TWI411574B - Carbon nanotube composite material and method for making the same - Google Patents

Carbon nanotube composite material and method for making the same Download PDF

Info

Publication number
TWI411574B
TWI411574B TW97140860A TW97140860A TWI411574B TW I411574 B TWI411574 B TW I411574B TW 97140860 A TW97140860 A TW 97140860A TW 97140860 A TW97140860 A TW 97140860A TW I411574 B TWI411574 B TW I411574B
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
composite material
carbon
material according
nanotube composite
Prior art date
Application number
TW97140860A
Other languages
Chinese (zh)
Other versions
TW201016598A (en
Inventor
Shou-Shan Fan
Kai-Li Jiang
Liang Liu
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97140860A priority Critical patent/TWI411574B/en
Publication of TW201016598A publication Critical patent/TW201016598A/en
Application granted granted Critical
Publication of TWI411574B publication Critical patent/TWI411574B/en

Links

Abstract

The present invention relates to a carbon nanotube composite material. The carbon nanotube composite material includes a plurality of carbon nanotubes and nano particles. The carbon nanotubes form a carbon nanotube structure. The nano particles are dispersed in the carbon nanotube structure uniformly. The present invention also relates to a method for making the carbon nanotube composite material. The method includes the following steps: forming a carbon nanotube structure; providing a prefabrication of nano particles; compositing the prefabrication with the carbon nanotube structure, and then making the nano particles dispersed in the carbon nanotube structure.

Description

奈米碳管複合材料及其製備方法 Nano carbon tube composite material and preparation method thereof

本發明涉及一種奈米複合材料及其製備方法,尤其涉及一種基於奈米碳管的奈米碳管複合材料及其製備方法。 The invention relates to a nano composite material and a preparation method thereof, in particular to a carbon nanotube composite material based on a carbon nanotube and a preparation method thereof.

奈米碳管具有優良的機械和光電性能,被認為係複合材料的理想添加物。目前,奈米碳管已經可和其他的材料形成各種各樣的複合材料,如高分子複合材料、陶瓷複合材料、層狀複合材料、摻雜複合材料以及碳/碳物複合材料等。這些複合材料在增強纖維、新型催化劑和奈米電子器件等方面具有潛在的應用前景,成為世界科學研究的熱點(Ajjayan P.M.,Stephan O.,Colliex C.,Tranth D.Science.1994,265,1212-1215:Calvert P.,Nature,1999,399,210-211)。 Nano carbon tubes have excellent mechanical and optoelectronic properties and are considered to be ideal additives for composite materials. At present, carbon nanotubes have been able to form a variety of composite materials with other materials, such as polymer composites, ceramic composites, layered composites, doped composites and carbon/carbon composites. These composite materials have potential applications in reinforcing fibers, novel catalysts, and nanoelectronic devices, and have become hotspots in scientific research worldwide (Ajjayan PM, Stephan O., Colliex C., Tranth D. Science. 1994, 265, 1212). -1215: Calvert P., Nature, 1999, 399, 210-211).

目前,以奈米碳管為基體的複合材料主要通過直接複合方法和表面改性複合方法製備。其中,直接複合方法係將奈米顆粒通過一定方法如塗敷或噴塗的方法形成在奈米碳管的表面,在奈米碳管表面形成一層奈米顆粒的膜。這種方法操作相對簡單,然採用此方法製備奈米碳管複合材料時,由於奈米碳管多以奈米碳管粉末的形式存在,奈米碳管本身容易發生團聚,故無法控制製備的奈米碳管複合材料中的奈米材料在奈米碳管表面的分佈,奈米顆粒和奈米碳管在複合材料中的分佈不均勻。 At present, composite materials based on carbon nanotubes are mainly prepared by direct composite method and surface modification composite method. Among them, the direct composite method is to form a film of nano particles on the surface of the carbon nanotube by forming a nano particle on the surface of the carbon nanotube by a certain method such as coating or spraying. This method is relatively simple to operate. However, when the carbon nanotube composite material is prepared by this method, since the carbon nanotubes are mostly in the form of a carbon nanotube powder, the carbon nanotubes themselves are prone to agglomeration, so the preparation cannot be controlled. The distribution of nanomaterials in the carbon nanotube composite on the surface of the carbon nanotubes, the distribution of nanoparticles and carbon nanotubes in the composite is not uniform.

為解決奈米碳管的團聚問題,通常將將奈米碳管表面進行改性之後再將奈米碳管與其他奈米顆粒複合。對奈米 碳管表面進行改性的方法通常採用將奈米碳管分散於硫酸及硝酸等強氧化性酸或表面活性劑中,這種方法可在一定程度上解決奈米碳管團聚的問題,然,由於通過強酸處理,會使得所述奈米碳管受到一定程度的破壞,且使用表面活性劑處理會使得表面活性劑在最終的奈米碳管複合材料中不易除去,很大程度上影響了奈米碳管複合材料的性能。 In order to solve the agglomeration problem of the carbon nanotubes, the surface of the carbon nanotubes is usually modified, and then the carbon nanotubes are combined with other nano particles. For nano The method of modifying the surface of the carbon tube is generally carried out by dispersing the carbon nanotubes in a strong oxidizing acid or a surfactant such as sulfuric acid or nitric acid. This method can solve the problem of agglomeration of the carbon nanotubes to some extent. Due to the strong acid treatment, the carbon nanotubes are damaged to a certain extent, and the use of surfactant treatment makes the surfactant difficult to remove in the final carbon nanotube composite, which greatly affects the Nai. The performance of carbon nanotube composites.

另,上述兩種方法製備的奈米碳管複合材料中,奈米碳管之間沒有形成一個整體的奈米碳管結構,使奈米碳管複合材料的機械強度和韌性較差,無法充分發揮奈米碳管的良好性能。 In addition, in the carbon nanotube composite material prepared by the above two methods, a carbon nanotube structure is not formed between the carbon nanotubes, so that the mechanical strength and toughness of the carbon nanotube composite material are poor, and the carbon nanotube composite material cannot be fully utilized. Good performance of carbon nanotubes.

有鑒於此,提供一種以奈米碳管為基體、機械強度較大、韌性較好的複合材料及其製備方法實為必要。 In view of this, it is necessary to provide a composite material having a nano carbon tube as a matrix, having high mechanical strength and good toughness, and a preparation method thereof.

一種奈米碳管複合材料,其包括:複數個奈米碳管和複數個奈米顆粒,其中,所述複數個奈米碳管形成一奈米碳管結構,該奈米顆粒分佈於該奈米碳管結構中。 A carbon nanotube composite material comprising: a plurality of carbon nanotubes and a plurality of nano particles, wherein the plurality of carbon nanotubes form a carbon nanotube structure, and the nanoparticle is distributed in the nanosphere In the carbon tube structure.

一種奈米碳管複合材料的製備方法,其包括以下步驟:製備一奈米碳管結構;提供一奈米顆粒預製體;將奈米碳管結構與奈米顆粒預製體複合,形成奈米顆粒於奈米碳管結構中。 A method for preparing a carbon nanotube composite material, comprising the steps of: preparing a carbon nanotube structure; providing a nanoparticle preform; and combining the carbon nanotube structure with the nanoparticle preform to form a nanoparticle In the carbon nanotube structure.

相較於先前技術,所述之奈米碳管複合材料及其製備方法具有以下優點:其一,由於所述奈米碳管複合材料中的奈米碳管相互連接形成一奈米碳管結構,使得奈米碳 管複合材料的機械強度較大,韌性較好。其二,由於採用奈米碳管結構作為骨架,從而使得所述之奈米碳管複合材料具有良好的導電性,充分發揮了奈米碳管的導電性能。其三,所述奈米碳管複合材料的製備方法無需對奈米碳管表面進行處理,故不會對奈米碳管造成破壞。 Compared with the prior art, the carbon nanotube composite material and the preparation method thereof have the following advantages: First, since the carbon nanotubes in the carbon nanotube composite material are connected to each other to form a carbon nanotube structure To make nanocarbon The tube composite has high mechanical strength and good toughness. Secondly, since the carbon nanotube structure is used as the skeleton, the carbon nanotube composite material has good electrical conductivity and fully exerts the conductivity of the carbon nanotube. Third, the preparation method of the carbon nanotube composite material does not need to treat the surface of the carbon nanotube, so it does not cause damage to the carbon nanotubes.

以下將結合附圖詳細說明本技術方案提供的的奈米碳管複合材料。 Hereinafter, the carbon nanotube composite material provided by the present technical solution will be described in detail with reference to the accompanying drawings.

請參閱圖1,本技術方案實施例提供一種奈米碳管複合材料10,其包括一奈米碳管結構16及複數個奈米顆粒18。所述奈米碳管結構16包括複數個奈米碳管相互連接形成,所述奈米顆粒18均勻地附著在奈米碳管的表面。進一步地,所述奈米碳管和奈米顆粒18可均勻分佈於所述奈米碳管複合材料10中。 Referring to FIG. 1 , an embodiment of the present technical solution provides a carbon nanotube composite material 10 including a carbon nanotube structure 16 and a plurality of nano particles 18 . The carbon nanotube structure 16 includes a plurality of carbon nanotubes interconnected, and the nanoparticles 18 are uniformly attached to the surface of the carbon nanotubes. Further, the carbon nanotubes and nanoparticles 18 may be uniformly distributed in the carbon nanotube composite 10.

所述奈米碳管複合材料10進一步包括複數個微孔20,該微孔20為奈米碳管之間的間隙、奈米碳管與奈米顆粒18之間的間隙或奈米顆粒18之間的間隙。所述微孔20的孔徑為0.3奈米-5毫米。所述奈米碳管複合材料10中的微孔20使奈米碳管複合材料10具有一定的通透性和較高的比表面積。 The carbon nanotube composite 10 further includes a plurality of micropores 20 which are gaps between the carbon nanotubes, a gap between the carbon nanotubes and the nanoparticles 18, or nanoparticles 18 The gap between them. The pores 20 have a pore diameter of from 0.3 nm to 5 mm. The micropores 20 in the carbon nanotube composite 10 provide the carbon nanotube composite 10 with a certain permeability and a high specific surface area.

所述奈米碳管結構16中的奈米碳管有序或無序排列,具體地,當奈米碳管結構包括無序排列的奈米碳管時,奈米碳管相互纏繞或者各向同性排列;當奈米碳管結構包括有序排列的奈米碳管時,奈米碳管沿一個方向或者複數個方向擇優取向排列。奈米碳管之間相互吸引、相互 搭接或纏繞形成一形狀確定的穩定結構。在所述之奈米碳管複合材料10中,奈米碳管結構16起到了骨架作用,用於支撐奈米顆粒18。奈米碳管結構16包括至少一層奈米碳管膜,該奈米碳管膜包括複數個均勻分佈的奈米碳管,具體地,該複數個均勻分佈的奈米碳管有序排列或無序排列,奈米碳管之間通過凡德瓦爾力連接。該奈米碳管膜為奈米碳管絮化膜、奈米碳管碾壓膜或奈米碳管拉膜。優選地,所述奈米碳管結構16為一自支撐的結構,具體地,該自支撐結構分為兩種情況:奈米碳管結構16完全不需要基底支撐,可完全獨立自支撐存在;奈米碳管結構16的一部分需要一個或複數個支撐點,其餘部分可懸空設置,且具有一穩定的結構。 The carbon nanotubes in the carbon nanotube structure 16 are ordered or disorderly arranged. Specifically, when the carbon nanotube structure includes a disordered arrangement of carbon nanotubes, the carbon nanotubes are intertwined or oriented. Isotropic arrangement; when the carbon nanotube structure includes an ordered arrangement of carbon nanotubes, the carbon nanotubes are arranged in a preferred orientation in one direction or in a plurality of directions. Nano carbon tubes attract each other and interact with each other Lap or wrap to form a shape-determined stabilizing structure. In the carbon nanotube composite 10, the carbon nanotube structure 16 acts as a skeleton for supporting the nanoparticles 18. The carbon nanotube structure 16 includes at least one layer of carbon nanotube film, the carbon nanotube film comprising a plurality of uniformly distributed carbon nanotubes, specifically, the plurality of uniformly distributed carbon nanotubes are ordered or absent Ordered, the carbon nanotubes are connected by Van der Waals force. The carbon nanotube film is a carbon nanotube film, a carbon nanotube film or a carbon nanotube film. Preferably, the carbon nanotube structure 16 is a self-supporting structure. Specifically, the self-supporting structure is divided into two cases: the carbon nanotube structure 16 does not require a substrate support at all, and can be completely independent and self-supporting; A portion of the carbon nanotube structure 16 requires one or a plurality of support points, and the remaining portion can be suspended and have a stable structure.

請參見圖2,所述奈米碳管絮化膜為各向同性,其包括複數個無序排列且均勻分佈的奈米碳管。奈米碳管之間通過凡德瓦爾力相互吸引、相互纏繞。故,奈米碳管絮化膜具有很好的柔韌性,可彎曲折疊成任意形狀而不破裂,且具有較好的自支撐性能,可無需基底支撐,自支撐存在。所述奈米碳管絮化膜的厚度為1微米-2毫米。 Referring to FIG. 2, the carbon nanotube flocculation membrane is isotropic, and includes a plurality of disordered and uniformly distributed carbon nanotubes. The carbon nanotubes are attracted and intertwined by Van der Waals forces. Therefore, the carbon nanotube flocculation membrane has good flexibility, can be bent and folded into any shape without cracking, and has good self-supporting property, and can be self-supported without substrate support. The carbon nanotube film has a thickness of from 1 micron to 2 mm.

所述奈米碳管碾壓膜包括均勻分佈的奈米碳管,奈米碳管沿同一方向或不同方向擇優取向排列。該奈米碳管碾壓膜中的奈米碳管與奈米碳管碾壓膜的表面成一夾角α,其中,α大於等於零度且小於等於15度。優選地,所述奈米碳管碾壓膜中的奈米碳管平行於奈米碳管碾壓膜的表面。依據碾壓的方式不同,該奈米碳管碾壓膜中的奈米碳管具有不同的排列形式。具體地,奈米碳管可各 向同性排列;當沿不同方向碾壓時,奈米碳管沿不同方向擇優取向排列,請參見圖3,奈米碳管在奈米碳管碾壓膜中可沿一固定方向擇優取向排列,請參見圖4,奈米碳管碾壓膜中的奈米碳管可沿不同方向擇優取向排列。所述奈米碳管碾壓膜中的奈米碳管部分交疊。所述奈米碳管碾壓膜中奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使得該奈米碳管碾壓膜具有很好的柔韌性,可彎曲折疊成任意形狀而不破裂。且由於奈米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需基底支撐,自支撐存在。所述碾壓膜的厚度為0.1微米-5毫米。 The carbon nanotube rolled film comprises uniformly distributed carbon nanotubes, and the carbon nanotubes are arranged in a preferred orientation in the same direction or in different directions. The carbon nanotubes in the carbon nanotube rolled film form an angle α with the surface of the carbon nanotube rolled film, wherein α is greater than or equal to zero degrees and less than or equal to 15 degrees. Preferably, the carbon nanotubes in the carbon nanotube rolled film are parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube rolled film have different arrangements depending on the manner of rolling. Specifically, the carbon nanotubes can each Arranged in the same direction; when rolling in different directions, the carbon nanotubes are arranged in different orientations. Referring to Figure 3, the carbon nanotubes can be arranged in a preferred orientation along a fixed direction in the carbon nanotube film. Referring to Figure 4, the carbon nanotubes in the carbon nanotube laminate can be arranged in different orientations. The carbon nanotubes in the carbon nanotube rolled film partially overlap. The carbon nanotubes in the carbon nanotube film are attracted to each other by van der Waals force, and the silicon carbon nanotubes have good flexibility and can be bent and folded into any shape. Does not break. And because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, the carbon nanotube film is a self-supporting structure, which can be self-supported without substrate support. presence. The rolled film has a thickness of from 0.1 μm to 5 mm.

請參見圖5,所述奈米碳管拉膜包括複數個首尾相連且沿拉伸方向擇優取向排列的奈米碳管。所述奈米碳管均勻分佈,且平行於奈米碳管膜表面。所述奈米碳管膜中的奈米碳管之間通過凡德瓦爾力連接。一方面,首尾相連的奈米碳管之間通過凡德瓦爾力連接,另一方面,平行的奈米碳管之間部分亦通過凡德瓦爾力結合,故,該奈米碳管膜具有一定的柔韌性,可彎曲折疊成任意形狀而不破裂。所述奈米碳管拉膜的厚度為0.5奈米-100微米。 Referring to FIG. 5, the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation along the stretching direction. The carbon nanotubes are evenly distributed and parallel to the surface of the carbon nanotube film. The carbon nanotubes in the carbon nanotube membrane are connected by van der Waals force. On the one hand, the end-to-end carbon nanotubes are connected by van der Waals force, and on the other hand, the parallel carbon nanotubes are also combined by van der Waals force, so the carbon nanotube film has a certain The flexibility is bendable into any shape without breaking. The carbon nanotube film has a thickness of from 0.5 nm to 100 μm.

所述奈米碳管結構16可進一步包括至少兩個重疊設置的奈米碳管膜。可以理解,由於奈米碳管結構16中的奈米碳管膜可重疊設置,故,上述奈米碳管結構16的厚度不限,可根據實際需要製成具有任意厚度的奈米碳管結構16。當奈米碳管結構16包括複數個重疊設置的奈米碳管拉膜時,相鄰的奈米碳管拉膜中的奈米碳管的排列方向 形成一夾角β,β大於等於零度小於等於90度。 The carbon nanotube structure 16 may further comprise at least two carbon nanotube membranes arranged in an overlapping manner. It can be understood that, since the carbon nanotube membranes in the carbon nanotube structure 16 can be overlapped, the thickness of the above-mentioned carbon nanotube structure 16 is not limited, and the carbon nanotube structure having an arbitrary thickness can be prepared according to actual needs. 16. When the carbon nanotube structure 16 includes a plurality of stacked carbon nanotube films, the arrangement of the carbon nanotubes in the adjacent carbon nanotube film is arranged. An angle β is formed, and β is greater than or equal to zero degrees and less than or equal to 90 degrees.

所述奈米碳管包括單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中的一種或幾種。單壁奈米碳管的直徑為0.5奈米~50奈米,雙壁奈米碳管的直徑為1.0奈米~50奈米,多壁奈米碳管的直徑為1.5奈米~50奈米。所述奈米碳管的長度在50奈米到10毫米之間,優選地,奈米碳管的長度為200微米-900微米。 The carbon nanotubes include one or more of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube. Single-walled carbon nanotubes have a diameter of 0.5 nm to 50 nm, double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm, and multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. . The length of the carbon nanotubes is between 50 nm and 10 mm, preferably the length of the carbon nanotubes is between 200 microns and 900 microns.

所述奈米顆粒18可附著在奈米碳管結構16中的奈米碳管的表面,當奈米碳管結構16包括多層奈米碳管膜時,奈米顆粒18顆可填充於相鄰的奈米碳管膜之間。具體地,奈米顆粒18可相互獨立保持奈米顆粒18的高比表面積;所述奈米顆粒18之間也可相互接觸。 The nanoparticle 18 can be attached to the surface of the carbon nanotube in the carbon nanotube structure 16. When the carbon nanotube structure 16 comprises a plurality of layers of carbon nanotube film, 18 nanoparticles can be filled adjacent to each other. Between the carbon nanotube membranes. Specifically, the nanoparticles 18 can independently maintain the high specific surface area of the nanoparticles 18; the nanoparticles 18 can also be in contact with each other.

所述奈米顆粒18包括奈米纖維、奈米棒、奈米球及奈米線各種形態的奈米顆粒中的一種或幾種。奈米顆粒18包括金屬奈米顆粒、非金屬奈米顆粒、合金奈米顆粒、金屬氧化物奈米顆粒及聚合物奈米顆粒中的一種或幾種。具體地,奈米顆粒18可為銅奈米顆粒、鋅奈米顆粒、鈷奈米顆粒、碳奈米顆粒、金剛石奈米顆粒、鎂合金奈米顆粒、鋁合金奈米顆粒、氧化銅奈米顆粒、氧化鋅奈米顆粒、聚苯胺奈米顆粒或聚吡咯奈米顆粒等。所述奈米顆粒18的粒徑為0.3奈米到500奈米。所述奈米顆粒14在所述奈米碳管複合材料10中的質量百分含量為0.01%~99%。 The nanoparticles 18 include one or more of nanofibers, nanorods, nanospheres, and nanoparticles of various forms of nanowires. The nanoparticle 18 includes one or more of metal nanoparticle, non-metallic nanoparticle, alloy nanoparticle, metal oxide nanoparticle, and polymer nanoparticle. Specifically, the nanoparticle 18 can be copper nanoparticle, zinc nanoparticle, cobalt nanoparticle, carbon nanoparticle, diamond nanoparticle, magnesium alloy nanoparticle, aluminum alloy nanoparticle, copper oxide nanometer. Granules, zinc oxide nanoparticles, polyaniline nanoparticles or polypyrrole particles. The nanoparticle 18 has a particle diameter of from 0.3 nm to 500 nm. The nanoparticle 14 has a mass percentage of 0.01% to 99% in the carbon nanotube composite material 10.

本技術方案所提供的奈米碳管複合材料10中的奈米碳管 相互連接形成一奈米碳管結構18,奈米碳管結構18具有良好的導電性,故,奈米碳管複合材料10具有良好的導電性,可用作電極材料、感測器、電磁遮罩材料或導電材料等;由於奈米碳管複合材料10具有複數個微孔20,奈米碳管複合材料10的比表面積比較大,具有較強的吸附能力,故,奈米碳管複合材料10還可用作催化劑的載體或其他材料的支撐體。 The carbon nanotubes in the carbon nanotube composite material 10 provided by the technical solution Interconnected to form a carbon nanotube structure 18, the carbon nanotube structure 18 has good electrical conductivity, so the carbon nanotube composite material 10 has good electrical conductivity, and can be used as an electrode material, a sensor, and an electromagnetic shielding. Cover material or conductive material, etc.; since the carbon nanotube composite material 10 has a plurality of micropores 20, the carbon nanotube composite material 10 has a relatively large specific surface area and has a strong adsorption capacity, so the carbon nanotube composite material 10 can also be used as a support for a carrier or other material of a catalyst.

請參見圖6,本技術方案實施例提供一種製備上述奈米碳管複合材料的方法,其具體包括以下步驟: Referring to FIG. 6 , an embodiment of the present technical solution provides a method for preparing the above carbon nanotube composite material, which specifically includes the following steps:

步驟一、製備一奈米碳管結構。 Step 1. Prepare a carbon nanotube structure.

製備奈米碳管結構的方法具體包括以下步驟: The method for preparing a carbon nanotube structure specifically includes the following steps:

(一)製備一奈米碳管膜,所述奈米碳管膜包括複數個均勻分佈的奈米碳管,該複數個均勻分佈的奈米碳管有序或無序分佈,奈米碳管之間通過凡德瓦爾力相互連接。該奈米碳管膜可為奈米碳管絮化膜、奈米碳管碾壓膜或奈米碳管拉膜。 (1) preparing a carbon nanotube film, the carbon nanotube film comprising a plurality of uniformly distributed carbon nanotubes, the plurality of uniformly distributed carbon nanotubes being ordered or disorderly distributed, the carbon nanotubes Interconnected by Van der Waals forces. The carbon nanotube film can be a carbon nanotube film, a carbon nanotube film or a carbon nanotube film.

根據奈米碳管膜的不同,所述奈米碳管膜的製備方法包括:絮化法、碾壓法、直接拉膜法等。 According to the difference of the carbon nanotube film, the preparation method of the carbon nanotube film includes: a flocculation method, a rolling method, a direct film drawing method and the like.

所述絮化法製備奈米碳管膜的方法具體包括以下步驟: The method for preparing a carbon nanotube film by the flocculation method specifically comprises the following steps:

首先,提供一奈米碳管原料。 First, a carbon nanotube raw material is provided.

所述奈米碳管原料可為通過化學氣相沈積法、石墨電極恒流電弧放電沈積法或鐳射蒸發沈積法等各種方法製備的奈米碳管。 The carbon nanotube raw material may be a carbon nanotube prepared by various methods such as chemical vapor deposition, graphite electrode constant current arc discharge deposition or laser evaporation deposition.

本實施例中,採用刀片或其他工具將上述定向排列的奈米碳管陣列從基底刮落,獲得一奈米碳管原料。優選地,所述之奈米碳管的長度大於100微米。 In this embodiment, the aligned carbon nanotube arrays are scraped off the substrate by using a blade or other tool to obtain a carbon nanotube raw material. Preferably, the carbon nanotubes have a length greater than 100 microns.

其次,將上述奈米碳管原料添加到一溶劑中並進行絮化處理獲得一奈米碳管絮狀結構。 Next, the above carbon nanotube raw material is added to a solvent and subjected to flocculation treatment to obtain a nano carbon tube floc structure.

本技術方案實施例中,溶劑可選用水、易揮發的有機溶劑等。絮化處理可通過採用超聲波分散處理或高強度攪拌等方法。優選地,本技術方案實施例採用超聲波分散10分鐘~30分鐘。由於奈米碳管具有極大的比表面積,相互纏繞的奈米碳管之間具有較大的凡德瓦爾力。上述絮化處理並不會將該奈米碳管原料中的奈米碳管完全分散在溶劑中,奈米碳管之間通過凡德瓦爾力相互吸引、纏繞,緊密結合。 In the embodiment of the technical solution, the solvent may be selected from water, a volatile organic solvent or the like. The flocculation treatment can be carried out by a method such as ultrasonic dispersion treatment or high-intensity stirring. Preferably, the embodiment of the technical solution uses ultrasonic dispersion for 10 minutes to 30 minutes. Due to the extremely large specific surface area of the carbon nanotubes, there is a large van der Waals force between the intertwined carbon nanotubes. The above flocculation treatment does not completely disperse the carbon nanotubes in the carbon nanotube raw material in the solvent, and the carbon nanotubes are attracted to each other by the van der Waals force, and are tightly bonded.

再次,將上述奈米碳管絮狀結構從溶劑中分離,並對該奈米碳管絮狀結構定型處理以獲得一奈米碳管絮化膜。 Again, the above carbon nanotube floc structure is separated from the solvent, and the carbon nanotube floc structure is shaped to obtain a carbon nanotube flocculation membrane.

本技術方案實施例中,所述之分離奈米碳管絮狀結構的方法具體包括以下步驟:將上述含有奈米碳管絮狀結構的溶劑倒入一放有濾紙的漏斗中;靜置乾燥一段時間從而獲得一分離的奈米碳管絮狀結構。 In the embodiment of the technical solution, the method for separating the carbon nanotube floc structure comprises the following steps: pouring the solvent containing the nano carbon tube floc structure into a funnel with a filter paper; A period of time is obtained to obtain a separate carbon nanotube floc structure.

本技術方案實施例中,所述之奈米碳管絮狀結構的定型處理過程具體包括以下步驟:將上述奈米碳管絮狀結構置於一容器中;將該奈米碳管絮狀結構按照預定形狀攤開;施加一定壓力於攤開的奈米碳管絮狀結構;以及,將該奈米碳管絮狀結構中殘留的溶劑烘乾或等溶劑自然 揮發後獲得一奈米碳管絮化膜。由於,奈米碳管之間通過凡德瓦爾力相互吸引、相互纏繞,故,奈米碳管絮化膜具有很好的柔韌性,可彎曲折疊成任意形狀而不破裂,且具有較好的自支撐性能,可無需基底支撐,自支撐存在。 In the embodiment of the technical solution, the shaping process of the carbon nanotube floc structure comprises the following steps: placing the above-mentioned carbon nanotube floc structure in a container; and the carbon nanotube floc structure Spreading according to a predetermined shape; applying a certain pressure to the spread of the carbon nanotube floc structure; and drying the solvent remaining in the carbon nanotube floc structure or the like After evaporation, a carbon nanotube film is obtained. Because the carbon nanotubes are mutually attracted and intertwined by van der Waals force, the carbon nanotube film has good flexibility, can be bent and folded into any shape without cracking, and has better Self-supporting performance, without the need for substrate support, self-supporting.

可以理解,本技術方案實施例可通過控制該奈米碳管絮狀結構攤開的面積來控制該奈米碳管絮化膜的厚度和麵密度。奈米碳管絮狀結構攤開的面積越大,則該奈米碳管絮化膜的厚度和面密度就越小。 It can be understood that the embodiment of the technical solution can control the thickness and the areal density of the carbon nanotube flocculation film by controlling the area spread by the carbon nanotube floc structure. The larger the area spread by the carbon nanotube floc structure, the smaller the thickness and areal density of the carbon nanotube flocculation film.

另,上述分離與定型處理奈米碳管絮狀結構的步驟也可直接通過抽濾的方式實現,具體包括以下步驟:提供一微孔濾膜及一抽氣漏斗;將上述含有奈米碳管絮狀結構的溶劑經過該微孔濾膜倒入該抽氣漏斗中;抽濾並乾燥後獲得一奈米碳管絮化膜。該微孔濾膜為一表面光滑、孔徑為0.22微米的濾膜。由於抽濾方式本身將提供一較大的氣壓作用於該奈米碳管絮狀結構,該奈米碳管絮狀結構經過抽濾會直接形成一均勻的奈米碳管絮化膜。且,由於微孔濾膜表面光滑,該奈米碳管絮化膜容易剝離。 In addition, the step of separating and shaping the carbon nanotube floc structure can also be directly performed by suction filtration, and specifically includes the following steps: providing a microporous membrane and an extraction funnel; and the above-mentioned carbon nanotubes are included The solvent of the floc structure is poured into the suction funnel through the microporous membrane; after suction filtration and drying, a carbon nanotube flocculation membrane is obtained. The microporous membrane is a filter membrane having a smooth surface and a pore size of 0.22 μm. Since the suction filtration method itself will provide a large gas pressure on the carbon nanotube floc structure, the carbon nanotube floc structure directly forms a uniform carbon nanotube flocculation membrane by suction filtration. Moreover, since the surface of the microporous filter membrane is smooth, the carbon nanotube film is easily peeled off.

所述直接拉膜法製備奈米碳管膜的方法具體包括以下步驟: The method for preparing a carbon nanotube film by the direct pull film method specifically comprises the following steps:

首先,提供一奈米碳管陣列形成於一基底,該陣列為超順排的奈米碳管陣列。 First, an array of carbon nanotubes is provided on a substrate that is a super-aligned array of carbon nanotubes.

該奈米碳管陣列的製備方法採用化學氣相沈積法,其具 體步驟包括:(a)提供一平整基底,該基底可選用P型或N型矽基底,或選用形成有氧化層的矽基底,本技術方案實施例優選為採用4英寸的矽基底;(b)在基底表面均勻形成一催化劑層,該催化劑層材料可選用鐵(Fe)、鈷(Co)、鎳(Ni)或其任意組合的合金之一;(c)將上述形成有催化劑層的基底在700℃~900℃的空氣中退火約30分鐘~90分鐘;(d)將處理過的基底置於反應爐中,在保護氣體環境下加熱到500℃~740℃,然後通入碳源氣體反應約5分鐘~30分鐘,生長得到奈米碳管陣列。該奈米碳管陣列為複數個彼此平行且垂直於基底生長的奈米碳管形成的純奈米碳管陣列。通過上述控制生長條件,該定向排列的奈米碳管陣列中基本不含有雜質,如無定型碳或殘留的催化劑金屬顆粒等。 The carbon nanotube array is prepared by chemical vapor deposition. The body step comprises: (a) providing a flat substrate, the substrate may be selected from a P-type or N-type germanium substrate, or a germanium substrate formed with an oxide layer, and the embodiment of the present invention preferably uses a 4-inch germanium substrate; A catalyst layer is uniformly formed on the surface of the substrate, and the catalyst layer material may be one selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni) or any combination thereof; (c) the substrate on which the catalyst layer is formed as described above; Annealing in air at 700 ° C ~ 900 ° C for about 30 minutes ~ 90 minutes; (d) the treated substrate is placed in a reaction furnace, heated to 500 ° C ~ 740 ° C in a protective atmosphere, and then into the carbon source gas The reaction is carried out for about 5 minutes to 30 minutes, and an array of carbon nanotubes is grown. The carbon nanotube array is a plurality of pure carbon nanotube arrays formed of carbon nanotubes that are parallel to each other and grown perpendicular to the substrate. The aligned carbon nanotube array contains substantially no impurities, such as amorphous carbon or residual catalyst metal particles, etc., by controlling the growth conditions described above.

本技術方案實施例提供的奈米碳管陣列為單壁奈米碳管陣列、雙壁奈米碳管陣列及多壁奈米碳管陣列中的一種。所述奈米碳管的直徑為0.5奈米~50奈米,長度大於50微米。本實施例中,奈米碳管的長度優選為100~900微米。 The carbon nanotube array provided by the embodiments of the present technical solution is one of a single-walled carbon nanotube array, a double-walled carbon nanotube array, and a multi-walled carbon nanotube array. The carbon nanotubes have a diameter of from 0.5 nm to 50 nm and a length of more than 50 microns. In this embodiment, the length of the carbon nanotubes is preferably from 100 to 900 μm.

本技術方案實施例中碳源氣可選用乙炔、乙烯、甲烷等化學性質較活潑的碳氫化合物,本技術方案實施例優選的碳源氣為乙炔;保護氣體為氮氣或惰性氣體,本技術方案實施例優選的保護氣體為氬氣。 In the embodiment of the technical solution, the carbon source gas may be a chemically active hydrocarbon such as acetylene, ethylene or methane. The preferred carbon source gas in the embodiment of the technical solution is acetylene; the shielding gas is nitrogen or an inert gas, and the technical solution is The preferred shielding gas for the examples is argon.

可以理解,本技術方案實施例提供的奈米碳管陣列不限於上述製備方法,也可為石墨電極恒流電弧放電沈積法、鐳射蒸發沈積法等。 It can be understood that the carbon nanotube array provided by the embodiments of the present technical solution is not limited to the above preparation method, and may be a graphite electrode constant current arc discharge deposition method, a laser evaporation deposition method, or the like.

其次,採用一拉伸工具從奈米碳管陣列中拉取奈米碳管獲得至少一奈米碳管拉膜。 Next, a stretching tool is used to pull the carbon nanotubes from the carbon nanotube array to obtain at least one carbon nanotube film.

該奈米碳管膜的製備過程具體包括以下步驟:該奈米碳管膜係從超順排奈米碳管陣列中直接拉取獲得,其製備方法具體包括以下步驟:(a)採用一拉伸工具選取該超順排奈米碳管陣列中的部分奈米碳管,本實施例優選為採用具有一定寬度的膠帶接觸奈米碳管陣列以選定一定寬度的部分奈米碳管;(b)以一定的速度沿基本垂直於超順排奈米碳管陣列生長方向拉伸該部分奈米碳管,形成一連續的奈米碳管拉膜。且由於奈米碳管拉膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈米碳管拉膜为一自支撑的結构,元需基底支撑,可自支撑存在。 The preparation process of the carbon nanotube film specifically comprises the following steps: the carbon nanotube film is directly drawn from the super-sequential carbon nanotube array, and the preparation method comprises the following steps: (a) using a pull Extending the tool to select a portion of the carbon nanotubes in the super-sequential carbon nanotube array. In this embodiment, it is preferred to contact the carbon nanotube array with a tape having a certain width to select a portion of the carbon nanotubes of a certain width; (b The partial carbon nanotubes are stretched at a certain speed along a growth direction substantially perpendicular to the super-sequential carbon nanotube array to form a continuous carbon nanotube film. And because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, the carbon nanotube film is a self-supporting structure, and the element needs the base support and can be self-supporting. .

在上述拉伸過程中,在拉力作用下超順排奈米碳管陣列中的部分奈米碳管沿拉伸方向逐漸脫離基底的同時,由於凡德瓦爾力作用,該超順排奈米碳管陣列中的其他奈米碳管首尾相連地連續地被拉出,從而形成一奈米碳管拉膜。該奈米碳管拉膜包括複數個奈米碳管首尾相連且沿拉伸方向定向排列。該奈米碳管拉膜的寬度與超順排奈米碳管陣列的尺寸(直徑/寬度)有關,該奈米碳管拉膜的厚度與超順排奈米碳管陣列的高度有關。 During the above stretching process, a part of the carbon nanotubes in the super-aligned carbon nanotube array is gradually separated from the substrate in the stretching direction under the action of the tensile force, and the super-aligned nanocarbon is affected by the van der Waals force. The other carbon nanotubes in the tube array are continuously pulled out end to end to form a carbon nanotube film. The carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and oriented in a stretching direction. The width of the carbon nanotube film is related to the size (diameter/width) of the super-sequential carbon nanotube array, and the thickness of the carbon nanotube film is related to the height of the super-sequential carbon nanotube array.

所述碾壓法製備奈米碳管膜的方法具體包括以下步驟: The method for preparing a carbon nanotube film by the rolling method specifically comprises the following steps:

首先,於一基底生長一奈米碳管陣列。 First, an array of carbon nanotubes is grown on a substrate.

所述奈米碳管陣列優選為一超順排的奈米碳管陣列。所 述奈米碳管陣列與上述奈米碳管陣列的製備方法相同。 The carbon nanotube array is preferably a super-aligned array of carbon nanotubes. Place The carbon nanotube array is prepared in the same manner as the above-described carbon nanotube array.

其次,採用一施壓裝置,擠壓上述奈米碳管陣列獲得一奈米碳管碾壓膜,其具體過程為:該施壓裝置施加一定的壓力於上述奈米碳管陣列上。在施壓的過程中,奈米碳管陣列在壓力的作用下會與生長的基底分離,從而形成由複數個奈米碳管組成的奈米碳管碾壓膜,且所述之複數個奈米碳管基本上與奈米碳管碾壓膜的表面平行。由於奈米碳管碾壓膜中的奈米碳管之間通過凡德瓦爾力相互吸引,緊密結合,使奈米碳管碾壓膜為一自支撐的結構,可無需基底支撐,自支撐存在。 Next, a carbon nanotube array is extruded by using a pressing device to obtain a carbon nanotube rolled film, wherein the pressing device applies a certain pressure to the carbon nanotube array. During the pressing process, the carbon nanotube array is separated from the growing substrate by pressure, thereby forming a carbon nanotube rolled film composed of a plurality of carbon nanotubes, and the plurality of nanotubes are described. The carbon nanotubes are substantially parallel to the surface of the carbon nanotube rolled film. Because the carbon nanotubes in the carbon nanotube film are attracted to each other through the van der Waals force, the carbon nanotube film is a self-supporting structure, which can be self-supported without substrate support. .

本技術方案實施例中,施壓裝置為一壓頭,壓頭表面光滑,壓頭的形狀及擠壓方向決定製備的奈米碳管碾壓膜中奈米碳管的排列方式。具體地,當採用平面壓頭沿垂直於上述奈米碳管陣列生長的基底的方向擠壓時,可獲得奈米碳管為各向同性排列的奈米碳管碾壓膜;當採用滾軸狀壓頭沿某一固定方向碾壓時,可獲得奈米碳管沿該固定方向取向排列的奈米碳管碾壓膜;當採用滾軸狀壓頭沿不同方向碾壓時,可獲得奈米碳管沿不同方向取向排列的奈米碳管碾壓膜。 In the embodiment of the technical solution, the pressing device is an indenter, the surface of the indenter is smooth, and the shape and extrusion direction of the indenter determine the arrangement of the carbon nanotubes in the prepared carbon nanotube rolled film. Specifically, when the planar indenter is pressed in a direction perpendicular to the substrate grown by the carbon nanotube array, the carbon nanotubes are obtained as isotropically arranged carbon nanotube rolled film; When the pressure head is rolled in a certain fixed direction, a carbon nanotube film which is aligned along the fixed direction of the carbon nanotubes can be obtained; when the roller-shaped indenter is rolled in different directions, the naphthalene can be obtained. The carbon nanotubes are arranged in a carbon nanotube tube oriented in different directions.

(二)利用上述奈米碳管膜製備奈米碳管結構。 (2) The carbon nanotube structure is prepared by using the above carbon nanotube film.

所述奈米碳管膜可直接作為奈米碳管結構。 The carbon nanotube film can be directly used as a carbon nanotube structure.

進一步,還可將至少兩層奈米碳管膜重疊鋪設得到一奈米碳管結構。該奈米碳管結構中,奈米碳管膜的層數不 限,具體可依據實際需求製備。當奈米碳管結構包括至少兩層重疊設置的奈米碳管拉膜時,奈米碳管拉膜之間可沿任意角度重疊鋪設,相鄰的奈米碳管拉膜中的奈米碳管的排列方向形成一夾角β,β大於等於0度小於等於90度。 Further, at least two layers of carbon nanotube membranes may be overlapped to obtain a carbon nanotube structure. In the carbon nanotube structure, the number of layers of the carbon nanotube film is not The limit can be prepared according to actual needs. When the carbon nanotube structure comprises at least two layers of stacked carbon nanotube film, the carbon nanotube film can be overlapped at any angle, and the carbon nanotubes in the adjacent carbon nanotube film are laminated. The arrangement direction of the tubes forms an angle β, which is greater than or equal to 0 degrees and less than or equal to 90 degrees.

步驟二:提供一可形成奈米顆粒的預製體。 Step 2: Provide a preform that can form nanoparticle.

所述預製體為該奈米顆粒所對應的物質、該物質所形成的溶液或該物質的前驅反應物。 The preform is a substance corresponding to the nanoparticle, a solution formed by the substance, or a precursor reactant of the substance.

所述奈米顆粒所對應的物質包括金屬、非金屬、合金、金屬氧化物或聚合物。具體地,金屬可包括銅、鋅或鈷等,非金屬可包括碳粒或金剛石,合金可包括鎂合金或鋁合金,金屬氧化物可包括氧化銅或氧化鋅,聚合物可包括聚苯胺或聚吡咯。 The substance corresponding to the nanoparticle includes a metal, a nonmetal, an alloy, a metal oxide or a polymer. Specifically, the metal may include copper, zinc or cobalt, the non-metal may include carbon particles or diamond, the alloy may include a magnesium alloy or an aluminum alloy, the metal oxide may include copper oxide or zinc oxide, and the polymer may include polyaniline or poly Pyrrole.

所述奈米顆粒所對應的物質的溶液為將該材料溶解於溶劑中制得。所述溶劑可為水、酸、堿、有機物等可溶解該固態的材料的溶劑,其具體根據該材料而定。 A solution of the substance corresponding to the nanoparticle is prepared by dissolving the material in a solvent. The solvent may be a solvent of a material which can dissolve the solid such as water, acid, hydrazine, organic matter, etc., depending on the material.

所述該奈米顆粒所對應的物質的前驅反應物為可通過化學反應生成該材料的反應物,該反應物可為氣態、液態或處於溶液中,反應完成後所生成的該物質為固態形式,並可通過一定方法如洗滌、過濾等從反應體系中分離出來。 The precursor reactant of the substance corresponding to the nanoparticle is a reactant capable of generating the material by a chemical reaction, and the reactant may be in a gaseous state, in a liquid state or in a solution, and the substance formed after the reaction is completed is in a solid form. And can be separated from the reaction system by certain methods such as washing, filtration, and the like.

步驟三、將奈米碳管結構與預製體複合,得到一奈米碳管複合材料。 Step 3: compounding the carbon nanotube structure with the preform to obtain a carbon nanotube composite material.

當預製體為該奈米顆粒所對應的物質時,根據該物質本身物理性質的不同,可採取不同方法使奈米碳管結構與奈米顆粒預製體複合。當該物質為氣態物質時,可採用噴塗或吸附等方法在奈米碳管結構中形成奈米顆粒;當該物質為液態時,可採用噴塗或蒸鍍等方法在奈米碳管結構中形成奈米顆粒;當該物質為固體時,亦可採用蒸鍍或濺射等方法在奈米碳管結構中形成奈米顆粒。 When the preform is a substance corresponding to the nanoparticle, different methods may be employed to composite the nanocarbon tube structure with the nanoparticle preform according to the physical properties of the material itself. When the substance is a gaseous substance, a nano particle can be formed in a carbon nanotube structure by spraying or adsorption; when the substance is in a liquid state, it can be formed in a carbon nanotube structure by spraying or vapor deposition. Nanoparticles; when the material is a solid, it is also possible to form nanoparticles in a carbon nanotube structure by evaporation or sputtering.

當預製體為該奈米顆粒對應的物質所形成的溶液時,將奈米碳管結構與預製體複合的方法包括以下步驟: When the preform is a solution formed by the substance corresponding to the nanoparticle, the method of combining the carbon nanotube structure with the preform includes the following steps:

首先,採用該溶液浸潤該奈米碳管結構。將奈米碳管結構浸入到該該溶液中或將該溶液滴加或噴塗至該奈米碳管結構的表面直至其浸潤該奈米碳管結構。 First, the solution is used to infiltrate the carbon nanotube structure. The carbon nanotube structure is immersed in the solution or the solution is dropped or sprayed onto the surface of the carbon nanotube structure until it infiltrates the carbon nanotube structure.

其次,將浸潤後的奈米碳管結構置於一定溫度下,使溶液中的溶劑揮發或蒸發,取出該奈米碳管結構,此時,該材料以奈米顆粒的形式附著於奈米碳管結構中的奈米碳管的表面。 Secondly, the infiltrated carbon nanotube structure is placed at a certain temperature to volatilize or evaporate the solvent in the solution, and the carbon nanotube structure is taken out. At this time, the material is attached to the nanocarbon in the form of nano particles. The surface of the carbon nanotubes in the tube structure.

當預製體為奈米顆粒對應物質的反應前驅體時,可採用化學氣相沈積法、電漿輔助沈積法、電化學沈積法或濺射法等將奈米顆粒形成於奈米碳管結構中。 When the preform is a reaction precursor of the corresponding substance of the nanoparticle, the nanoparticle can be formed into the carbon nanotube structure by chemical vapor deposition, plasma assisted deposition, electrochemical deposition or sputtering. .

本技術方案所提供的奈米碳管複合材料可應用於各種領域,如支撐催化劑、電極材料、感測器、電磁遮罩材料或導電材料等。 The carbon nanotube composite material provided by the technical solution can be applied to various fields such as supporting a catalyst, an electrode material, a sensor, an electromagnetic shielding material or a conductive material.

所述之奈米碳管複合材料及其製備方法具有以下優點:其一,由於所述奈米碳管複合材料中的奈米碳管相互連 接形成一奈米碳管結構,該奈米碳管結構中的奈米碳管無序排列或有序排列,使得奈米碳管複合材料的機械強度較大,韌性較好,克服了奈米碳管易團聚的缺點。其二,由於採用奈米碳管結構作為骨架,從而使得所述之奈米碳管複合材料具有良好的導電性,充分發揮了奈米碳管的導電性能。其三,所述奈米碳管複合材料的製備方法無需高溫過程或對奈米碳管表面進行處理,故不會對奈米碳管造成破壞。 The carbon nanotube composite material and the preparation method thereof have the following advantages: First, since the carbon nanotubes in the carbon nanotube composite material are connected to each other The formation of a carbon nanotube structure, the carbon nanotubes in the carbon nanotube structure are disorderly arranged or ordered, so that the carbon nanotube composite material has greater mechanical strength, better toughness, and overcomes the nanometer. The shortcomings of carbon tube easy to agglomerate. Secondly, since the carbon nanotube structure is used as the skeleton, the carbon nanotube composite material has good electrical conductivity and fully exerts the conductivity of the carbon nanotube. Third, the preparation method of the carbon nanotube composite material does not require a high temperature process or treatment of the surface of the carbon nanotube, so that the carbon nanotubes are not damaged.

綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡習知本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

16‧‧‧奈米碳管結構 16‧‧‧Nano Carbon Tube Structure

18‧‧‧奈米顆粒 18‧‧‧Nano granules

20‧‧‧微孔 20‧‧‧Micropores

圖1係本技術方案實施例的提供的奈米碳管複合材料的結構示意圖。 FIG. 1 is a schematic structural view of a carbon nanotube composite material provided by an embodiment of the present technical solution.

圖2係本技術方案實施例提供的奈米碳管絮化膜的掃描電鏡照片。 2 is a scanning electron micrograph of a carbon nanotube flocculation film provided by an embodiment of the present technical solution.

圖3為本技術方案實施例提供的包括沿不同方向擇優取向排列的奈米碳管的奈米碳管碾壓膜的掃描電鏡照片。 FIG. 3 is a scanning electron micrograph of a carbon nanotube rolled film including carbon nanotubes arranged in different orientations according to an embodiment of the present invention.

圖4為本技術方案實施例提供的包括沿同一方向擇優取向排列的奈米碳管的奈米碳管碾壓膜的掃描電鏡照片。 4 is a scanning electron micrograph of a carbon nanotube rolled film including carbon nanotubes arranged in a preferred orientation in the same direction according to an embodiment of the present invention.

圖5係本技術方案實施例提供的奈米碳管拉膜的掃描電鏡照片。 FIG. 5 is a scanning electron micrograph of a carbon nanotube film provided by an embodiment of the present technical solution.

圖6係本技術方案實施例提供的奈米碳管複合材料的製備方法的流程圖。 FIG. 6 is a flow chart of a method for preparing a carbon nanotube composite material provided by an embodiment of the present technical solution.

10‧‧‧奈米碳管複合材料 10‧‧‧Nano Carbon Tube Composites

16‧‧‧奈米碳管結構 16‧‧‧Nano Carbon Tube Structure

18‧‧‧奈米顆粒 18‧‧‧Nano granules

20‧‧‧微孔 20‧‧‧Micropores

Claims (19)

一種奈米碳管複合材料,其包括:複數個奈米碳管和複數個奈米顆粒,其改良在於,所述複數個奈米碳管形成一奈米碳管結構,複數個奈米顆粒分佈於奈米碳管結構中,奈米碳管結構為支撐該複數個奈米顆粒的骨架,該奈米碳管結構包括複數個沿同一方向擇優取向排列的奈米碳管。 A carbon nanotube composite material comprising: a plurality of carbon nanotubes and a plurality of nano particles, wherein the plurality of carbon nanotubes form a carbon nanotube structure, and a plurality of nanoparticle particles are distributed In the carbon nanotube structure, the carbon nanotube structure is a skeleton supporting the plurality of nano particles, and the carbon nanotube structure comprises a plurality of carbon nanotubes arranged in a preferred orientation in the same direction. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述之奈米碳管複合材料進一步包括複數個微孔。 The carbon nanotube composite material according to claim 1, wherein the carbon nanotube composite further comprises a plurality of micropores. 如申請專利範圍第2項所述之奈米碳管複合材料,其中,所述微孔的直徑為0.3奈米-5毫米。 The carbon nanotube composite material according to claim 2, wherein the micropores have a diameter of 0.3 nm to 5 mm. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述之複數個奈米顆粒通過凡德瓦爾力附著在奈米碳管表面。 The carbon nanotube composite material according to claim 1, wherein the plurality of nano particles are attached to the surface of the carbon nanotube by a van der Waals force. 如申請專利範圍第4項所述之奈米碳管複合材料,其中,所述之奈米碳管結構包括至少一層奈米碳管膜,該奈米碳管通過凡德瓦爾力連接。 The carbon nanotube composite material according to claim 4, wherein the carbon nanotube structure comprises at least one layer of carbon nanotube membranes, and the carbon nanotubes are connected by van der Waals force. 如申請專利範圍第5項所述之奈米碳管複合材料,其中,所述奈米碳管膜包括複數個首尾相連且沿同一方向擇優取向排列的奈米碳管。 The carbon nanotube composite material according to claim 5, wherein the carbon nanotube film comprises a plurality of carbon nanotubes connected end to end and arranged in a preferred orientation in the same direction. 如申請專利範圍第6項所述之奈米碳管複合材料,其中,所述奈米碳管膜的厚度為0.5奈米-100微米。 The carbon nanotube composite material according to claim 6, wherein the carbon nanotube film has a thickness of from 0.5 nm to 100 μm. 如申請專利範圍第6項所述之奈米碳管複合材料,其中,所述奈米碳管結構包括至少兩層奈米碳管膜重疊設置,相鄰的奈米碳管膜之間的奈米碳管的排列方向形成一夾角β,β大於等於0度小於等於90度。 The carbon nanotube composite material according to claim 6, wherein the carbon nanotube structure comprises at least two layers of carbon nanotube membranes arranged in an overlapping manner, and between adjacent carbon nanotube membranes The arrangement direction of the carbon nanotubes forms an angle β, and β is greater than or equal to 0 degrees and less than or equal to 90 degrees. 如申請專利範圍第8項所述之奈米碳管複合材料,其中,所述之複數個奈米顆粒分佈於奈米碳管膜之間。 The carbon nanotube composite material according to claim 8, wherein the plurality of nano particles are distributed between the carbon nanotube films. 如申請專利範圍第8項所述之奈米碳管複合材料,其中,所述β等於90度。 The carbon nanotube composite material according to claim 8, wherein the β is equal to 90 degrees. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述之奈米顆粒包括奈米纖維、奈米棒、奈米球及奈米線中的一種或幾種。 The carbon nanotube composite material according to claim 1, wherein the nanoparticle comprises one or more of a nanofiber, a nanorod, a nanosphere, and a nanowire. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述奈米顆粒的材料為金屬、非金屬、合金、金屬氧化物及聚合物中的一種或幾種。 The carbon nanotube composite material according to claim 1, wherein the material of the nanoparticle is one or more of a metal, a nonmetal, an alloy, a metal oxide, and a polymer. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述奈米顆粒的粒徑為0.3奈米-500奈米。 The carbon nanotube composite material according to claim 1, wherein the nanoparticle has a particle diameter of from 0.3 nm to 500 nm. 如申請專利範圍第1項所述之奈米碳管複合材料,其中,所述奈米顆粒在奈米碳管複合材料中的質量百分含量為0.01%-99%。 The carbon nanotube composite material according to claim 1, wherein the nanoparticle has a mass percentage of 0.01% to 99% in the carbon nanotube composite material. 一種奈米碳管複合材料的製備方法,其包括:提供一奈米顆粒的預製體;製備一奈米碳管結構,該奈米碳管結構包括複數個以一定方式排列之奈米碳管;以及,在該奈米碳管結構形成後,以該奈米碳管結構為基體,與所述奈米顆粒預製體複合,從而在奈米碳管結構的表面形成奈米顆粒,奈米碳管結構中複數個奈米碳管之排列方式不變。 A method for preparing a carbon nanotube composite material, comprising: providing a preform of one nanometer particle; preparing a carbon nanotube structure, the carbon nanotube structure comprising a plurality of carbon nanotubes arranged in a certain manner; And after the carbon nanotube structure is formed, the nano carbon nanotube structure is used as a matrix, and the nanoparticle preform is combined to form a nanoparticle, a carbon nanotube on the surface of the carbon nanotube structure. The arrangement of a plurality of carbon nanotubes in the structure is unchanged. 如申請專利範圍第15項所述之奈米碳管複合材料的製備方法,其中,所述之製備奈米碳管結構的方法包括絮化法、碾壓法和拉膜法。 The method for preparing a carbon nanotube composite material according to claim 15, wherein the method for preparing a carbon nanotube structure comprises a flocculation method, a rolling method, and a film stretching method. 如申請專利範圍第15項所述之奈米碳管複合材料的製備方法,其中,所述之預製體為奈米顆粒所對應的材料形成的 溶液,預製體與奈米碳管結構複合的方法包括以下步驟:採用該溶液浸潤奈米碳管結構;將浸潤後的奈米碳管結構置於一定溫度下,使溶液中的溶劑揮發。 The method for preparing a carbon nanotube composite material according to claim 15, wherein the preform is formed of a material corresponding to the nanoparticle. The solution, the method of compounding the preform with the carbon nanotube structure comprises the steps of: infiltrating the carbon nanotube structure with the solution; and placing the infiltrated carbon nanotube structure at a certain temperature to volatilize the solvent in the solution. 如申請專利範圍第15項所述之奈米碳管複合材料的製備方法,其中,所述之預製體為該奈米顆粒所對應材料,當該材料為氣態時,採用噴塗或吸附的方法在奈米碳管結構中形成奈米顆粒;當該材料為液態時,採用噴塗或蒸鍍的方法在奈米碳管結構中形成奈米顆粒;該材料為固態時,採用蒸鍍或濺射的方法在奈米碳管結構中形成奈米顆粒。 The method for preparing a carbon nanotube composite material according to claim 15, wherein the preform is a material corresponding to the nano particle, and when the material is in a gaseous state, a spraying or adsorption method is used. Forming nano particles in the carbon nanotube structure; when the material is in a liquid state, forming nano particles in the carbon nanotube structure by spraying or vapor deposition; when the material is solid, using evaporation or sputtering The method forms nanoparticles in a carbon nanotube structure. 如申請專利範圍第15項所述之奈米碳管複合材料的製備方法,其中,所述之預製體為通過化學反應生成奈米顆粒所對應的材料的前驅反應物,採用化學氣相沈積、電漿輔助沈積、電化學沈積或濺射的方法形成奈米顆粒於奈米碳管結構中。 The method for preparing a carbon nanotube composite material according to claim 15, wherein the preform is a precursor reactant of a material corresponding to a nanoparticle formed by a chemical reaction, and is chemical vapor deposition. Plasma-assisted deposition, electrochemical deposition or sputtering forms nanoparticles in the nanotube structure.
TW97140860A 2008-10-24 2008-10-24 Carbon nanotube composite material and method for making the same TWI411574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97140860A TWI411574B (en) 2008-10-24 2008-10-24 Carbon nanotube composite material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97140860A TWI411574B (en) 2008-10-24 2008-10-24 Carbon nanotube composite material and method for making the same

Publications (2)

Publication Number Publication Date
TW201016598A TW201016598A (en) 2010-05-01
TWI411574B true TWI411574B (en) 2013-10-11

Family

ID=44830521

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97140860A TWI411574B (en) 2008-10-24 2008-10-24 Carbon nanotube composite material and method for making the same

Country Status (1)

Country Link
TW (1) TWI411574B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9575598B2 (en) 2010-12-27 2017-02-21 Tsinghua University Inputting fingertip sleeve
TWI505142B (en) * 2010-12-30 2015-10-21 Hon Hai Prec Ind Co Ltd Finger-stall for touch panel
TWI565532B (en) * 2012-08-07 2017-01-11 國立交通大學 Nano-ball solution application method and application thereof
TWI565650B (en) * 2014-09-16 2017-01-11 國立交通大學 Fabricating method of micro/nanospheres structure and application thereof
CN114623605B (en) 2020-12-14 2023-08-22 清华大学 Solar heat collector and solar water heater
CN114621621A (en) 2020-12-14 2022-06-14 清华大学 Light absorber prefabricated liquid and preparation method thereof
CN114624798B (en) * 2020-12-14 2023-05-16 清华大学 Light absorber and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702479A (en) * 2005-04-01 2007-01-16 Univ Chicago Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
TW200724486A (en) * 2005-12-16 2007-07-01 Hon Hai Prec Ind Co Ltd Carbon nanotubes silk and method for making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702479A (en) * 2005-04-01 2007-01-16 Univ Chicago Synthesis of a self assembled hybrid of ultrananocrystalline diamond and carbon nanotubes
TW200724486A (en) * 2005-12-16 2007-07-01 Hon Hai Prec Ind Co Ltd Carbon nanotubes silk and method for making the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H. J., L. Z., K. M., and C.P. W.,"The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production", Carbon, Vol. 45, 2006/11/22, pp. 655-661. *
M. Z., L. S., and L. M., "Surfactant functionalization of carbon nanotubes (CNTs) for layer-by-layer assembling of CNT multi-layer films and fabrication of gold nanoparticle/CNT nanohybrid", Carbon,Vol.44, 2005/08/31, pp.276-283. *

Also Published As

Publication number Publication date
TW201016598A (en) 2010-05-01

Similar Documents

Publication Publication Date Title
CN101712468B (en) Carbon nanotube composite material and preparation method thereof
TWI327177B (en) Carbon nanotube film and method for making same
TWI411574B (en) Carbon nanotube composite material and method for making the same
JP5313811B2 (en) Method for producing carbon nanotube / polymer composite material
CN101837287B (en) Preparation of carbon nano-tube nano-particle composite material
JP5091208B2 (en) Method for producing carbon nanotube / polymer composite material
JP5518438B2 (en) Method for producing nanowire structure
CN101880023B (en) Nanomaterial membrane structure
TWI481554B (en) Method for making nanowire structure
TW200917947A (en) Composite for electromagnetic shielding and method for making the same
Chinnappan et al. Fabrication of MWCNT/Cu nanofibers via electrospinning method and analysis of their electrical conductivity by four-probe method
Li et al. Direct synthesis of graphene/carbon nanotube hybrid films from multiwalled carbon nanotubes on copper
TWI486971B (en) Superconducting wire
TW200939249A (en) Method for making twisted yarn
TWI387556B (en) Nano-material film structure
TWI453763B (en) Method for making superconducting wire
TWI461298B (en) Method for making carbon nanotube composite films
CN102431991A (en) Carbon nano-tube and nano-particle composite material
TWI393669B (en) Carbon nanotube composite and method for making the same
TWI440600B (en) Carbon nanotube composite films
TWI438150B (en) Hydrophilic carbon nanotube composite structure
TWI413150B (en) Transmission electron microscope grid and method for making same
TWI387743B (en) Method for making transmission electron microscope sample
TWI457951B (en) Method for making superconducting wire
TWI396219B (en) Transmission electron microscope grid