GB2478789A - Power conditioning unit with maximum power point tracking - Google Patents

Power conditioning unit with maximum power point tracking Download PDF

Info

Publication number
GB2478789A
GB2478789A GB1004621A GB201004621A GB2478789A GB 2478789 A GB2478789 A GB 2478789A GB 1004621 A GB1004621 A GB 1004621A GB 201004621 A GB201004621 A GB 201004621A GB 2478789 A GB2478789 A GB 2478789A
Authority
GB
United Kingdom
Prior art keywords
power
mains
storage capacitor
energy storage
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
GB1004621A
Other versions
GB2478789B (en
GB201004621D0 (en
Inventor
Lesley Chisenga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Enecsys Ltd
Original Assignee
Enecsys Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enecsys Ltd filed Critical Enecsys Ltd
Priority to GB1004621.7A priority Critical patent/GB2478789B/en
Publication of GB201004621D0 publication Critical patent/GB201004621D0/en
Priority to US12/789,154 priority patent/US8405367B2/en
Priority to PCT/GB2011/050529 priority patent/WO2011114161A2/en
Priority to EP11710023.0A priority patent/EP2548279B1/en
Priority to CN2011200850898U priority patent/CN202103601U/en
Priority to CN201110075681.4A priority patent/CN102279614B/en
Publication of GB2478789A publication Critical patent/GB2478789A/en
Application granted granted Critical
Publication of GB2478789B publication Critical patent/GB2478789B/en
Priority to US13/843,772 priority patent/US9270191B2/en
Priority to US14/986,706 priority patent/US9812980B2/en
Priority to US15/625,862 priority patent/US10193467B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • H02J2300/26The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/40Synchronising a generator for connection to a network or to another generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A power conditioning unit with maximum power point tracking (MPPT) including an energy storage capacitor Cdc, for storing energy from a do power source 2, e.g. a solar PV (photovoltaic) panel, for delivering to an ac mains power supply 6 and a do-to-ac converter 5 for converting energy stored in the capacitor to power for the mains power supply. A power injection control block B has a sense input coupled to the energy storage capacitor and controls the do-to ac converter to control the injected mains power. Thus the power injection control block tracks a maximum power point of said dc power source without measuring a dc voltage or do current provided from the do power source. The power injection control block may control an amplitude of an ac current output such that an amount of power transferred to the grid mains is dependent on an amplitude of a sinusoidal voltage component on the energy storage capacitor.

Description

Power Conditioning Units
RELATED APPLICATIONS
This application is related to U512/160,743 filed by the present applicants (and to GB2,434,490A).
FIELD OF THE INVENTION
This invention relates to power condition units for delivering power from a dc power source to an ac output, either for connecting directly to the mains (grid) utility supply or for powering mains (grid) devices directly, independent from the mains utility supply.
More particularly the invention relates to methods and apparatus for maximum Power Point Tracking (MPPT) for such power conditioning units.
BACKGROUND TO THE INVENTION
We have previously described (see above) improved techniques for energy control in power conditioning units (inverters). In particular these techniques enable the construction of a dc-to-mains power converter which does not need to use electrolytic capacitors, which are prone to failure, especially at high temperatures as encountered, for example, behind a solar PV (photovoltaic) panel.
Background prior art can be found in:
EP 0780750A; JP 2000020150A; US 2005/0068012; JP 05003678A; GB2415841A; EP0947905A; W02006/011071; EP1,235,339A; W02004/006342; DE 100 64 039 A; U52005/030772; W096/07130; U56,657,419; U52004/1 17676; U52006/232220; W02004/O01 942; GB241 9968A; US7,31 9,313; U57,450,401; U57,41 4,870; U57,064,967; "Cost-Effective Hundred-Year Life for Single-Phase Inverters and Rectifiers in Solar and LED Lighting Applications Based on Minimum Capacitance Requirements and a Ripple Power Port", P. T. Kerin and R. S. Balog -technical paper; US2009/0097283; "Long-Lifetime Power Inverter for Photovoltaic AC Modules", C. Rodriguez and G. A. J. Amaratunga, IEEE Trans IE, 55(7),2008,p 2593; U52008/097655.
We will now describe some improved techniques for maximum power point tracking, which are particularly suitable for use with power conditioning units of the types we have previously described.
SUMMARY OF THE INVENTION
According to a first aspect of the invention there is therefore provided a power conditioning unit with maximum power point tracking (MPPT), for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein said power injection control block is configured to track a maximum power point of said dc power source without measuring a dc voltage or dc current provided from said dc power source.
In some preferred embodiments a voltage on the energy storage capacitor has a sinusoidal voltage component (at twice the frequency of the ac mains), and the power injection control block is configured to control an amplitude of an ac current provided to the ac mains power supply output such that an amount of power transferred to the output is dependent on an amplitude of the sinusoidal voltage component on the energy storage capacitor. In embodiments the average energy transferred is linearly dependent on, more particularly proportional to, a squared value of the sinusoidal voltage component. In embodiments the sinusoidal voltage component is superimposed on a dc link voltage (input to the dc-to-ac converter), and this link voltage is relatively high, for example less than 200, 300, 400 or 500 volts. In such an embodiment the average power transferred is proportional to the difference between the peak (maximum) capacitor voltage squared and the trough (minimum) capacitor voltage squared (although alternatively a power conditioning unit may be arranged such that there is, on average, zero dc voltage on the energy storage capacitor). In embodiments the instantaneous power transferred to the ac mains power supply output is dependent on or proportional to the instantaneous value of voltage on the energy storage capacitor.
In a related aspect of the invention, therefore, there is provided a power conditioning unit with maximum power point tracking (MPPT), for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains; wherein said power injection control block is configured for controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor, and wherein said power injection control block is configured to track a maximum power point of said dc power source by controlling said dc-to-ac converter.
In embodiments of the above described power conditioning units an energy flow from the dc power source to the energy storage capacitor is substantially proportional to an amount of energy change in the energy storage capacitor (this is explained further below). Further, an amount of energy drawn from the energy storage capacitor and provided to the ac mains output is controlled by the power injection control block such that the amount of ac power delivered to the ac mains power supply is dependent on the amount of energy stored in the energy storage capacitor. In such an arrangement the power arrangement control block is thereby able to track the maximum power point of the dc power source by controlling the ac power delivered to the AC mains power supply by controlling the dc-to-ac converter, without the need for MPP tracking on the front end of the power conditioning unit, which typically includes a dc-to-dc converter.
In broad terms the power injection loop pulls power, in the first instance, from the dc power source and delivers this into the energy storage capacitor. In the second instance the power injection loop extracts power from the energy storage capacitor and delivers this to the AC output. The need to deliver AC power to the output results in a sinusoidal voltage component on the energy storage capacitor, and this is an intrinsic part of this control loop; typically this fluctuating sinusoidal component of (a generally dc) voltage on the energy storage capacitor has, in operation, a peak amplitude of at least 10 Volts, 20 Volts, 30 Volts, 40 Volts, 50 Volts, 60 Volts or 100 Volts. The peak amplitude of this sinusoidal voltage component depends upon the current injected into the ac mains output.
Were MPPT to be implemented at the dc input end of the power conditioning unit, for example by means of a control loop on a front end dc-to-dc converter, an MPPT tracking algorithm would generally impose a degree of ripple on the dc input voltage to the power conditioning unit, in order that the operating point of the dc power source can be varied to hence determine the maximum power operating point. The operating point automatically adjusts according to the energy change in the energy storage capacitor.
By contrast in embodiments we employ a "pull" arrangement in which power flows from the dc power source into the energy storage capacitor in effect on demand, the demand being controlled by the second, power injection control loop.
In some preferred embodiments a dc voltage amplification stage is included between the dc power input and the ac mains output, and this stage has a substantially constant amplification factor -that is it is not varied by a control loop to perform MPPT although, in embodiments, the constant amplification factor may be selectable, for example according to the operating environment. In embodiments a voltage amplifier control block may be provided, but not to provide a variable voltage amplification control loop but instead to act effectively as a power switch to switch on and off a path for power flow from the input to the dc-to-dc converter. Optionally, depending upon the implementation of the voltage amplification stage, the voltage amplifier control block may provide a (substantially constant duty cycle) pulse width modulation control signal to the dc voltage amplifier.
An arrangement of the type described above facilitates galvanic isolation between the dc input and ac mains power supply output since the MPPT tracking may be performed without any direct connection to the dc input for measuring voltage and/or current from the dc power source.
In an example implementation the dc-to-ac converter may comprise a buck stage converter or alternatively, for example, an "unfolding bridge" in combination with a pair of power switching devices and an output inductor may be employed, as described in our US 7,626,834 (hereby incorporated by reference in its entirety). In embodiments the power injection control block may be configured to sense a voltage on the (dc link) energy storage capacitor, to scale this down, and to multiply this by a sine wave (of appropriate phase) to create a template signal for comparison with a sensed signal derived from the grid mains, in order to control the output current of the dc-to-ac converter. In embodiments no dc current sensing need be performed. In embodiments the power conditioning unit may include an anti-islanding function, for example as described in our co-pending us application 10/555,803 (W02004/100348) (hereby incorporated by reference in its entirety).
In preferred applications the above power conditioning unit is employed in conjunction with one or more photo voltaic devices (solar panels) -that is it is a solar inverter. In some preferred embodiments the device is employed in combination with a single solar panel and thus has a relatively low dc voltage input, although the technique may also be employed with a so-called "string" of solar panels, in which case the dc input voltage may be one or several hundred volts (in such a case the amplification factor of the dc voltage amplifier may be equal to, or even less than unity, although in general it will be greater than unity). Potentially techniques of the type we describe may also be employed with other types of dc power source, for example one or more fuel cells. In some preferred embodiments the energy storage capacitor is a non-electrolytic capacitor, for example a film, polyester, or polypropylene capacitor; the capacitor may have a value of less than 5OiiF, 4OiiF, 3OiF, 2OiiF or 1 OiiF.
In a related aspect the invention provides a method of maximum power point tracking (MPPT) in a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit including an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output, the method comprising: tracking a maximum power point of said dc power source by controlling a dc-to-ac converter converting energy stored in said energy storage capacitor to ac power for said ac mains power supply input, wherein said tracking is performed without measuring a dc voltage or dc current provided from said dc power source.
In a still further related aspect the invention provides a method of maximum power point tracking (MPPT) in a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit including an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output, wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains, the method comprising: controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor, wherein said controlling is performed by controlling a dc-to-ac converter converting energy stored in said energy storage capacitor to ac power for said ac mains power supply input; and tracking a maximum power point of said dc source by controlling said dc-to-ac converter.
As previously described, broadly in embodiments of such methods changing the fluctuating sinusoidal component of voltage on the (dc link) energy storage capacitor changes the voltage at the input from the dc power source and the current (from the dc power source) is forced to follow the change in voltage, in accordance with the current -voltage characteristic of the dc power source. If power is drawn from the dc link and provided to the ac mains output the dc voltage on the energy storage capacitor drops and the dc input voltage drops concomitantly (and vice versa). Thus in embodiments of the method sensing (just) the voltage on the energy storage capacitor can be employed to control both current and voltage at the input of the power conditioning unit.
The invention also provides a carrier such as non-volatile memory storing processor control code for controlling a processor to implement a method as described above.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects of the invention will now be further described, by way of example only, with reference to the accompanying figures in which: Figure 1 shows an example power conditioning unit suitable for implementation of an MPPT tracking system according to an embodiment of the present invention.
Figure 2 shows details of the power conditioning unit suitable of Figure 1.
Figure 3 shows the DC capacitor voltage in the power conditioning unit of Figure 1.
Figure 4 shows control block A in the power conditioning unit of Figure 1.
Figure 5 shows example characteristics of a photovoltaic panel array as known in the art.
Figure 6 shows control block B in the power conditioning unit of Figure 1.
Figure 7 shows details of examples of control blocks A and B for the power conditioning unit of Figure 1.
Figure 8 shows output and input powers for the power conditioning unit of Figure 1.
Figure 9 shows further example characteristics of a photovoltaic panel array.
Figure 10 shows a block diagram of an example dc input portion of a photovoltaic power conditioning unit incorporating an MPPT tracking system according to an embodiment of the invention.
Figure 11 shows a block diagram of an example ac output portion of a photovoltaic power conditioning unit incorporating an MPPT tracking system according to an embodiment of the invention.
Figure 12 shows a circuit diagram of an example dc input portion of a photovoltaic power conditioning unit incorporating an MPPT tracking system according to an embodiment of the invention.
Figure 13 shows details of an ac output portion of a photovoltaic power conditioning unit incorporating an MPPT tracking system according to an embodiment of the invention.
Figure 14 shows the voltage on a DC link capacitor voltage in a photovoltaic power conditioning unit incorporating an MPPT tracking system according to an embodiment of the invention, illustrating a sinusoidal component of the voltage.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
Power conditioning units We first describe examples of photovoltaic power conditioning units in the context of which embodiments the MPPT (maximum power point tracking) techniques we describe may advantageously employed.
Thus we will first describe a method to control direct current energy sources, in particular a method to control direct current energy sources that utilise power electronics converters to condition the input power into alternating current electricity that is supplied to the mains. Such power electronics converter comprises of a plurality of conversion stages and one energy reservoir in the form of a capacitor. The method presented allows the utilisation of long-lifetime polyester or polypropylene capacitors as opposed to short-lifetime electrolytic capacitors. The method uses two control algorithms: one algorithm controls the power extracted from the energy source that is supplied to the energy reservoir and another controls the transfer of power from the reservoir into the electricity mains.
In one arrangement there is provided a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising: a power conditioning unit input for receiving power from said dc power source; a power conditioning unit output for delivering ac power; an energy storage capacitor; a dc-to-dc converter having an input connection coupled to said power conditioning unit input and an output connection coupled to the energy storage capacitor; and a dc-to-ac converter having an input connection coupled to said energy storage capacitor and an output connection coupled to said power conditioning unit output; wherein said energy storage capacitor is a non-electrolytic capacitor; and wherein said power conditioning unit comprises two control blocks, a first, power extraction control block to control said dc-to-dc converter to control power extracted from said dc power source and provided to said energy storage capacitor, and a second, power injection control block to control said dc-to-ac converter to control power injected into said ac mains power supply from said energy storage capacitor; and wherein said power extraction control block has an input coupled to said power conditioning unit input for receiving power from said dc power source and has an output to control said dc-to-dc converter and is configured to regulate a voltage of said dc power source to control power extracted from said dc power source to said energy storage capacitor.
The ac mains power supply output may be connected to the utility grid, so that the power conditioning unit delivers power into the grid, or it may be a standalone power supply output for supplying power to electrical appliances.
The dc-to-ac converter may be configured to deliver a substantially sinusoidal current or voltage to the ac mains power supply output regardless of a voltage on the energy storage capacitor. This may be achieved by maintaining a current or voltage to the power supply output substantially at a reference sinusoid current or voltage. This may comprise controlling transistors in the dc-to-ac converter responsive both to a voltage or current from the energy storage capacitor and to the current or voltage to the power supply output.
The energy storage capacitor may comprise a non-electrolytic capacitor such as a film-type capacitor (for example polyester or polypropylene). The value of the capacitance may be directly proportional to the maximum power transfer capability, that is, the rated power of the apparatus. This value may be lower than that of the capacitor in a conventional power conditioning unit with the same power rating. For example, less than 20 microfarads, less than 15 microfarads, less than 10 microfarads, less than 5 microfarads or another size available for a non-electrolytic capacitor.
We will also describe a dc-to-dc converter for delivering power from a dc power source to a dc output, the converter being configured to maintain a voltage on the dc power source substantially constant over a range of dc output voltages, the converter comprising an input for receiving power from said dc power source, an output for delivering dc power, at least one power device for transferring power from the input to the output, a sensing circuit for sensing a voltage on said input, and a driver circuit for driving said at least one power device responsive to said sensing to control said power transfer.
We will also describe an inverter for delivering power from a dc power source to an ac output, the inverter being configured to maintain a substantially sinusoidal output voltage or current over a range of dc power source voltages, the inverter comprising an input for receiving power from said dc power source, an output for delivering ac power, at least one power device for transferring power from the input to the output, a low- pass filter coupled to said input, a sensing circuit for sensing an output from the low-pass filter and comparing with a reference, and a driver circuit for driving said at least one power device responsive to said sensing to control said power transfer.
We will also describe a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, wherein a link capacitor of the power conditioning unit connected in parallel between an output of a dc-to-dc converter of said power conditioning unit and an input of a dc-to-ac converter of said power conditioning unit is not an electrolytic capacitor.
We will also describe a method of controlling a power conditioning unit for delivering power from a dc source into an ac electricity supply, the power conditioning comprising: an input for connecting the dc power source; an output for connecting the electricity supply; a first, dc-to-dc power conversion stage for voltage conditioning of the dc power source; a second power conversion stage for power injection into the ac electricity supply; and a dc link energy storage capacitor for energy buffering from the dc power source to the electricity supply; wherein the method comprises controlling said second power conversion stage to control an amplitude of an ac current provided to said ac electricity supply output such that an amount of power transferred to said ac mains power supply output is dependent on a peak amplitude of a fluctuating sinusoidal component of a dc voltage on said energy storage capacitor.
Thus an example power conditioning unit uses a system for controlling the transfer of power from a dc energy source, such as a solar panel, fuel cell, dc wind turbine, etc, into the electricity mains supply, and in particular allows the replacement of short-lifetime energy reservoirs by long-lifetime polyester or polypropylene capacitors.
The energy control and MPPT techniques we describe can be used in any power electronics converter device (1) as shown in Figure 1. This apparatus (1) is made of three major elements: a power converter stage A (3), one reservoir capacitor Cdc (4), and one power converter stage B (5). The apparatus (1) has a plurality of inputs connected to a direct current (dc) source, such as a solar or photovoltaic panel array (2) comprising one or more dc sources connected in series and/or in parallel. The apparatus (1) is also connected to the electricity supply (6) so that the energy extracted from the dc source (1) is transferred into the mains (6).
The power converter stage A (3) may be of different types: it can be a step-down converter where the voltage at the input is decreased using some power electronics topology; it can be a step-up converter where the input voltage is amplified using a different type of power electronics circuit; or it can do both amplify and attenuate the input voltage. In addition, it may provide electrical isolation by means of a transformer or a coupled inductor. In whatever case, the electrical conditioning of the input voltage should be such that the voltage across the capacitor °dc (4) remains higher than the grid voltage (6) magnitude at all times. Also, this block contains one or more transistors, inductors, and capacitors. The transistor(s) are driven through a pulse width modulation (PWM) generator. The PWM signal(s) have variable duty cycle, that is, the ON time is variable with respect to the period of the signal. This variation of the duty cycle effectively controls the amount of power transferred across the power converter stage A (3).
The power converter stage B (5) injects current into the electricity supply (6).
Therefore, the topology utilises some means to control the current flowing from the capacitor Cdc (4) into the mains (6). The circuit topology can be either a voltage source inverter or a current source inverter.
Figure 2 shows an example of a power conditioning unit to which the control system of Figure 1 may be applied. Control A (7 in Figure 1) may be connected to the control connections (e.g. gates or bases) of transistors in power converter stage A (21) to control the transfer of power from the dc energy source (20). The input of this stage is connected to the dc energy source and the output of this stage is connected to dc link capacitor 22. This capacitor stores energy from the dc energy source for delivery to the mains supply (24). Control A may be configured to draw a substantially constant power from the dc energy source regardless of the dc link voltage VdC on Cd.
Control B (8 in Figure 1) may be connected to the control connections of transistors in power converter stage B (23) to control the transfer of power to the mains supply. The input of this stage is connected to the dc link capacitor and the output of this stage is connected to the mains supply. Control B may be configured to inject a substantially sinusoidal current into the mains supply regardless of the dc link voltage VdC on Cd.
The capacitor Cd (4) acts as an energy buffer from the input to the output. Energy is supplied into the capacitor via the power stage A (3) at the same time that energy is extracted from the capacitor via the power stage B (5). The system provides a control method that balances the average energy transfer and allows a voltage fluctuation, resulting from the injection of ac power into the mains (6), superimposed to the average dc voltage of the capacitor Cd (4), as shown in Figure 3. The figure shows an average voltage of 475V and a 100Hz fluctuation of peak amplitude of 30V. The peak amplitude depends on the amount of power being transferred from the input (2 in Figure 1) to the output (6). The frequency of the oscillation can be either 100Hz or 120Hz depending on the line voltage frequency (50 Hz or 60Hz respectively).
Two synchronised and independent control blocks control the system (1): a control block A (7) that directly controls the power stage A (3), and a control block B (8) that directly controls the power stage B (5).
Control block A (7) has the configuration shown in Figure 4. It comprises an adder (31), a negative proportional gain (32), a PWM generator (33), the system plant (34), and a feedback gain (35). This control block regulates the voltage across the dc source (2).
This voltage, v1, is measured and adjusted by gain k1 (35). It is then subtracted to a voltage reference, Vref, using the adder (31). The error, (VretkiVjn), is then amplified by a factor of -k2. The resulting signal is negatively proportional to the error. Therefore, a positive error generates a decrement in the driving signal and conversely. This driving signal is input to a PWM generator (33) that can be a microcontroller, or a PWM integrated circuit. This block generates digital pulses that, in turn, drive the transistors of the power stage A (3) that is equivalent to the plant (34).
Controlling the dc source (2) voltage directly controls the power being transferred across power stage A (3) as is shown in Figure 5 for a photovoltaic panel array.
Control block B (8) has the configuration shown in Figure 6. It comprises an adder (41), a sample and hold (SH) with period T block (42), a proportional-derivative (PD) compensator (43), the system plant (44), a low-pass filter (LPF) feedback block (45).
This control block regulates the average voltage across capacitor CdC (4). Because the voltage, Vd, contains the sum of a constant voltage and a fluctuating sinusoidal component, the signal is scaled and filtered using the LPF block (45). This generates a constant voltage that is compared against a reference, Vdcref, using adder (41). The error is measured every T seconds using a Sample and Hold, SH, block (42). The resulting sampled error is forwarded to a PD compensator (43) that sets the amplitude of the current injected to the mains (6) via power stage B (5). The update of this current reference, ref, amplitude is done every T seconds, which is the inverse of the line voltage frequency. Hence, it can take the values of 0.02 or 0.0167 seconds for a line frequency of 50 or 60 Hz respectively. This is needed in order to prevent current injection distortion.
An implementation of control blocks A and B is shown in Figure 7. Both blocks operate independently but share a common microcontroller for simplicity. The microcontroller performs the control strategy depicted in Figure 6 for block B. In addition the microcontroller could incorporate some means of maximum power point tracking control in case the input source is a photovoltaic panel in block A in order to generate a reference input voltage used in Figure 4. Consequently the input voltage and current and the dc-link voltage are fed into the microcontroller via an arrangement of operational amplifiers or signal conditioning blocks.
The control shown in Figure 4 for block A is implemented using analogue electronics in the form of operational amplifiers and the phase-shift PWM controller depicted in Figure 7 (51). As mentioned before, the input voltage reference is obtained through the microcontroller via a digital to analogue converter (DAC). The proportional error is obtained inside the phase-shift PWM controller that, in turn, generates PWM signals for the transistors of stage A (21).
Implementation of control B (52) includes a current transducer that senses the rectified output current. This signal is conditioned to appropriate voltage levels using operational amplifiers and is then compared against a reference current. The reference current is generated in the microcontroller by an algorithm shown in Figure 6 and the resulting digital word is sent to a DAC in order to get an analogue, instantaneous, current reference. Changes to the current magnitude are done in a periodic basis (with period equal to the grid voltage period) in order to avoid current distortion. The result of the comparison between the reference and the actual current is buffered through a D f lip-flop which, in turn, drives transistor 09 in Figure 2. Transistors 05-08 form a full-bridge that switches at line frequency using an analogue circuit synchronised with the grid voltage. Transistors 05 and 08 are on during the positive half cycle of the grid voltage and 06 and 07 are on during the negative half cycle of the grid voltage.
Figure 8 shows the output and input powers using the aforementioned control. Clearly, the instantaneous power output is a sinusoid superimposed to an average positive value. In contrast, the input is constant throughout the period of the line voltage. The power difference creates an energy mismatch that is absorbed in capacitor CdC. This effectively appears as a fluctuation across the capacitor, as is shown in Figure 3.
MPPT (maximum power point tracking) techniques We will describe a method and system for tracking the maximum power point of an energy generator and extracting maximum power from such a generator when coupled to the load. In embodiments the method/system comprises two independent control blocks. The first block controls the voltage amplification stage that interfaces with the energy generator. The energy generator is preferably a solar module. In embodiments the first control block does not function to regulate the amount of energy to be transmitted but functions only as a switch, either allowing energy flow or preventing any energy flow from the generator and through the amplification stage, regardless of the amount. The output of the voltage amplification stage is coupled to an energy reservoir capacitor. Energy flow is therefore dependent on the amount of "room" (the amount of additional energy which can be stored) in the reservoir capacitor. The second control block is a feedback control loop that interfaces the energy reservour capacitor to the coupled output load. The second control block regulates the amount of power to be injected into the load by emptying the energy reservoir capacitor. The second control block uses, in embodiments exclusively, the level of voltage fluctuations on the energy reservoir (storage capacitor) to control the amount of power being extracted from the energy generator and also the amount of power being injected into the load. In embodiments no use of (measured) current values is made. Thus in embodiments the maximum power point tracking uses two completely independent loops and uses exclusively variations characteristic of the reservoir capacitor.
Some energy generators, such as solar photovoltaic cells, constitute a non-linear power characteristics profile such as one illustrated in figure 9. In the figure maximum power is harvestable at the point labelled X, which exhibits maximum power point current Imp and voltage Vmp. It is preferable that the operating point that yields most energy is attained and maintained. The method we describe does not use the voltage and current values measured at the output of the generator to perform maximum power point tracking. Instead the method measures the voltage fluctuations in the DC link and uses the measured values to track the maximum power point. Figure 10 shows a conceptual block diagram of an embodiment of the control methodology for the dc input side of the power conditioning unit.
In figure 10, control block A functions as a power switch, allowing power to flow from the energy generator to the voltage amplification stage. Control block A can also be set to turn off power from the energy generator in the event of over-voltage and under-voltage conditions. The voltage amplification stage can have a fixed amplification ratio or a selectable or multiplexable ratio such as may be provided by a tapped transformer.
The voltage amplification stage may comprise a half-bridge, a full bridge, a push-pull or a similar voltage inversion stage. Such an inversion stage may comprise semiconductor switching devices such as MOSFETs. The voltage inversion stage can be coupled to a transformer, whose amplification ratio results in a desired voltage in the DC link reservoir capacitor, for example of order 400 volts. The output of the transformer is coupled to a rectifier stage. An inductor may be included between the rectifier bridge and the DC link reservoir capacitor.
Figure 12 shows a circuit diagram implementing the control methodology we describe.
The energy generator may be a solar module or a group of solar modules. In this example the voltage amplification stage comprises a half-bridge, which in turn is made up of two series switches (MOSFET5), Qi and 02, and two series capacitors Cl and C2, and the transformer TX1. A rectifier bridge made up of diodes is coupled to the output of the transformer. The rectifier bridge is itself coupled to the DC link capacitor Cd via a filter inductor Ld. The control block in figure 12 produces a constant duty cycle PWM signal, and hence no modulation is implemented. In the event that Cd is full, defined as the voltage across it being equal or larger thant the rectified output from transformer secondary, no power flows into Cd even though 01 and 02 are switched on and off continuously. Hence control block A does not regulate the amount of power extracted from the generator.
Referring to Figure 13, control block B measures the voltage fluctuations in the DC link that are used for regulation of the amount of power being harvested from the energy generator and therefore the amount of power injected into the load. A prefered load is the utility grid. In the case of the grid load, control B measures the peak and trough voltages on the DC link capacitor via a scaling circuit (the potential divider circuit of R3 and R4). The scaled values of the peak Vp and the trough Vt voltages are used to compute the amount of power flowing through the capacitor (as described below).
Energy Storage and DC link Capacitance Due to the AC nature of the power being transferred into the grid and the current-voltage characteristic of the power being generated by the solar module, energy storage is essential in a PV inverter if maximum power is to be harvested from the solar module. In our preferred design, energy storage is delegated to the DC link reservoir capacitor. The amount of power transferred into the grid is related to the energy change in the capacitor and therefore the voltage ripple on the capacitor. One advantage of implementing energy storage on the DC link is that a large ripple can be allowed on the capacitor. Equation 1 illustrates the relationship between energy change, the capacitance and the voltage on the capacitor: -(1) where V is the capacitor peak voltage and VT is the capacitor trough voltage. The power transferred would be the energy change per second. Figure 14 illustrates the fluctuations on the DC link capacitor.
Thus block B automatically achieves MPPT by regulating the amount of injected current with reference to (dependent on) the dc link voltage fluctuation.
No doubt many other effective alternatives will occur to the skilled person. It will be understood that the invention is not limited to the described embodiments and encompasses modifications apparent to those skilled in the art lying within the scope of the claims appended hereto.

Claims (18)

  1. CLAIMS: 1. A power conditioning unit with maximum power point tracking (MPPT), for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein said power injection control block is configured to track a maximum power point of said dc power source without measuring a dc voltage or dc current provided from said dc power source.
  2. 2. A power conditioning unit as claimed in claim 1 wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains, and wherein said power injection control block is configured for controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor.
  3. 3. A power conditioning unit with maximum power point tracking (MPPT), for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit comprising: an input for receiving power from said dc power source; an output for delivering ac power to said ac mains power supply; an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output; a dc-to-ac converter coupled to said output for converting energy stored in said energy storage capacitor to ac power for said ac mains power supply output; a power injection control block having a sense input coupled to said energy storage capacitor and having an output coupled to said dc-to-ac converter, to control said dc-to-ac converter to control power injected into said ac mains power supply; and wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains; wherein said power injection control block is configured for controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor, and wherein said power injection control block is configured to track a maximum power point of said dc power source by controlling said dc-to-ac converter.
  4. 4. A power conditioning unit as claimed in claim 3 wherein said power injection control block is configured to track a maximum power point of said dc power source without measuring a dc voltage or dc current provided from said dc power source.
  5. 5. A power conditioning unit as claimed in any one of claims 2 to 4 wherein said power injection control block is configured to determine a power transferred from said dc source to said ac mains power supply using a squared value of said sinusoidal voltage component, and to control said dc-to-ac converter responsive to said determined power transferred.
  6. 6. A power conditioning unit as claimed in any preceding claim wherein said power injection control block is galvanically isolated from said dc power source.
  7. 7. A power conditioning unit as claimed in any preceding claim wherein said power injection control block is configured to multiply a voltage sensed from said energy storage capacitor by a sinusoidal template to generate a template signal, and to compare said template signal with a signal sensed from said output to control said dc-to-ac converter.
  8. 8. A power conditioning unit as claimed in any preceding claim further comprising a dc voltage amplifier coupled between said input and said energy storage capacitor to increase a voltage from said dc power source by a substantially constant amplification factor.
  9. 9. A power conditioning unit as claimed in claim 8 further comprising a voltage amplifier control block to drive said dc voltage amplifier with a substantially constant duty cycle pulse width modulation control signal, and to provide on-off control of a dc output from said dc voltage amplifier.
  10. 10. A power conditioning unit as claimed in any preceding claim wherein an energy flow from said dc power source to said energy storage capacitor is substantially proportional to an amount of energy stored in said energy storage capacitor, and wherein an amount of energy drawn from said energy storage capacitor and provided to said output is controlled by said power injection control block such that said amount of energy stored in said energy storage capacitor is dependent on said ac power delivered to said ac mains power supply, wherein said power injection block is able to track said maximum power point by controlling said ac power delivered to said ac mains power supply
  11. 11. A method of maximum power point tracking (MPPT) in a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit including an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output, the method comprising: tracking a maximum power point of said dc power source by controlling a dc-to-ac converter converting energy stored in said energy storage capacitor to ac power for said ac mains power supply input, wherein said tracking is performed without measuring a dc voltage or dc current provided from said dc power source.
  12. 12. A method as claimed in claim 11 wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains, and wherein said controlling comprises controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor.
  13. 13. A method of maximum power point tracking (MPPT) in a power conditioning unit for delivering power from a dc power source to an ac mains power supply output, the power conditioning unit including an energy storage capacitor for storing energy from said dc power source for delivering to said ac mains power supply output, wherein, in operation, a voltage on said energy storage capacitor has a sinusoidal voltage component at twice a frequency of said ac mains, the method comprising: controlling an amplitude of an ac current provided to said ac mains power supply output such that an amount of power transferred to said ac mains power supply output is dependent on an amplitude of said sinusoidal voltage component on said energy storage capacitor, wherein said controlling is performed by controlling a dc-to-ac converter converting energy stored in said energy storage capacitor to ac power for said ac mains power supply input; and tracking a maximum power point of said dc source by controlling said dc-to-ac converter.
  14. 14. A method as claimed in claim 13 wherein said tracking is performed without measuring a dc voltage or dc current provided from said dc power source
  15. 15. A method as claimed in any one of claims 12 to 14 further comprising determining a power transferred from said dc source to said ac mains power supply using a squared value of said sinusoidal voltage component, and wherein said tracking is responsive to said determined transferred power.
  16. 16. A method as claimed in any one of claims 11 to 15 wherein said tracking is performed by a power injection control block controlling power injected into said ac mains power supply.
  17. 17. A method as claimed in claim 16 further comprising galvanically isolating said power injection control block from said dc power source.
  18. 18. A carrier carrying processor control code to, when running, implement the method of any one of claims 11 to 17.
GB1004621.7A 2006-01-13 2010-03-19 Power conditioning units Active GB2478789B (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
GB1004621.7A GB2478789B (en) 2010-03-19 2010-03-19 Power conditioning units
US12/789,154 US8405367B2 (en) 2006-01-13 2010-05-27 Power conditioning units
PCT/GB2011/050529 WO2011114161A2 (en) 2010-03-19 2011-03-17 Power conditioning units
EP11710023.0A EP2548279B1 (en) 2010-03-19 2011-03-17 Power conditioning units
CN2011200850898U CN202103601U (en) 2010-03-19 2011-03-19 Power adjusting device
CN201110075681.4A CN102279614B (en) 2010-03-19 2011-03-19 Power conditioning units and method for tracking points of maximum power in power conditioning units
US13/843,772 US9270191B2 (en) 2006-01-13 2013-03-15 Power condition units with MPPT
US14/986,706 US9812980B2 (en) 2006-01-13 2016-01-03 Power conditioning units
US15/625,862 US10193467B2 (en) 2006-01-13 2017-06-16 Power conditioning units

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1004621.7A GB2478789B (en) 2010-03-19 2010-03-19 Power conditioning units

Publications (3)

Publication Number Publication Date
GB201004621D0 GB201004621D0 (en) 2010-05-05
GB2478789A true GB2478789A (en) 2011-09-21
GB2478789B GB2478789B (en) 2012-03-07

Family

ID=42228002

Family Applications (1)

Application Number Title Priority Date Filing Date
GB1004621.7A Active GB2478789B (en) 2006-01-13 2010-03-19 Power conditioning units

Country Status (1)

Country Link
GB (1) GB2478789B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011154720A2 (en) 2010-06-07 2011-12-15 Enecsys Limited Solar photovoltaic systems
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
WO2013064828A1 (en) 2011-11-01 2013-05-10 Enecsys Limited Photovoltaic power conditioning units
US8461809B2 (en) 2006-01-13 2013-06-11 Enecsys Limited Power conditioning unit
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090080226A1 (en) * 2007-09-26 2009-03-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
GB2454389A (en) * 2006-01-13 2009-05-06 Enecsys Ltd Power conditioning unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2454389A (en) * 2006-01-13 2009-05-06 Enecsys Ltd Power conditioning unit
US20090080226A1 (en) * 2007-09-26 2009-03-26 Enphase Energy, Inc. Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811047B2 (en) 2006-01-13 2014-08-19 Enecsys Limited Solar power conditioning unit
US8405367B2 (en) 2006-01-13 2013-03-26 Enecsys Limited Power conditioning units
US8461809B2 (en) 2006-01-13 2013-06-11 Enecsys Limited Power conditioning unit
US9246397B2 (en) 2006-01-13 2016-01-26 Solarcity Corporation Solar power conditioning unit
WO2011154720A3 (en) * 2010-06-07 2012-06-14 Enecsys Limited Solar photovoltaic systems
GB2482653B (en) * 2010-06-07 2012-08-29 Enecsys Ltd Solar photovoltaic systems
US8674668B2 (en) 2010-06-07 2014-03-18 Enecsys Limited Solar photovoltaic systems
WO2011154720A2 (en) 2010-06-07 2011-12-15 Enecsys Limited Solar photovoltaic systems
US9496803B2 (en) 2010-06-07 2016-11-15 Solarcity Corporation Solar photovoltaic system with maximized ripple voltage on storage capacitor
WO2013064828A1 (en) 2011-11-01 2013-05-10 Enecsys Limited Photovoltaic power conditioning units
US8472220B2 (en) 2011-11-01 2013-06-25 Enecsys Limited Photovoltaic power conditioning units
US8526205B2 (en) 2011-11-01 2013-09-03 Enecsys Limited Photovoltaic power conditioning units
US9520803B2 (en) 2011-11-01 2016-12-13 Solarcity Corporation Photovoltaic power conditioning units

Also Published As

Publication number Publication date
GB2478789B (en) 2012-03-07
GB201004621D0 (en) 2010-05-05

Similar Documents

Publication Publication Date Title
US10193467B2 (en) Power conditioning units
US9496803B2 (en) Solar photovoltaic system with maximized ripple voltage on storage capacitor
US9246397B2 (en) Solar power conditioning unit
US9520803B2 (en) Photovoltaic power conditioning units
US8526205B2 (en) Photovoltaic power conditioning units
WO2010071855A2 (en) Energy conversion systems with power control
GB2478789A (en) Power conditioning unit with maximum power point tracking
KR101920469B1 (en) Grid connected single-stage inverter based on cuk converter
CN102270850B (en) Solar energy photovoltaic system

Legal Events

Date Code Title Description
732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20151126 AND 20151202

732E Amendments to the register in respect of changes of name or changes affecting rights (sect. 32/1977)

Free format text: REGISTERED BETWEEN 20191128 AND 20191204