance with certain inventive principles disclosed herein. Figure 31 illustrates the operation of a power conversion system without impedance transformation. Figure 32 shows the voltage-current curve and the power curve of a typical PV panel. Figure 33 shows the VI and power curve of a power supply with more than one local maximum power point. Figure 34 illustrates an embodiment of a power conversion system having constant power control and an input swing feature in accordance with certain inventive principles disclosed herein. Figure 35 illustrates an embodiment of constant power control de-energization in accordance with certain inventive principles disclosed herein. Figure 36 shows how Figures 20 and 21 can operate under certain conditions. Figure 37 illustrates an embodiment of a plurality of power systems in accordance with certain inventive principles disclosed herein. Figure 38 illustrates an embodiment of a power conversion system in which a plurality of DC/DC converters include a constant power control function in accordance with certain inventive principles disclosed herein. Figures 39-42 illustrate embodiments of a power conversion system having a plurality of power controlled converters and a central converter in accordance with certain inventive principles disclosed herein. Figures 43-51 illustrate an embodiment with 49 201034354 distortion mitigation in accordance with certain inventive principles disclosed herein. Figure 52 illustrates an embodiment of a power conversion system in accordance with certain inventive principles disclosed herein and having EMI mitigation. Figure 53 illustrates another embodiment of a power conversion system in accordance with certain inventive principles disclosed herein. [Description of main component symbols] 16, 40, 52... power supply 54... first power stage 18... first power converter stage 56, 200·· energy storage element 20, 124, 150... energy storage device 58... second power Stage 22... Photocell 62... Harmonic distortion mitigation device 24, 130, 306... DC/DC converter 1 电流... Current source 24a... Pre-regulator stage 102... Low-impedance path control 24b··· Main stage 104...VI curve 26, 132~DC/AC converter 106...power curve 28, 44, 60, 158... controller 110, 134... constant power control loop 30... voltage sensor 112... AC load 32, 318, 342 Current sensors 114, 118, 138, 154... Power supplies 34, 315... Arrows 116... Tracking circuits 36, 51, 140, 148... Power path 120... Power converters 38, 108, 152... Power Stage 122... combiner 42, 142, 156, 204, 216... load 126... constant power control function 46... amplification/sampling circuit 128, 350, 358, 364, 370... light 48... control block (PV) board 5〇 ...control algorithm segment 144...constant power control

50 201034354 146· "EMI緩和元件 202、214…電力級 206、207、250·..控制器 208."失真緩和功能 210.··調變器 212···同步功能 218、348…網格濾波器 220、224···電壓感測器或連接 222…電流感測器或連接 226、258…正弦PWM元件 228、260···數位鎖相環路 230···諧波失真消除HDC元件 234···正弦產生器 236…乘法器 238、256…加法器 240…功能塊 242—DC鏈電壓控制特徵 244· ··網格電流控制元件 246···反DQ變換元件 252、254…預失真元件 290···太陽電池板 292、294…輸入端子 296…零漣波輸入濾波器 298···預調整器 300、410…推-挽級 302、411、412·"變壓器 3〇4、414…整流器 308···高壓輸出橋 310···被動式輸出濾波器 312···換流器級 314…第一PWM控制器 316、320、326、340…電壓感測器 322···鏈電壓控制電路 324…第二PWM控制器 329…總和節點 330…第三PWM控制器 332—DC鏈電壓控制器 334…總和電路 336···網格電流控制環路 338···諧波失真緩和電路 344…最大電力點追蹤(MPPT) 電路 346",DC 電源 352、356、362、368…恒定電 力控制環路 354、366…電池 360···串電池 400…模組 51 201034354 402、418、422、426、438...恒 定電力控制 404…中心換流器 406…換流器橋 407、408、409、428、434…諧 波失真缓和DM 416、420…DC/DC轉換器 424、432···分散式換流器 430、436…電源 PV…光電 VPV…PV輸出電壓 IPV…PV輸出電流 Rpv ' R-INTERNAL"· 串聯電阻 Zin…阻抗 Ir··電流 Rr*·可變電阻 Vi…輸入電壓 Vref…參考電壓 DC…直流 AC…交流 V〇C ' VnniNK、Vd、Vunk·..鍵電壓 Cdc、Qjnk…鍵電容器 Vgrid*"AC輸出電壓 D1···驅動信號50 201034354 146· "EMI mitigation elements 202, 214... power level 206, 207, 250 ·.. controller 208. " distortion mitigation function 210. · modulator 212 · · synchronization function 218, 348... Grid filter 220, 224 · · · voltage sensor or connection 222 ... current sensor or connection 226, 258 ... sinusoidal PWM components 228, 260 · · digital phase-locked loop 230 · · · harmonic distortion elimination HDC Element 234···Sine generator 236...Multiplier 238, 256...Adder 240...Function block 242—DC chain voltage control feature 244··Grid current control element 246···Reverse DQ conversion element 252, 254... Predistortion element 290···Solar panel 292, 294...input terminal 296...zero chopping input filter 298···pretuner 300,410...push-pull stage 302,411,412·"transformer 3〇 4, 414...rectifier 308···high-voltage output bridge 310···passive output filter 312···inverter stage 314...first PWM controller 316, 320, 326, 340... voltage sensor 322·· Chain voltage control circuit 324...second PWM controller 329...sum node 330...third PWM controller 332-DC chain Voltage controller 334...sum circuit 336··Grid current control loop 338···Harmonic distortion mitigation circuit 344...Maximum power point tracking (MPPT) circuit 346", DC power source 352, 356, 362, 368...constant Power control loop 354, 366... battery 360···string battery 400... module 51 201034354 402, 418, 422, 426, 438... constant power control 404... central converter 406...inverter bridge 407, 408, 409, 428, 434... Harmonic Distortion Moderation DM 416, 420... DC/DC Converter 424, 432 · Decentralized Converter 430, 436... Power Supply PV... Photovoltaic VPV...PV Output Voltage IPV...PV Output Current Rpv ' R-INTERNAL"· series resistance Zin...impedance Ir··current Rr*·variable resistance Vi...input voltage Vref...reference voltage DC...DC AC...AC V〇C 'VnniNK, Vd, Vunk·.. Voltage Cdc, Qjnk...key capacitor Vgrid*"AC output voltage D1···drive signal

Si〜SL···感測信號 D^Dm…驅動信號 氏⑻、氏⑻…恥⑻…功能Si~SL···Sensing signal D^Dm...Drive signal (8), (8)...shame (8)...function

Cl、C2···電容器 DPLL···數位鎖相環路 MPPT…最大電力點追蹤 LINK REF…鏈參考電壓 L、N…輸出端子 L1…電感器Cl, C2···capacitor DPLL···digital phase-locked loop MPPT...maximum power point tracking LINK REF...chain reference voltage L,N...output terminal L1...inductor

Cl、C2…電容器 D1〜D5···二極管 Q1〜Q7···電晶體 Ή、T2…分裂鐵心型變壓器 t…時間 HDM…諧波失真緩和 Ses···感測信號 SM…控制信號 Si/··負載信號 DM…失真緩和 MOD…調變器 SYNC…同步 IG…網格電流 VG…網格電壓 θ、φ…相位信號Cl, C2...capacitors D1 to D5···Diodes Q1 to Q7···Optoelectronic Ή, T2... Split-core type transformer t...Time HDM...Harmonic distortion mitigation Ses···Sensing signal SM...Control signal Si/ ··Load signal DM...distortion mitigation MOD... tuner SYNC...synchronous IG...grid current VG...grid voltage θ, φ...phase signal

52 201034354 HDC…諧波失真消除 Z…阻抗 …脈衝寬度調變信號 Isc…短路電流 Ierr…誤差信號 V〇c…開路輸出電壓 iREFsiN(e)…成比例信號 P…電力 siN(e)…正弦信號 MPP、B'…最大電力點 MAG…誤差大小信號 MPP1…本地最大電力點 Vdc(AVERAGE). ·鏈電壓平均值 MPP2…真實最大電力點 MAG'、MAG"···大小信號 VsWEEP…電壓範圍 ® Id…間接信號 IsWEEP…電流範圍 Iq…正交信號 A、B、C點 Ma〜··預失真信號 RECT…整流器 f(s)…函數 EMI…電磁干擾 . VG(RMS)…酿電壓^RMS值 ES···能量儲存裝置 ViNTERNAL·…電壓源 Iac…脈衝電容 PS···電力級 參 5352 201034354 HDC...Harmonic Distortion Elimination Z...Impedance...Pulse Width Modulation Signal Isc...Short Circuit Current Ierr...Error Signal V〇c...Open Circuit Output Voltage iREFsiN(e)...proportional Signal P...Power SiN(e)...Sinusoidal Signal MPP, B'...maximum power point MAG...error size signal MPP1...local maximum power point Vdc(AVERAGE). ·chain voltage average MPP2...true maximum power point MAG',MAG"···size signal VsWEEP...voltage range® Id...Indirect signal IsWEEP... Current range Iq... Quadrature signal A, B, C Point Ma~··Predistortion signal RECT...Rectifier f(s)...Function EMI...Electromagnetic interference. VG(RMS)...Frozen voltage^RMS value ES···Energy storage device ViNTERNAL·...voltage source Iac...pulse capacitance PS···power level parameter 53

Claims (1)

201034354 七、申請專利範圍: 1. 一種系統,包含: 一轉換器,將電力從一電源轉移至一負載,該轉換 器具有一電力級及一能量儲存裝置;及 一控制器,使該電力級控制到達或來自該能量儲存 裝置之電力。 2. 如申請專利範圍第1項所述之系統,其中該電力被控制 成一實質恒定值。 3. 如申請專利範圍第1項所述之系統,其中該電力被控制 成一波動值。 4. 如申請專利範圍第1項所述之系統,其中該電源或負載 具有實質恒定電力。 5. 如申請專利範圍第1項所述之系統,其中該電源或負載 具有波動電力。 6. —種系統,包含: 一轉換器,在一電源與一具有一波動電力需求之負 @ 載之間轉移電力;及 一控制器,提供電力控制; 其中該轉換器包含一推-挽級及一接隨在該推-挽級 之後的能量儲存裝置。 7. 如申請專利範圍第6項所述之系統,其中該電力控制包 含實質恒定電力控制或波動電力控制。 8. 如申請專利範圍第6項所述之系統,其中該控制器被安 排成控制該能量儲存裝置的一參數。 54 201034354 9. 一種積體電路,包含: 電力控制電路,提供對一電力轉換器之電力控制; 及 一電力開關,被耦接至該電力控制電路以操作該電 力轉換器。 10. 如申請專利範圍第9項所述之積體電路,進一步包含一 第二電力開關,被耦接至該電力控制電路以操作該電力 轉換器。 11. 如申請專利範圍第10項所述之積體電路,其中該第一及 第二電力開關被組配成操作在該電力轉換器中的一推-挽級。 12. 如申請專利範圍第9項所述之積體電路,進一步包含失 真緩和電路。 13. 如申請專利範圍第9項所述之積體電路,進一步包含控 制該電力轉換器中一能量儲存裝置的一參數的電路。 14. 如申請專利範圍第9項所述之積體電路,進一步包含掃 描該電力轉換器輸入的一操作點。 15. 如申請專利範圍第9項所述之積體電路,進一步包含 EMI緩和電路。 16. 一種系統,包含: 兩個或兩個以上電力轉換器,將電力從兩個或兩個 以上電源轉換至一或一個以上具有波動電力需求的負 載; 其中該等兩個或兩個以上電力轉換器具有電力控 55 201034354 制。 17. 如申請專利範圍第16項所述之系統,其中該等兩個或兩 個以上電力轉換器具有被串聯、並聯、串並聯,或並串 聯耗接的輸出。 18. 如申請專利範圍第16項所述之系統,其中該等兩個或兩 個以上電力轉換器具有被合併以向同一負載提供電力 的輸出。 19. 如申請專利範圍第18^所述之系統,進一步包含一能量 參 儲存裝置,被耦接至該第一及第二轉換器之該等合併輸 出。 20. 如申請專利範圍第18項所述之系統,其中來自每一轉換 器之該等輸出被允許浮動。 21. —種系統,包含: 一轉換器,在一電源與一具有一波動電力需求的負 載之間轉移電力; 一控制器,提供電力控制;及 _ 一失真緩和電路。 22. 如申請專利範圍第21項所述之系統,其中: 該轉換器包含一能量儲存裝置;且 該失真缓和電路控制該能量儲存裝置之一參數。 23. 如申請專利範圍第22項所述之系統,其中該失真緩和電 路可使該參數之一DC部份滑動,以防止該參數之一AC 部份之極值導致不可接受的失真。 24. 如申請專利範圍第21項所述之系統,其中該失真緩和電 56 201034354 路包Ί—正弦產生器。 25. 如申請專利範圍第21項所述之系統,其中該失真緩和電 路包含一預失真電路。 26. 如申請專利範圍第21項所述之系統,其中該控制器包含 網格電流控制。 27. —種系統,包含: 一轉換器,在一電源與一具有波動電力需求的負載 之間轉移電力;及 一控制器,提供電力控制; 其中該控制器可選擇性地去能該電力控制。 28. 如申請專利範圍第27項所述之系統,其中: 該電力控制防止電力波動到達該電源;且 去能該電力控制使電力波動能夠到達該電源。 29. 如申請專利範圍第27項所述之系統,進一步包含一追蹤 電路以監測該電源。 30. 如申請專利範圍第29項所述之系統,其中該追蹤電路確 定該電力控制何時被去能的一操作點。 31. 如申請專利範圍第30項所述之系統,其中該操作點包含 一最大電力點。 32. 如申請專利範圍第29項所述之系統,其中該電力控制週 期性地,或當該轉換器的一操作參數偏離一期望值時被 去能。 33. 如申請專利範圍第32項所述之系統,其中當該轉換器之 一操作參數超過一限值時,該控制器可重新致能該電力 57 201034354 控制。 34. —種系統,包含: 一電力路徑,具有一第一電力級被耦接至該電力略 徑之一輸入;及 一控制器,響應來自該電力路徑的一感測信繞產生 一驅動信號以提供電力控制; 其中該感測信號是獲自於該電力路徑之輪 外,或該驅動信號是在該第一電力級以外被施加於談電 力路徑。 35. 如申請專利範圍第34項所述之系統,其中該感測信號β 獲自於該電力路徑的一輸出。 36. 如申請專利範圍第34項所述之系統,其中電力藉由牌誃 . 電力路徑之一參數控制成一恒定值而被控制。 37·如申請專利範圍第34項所述之系統,其中電力藉由將兮 電力路徑之一參數控制成一波動值而被控制。 38,如申請專利範圍第34項所述之系統,其中該電力路經勺 括: 匕 _ —能量儲存裝置,在該第一電力級之後;及 —第二電力級,具有一輸入被耦接至該能量儲存裴 置。 39·如申請專利範圍第38項所述之系統’其中該驅動信號被 施加於該第二電力級。 ° & 58201034354 VII. Patent application scope: 1. A system comprising: a converter for transferring power from a power source to a load, the converter having a power level and an energy storage device; and a controller for controlling the power level The power that reaches or comes from the energy storage device. 2. The system of claim 1, wherein the power is controlled to a substantially constant value. 3. The system of claim 1, wherein the power is controlled to a fluctuation value. 4. The system of claim 1, wherein the power source or load has substantially constant power. 5. The system of claim 1, wherein the power source or load has fluctuating power. 6. A system comprising: a converter for transferring power between a power source and a negative load having a fluctuating power demand; and a controller providing power control; wherein the converter includes a push-pull stage And an energy storage device that follows the push-pull stage. 7. The system of claim 6 wherein the power control comprises substantially constant power control or fluctuating power control. 8. The system of claim 6 wherein the controller is arranged to control a parameter of the energy storage device. 54 201034354 9. An integrated circuit comprising: a power control circuit providing power control for a power converter; and a power switch coupled to the power control circuit to operate the power converter. 10. The integrated circuit of claim 9, further comprising a second power switch coupled to the power control circuit to operate the power converter. 11. The integrated circuit of claim 10, wherein the first and second power switches are grouped into a push-pull stage operating in the power converter. 12. The integrated circuit of claim 9, further comprising a distortion mitigation circuit. 13. The integrated circuit of claim 9, further comprising circuitry for controlling a parameter of an energy storage device in the power converter. 14. The integrated circuit of claim 9 further comprising an operating point for scanning the input of the power converter. 15. The integrated circuit of claim 9, further comprising an EMI mitigation circuit. 16. A system comprising: two or more power converters for converting power from two or more power sources to one or more loads having fluctuating power requirements; wherein the two or more power sources The converter has a power control 55 201034354 system. 17. The system of claim 16 wherein the two or more power converters have outputs that are connected in series, in parallel, in series and parallel, or in series. 18. The system of claim 16, wherein the two or more power converters have outputs that are combined to provide power to the same load. 19. The system of claim 18, further comprising an energy storage device coupled to the combined outputs of the first and second converters. 20. The system of claim 18, wherein the outputs from each of the converters are allowed to float. 21. A system comprising: a converter for transferring power between a power source and a load having a fluctuating power demand; a controller providing power control; and _ a distortion mitigation circuit. 22. The system of claim 21, wherein: the converter comprises an energy storage device; and the distortion mitigation circuit controls one of the parameters of the energy storage device. 23. The system of claim 22, wherein the distortion mitigation circuit is capable of sliding a DC portion of the parameter to prevent an extreme value of the AC portion of the parameter from causing unacceptable distortion. 24. The system of claim 21, wherein the distortion mitigating power 56 201034354 is a sinusoid generator. 25. The system of claim 21, wherein the distortion mitigation circuit comprises a predistortion circuit. 26. The system of claim 21, wherein the controller comprises grid current control. 27. A system comprising: a converter for transferring power between a power source and a load having a fluctuating power demand; and a controller providing power control; wherein the controller is selectively operative to control the power . 28. The system of claim 27, wherein: the power control prevents power fluctuations from reaching the power source; and the power control is enabled to enable power fluctuations to reach the power source. 29. The system of claim 27, further comprising a tracking circuit to monitor the power source. 30. The system of claim 29, wherein the tracking circuit determines an operating point at which the power control is disabled. 31. The system of claim 30, wherein the operating point comprises a maximum power point. 32. The system of claim 29, wherein the power control is periodically disabled, or when an operational parameter of the converter deviates from a desired value. 33. The system of claim 32, wherein the controller re-enables the power 57 201034354 control when an operational parameter of the converter exceeds a limit. 34. A system comprising: a power path having a first power level coupled to one of the power ramp inputs; and a controller responsive to a sense signal from the power path to generate a drive signal To provide power control; wherein the sensed signal is obtained from the wheel of the power path, or the drive signal is applied to the talk power path outside the first power level. 35. The system of claim 34, wherein the sensing signal β is derived from an output of the power path. 36. The system of claim 34, wherein the power is controlled by a plaque. One of the parameters of the power path is controlled to a constant value. 37. The system of claim 34, wherein the power is controlled by controlling one of the parameters of the power path to a fluctuation value. 38. The system of claim 34, wherein the power path includes: 匕_- an energy storage device after the first power level; and - a second power level having an input coupled To the energy storage device. 39. The system of claim 38, wherein the drive signal is applied to the second power stage. ° & 58
TW098143647A 2008-12-20 2009-12-18 Energy conversion systems with power control TW201034354A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12/340,715 US9263895B2 (en) 2007-12-21 2008-12-20 Distributed energy conversion systems
US14930509P 2009-02-02 2009-02-02
US12/368,990 US8796884B2 (en) 2008-12-20 2009-02-10 Energy conversion systems with power control
US12/368,987 US20100157632A1 (en) 2008-12-20 2009-02-10 Energy Conversion Systems With Power Control

Publications (1)

Publication Number Publication Date
TW201034354A true TW201034354A (en) 2010-09-16

Family

ID=42269288

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098143647A TW201034354A (en) 2008-12-20 2009-12-18 Energy conversion systems with power control

Country Status (4)

Country Link
KR (1) KR20110104525A (en)
CN (1) CN102301578B (en)
TW (1) TW201034354A (en)
WO (1) WO2010071855A2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408527B (en) * 2010-11-05 2013-09-11 Tatung Co Photovoltaic power apparatus and sampling method thereof
TWI454031B (en) * 2012-06-04 2014-09-21 Darfon Electronics Corp Three-port single-phase single-stage micro-inverter and operation method thereof
TWI487252B (en) * 2013-01-22 2015-06-01 Chang Mei Ling Variable frequency variable current driver
TWI549418B (en) * 2015-03-31 2016-09-11 寧茂企業股份有限公司 Ac motor driving system and driving method thereof
TWI554020B (en) * 2014-02-26 2016-10-11 全漢企業股份有限公司 Inverter apparatus and control method thereof
US10411486B2 (en) 2016-09-09 2019-09-10 Delta Electronics (Thailand) Public Company Limited Power conversion device
TWI697190B (en) * 2018-11-20 2020-06-21 朗天科技股份有限公司 3-phase dc/ac converter with sequential energy extraction

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
CN101933209B (en) 2007-12-05 2015-10-21 太阳能安吉有限公司 Release mechanism in distributed electrical power apparatus, to wake up and method for closing
EP2232690B1 (en) 2007-12-05 2016-08-31 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
WO2009118682A2 (en) 2008-03-24 2009-10-01 Solaredge Technolgies Ltd. Zero current switching
WO2009136358A1 (en) 2008-05-05 2009-11-12 Solaredge Technologies Ltd. Direct current power combiner
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
KR101337437B1 (en) * 2011-12-26 2013-12-06 고려대학교 산학협력단 Charge pumping apparatus using optimum power point tracking and Method thereof
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US10115841B2 (en) * 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
JP6064642B2 (en) * 2013-02-08 2017-01-25 オムロン株式会社 Boosting unit, power conditioner, solar cell system, program, and voltage tracking method
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
KR102149393B1 (en) * 2013-10-08 2020-08-28 삼성전기주식회사 Control device and Control method for Photovoltaic system
KR20150045719A (en) 2013-10-21 2015-04-29 서울대학교산학협력단 Converter-less energy harvesting circuit and electronic device using thereof
WO2015073224A2 (en) 2013-11-18 2015-05-21 Rensselaer Polytechnic Institute Methods to form and operate multi-terminal power systems
TWI514742B (en) * 2014-07-16 2015-12-21 Grenergy Opto Inc Power controllers and related control methods
US10594207B2 (en) 2015-10-23 2020-03-17 The University Of Hong Kong Plug-and-play ripple pacifier for DC voltage links in power electronics systems and DC power grids
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN107153212B (en) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 Method for mapping a power generation facility
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
CN106026903B (en) * 2016-06-30 2017-12-01 扬州华鼎电器有限公司 A kind of photovoltaic module string power optimized system and its optimization method
FR3054384B1 (en) * 2016-07-21 2018-08-17 Sagemcom Energy & Telecom Sas METHOD FOR RECOVERING EXCESS ENERGY IN AN ELECTRIC POWER GENERATION PLANT
CN107947321A (en) * 2017-12-05 2018-04-20 上海电机学院 A kind of solar energy hybrid-driven miniature electric automobile with string type MPPT
CN107863779B (en) * 2017-12-14 2019-10-18 清华大学 Pulse load energy regulates and controls method and system in isolated power
CN110581567B (en) * 2019-08-08 2021-07-30 国网山东省电力公司济南市历城区供电公司 Power transmission method and system for tracking internal resistance matching in real time
DE102021201400A1 (en) 2021-02-15 2022-08-18 Mahle International Gmbh Electronic circuit arrangement for a fuel cell arrangement and fuel cell arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5691627A (en) * 1996-09-17 1997-11-25 Hughes Electronics Push-pull full shunt switching bus voltage limiter with current sense capability
JP2002252986A (en) * 2001-02-26 2002-09-06 Canon Inc Inverter, power supply system and method for reducing leakage current in power supply system
US6643148B1 (en) * 2002-04-18 2003-11-04 Alcatel Canada Inc. Audio band conducted emissions suppression on power feeders
WO2004001942A1 (en) * 2002-06-23 2003-12-31 Powerlynx A/S Power converter
TWI232361B (en) * 2003-11-25 2005-05-11 Delta Electronics Inc Maximum-power tracking method and device of solar power generation system
US7193872B2 (en) * 2005-01-28 2007-03-20 Kasemsan Siri Solar array inverter with maximum power tracking
US7479774B2 (en) * 2006-04-07 2009-01-20 Yuan Ze University High-performance solar photovoltaic (PV) energy conversion system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI408527B (en) * 2010-11-05 2013-09-11 Tatung Co Photovoltaic power apparatus and sampling method thereof
TWI454031B (en) * 2012-06-04 2014-09-21 Darfon Electronics Corp Three-port single-phase single-stage micro-inverter and operation method thereof
TWI487252B (en) * 2013-01-22 2015-06-01 Chang Mei Ling Variable frequency variable current driver
TWI554020B (en) * 2014-02-26 2016-10-11 全漢企業股份有限公司 Inverter apparatus and control method thereof
TWI549418B (en) * 2015-03-31 2016-09-11 寧茂企業股份有限公司 Ac motor driving system and driving method thereof
US9698721B2 (en) 2015-03-31 2017-07-04 Rhymebus Corporation AC motor driving system and method thereof
US10411486B2 (en) 2016-09-09 2019-09-10 Delta Electronics (Thailand) Public Company Limited Power conversion device
TWI697190B (en) * 2018-11-20 2020-06-21 朗天科技股份有限公司 3-phase dc/ac converter with sequential energy extraction

Also Published As

Publication number Publication date
WO2010071855A2 (en) 2010-06-24
CN102301578A (en) 2011-12-28
WO2010071855A3 (en) 2010-09-23
KR20110104525A (en) 2011-09-22
CN102301578B (en) 2015-01-28

Similar Documents

Publication Publication Date Title
TW201034354A (en) Energy conversion systems with power control
US8796884B2 (en) Energy conversion systems with power control
US10056759B2 (en) Renewable energy power generation systems
US20100157632A1 (en) Energy Conversion Systems With Power Control
US9998033B2 (en) Stacked voltage source inverter with separate DC sources
US8089785B2 (en) Power conditioning unit
US9225256B2 (en) Apparatus and method for controlling DC-AC power conversion
US9071141B2 (en) Two-stage single phase bi-directional PWM power converter with DC link capacitor reduction
US8674668B2 (en) Solar photovoltaic systems
GB2478789A (en) Power conditioning unit with maximum power point tracking
KR101920469B1 (en) Grid connected single-stage inverter based on cuk converter
Pateriya et al. Application of UPQC-PV in medium voltage radial distribution system to mitigate voltage sag-swell
Kanthaphayao et al. Distributed control of parallel AC to DC converter